1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Redistribution and use in source and binary forms, with or without
3 // modification, are permitted provided that the following conditions are
4 // met:
5 //
6 // * Redistributions of source code must retain the above copyright
7 // notice, this list of conditions and the following disclaimer.
8 // * Redistributions in binary form must reproduce the above
9 // copyright notice, this list of conditions and the following
10 // disclaimer in the documentation and/or other materials provided
11 // with the distribution.
12 // * Neither the name of Google Inc. nor the names of its
13 // contributors may be used to endorse or promote products derived
14 // from this software without specific prior written permission.
15 //
16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
28 // Platform specific code for Win32.
29
30 #define V8_WIN32_HEADERS_FULL
31 #include "win32-headers.h"
32
33 #include "v8.h"
34
35 #include "codegen.h"
36 #include "platform.h"
37 #include "vm-state-inl.h"
38
39 #ifdef _MSC_VER
40
41 // Case-insensitive bounded string comparisons. Use stricmp() on Win32. Usually
42 // defined in strings.h.
strncasecmp(const char * s1,const char * s2,int n)43 int strncasecmp(const char* s1, const char* s2, int n) {
44 return _strnicmp(s1, s2, n);
45 }
46
47 #endif // _MSC_VER
48
49
50 // Extra functions for MinGW. Most of these are the _s functions which are in
51 // the Microsoft Visual Studio C++ CRT.
52 #ifdef __MINGW32__
53
localtime_s(tm * out_tm,const time_t * time)54 int localtime_s(tm* out_tm, const time_t* time) {
55 tm* posix_local_time_struct = localtime(time);
56 if (posix_local_time_struct == NULL) return 1;
57 *out_tm = *posix_local_time_struct;
58 return 0;
59 }
60
61
fopen_s(FILE ** pFile,const char * filename,const char * mode)62 int fopen_s(FILE** pFile, const char* filename, const char* mode) {
63 *pFile = fopen(filename, mode);
64 return *pFile != NULL ? 0 : 1;
65 }
66
67
68 #ifndef __MINGW64_VERSION_MAJOR
69
70 // Not sure this the correct interpretation of _mkgmtime
_mkgmtime(tm * timeptr)71 time_t _mkgmtime(tm* timeptr) {
72 return mktime(timeptr);
73 }
74
75
76 #define _TRUNCATE 0
77 #define STRUNCATE 80
78
79 #endif // __MINGW64_VERSION_MAJOR
80
81
_vsnprintf_s(char * buffer,size_t sizeOfBuffer,size_t count,const char * format,va_list argptr)82 int _vsnprintf_s(char* buffer, size_t sizeOfBuffer, size_t count,
83 const char* format, va_list argptr) {
84 ASSERT(count == _TRUNCATE);
85 return _vsnprintf(buffer, sizeOfBuffer, format, argptr);
86 }
87
88
strncpy_s(char * dest,size_t dest_size,const char * source,size_t count)89 int strncpy_s(char* dest, size_t dest_size, const char* source, size_t count) {
90 CHECK(source != NULL);
91 CHECK(dest != NULL);
92 CHECK_GT(dest_size, 0);
93
94 if (count == _TRUNCATE) {
95 while (dest_size > 0 && *source != 0) {
96 *(dest++) = *(source++);
97 --dest_size;
98 }
99 if (dest_size == 0) {
100 *(dest - 1) = 0;
101 return STRUNCATE;
102 }
103 } else {
104 while (dest_size > 0 && count > 0 && *source != 0) {
105 *(dest++) = *(source++);
106 --dest_size;
107 --count;
108 }
109 }
110 CHECK_GT(dest_size, 0);
111 *dest = 0;
112 return 0;
113 }
114
115
116 #ifndef __MINGW64_VERSION_MAJOR
117
MemoryBarrier()118 inline void MemoryBarrier() {
119 int barrier = 0;
120 __asm__ __volatile__("xchgl %%eax,%0 ":"=r" (barrier));
121 }
122
123 #endif // __MINGW64_VERSION_MAJOR
124
125
126 #endif // __MINGW32__
127
128 // Generate a pseudo-random number in the range 0-2^31-1. Usually
129 // defined in stdlib.h. Missing in both Microsoft Visual Studio C++ and MinGW.
random()130 int random() {
131 return rand();
132 }
133
134
135 namespace v8 {
136 namespace internal {
137
MaxVirtualMemory()138 intptr_t OS::MaxVirtualMemory() {
139 return 0;
140 }
141
142
ceiling(double x)143 double ceiling(double x) {
144 return ceil(x);
145 }
146
147
148 static Mutex* limit_mutex = NULL;
149
150 #if defined(V8_TARGET_ARCH_IA32)
151 static OS::MemCopyFunction memcopy_function = NULL;
152 static LazyMutex memcopy_function_mutex = LAZY_MUTEX_INITIALIZER;
153 // Defined in codegen-ia32.cc.
154 OS::MemCopyFunction CreateMemCopyFunction();
155
156 // Copy memory area to disjoint memory area.
MemCopy(void * dest,const void * src,size_t size)157 void OS::MemCopy(void* dest, const void* src, size_t size) {
158 if (memcopy_function == NULL) {
159 ScopedLock lock(memcopy_function_mutex.Pointer());
160 if (memcopy_function == NULL) {
161 OS::MemCopyFunction temp = CreateMemCopyFunction();
162 MemoryBarrier();
163 memcopy_function = temp;
164 }
165 }
166 // Note: here we rely on dependent reads being ordered. This is true
167 // on all architectures we currently support.
