1 //== RangeConstraintManager.cpp - Manage range constraints.------*- C++ -*--==//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines RangeConstraintManager, a class that tracks simple
11 // equality and inequality constraints on symbolic values of ProgramState.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "SimpleConstraintManager.h"
16 #include "clang/StaticAnalyzer/Core/PathSensitive/APSIntType.h"
17 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
18 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h"
19 #include "llvm/Support/Debug.h"
20 #include "llvm/ADT/FoldingSet.h"
21 #include "llvm/ADT/ImmutableSet.h"
22 #include "llvm/Support/raw_ostream.h"
23
24 using namespace clang;
25 using namespace ento;
26
27 namespace { class ConstraintRange {}; }
28 static int ConstraintRangeIndex = 0;
29
30 /// A Range represents the closed range [from, to]. The caller must
31 /// guarantee that from <= to. Note that Range is immutable, so as not
32 /// to subvert RangeSet's immutability.
33 namespace {
34 class Range : public std::pair<const llvm::APSInt*,
35 const llvm::APSInt*> {
36 public:
Range(const llvm::APSInt & from,const llvm::APSInt & to)37 Range(const llvm::APSInt &from, const llvm::APSInt &to)
38 : std::pair<const llvm::APSInt*, const llvm::APSInt*>(&from, &to) {
39 assert(from <= to);
40 }
Includes(const llvm::APSInt & v) const41 bool Includes(const llvm::APSInt &v) const {
42 return *first <= v && v <= *second;
43 }
From() const44 const llvm::APSInt &From() const {
45 return *first;
46 }
To() const47 const llvm::APSInt &To() const {
48 return *second;
49 }
getConcreteValue() const50 const llvm::APSInt *getConcreteValue() const {
51 return &From() == &To() ? &From() : NULL;
52 }
53
Profile(llvm::FoldingSetNodeID & ID) const54 void Profile(llvm::FoldingSetNodeID &ID) const {
55 ID.AddPointer(&From());
56 ID.AddPointer(&To());
57 }
58 };
59
60
61 class RangeTrait : public llvm::ImutContainerInfo<Range> {
62 public:
63 // When comparing if one Range is less than another, we should compare
64 // the actual APSInt values instead of their pointers. This keeps the order
65 // consistent (instead of comparing by pointer values) and can potentially
66 // be used to speed up some of the operations in RangeSet.
isLess(key_type_ref lhs,key_type_ref rhs)67 static inline bool isLess(key_type_ref lhs, key_type_ref rhs) {
68 return *lhs.first < *rhs.first || (!(*rhs.first < *lhs.first) &&
69 *lhs.second < *rhs.second);
70 }
71 };
72
73 /// RangeSet contains a set of ranges. If the set is empty, then
74 /// there the value of a symbol is overly constrained and there are no
75 /// possible values for that symbol.
76 class RangeSet {
77 typedef llvm::ImmutableSet<Range, RangeTrait> PrimRangeSet;
78 PrimRangeSet ranges; // no need to make const, since it is an
79 // ImmutableSet - this allows default operator=
80 // to work.
81 public:
82 typedef PrimRangeSet::Factory Factory;
83 typedef PrimRangeSet::iterator iterator;
84
RangeSet(PrimRangeSet RS)85 RangeSet(PrimRangeSet RS) : ranges(RS) {}
86
begin() const87 iterator begin() const { return ranges.begin(); }
end() const88 iterator end() const { return ranges.end(); }
89
isEmpty() const90 bool isEmpty() const { return ranges.isEmpty(); }
91
92 /// Construct a new RangeSet representing '{ [from, to] }'.
RangeSet(Factory & F,const llvm::APSInt & from,const llvm::APSInt & to)93 RangeSet(Factory &F, const llvm::APSInt &from, const llvm::APSInt &to)
94 : ranges(F.add(F.getEmptySet(), Range(from, to))) {}
95
96 /// Profile - Generates a hash profile of this RangeSet for use
97 /// by FoldingSet.