168 (*memcopy_function)(dest, src, size);
169 #ifdef DEBUG
170 CHECK_EQ(0, memcmp(dest, src, size));
171 #endif
172 }
173 #endif // V8_TARGET_ARCH_IA32
174
175 #ifdef _WIN64
176 typedef double (*ModuloFunction)(double, double);
177 static ModuloFunction modulo_function = NULL;
178 // Defined in codegen-x64.cc.
179 ModuloFunction CreateModuloFunction();
180
init_modulo_function()181 void init_modulo_function() {
182 modulo_function = CreateModuloFunction();
183 }
184
modulo(double x,double y)185 double modulo(double x, double y) {
186 // Note: here we rely on dependent reads being ordered. This is true
187 // on all architectures we currently support.
188 return (*modulo_function)(x, y);
189 }
190 #else // Win32
191
modulo(double x,double y)192 double modulo(double x, double y) {
193 // Workaround MS fmod bugs. ECMA-262 says:
194 // dividend is finite and divisor is an infinity => result equals dividend
195 // dividend is a zero and divisor is nonzero finite => result equals dividend
196 if (!(isfinite(x) && (!isfinite(y) && !isnan(y))) &&
197 !(x == 0 && (y != 0 && isfinite(y)))) {
198 x = fmod(x, y);
199 }
200 return x;
201 }
202
203 #endif // _WIN64
204
205
206 #define UNARY_MATH_FUNCTION(name, generator) \
207 static UnaryMathFunction fast_##name##_function = NULL; \
208 void init_fast_##name##_function() { \
209 fast_##name##_function = generator; \
210 } \
211 double fast_##name(double x) { \
212 return (*fast_##name##_function)(x); \
213 }
214
UNARY_MATH_FUNCTION(sin,CreateTranscendentalFunction (TranscendentalCache::SIN))215 UNARY_MATH_FUNCTION(sin, CreateTranscendentalFunction(TranscendentalCache::SIN))
216 UNARY_MATH_FUNCTION(cos, CreateTranscendentalFunction(TranscendentalCache::COS))
217 UNARY_MATH_FUNCTION(tan, CreateTranscendentalFunction(TranscendentalCache::TAN))
218 UNARY_MATH_FUNCTION(log, CreateTranscendentalFunction(TranscendentalCache::LOG))
219 UNARY_MATH_FUNCTION(sqrt, CreateSqrtFunction())
220
221 #undef MATH_FUNCTION
222
223
224 void MathSetup() {
225 #ifdef _WIN64
226 init_modulo_function();
227 #endif
228 init_fast_sin_function();
229 init_fast_cos_function();
230 init_fast_tan_function();
231 init_fast_log_function();
232 init_fast_sqrt_function();
233 }
234
235
236 // ----------------------------------------------------------------------------
237 // The Time class represents time on win32. A timestamp is represented as
238 // a 64-bit integer in 100 nanoseconds since January 1, 1601 (UTC). JavaScript
239 // timestamps are represented as a doubles in milliseconds since 00:00:00 UTC,
240 // January 1, 1970.
241
242 class Time {
243 public:
244 // Constructors.
245 Time();
246 explicit Time(double jstime);
247 Time(int year, int mon, int day, int hour, int min, int sec);
248
249 // Convert timestamp to JavaScript representation.
250 double ToJSTime();
251
252 // Set timestamp to current time.
253 void SetToCurrentTime();
254
255 // Returns the local timezone offset in milliseconds east of UTC. This is
256 // the number of milliseconds you must add to UTC to get local time, i.e.
257 // LocalOffset(CET) = 3600000 and LocalOffset(PST) = -28800000. This
258 // routine also takes into account whether daylight saving is effect
259 // at the time.
260 int64_t LocalOffset();
261
262 // Returns the daylight savings time offset for the time in milliseconds.
263 int64_t DaylightSavingsOffset();
264
265 // Returns a string identifying the current timezone for the
266 // timestamp taking into account daylight saving.
267 char* LocalTimezone();
268
269 private:
270 // Constants for time conversion.
271 static const int64_t kTimeEpoc = 116444736000000000LL;
272 static const int64_t kTimeScaler = 10000;
273 static const int64_t kMsPerMinute = 60000;
274
275 // Constants for timezone information.
276 static const int kTzNameSize = 128;
277 static const bool kShortTzNames = false;
278
279 // Timezone information. We need to have static buffers for the
280 // timezone names because we return pointers to these in
281 // LocalTimezone().
282 static bool tz_initialized_;
283 static TIME_ZONE_INFORMATION tzinfo_;
284 static char std_tz_name_[kTzNameSize];
285 static char dst_tz_name_[kTzNameSize];
286
287 // Initialize the timezone information (if not already done).
288 static void TzSet();
289
290 // Guess the name of the timezone from the bias.
291 static const char* GuessTimezoneNameFromBias(int bias);
292
293 // Return whether or not daylight savings time is in effect at this time.
294 bool InDST();
295
296 // Return the difference (in milliseconds) between this timestamp and
297 // another timestamp.
298 int64_t Diff(Time* other);
299
300 // Accessor for FILETIME representation.
ft()301 FILETIME& ft() { return time_.ft_; }
302
303 // Accessor for integer representation.
t()304 int64_t& t() { return time_.t_; }
305
306 // Although win32 uses 64-bit integers for representing timestamps,
307 // these are packed into a FILETIME structure. The FILETIME structure
308 // is just a struct representing a 64-bit integer. The TimeStamp union
309 // allows access to both a FILETIME and an integer representation of
310 // the timestamp.
311 union TimeStamp {
312 FILETIME ft_;
313 int64_t t_;
314 };
315
316 TimeStamp time_;
317 };
318
319 // Static variables.
320 bool Time::tz_initialized_ = false;
321 TIME_ZONE_INFORMATION Time::tzinfo_;
322 char Time::std_tz_name_[kTzNameSize];
323 char Time::dst_tz_name_[kTzNameSize];
324
325
326 // Initialize timestamp to start of epoc.
Time()327 Time::Time() {
328 t() = 0;
329 }
330
331
332 // Initialize timestamp from a JavaScript timestamp.
Time(double jstime)333 Time::Time(double jstime) {
334 t() = static_cast<int64_t>(jstime) * kTimeScaler + kTimeEpoc;
335 }
336
337
338 // Initialize timestamp from date/time components.
Time(int year,int mon,int day,int hour,int min,int sec)339 Time::Time(int year, int mon, int day, int hour, int min, int sec) {
340 SYSTEMTIME st;
341 st.wYear = year;
342 st.wMonth = mon;
343 st.wDay = day;
344 st.wHour = hour;
345 st.wMinute = min;
346 st.wSecond = sec;
347 st.wMilliseconds = 0;
348 SystemTimeToFileTime(&st, &ft());
349 }
350
351
352 // Convert timestamp to JavaScript timestamp.
ToJSTime()353 double Time::ToJSTime() {
354 return static_cast<double>((t() - kTimeEpoc) / kTimeScaler);
355 }
356
357
358 // Guess the name of the timezone from the bias.
359 // The guess is very biased towards the northern hemisphere.
GuessTimezoneNameFromBias(int bias)360 const char* Time::GuessTimezoneNameFromBias(int bias) {
361 static const int kHour = 60;
362 switch (-bias) {
363 case -9*kHour: return "Alaska";
364 case -8*kHour: return "Pacific";
365 case -7*kHour: return "Mountain";
366 case -6*kHour: return "Central";
367 case -5*kHour: return "Eastern";
368 case -4*kHour: return "Atlantic";
369 case 0*kHour: return "GMT";
370 case +1*kHour: return "Central Europe";
371 case +2*kHour: return "Eastern Europe";
372 case +3*kHour: return "Russia";
373 case +5*kHour + 30: return "India";
374 case +8*kHour: return "China";
375 case +9*kHour: return "Japan";
376 case +12*kHour: return "New Zealand";
377 default: return "Local";
378 }
379 }
380
381
382 // Initialize timezone information. The timezone information is obtained from
383 // windows. If we cannot get the timezone information we fall back to CET.
384 // Please notice that this code is not thread-safe.
TzSet()385 void Time::TzSet() {
386 // Just return if timezone information has already been initialized.
387 if (tz_initialized_) return;
388
389 // Initialize POSIX time zone data.
390 _tzset();
391 // Obtain timezone information from operating system.
392 memset(&tzinfo_, 0, sizeof(tzinfo_));
393 if (GetTimeZoneInformation(&tzinfo_) == TIME_ZONE_ID_INVALID) {
394 // If we cannot get timezone information we fall back to CET.
395 tzinfo_.Bias = -60;
396 tzinfo_.StandardDate.wMonth = 10;
397 tzinfo_.StandardDate.wDay = 5;
398 tzinfo_.StandardDate.wHour = 3;
399 tzinfo_.StandardBias = 0;
400 tzinfo_.DaylightDate.wMonth = 3;
401 tzinfo_.DaylightDate.wDay = 5;
402 tzinfo_.DaylightDate.wHour = 2;
403 tzinfo_.DaylightBias = -60;
404 }
405
406 // Make standard and DST timezone names.
407 WideCharToMultiByte(CP_UTF8, 0, tzinfo_.StandardName, -1,
408 std_tz_name_, kTzNameSize, NULL, NULL);
409 std_tz_name_[kTzNameSize - 1] = '\0';
410 WideCharToMultiByte(CP_UTF8, 0, tzinfo_.DaylightName, -1,
411 dst_tz_name_, kTzNameSize, NULL, NULL);
412 dst_tz_name_[kTzNameSize - 1] = '\0';
413
414 // If OS returned empty string or resource id (like "@tzres.dll,-211")
415 // simply guess the name from the UTC bias of the timezone.
416 // To properly resolve the resource identifier requires a library load,
417 // which is not possible in a sandbox.
418 if (std_tz_name_[0] == '\0' || std_tz_name_[0] == '@') {
419 OS::SNPrintF(Vector<char>(std_tz_name_, kTzNameSize - 1),
420 "%s Standard Time",
421 GuessTimezoneNameFromBias(tzinfo_.Bias));
422 }
423 if (dst_tz_name_[0] == '\0' || dst_tz_name_[0] == '@') {
424 OS::SNPrintF(Vector<char>(dst_tz_name_, kTzNameSize - 1),
425 "%s Daylight Time",
426 GuessTimezoneNameFromBias(tzinfo_.Bias));
427 }
428
429 // Timezone information initialized.
430 tz_initialized_ = true;
431 }
432
433
434 // Return the difference in milliseconds between this and another timestamp.