Profile(llvm::FoldingSetNodeID & ID) const98 void Profile(llvm::FoldingSetNodeID &ID) const { ranges.Profile(ID); }
99
100 /// getConcreteValue - If a symbol is contrained to equal a specific integer
101 /// constant then this method returns that value. Otherwise, it returns
102 /// NULL.
getConcreteValue() const103 const llvm::APSInt* getConcreteValue() const {
104 return ranges.isSingleton() ? ranges.begin()->getConcreteValue() : 0;
105 }
106
107 private:
IntersectInRange(BasicValueFactory & BV,Factory & F,const llvm::APSInt & Lower,const llvm::APSInt & Upper,PrimRangeSet & newRanges,PrimRangeSet::iterator & i,PrimRangeSet::iterator & e) const108 void IntersectInRange(BasicValueFactory &BV, Factory &F,
109 const llvm::APSInt &Lower,
110 const llvm::APSInt &Upper,
111 PrimRangeSet &newRanges,
112 PrimRangeSet::iterator &i,
113 PrimRangeSet::iterator &e) const {
114 // There are six cases for each range R in the set:
115 // 1. R is entirely before the intersection range.
116 // 2. R is entirely after the intersection range.
117 // 3. R contains the entire intersection range.
118 // 4. R starts before the intersection range and ends in the middle.
119 // 5. R starts in the middle of the intersection range and ends after it.
120 // 6. R is entirely contained in the intersection range.
121 // These correspond to each of the conditions below.
122 for (/* i = begin(), e = end() */; i != e; ++i) {
123 if (i->To() < Lower) {
124 continue;
125 }
126 if (i->From() > Upper) {
127 break;
128 }
129
130 if (i->Includes(Lower)) {
131 if (i->Includes(Upper)) {
132 newRanges = F.add(newRanges, Range(BV.getValue(Lower),
133 BV.getValue(Upper)));
134 break;
135 } else
136 newRanges = F.add(newRanges, Range(BV.getValue(Lower), i->To()));
137 } else {
138 if (i->Includes(Upper)) {
139 newRanges = F.add(newRanges, Range(i->From(), BV.getValue(Upper)));
140 break;
141 } else
142 newRanges = F.add(newRanges, *i);
143 }
144 }
145 }
146
getMinValue() const147 const llvm::APSInt &getMinValue() const {
148 assert(!isEmpty());
149 return ranges.begin()->From();
150 }
151
pin(llvm::APSInt & Lower,llvm::APSInt & Upper) const152 bool pin(llvm::APSInt &Lower, llvm::APSInt &Upper) const {
153 // This function has nine cases, the cartesian product of range-testing
154 // both the upper and lower bounds against the symbol's type.
155 // Each case requires a different pinning operation.
156 // The function returns false if the described range is entirely outside
157 // the range of values for the associated symbol.
158 APSIntType Type(getMinValue());
159 APSIntType::RangeTestResultKind LowerTest = Type.testInRange(Lower);
160 APSIntType::RangeTestResultKind UpperTest = Type.testInRange(Upper);
161
162 switch (LowerTest) {
163 case APSIntType::RTR_Below:
164 switch (UpperTest) {
165 case APSIntType::RTR_Below:
166 // The entire range is outside the symbol's set of possible values.
167 // If this is a conventionally-ordered range, the state is infeasible.
168 if (Lower < Upper)
169 return false;
170
171 // However, if the range wraps around, it spans all possible values.
172 Lower = Type.getMinValue();
173 Upper = Type.getMaxValue();
174 break;
175 case APSIntType::RTR_Within:
176 // The range starts below what's possible but ends within it. Pin.
177 Lower = Type.getMinValue();
178 Type.apply(Upper);
179 break;
180 case APSIntType::RTR_Above:
181 // The range spans all possible values for the symbol. Pin.
182 Lower = Type.getMinValue();
183 Upper = Type.getMaxValue();
184 break;
185 }
186 break;
187 case APSIntType::RTR_Within:
188 switch (UpperTest) {
189 case APSIntType::RTR_Below:
190 // The range wraps around, but all lower values are not possible.
191 Type.apply(Lower);
192 Upper = Type.getMaxValue();
193 break;
194 case APSIntType::RTR_Within:
195 // The range may or may not wrap around, but both limits are valid.
196 Type.apply(Lower);
197 Type.apply(Upper);
198 break;
199 case APSIntType::RTR_Above:
200 // The range starts within what's possible but ends above it. Pin.