Diff(Time * other)435 int64_t Time::Diff(Time* other) {
436 return (t() - other->t()) / kTimeScaler;
437 }
438
439
440 // Set timestamp to current time.
SetToCurrentTime()441 void Time::SetToCurrentTime() {
442 // The default GetSystemTimeAsFileTime has a ~15.5ms resolution.
443 // Because we're fast, we like fast timers which have at least a
444 // 1ms resolution.
445 //
446 // timeGetTime() provides 1ms granularity when combined with
447 // timeBeginPeriod(). If the host application for v8 wants fast
448 // timers, it can use timeBeginPeriod to increase the resolution.
449 //
450 // Using timeGetTime() has a drawback because it is a 32bit value
451 // and hence rolls-over every ~49days.
452 //
453 // To use the clock, we use GetSystemTimeAsFileTime as our base;
454 // and then use timeGetTime to extrapolate current time from the
455 // start time. To deal with rollovers, we resync the clock
456 // any time when more than kMaxClockElapsedTime has passed or
457 // whenever timeGetTime creates a rollover.
458
459 static bool initialized = false;
460 static TimeStamp init_time;
461 static DWORD init_ticks;
462 static const int64_t kHundredNanosecondsPerSecond = 10000000;
463 static const int64_t kMaxClockElapsedTime =
464 60*kHundredNanosecondsPerSecond; // 1 minute
465
466 // If we are uninitialized, we need to resync the clock.
467 bool needs_resync = !initialized;
468
469 // Get the current time.
470 TimeStamp time_now;
471 GetSystemTimeAsFileTime(&time_now.ft_);
472 DWORD ticks_now = timeGetTime();
473
474 // Check if we need to resync due to clock rollover.
475 needs_resync |= ticks_now < init_ticks;
476
477 // Check if we need to resync due to elapsed time.
478 needs_resync |= (time_now.t_ - init_time.t_) > kMaxClockElapsedTime;
479
480 // Resync the clock if necessary.
481 if (needs_resync) {
482 GetSystemTimeAsFileTime(&init_time.ft_);
483 init_ticks = ticks_now = timeGetTime();
484 initialized = true;
485 }
486
487 // Finally, compute the actual time. Why is this so hard.
488 DWORD elapsed = ticks_now - init_ticks;
489 this->time_.t_ = init_time.t_ + (static_cast<int64_t>(elapsed) * 10000);
490 }
491
492
493 // Return the local timezone offset in milliseconds east of UTC. This
494 // takes into account whether daylight saving is in effect at the time.
495 // Only times in the 32-bit Unix range may be passed to this function.
496 // Also, adding the time-zone offset to the input must not overflow.
497 // The function EquivalentTime() in date.js guarantees this.
LocalOffset()498 int64_t Time::LocalOffset() {
499 // Initialize timezone information, if needed.
500 TzSet();
501
502 Time rounded_to_second(*this);
503 rounded_to_second.t() = rounded_to_second.t() / 1000 / kTimeScaler *
504 1000 * kTimeScaler;
505 // Convert to local time using POSIX localtime function.
506 // Windows XP Service Pack 3 made SystemTimeToTzSpecificLocalTime()
507 // very slow. Other browsers use localtime().
508
509 // Convert from JavaScript milliseconds past 1/1/1970 0:00:00 to
510 // POSIX seconds past 1/1/1970 0:00:00.
511 double unchecked_posix_time = rounded_to_second.ToJSTime() / 1000;
512 if (unchecked_posix_time > INT_MAX || unchecked_posix_time < 0) {
513 return 0;
514 }
515 // Because _USE_32BIT_TIME_T is defined, time_t is a 32-bit int.
516 time_t posix_time = static_cast<time_t>(unchecked_posix_time);
517
518 // Convert to local time, as struct with fields for day, hour, year, etc.
519 tm posix_local_time_struct;
520 if (localtime_s(&posix_local_time_struct, &posix_time)) return 0;
521 // Convert local time in struct to POSIX time as if it were a UTC time.
522 time_t local_posix_time = _mkgmtime(&posix_local_time_struct);
523 Time localtime(1000.0 * local_posix_time);
524
525 return localtime.Diff(&rounded_to_second);
526 }
527
528
529 // Return whether or not daylight savings time is in effect at this time.
InDST()530 bool Time::InDST() {
531 // Initialize timezone information, if needed.
532 TzSet();
533
534 // Determine if DST is in effect at the specified time.
535 bool in_dst = false;
536 if (tzinfo_.StandardDate.wMonth != 0 || tzinfo_.DaylightDate.wMonth != 0) {
537 // Get the local timezone offset for the timestamp in milliseconds.
538 int64_t offset = LocalOffset();
539
540 // Compute the offset for DST. The bias parameters in the timezone info
541 // are specified in minutes. These must be converted to milliseconds.
542 int64_t dstofs = -(tzinfo_.Bias + tzinfo_.DaylightBias) * kMsPerMinute;
543
544 // If the local time offset equals the timezone bias plus the daylight
545 // bias then DST is in effect.
546 in_dst = offset == dstofs;
547 }
548
549 return in_dst;
550 }
551
552
553 // Return the daylight savings time offset for this time.
DaylightSavingsOffset()554 int64_t Time::DaylightSavingsOffset() {
555 return InDST() ? 60 * kMsPerMinute : 0;
556 }
557
558
559 // Returns a string identifying the current timezone for the
560 // timestamp taking into account daylight saving.
LocalTimezone()561 char* Time::LocalTimezone() {
562 // Return the standard or DST time zone name based on whether daylight
563 // saving is in effect at the given time.
564 return InDST() ? dst_tz_name_ : std_tz_name_;
565 }
566
567
SetUp()568 void OS::SetUp() {
569 // Seed the random number generator.
570 // Convert the current time to a 64-bit integer first, before converting it
571 // to an unsigned. Going directly can cause an overflow and the seed to be
572 // set to all ones. The seed will be identical for different instances that
573 // call this setup code within the same millisecond.
574 uint64_t seed = static_cast<uint64_t>(TimeCurrentMillis());
575 srand(static_cast<unsigned int>(seed));
576 limit_mutex = CreateMutex();
577 }
578
579
PostSetUp()580 void OS::PostSetUp() {
581 // Math functions depend on CPU features therefore they are initialized after
582 // CPU.
583 MathSetup();
584 }
585
586
587 // Returns the accumulated user time for thread.
GetUserTime(uint32_t * secs,uint32_t * usecs)588 int OS::GetUserTime(uint32_t* secs, uint32_t* usecs) {
589 FILETIME dummy;
590 uint64_t usertime;
591
592 // Get the amount of time that the thread has executed in user mode.
593 if (!GetThreadTimes(GetCurrentThread(), &dummy, &dummy, &dummy,
594 reinterpret_cast<FILETIME*>(&usertime))) return -1;
595
596 // Adjust the resolution to micro-seconds.
597 usertime /= 10;
598
599 // Convert to seconds and microseconds
600 *secs = static_cast<uint32_t>(usertime / 1000000);
601 *usecs = static_cast<uint32_t>(usertime % 1000000);
602 return 0;
603 }
604
605
606 // Returns current time as the number of milliseconds since
607 // 00:00:00 UTC, January 1, 1970.
TimeCurrentMillis()608 double OS::TimeCurrentMillis() {
609 Time t;
610 t.SetToCurrentTime();
611 return t.ToJSTime();
612 }
613
614 // Returns the tickcounter based on timeGetTime.
Ticks()615 int64_t OS::Ticks() {
616 return timeGetTime() * 1000; // Convert to microseconds.
617 }
618
619
620 // Returns a string identifying the current timezone taking into
621 // account daylight saving.
LocalTimezone(double time)622 const char* OS::LocalTimezone(double time) {
623 return Time(time).LocalTimezone();
624 }
625
626
627 // Returns the local time offset in milliseconds east of UTC without
628 // taking daylight savings time into account.
LocalTimeOffset()629 double OS::LocalTimeOffset() {
630 // Use current time, rounded to the millisecond.
631 Time t(TimeCurrentMillis());
632 // Time::LocalOffset inlcudes any daylight savings offset, so subtract it.
633 return static_cast<double>(t.LocalOffset() - t.DaylightSavingsOffset());
634 }
635
636
637 // Returns the daylight savings offset in milliseconds for the given
638 // time.
DaylightSavingsOffset(double time)639 double OS::DaylightSavingsOffset(double time) {
640 int64_t offset = Time(time).DaylightSavingsOffset();
641 return static_cast<double>(offset);
642 }
643
644
GetLastError()645 int OS::GetLastError() {
646 return ::GetLastError();
647 }
648
649
650 // ----------------------------------------------------------------------------
651 // Win32 console output.
652 //
653 // If a Win32 application is linked as a console application it has a normal
654 // standard output and standard error. In this case normal printf works fine
655 // for output. However, if the application is linked as a GUI application,
656 // the process doesn't have a console, and therefore (debugging) output is lost.
657 // This is the case if we are embedded in a windows program (like a browser).
658 // In order to be able to get debug output in this case the the debugging
659 // facility using OutputDebugString. This output goes to the active debugger
660 // for the process (if any). Else the output can be monitored using DBMON.EXE.
661
662 enum OutputMode {
663 UNKNOWN, // Output method has not yet been determined.
664 CONSOLE, // Output is written to stdout.
665 ODS // Output is written to debug facility.
666 };
667
668 static OutputMode output_mode = UNKNOWN; // Current output mode.
669
670
671 // Determine if the process has a console for output.
HasConsole()672 static bool HasConsole() {
673 // Only check the first time. Eventual race conditions are not a problem,
674 // because all threads will eventually determine the same mode.
675 if (output_mode == UNKNOWN) {
676 // We cannot just check that the standard output is attached to a console
677 // because this would fail if output is redirected to a file. Therefore we
678 // say that a process does not have an output console if either the
679 // standard output handle is invalid or its file type is unknown.
680 if (GetStdHandle(STD_OUTPUT_HANDLE) != INVALID_HANDLE_VALUE &&
681 GetFileType(GetStdHandle(STD_OUTPUT_HANDLE)) != FILE_TYPE_UNKNOWN)
682 output_mode = CONSOLE;
683 else
684 output_mode = ODS;
685 }
686 return output_mode == CONSOLE;
687 }
688
689
VPrintHelper(FILE * stream,const char * format,va_list args)690 static void VPrintHelper(FILE* stream, const char* format, va_list args) {
691 if (HasConsole()) {
692 vfprintf(stream, format, args);
693 } else {
694 // It is important to use safe print here in order to avoid
695 // overflowing the buffer. We might truncate the output, but this
696 // does not crash.