201 Type.apply(Lower);
202 Upper = Type.getMaxValue();
203 break;
204 }
205 break;
206 case APSIntType::RTR_Above:
207 switch (UpperTest) {
208 case APSIntType::RTR_Below:
209 // The range wraps but is outside the symbol's set of possible values.
210 return false;
211 case APSIntType::RTR_Within:
212 // The range starts above what's possible but ends within it (wrap).
213 Lower = Type.getMinValue();
214 Type.apply(Upper);
215 break;
216 case APSIntType::RTR_Above:
217 // The entire range is outside the symbol's set of possible values.
218 // If this is a conventionally-ordered range, the state is infeasible.
219 if (Lower < Upper)
220 return false;
221
222 // However, if the range wraps around, it spans all possible values.
223 Lower = Type.getMinValue();
224 Upper = Type.getMaxValue();
225 break;
226 }
227 break;
228 }
229
230 return true;
231 }
232
233 public:
234 // Returns a set containing the values in the receiving set, intersected with
235 // the closed range [Lower, Upper]. Unlike the Range type, this range uses
236 // modular arithmetic, corresponding to the common treatment of C integer
237 // overflow. Thus, if the Lower bound is greater than the Upper bound, the
238 // range is taken to wrap around. This is equivalent to taking the
239 // intersection with the two ranges [Min, Upper] and [Lower, Max],
240 // or, alternatively, /removing/ all integers between Upper and Lower.
Intersect(BasicValueFactory & BV,Factory & F,llvm::APSInt Lower,llvm::APSInt Upper) const241 RangeSet Intersect(BasicValueFactory &BV, Factory &F,
242 llvm::APSInt Lower, llvm::APSInt Upper) const {
243 if (!pin(Lower, Upper))
244 return F.getEmptySet();
245
246 PrimRangeSet newRanges = F.getEmptySet();
247
248 PrimRangeSet::iterator i = begin(), e = end();
249 if (Lower <= Upper)
250 IntersectInRange(BV, F, Lower, Upper, newRanges, i, e);
251 else {
252 // The order of the next two statements is important!
253 // IntersectInRange() does not reset the iteration state for i and e.
254 // Therefore, the lower range most be handled first.
255 IntersectInRange(BV, F, BV.getMinValue(Upper), Upper, newRanges, i, e);
256 IntersectInRange(BV, F, Lower, BV.getMaxValue(Lower), newRanges, i, e);
257 }
258
259 return newRanges;
260 }
261
print(raw_ostream & os) const262 void print(raw_ostream &os) const {
263 bool isFirst = true;
264 os << "{ ";
265 for (iterator i = begin(), e = end(); i != e; ++i) {
266 if (isFirst)
267 isFirst = false;
268 else
269 os << ", ";
270
271 os << '[' << i->From().toString(10) << ", " << i->To().toString(10)
272 << ']';
273 }
274 os << " }";
275 }
276
operator ==(const RangeSet & other) const277 bool operator==(const RangeSet &other) const {
278 return ranges == other.ranges;
279 }
280 };
281 } // end anonymous namespace
282
283 typedef llvm::ImmutableMap<SymbolRef,RangeSet> ConstraintRangeTy;
284
285 namespace clang {
286 namespace ento {
287 template<>
288 struct ProgramStateTrait<ConstraintRange>
289 : public ProgramStatePartialTrait<ConstraintRangeTy> {
GDMIndexclang::ento::ProgramStateTrait290 static inline void *GDMIndex() { return &ConstraintRangeIndex; }
291 };
292 }
293 }
294
295 namespace {
296 class RangeConstraintManager : public SimpleConstraintManager{
297 RangeSet GetRange(ProgramStateRef state, SymbolRef sym);
298 public:
RangeConstraintManager(SubEngine & subengine,BasicValueFactory & BVF)299 RangeConstraintManager(SubEngine &subengine, BasicValueFactory &BVF)
300 : SimpleConstraintManager(subengine, BVF) {}
301
302 ProgramStateRef assumeSymNE(ProgramStateRef state, SymbolRef sym,
303 const llvm::APSInt& Int,
304 const llvm::APSInt& Adjustment);
305
306 ProgramStateRef assumeSymEQ(ProgramStateRef state, SymbolRef sym,