697 EmbeddedVector<char, 4096> buffer;
698 OS::VSNPrintF(buffer, format, args);
699 OutputDebugStringA(buffer.start());
700 }
701 }
702
703
FOpen(const char * path,const char * mode)704 FILE* OS::FOpen(const char* path, const char* mode) {
705 FILE* result;
706 if (fopen_s(&result, path, mode) == 0) {
707 return result;
708 } else {
709 return NULL;
710 }
711 }
712
713
Remove(const char * path)714 bool OS::Remove(const char* path) {
715 return (DeleteFileA(path) != 0);
716 }
717
718
OpenTemporaryFile()719 FILE* OS::OpenTemporaryFile() {
720 // tmpfile_s tries to use the root dir, don't use it.
721 char tempPathBuffer[MAX_PATH];
722 DWORD path_result = 0;
723 path_result = GetTempPathA(MAX_PATH, tempPathBuffer);
724 if (path_result > MAX_PATH || path_result == 0) return NULL;
725 UINT name_result = 0;
726 char tempNameBuffer[MAX_PATH];
727 name_result = GetTempFileNameA(tempPathBuffer, "", 0, tempNameBuffer);
728 if (name_result == 0) return NULL;
729 FILE* result = FOpen(tempNameBuffer, "w+"); // Same mode as tmpfile uses.
730 if (result != NULL) {
731 Remove(tempNameBuffer); // Delete on close.
732 }
733 return result;
734 }
735
736
737 // Open log file in binary mode to avoid /n -> /r/n conversion.
738 const char* const OS::LogFileOpenMode = "wb";
739
740
741 // Print (debug) message to console.
Print(const char * format,...)742 void OS::Print(const char* format, ...) {
743 va_list args;
744 va_start(args, format);
745 VPrint(format, args);
746 va_end(args);
747 }
748
749
VPrint(const char * format,va_list args)750 void OS::VPrint(const char* format, va_list args) {
751 VPrintHelper(stdout, format, args);
752 }
753
754
FPrint(FILE * out,const char * format,...)755 void OS::FPrint(FILE* out, const char* format, ...) {
756 va_list args;
757 va_start(args, format);
758 VFPrint(out, format, args);
759 va_end(args);
760 }
761
762
VFPrint(FILE * out,const char * format,va_list args)763 void OS::VFPrint(FILE* out, const char* format, va_list args) {
764 VPrintHelper(out, format, args);
765 }
766
767
768 // Print error message to console.
PrintError(const char * format,...)769 void OS::PrintError(const char* format, ...) {
770 va_list args;
771 va_start(args, format);
772 VPrintError(format, args);
773 va_end(args);
774 }
775
776
VPrintError(const char * format,va_list args)777 void OS::VPrintError(const char* format, va_list args) {
778 VPrintHelper(stderr, format, args);
779 }
780
781
SNPrintF(Vector<char> str,const char * format,...)782 int OS::SNPrintF(Vector<char> str, const char* format, ...) {
783 va_list args;
784 va_start(args, format);
785 int result = VSNPrintF(str, format, args);
786 va_end(args);
787 return result;
788 }
789
790
VSNPrintF(Vector<char> str,const char * format,va_list args)791 int OS::VSNPrintF(Vector<char> str, const char* format, va_list args) {
792 int n = _vsnprintf_s(str.start(), str.length(), _TRUNCATE, format, args);
793 // Make sure to zero-terminate the string if the output was
794 // truncated or if there was an error.
795 if (n < 0 || n >= str.length()) {
796 if (str.length() > 0)
797 str[str.length() - 1] = '\0';
798 return -1;
799 } else {
800 return n;
801 }
802 }
803
804
StrChr(char * str,int c)805 char* OS::StrChr(char* str, int c) {
806 return const_cast<char*>(strchr(str, c));
807 }
808
809
StrNCpy(Vector<char> dest,const char * src,size_t n)810 void OS::StrNCpy(Vector<char> dest, const char* src, size_t n) {
811 // Use _TRUNCATE or strncpy_s crashes (by design) if buffer is too small.
812 size_t buffer_size = static_cast<size_t>(dest.length());
813 if (n + 1 > buffer_size) // count for trailing '\0'
814 n = _TRUNCATE;
815 int result = strncpy_s(dest.start(), dest.length(), src, n);
816 USE(result);
817 ASSERT(result == 0 || (n == _TRUNCATE && result == STRUNCATE));
818 }
819
820
821 // We keep the lowest and highest addresses mapped as a quick way of
822 // determining that pointers are outside the heap (used mostly in assertions
823 // and verification). The estimate is conservative, i.e., not all addresses in
824 // 'allocated' space are actually allocated to our heap. The range is
825 // [lowest, highest), inclusive on the low and and exclusive on the high end.
826 static void* lowest_ever_allocated = reinterpret_cast<void*>(-1);
827 static void* highest_ever_allocated = reinterpret_cast<void*>(0);
828
829
UpdateAllocatedSpaceLimits(void * address,int size)830 static void UpdateAllocatedSpaceLimits(void* address, int size) {
831 ASSERT(limit_mutex != NULL);
832 ScopedLock lock(limit_mutex);
833
834 lowest_ever_allocated = Min(lowest_ever_allocated, address);
835 highest_ever_allocated =
836 Max(highest_ever_allocated,
837 reinterpret_cast<void*>(reinterpret_cast<char*>(address) + size));
838 }
839
840
IsOutsideAllocatedSpace(void * pointer)841 bool OS::IsOutsideAllocatedSpace(void* pointer) {
842 if (pointer < lowest_ever_allocated || pointer >= highest_ever_allocated)
843 return true;
844 // Ask the Windows API
845 if (IsBadWritePtr(pointer, 1))
846 return true;
847 return false;
848 }
849
850
851 // Get the system's page size used by VirtualAlloc() or the next power
852 // of two. The reason for always returning a power of two is that the
853 // rounding up in OS::Allocate expects that.
GetPageSize()854 static size_t GetPageSize() {
855 static size_t page_size = 0;
856 if (page_size == 0) {
857 SYSTEM_INFO info;
858 GetSystemInfo(&info);
859 page_size = RoundUpToPowerOf2(info.dwPageSize);
860 }
861 return page_size;
862 }
863
864
865 // The allocation alignment is the guaranteed alignment for
866 // VirtualAlloc'ed blocks of memory.
AllocateAlignment()867 size_t OS::AllocateAlignment() {
868 static size_t allocate_alignment = 0;
869 if (allocate_alignment == 0) {
870 SYSTEM_INFO info;
871 GetSystemInfo(&info);
872 allocate_alignment = info.dwAllocationGranularity;
873 }
874 return allocate_alignment;
875 }
876
877
GetRandomAddr()878 static void* GetRandomAddr() {
879 Isolate* isolate = Isolate::UncheckedCurrent();
880 // Note that the current isolate isn't set up in a call path via
881 // CpuFeatures::Probe. We don't care about randomization in this case because
882 // the code page is immediately freed.
883 if (isolate != NULL) {
884 // The address range used to randomize RWX allocations in OS::Allocate
885 // Try not to map pages into the default range that windows loads DLLs
886 // Use a multiple of 64k to prevent committing unused memory.
887 // Note: This does not guarantee RWX regions will be within the
888 // range kAllocationRandomAddressMin to kAllocationRandomAddressMax
889 #ifdef V8_HOST_ARCH_64_BIT
890 static const intptr_t kAllocationRandomAddressMin = 0x0000000080000000;
891 static const intptr_t kAllocationRandomAddressMax = 0x000003FFFFFF0000;
892 #else
893 static const intptr_t kAllocationRandomAddressMin = 0x04000000;
894 static const intptr_t kAllocationRandomAddressMax = 0x3FFF0000;
895 #endif
896 uintptr_t address = (V8::RandomPrivate(isolate) << kPageSizeBits)
897 | kAllocationRandomAddressMin;
898 address &= kAllocationRandomAddressMax;
899 return reinterpret_cast<void *>(address);
900 }
901 return NULL;
902 }
903
904
RandomizedVirtualAlloc(size_t size,int action,int protection)905 static void* RandomizedVirtualAlloc(size_t size, int action, int protection) {
906 LPVOID base = NULL;
907
908 if (protection == PAGE_EXECUTE_READWRITE || protection == PAGE_NOACCESS) {
909 // For exectutable pages try and randomize the allocation address
910 for (size_t attempts = 0; base == NULL && attempts < 3; ++attempts) {
911 base = VirtualAlloc(GetRandomAddr(), size, action, protection);
912 }
913 }
914
915 // After three attempts give up and let the OS find an address to use.
916 if (base == NULL) base = VirtualAlloc(NULL, size, action, protection);
917
918 return base;
919 }
920
921
Allocate(const size_t requested,size_t * allocated,bool is_executable)922 void* OS::Allocate(const size_t requested,
923 size_t* allocated,
924 bool is_executable) {
925 // VirtualAlloc rounds allocated size to page size automatically.
926 size_t msize = RoundUp(requested, static_cast<int>(GetPageSize()));
927
928 // Windows XP SP2 allows Data Excution Prevention (DEP).
929 int prot = is_executable ? PAGE_EXECUTE_READWRITE : PAGE_READWRITE;
930
931 LPVOID mbase = RandomizedVirtualAlloc(msize,
932 MEM_COMMIT | MEM_RESERVE,
933 prot);
934
935 if (mbase == NULL) {
936 LOG(ISOLATE, StringEvent("OS::Allocate", "VirtualAlloc failed"));
937 return NULL;
938 }
939
940 ASSERT(IsAligned(reinterpret_cast<size_t>(mbase), OS::AllocateAlignment()));
941
942 *allocated = msize;
943 UpdateAllocatedSpaceLimits(mbase, static_cast<int>(msize));
944 return mbase;
945 }
946
947
Free(void * address,const size_t size)948 void OS::Free(void* address, const size_t size) {
949 // TODO(1240712): VirtualFree has a return value which is ignored here.
950 VirtualFree(address, 0, MEM_RELEASE);
951 USE(size);
952 }
953
954
CommitPageSize()955 intptr_t OS::CommitPageSize() {
956 return 4096;
957 }
958
959
ProtectCode(void * address,const size_t size)960 void OS::ProtectCode(void* address, const size_t size) {
961 DWORD old_protect;
962 VirtualProtect(address, size, PAGE_EXECUTE_READ, &old_protect);
963 }
964
965
Guard(void * address,const size_t size)966 void OS::Guard(void* address, const size_t size) {
967 DWORD oldprotect;
968 VirtualProtect(address, size, PAGE_READONLY | PAGE_GUARD, &oldprotect);
969 }
970
971
Sleep(int milliseconds)972 void OS::Sleep(int milliseconds) {
973 ::Sleep(milliseconds);
974 }
975
976
Abort()977 void OS::Abort() {
978 if (IsDebuggerPresent() || FLAG_break_on_abort) {
979 DebugBreak();
980 } else {
981 // Make the MSVCRT do a silent abort.