307 const llvm::APSInt& Int,
308 const llvm::APSInt& Adjustment);
309
310 ProgramStateRef assumeSymLT(ProgramStateRef state, SymbolRef sym,
311 const llvm::APSInt& Int,
312 const llvm::APSInt& Adjustment);
313
314 ProgramStateRef assumeSymGT(ProgramStateRef state, SymbolRef sym,
315 const llvm::APSInt& Int,
316 const llvm::APSInt& Adjustment);
317
318 ProgramStateRef assumeSymGE(ProgramStateRef state, SymbolRef sym,
319 const llvm::APSInt& Int,
320 const llvm::APSInt& Adjustment);
321
322 ProgramStateRef assumeSymLE(ProgramStateRef state, SymbolRef sym,
323 const llvm::APSInt& Int,
324 const llvm::APSInt& Adjustment);
325
326 const llvm::APSInt* getSymVal(ProgramStateRef St, SymbolRef sym) const;
327
328 ProgramStateRef removeDeadBindings(ProgramStateRef St, SymbolReaper& SymReaper);
329
330 void print(ProgramStateRef St, raw_ostream &Out,
331 const char* nl, const char *sep);
332
333 private:
334 RangeSet::Factory F;
335 };
336
337 } // end anonymous namespace
338
339 ConstraintManager *
CreateRangeConstraintManager(ProgramStateManager & StMgr,SubEngine & Eng)340 ento::CreateRangeConstraintManager(ProgramStateManager &StMgr, SubEngine &Eng) {
341 return new RangeConstraintManager(Eng, StMgr.getBasicVals());
342 }
343
getSymVal(ProgramStateRef St,SymbolRef sym) const344 const llvm::APSInt* RangeConstraintManager::getSymVal(ProgramStateRef St,
345 SymbolRef sym) const {
346 const ConstraintRangeTy::data_type *T = St->get<ConstraintRange>(sym);
347 return T ? T->getConcreteValue() : NULL;
348 }
349
350 /// Scan all symbols referenced by the constraints. If the symbol is not alive
351 /// as marked in LSymbols, mark it as dead in DSymbols.
352 ProgramStateRef
removeDeadBindings(ProgramStateRef state,SymbolReaper & SymReaper)353 RangeConstraintManager::removeDeadBindings(ProgramStateRef state,
354 SymbolReaper& SymReaper) {
355
356 ConstraintRangeTy CR = state->get<ConstraintRange>();
357 ConstraintRangeTy::Factory& CRFactory = state->get_context<ConstraintRange>();
358
359 for (ConstraintRangeTy::iterator I = CR.begin(), E = CR.end(); I != E; ++I) {
360 SymbolRef sym = I.getKey();
361 if (SymReaper.maybeDead(sym))
362 CR = CRFactory.remove(CR, sym);
363 }
364
365 return state->set<ConstraintRange>(CR);
366 }
367
368 RangeSet
GetRange(ProgramStateRef state,SymbolRef sym)369 RangeConstraintManager::GetRange(ProgramStateRef state, SymbolRef sym) {
370 if (ConstraintRangeTy::data_type* V = state->get<ConstraintRange>(sym))
371 return *V;
372
373 // Lazily generate a new RangeSet representing all possible values for the
374 // given symbol type.
375 BasicValueFactory &BV = getBasicVals();
376 QualType T = sym->getType(BV.getContext());
377
378 RangeSet Result(F, BV.getMinValue(T), BV.getMaxValue(T));
379
380 // Special case: references are known to be non-zero.
381 if (T->isReferenceType()) {
382 APSIntType IntType = BV.getAPSIntType(T);
383 Result = Result.Intersect(BV, F, ++IntType.getZeroValue(),
384 --IntType.getZeroValue());
385 }
386
387 return Result;
388 }
389
390 //===------------------------------------------------------------------------===
391 // assumeSymX methods: public interface for RangeConstraintManager.
392 //===------------------------------------------------------------------------===/
393
394 // The syntax for ranges below is mathematical, using [x, y] for closed ranges
395 // and (x, y) for open ranges. These ranges are modular, corresponding with
396 // a common treatment of C integer overflow. This means that these methods
397 // do not have to worry about overflow; RangeSet::Intersect can handle such a
398 // "wraparound" range.
399 // As an example, the range [UINT_MAX-1, 3) contains five values: UINT_MAX-1,
400 // UINT_MAX, 0, 1, and 2.
401
402 ProgramStateRef
assumeSymNE(ProgramStateRef St,SymbolRef Sym,const llvm::APSInt & Int,const llvm::APSInt & Adjustment)403 RangeConstraintManager::assumeSymNE(ProgramStateRef St, SymbolRef Sym,
404 const llvm::APSInt &Int,
405 const llvm::APSInt &Adjustment) {
406 // Before we do any real work, see if the value can even show up.
407 APSIntType AdjustmentType(Adjustment);
408 if (AdjustmentType.testInRange(Int) != APSIntType::RTR_Within)
409 return St;
410
411 llvm::APSInt Lower = AdjustmentType.convert(Int) - Adjustment;
412 llvm::APSInt Upper = Lower;
413 --Lower;
414 ++Upper;
415
416 // [Int-Adjustment+1, Int-Adjustment-1]
417 // Notice that the lower bound is greater than the upper bound.
418 RangeSet New = GetRange(St, Sym).Intersect(getBasicVals(), F, Upper, Lower);
419 return New.isEmpty() ? NULL : St->set<ConstraintRange>(Sym, New);
420 }
421
422 ProgramStateRef
assumeSymEQ(ProgramStateRef St,SymbolRef Sym,const llvm::APSInt & Int,const llvm::APSInt & Adjustment)423 RangeConstraintManager::assumeSymEQ(ProgramStateRef St, SymbolRef Sym,
424 const llvm::APSInt &Int,
425 const llvm::APSInt &Adjustment) {
426 // Before we do any real work, see if the value can even show up.
427 APSIntType AdjustmentType(Adjustment);
428 if (AdjustmentType.testInRange(Int) != APSIntType::RTR_Within)
429 return NULL;
430
431 // [Int-Adjustment, Int-Adjustment]
432 llvm::APSInt AdjInt = AdjustmentType.convert(Int) - Adjustment;
433 RangeSet New = GetRange(St, Sym).Intersect(getBasicVals(), F, AdjInt, AdjInt);
434 return New.isEmpty() ? NULL : St->set<ConstraintRange>(Sym, New);
435 }
436
437 ProgramStateRef
assumeSymLT(ProgramStateRef St,SymbolRef Sym,const llvm::APSInt & Int,const llvm::APSInt & Adjustment)438 RangeConstraintManager::assumeSymLT(ProgramStateRef St, SymbolRef Sym,
439 const llvm::APSInt &Int,
440 const llvm::APSInt &Adjustment) {
441 // Before we do any real work, see if the value can even show up.
442 APSIntType AdjustmentType(Adjustment);
443 switch (AdjustmentType.testInRange(Int)) {
444 case APSIntType::RTR_Below:
445 return NULL;
446 case APSIntType::RTR_Within:
447 break;
448 case APSIntType::RTR_Above:
449 return St;
450 }
451
452 // Special case for Int == Min. This is always false.
453 llvm::APSInt ComparisonVal = AdjustmentType.convert(Int);
454 llvm::APSInt Min = AdjustmentType.getMinValue();
455 if (ComparisonVal == Min)
456 return NULL;
457
458 llvm::APSInt Lower = Min-Adjustment;
459 llvm::APSInt Upper = ComparisonVal-Adjustment;
460 --Upper;
461
462 RangeSet New = GetRange(St, Sym).Intersect(getBasicVals(), F, Lower, Upper);
463 return New.isEmpty() ? NULL : St->set<ConstraintRange>(Sym, New);
464 }
465
466 ProgramStateRef
assumeSymGT(ProgramStateRef St,SymbolRef Sym,const llvm::APSInt & Int,const llvm::APSInt & Adjustment)467 RangeConstraintManager::assumeSymGT(ProgramStateRef St, SymbolRef Sym,
468 const llvm::APSInt &Int,
469 const llvm::APSInt &Adjustment) {
470 // Before we do any real work, see if the value can even show up.
471 APSIntType AdjustmentType(Adjustment);
472 switch (AdjustmentType.testInRange(Int)) {
473 case APSIntType::RTR_Below:
474 return St;
475 case APSIntType::RTR_Within:
476 break;
477 case APSIntType::RTR_Above:
478 return NULL;
479 }
480
481 // Special case for Int == Max. This is always false.
482 llvm::APSInt ComparisonVal = AdjustmentType.convert(Int);
483 llvm::APSInt Max = AdjustmentType.getMaxValue();
484 if (ComparisonVal == Max)
485 return NULL;
486
487 llvm::APSInt Lower = ComparisonVal-Adjustment;
488 llvm::APSInt Upper = Max-Adjustment;
489 ++Lower;
490
491 RangeSet New = GetRange(St, Sym).Intersect(getBasicVals(), F, Lower, Upper);
492 return New.isEmpty() ? NULL : St->set<ConstraintRange>(Sym, New);
493 }
494
495 ProgramStateRef
assumeSymGE(ProgramStateRef St,SymbolRef Sym,const llvm::APSInt & Int,const llvm::APSInt & Adjustment)496 RangeConstraintManager::assumeSymGE(ProgramStateRef St, SymbolRef Sym,
497 const llvm::APSInt &Int,
498 const llvm::APSInt &Adjustment) {
499 // Before we do any real work, see if the value can even show up.
500 APSIntType AdjustmentType(Adjustment);
501 switch (AdjustmentType.testInRange(Int)) {
502 case APSIntType::RTR_Below:
503 return St;
504 case APSIntType::RTR_Within:
505 break;
506 case APSIntType::RTR_Above:
507 return NULL;
508 }
509
510 // Special case for Int == Min. This is always feasible.
511 llvm::APSInt ComparisonVal = AdjustmentType.convert(Int);
512 llvm::APSInt Min = AdjustmentType.getMinValue();
513 if (ComparisonVal == Min)
514 return St;
515
516 llvm::APSInt Max = AdjustmentType.getMaxValue();
517 llvm::APSInt Lower = ComparisonVal-Adjustment;
518 llvm::APSInt Upper = Max-Adjustment;
519
520 RangeSet New = GetRange(St, Sym).Intersect(getBasicVals(), F, Lower, Upper);
521 return New.isEmpty() ? NULL : St->set<ConstraintRange>(Sym, New);
522 }
523
524 ProgramStateRef
assumeSymLE(ProgramStateRef St,SymbolRef Sym,const llvm::APSInt & Int,const llvm::APSInt & Adjustment)525 RangeConstraintManager::assumeSymLE(ProgramStateRef St, SymbolRef Sym,
526 const llvm::APSInt &Int,
527 const llvm::APSInt &Adjustment) {
528 // Before we do any real work, see if the value can even show up.
529 APSIntType AdjustmentType(Adjustment);
530 switch (AdjustmentType.testInRange(Int)) {
531 case APSIntType::RTR_Below:
532 return NULL;
533 case APSIntType::RTR_Within:
534 break;
535 case APSIntType::RTR_Above:
536 return St;
537 }
538
539 // Special case for Int == Max. This is always feasible.
540 llvm::APSInt ComparisonVal = AdjustmentType.convert(Int);
541 llvm::APSInt Max = AdjustmentType.getMaxValue();
542 if (ComparisonVal == Max)
543 return St;
544
545 llvm::APSInt Min = AdjustmentType.getMinValue();
546 llvm::APSInt Lower = Min-Adjustment;
547 llvm::APSInt Upper = ComparisonVal-Adjustment;
548
549 RangeSet New = GetRange(St, Sym).Intersect(getBasicVals(), F, Lower, Upper);
550 return New.isEmpty() ? NULL : St->set<ConstraintRange>(Sym, New);
551 }
552
553 //===------------------------------------------------------------------------===
554 // Pretty-printing.
555 //===------------------------------------------------------------------------===/
556
print(ProgramStateRef St,raw_ostream & Out,const char * nl,const char * sep)557 void RangeConstraintManager::print(ProgramStateRef St, raw_ostream &Out,
558 const char* nl, const char *sep) {
559
560 ConstraintRangeTy Ranges = St->get<ConstraintRange>();
561
562 if (Ranges.isEmpty()) {
563 Out << nl << sep << "Ranges are empty." << nl;
564 return;
565 }
566
567 Out << nl << sep << "Ranges of symbol values:";
568 for (ConstraintRangeTy::iterator I=Ranges.begin(), E=Ranges.end(); I!=E; ++I){
569 Out << nl << ' ' << I.getKey() << " : ";
570 I.getData().print(Out);
571 }
572 Out << nl;
573 }
574