982 raise(SIGABRT);
983 }
984 }
985
986
DebugBreak()987 void OS::DebugBreak() {
988 #ifdef _MSC_VER
989 __debugbreak();
990 #else
991 ::DebugBreak();
992 #endif
993 }
994
995
996 class Win32MemoryMappedFile : public OS::MemoryMappedFile {
997 public:
Win32MemoryMappedFile(HANDLE file,HANDLE file_mapping,void * memory,int size)998 Win32MemoryMappedFile(HANDLE file,
999 HANDLE file_mapping,
1000 void* memory,
1001 int size)
1002 : file_(file),
1003 file_mapping_(file_mapping),
1004 memory_(memory),
1005 size_(size) { }
1006 virtual ~Win32MemoryMappedFile();
memory()1007 virtual void* memory() { return memory_; }
size()1008 virtual int size() { return size_; }
1009 private:
1010 HANDLE file_;
1011 HANDLE file_mapping_;
1012 void* memory_;
1013 int size_;
1014 };
1015
1016
open(const char * name)1017 OS::MemoryMappedFile* OS::MemoryMappedFile::open(const char* name) {
1018 // Open a physical file
1019 HANDLE file = CreateFileA(name, GENERIC_READ | GENERIC_WRITE,
1020 FILE_SHARE_READ | FILE_SHARE_WRITE, NULL, OPEN_EXISTING, 0, NULL);
1021 if (file == INVALID_HANDLE_VALUE) return NULL;
1022
1023 int size = static_cast<int>(GetFileSize(file, NULL));
1024
1025 // Create a file mapping for the physical file
1026 HANDLE file_mapping = CreateFileMapping(file, NULL,
1027 PAGE_READWRITE, 0, static_cast<DWORD>(size), NULL);
1028 if (file_mapping == NULL) return NULL;
1029
1030 // Map a view of the file into memory
1031 void* memory = MapViewOfFile(file_mapping, FILE_MAP_ALL_ACCESS, 0, 0, size);
1032 return new Win32MemoryMappedFile(file, file_mapping, memory, size);
1033 }
1034
1035
create(const char * name,int size,void * initial)1036 OS::MemoryMappedFile* OS::MemoryMappedFile::create(const char* name, int size,
1037 void* initial) {
1038 // Open a physical file
1039 HANDLE file = CreateFileA(name, GENERIC_READ | GENERIC_WRITE,
1040 FILE_SHARE_READ | FILE_SHARE_WRITE, NULL, OPEN_ALWAYS, 0, NULL);
1041 if (file == NULL) return NULL;
1042 // Create a file mapping for the physical file
1043 HANDLE file_mapping = CreateFileMapping(file, NULL,
1044 PAGE_READWRITE, 0, static_cast<DWORD>(size), NULL);
1045 if (file_mapping == NULL) return NULL;
1046 // Map a view of the file into memory
1047 void* memory = MapViewOfFile(file_mapping, FILE_MAP_ALL_ACCESS, 0, 0, size);
1048 if (memory) memmove(memory, initial, size);
1049 return new Win32MemoryMappedFile(file, file_mapping, memory, size);
1050 }
1051
1052
~Win32MemoryMappedFile()1053 Win32MemoryMappedFile::~Win32MemoryMappedFile() {
1054 if (memory_ != NULL)
1055 UnmapViewOfFile(memory_);
1056 CloseHandle(file_mapping_);
1057 CloseHandle(file_);
1058 }
1059
1060
1061 // The following code loads functions defined in DbhHelp.h and TlHelp32.h
1062 // dynamically. This is to avoid being depending on dbghelp.dll and
1063 // tlhelp32.dll when running (the functions in tlhelp32.dll have been moved to
1064 // kernel32.dll at some point so loading functions defines in TlHelp32.h
1065 // dynamically might not be necessary any more - for some versions of Windows?).
1066
1067 // Function pointers to functions dynamically loaded from dbghelp.dll.
1068 #define DBGHELP_FUNCTION_LIST(V) \
1069 V(SymInitialize) \
1070 V(SymGetOptions) \
1071 V(SymSetOptions) \
1072 V(SymGetSearchPath) \
1073 V(SymLoadModule64) \
1074 V(StackWalk64) \
1075 V(SymGetSymFromAddr64) \
1076 V(SymGetLineFromAddr64) \
1077 V(SymFunctionTableAccess64) \
1078 V(SymGetModuleBase64)
1079
1080 // Function pointers to functions dynamically loaded from dbghelp.dll.
1081 #define TLHELP32_FUNCTION_LIST(V) \
1082 V(CreateToolhelp32Snapshot) \
1083 V(Module32FirstW) \
1084 V(Module32NextW)
1085
1086 // Define the decoration to use for the type and variable name used for
1087 // dynamically loaded DLL function..
1088 #define DLL_FUNC_TYPE(name) _##name##_
1089 #define DLL_FUNC_VAR(name) _##name
1090
1091 // Define the type for each dynamically loaded DLL function. The function
1092 // definitions are copied from DbgHelp.h and TlHelp32.h. The IN and VOID macros
1093 // from the Windows include files are redefined here to have the function
1094 // definitions to be as close to the ones in the original .h files as possible.
1095 #ifndef IN
1096 #define IN
1097 #endif
1098 #ifndef VOID
1099 #define VOID void
1100 #endif
1101
1102 // DbgHelp isn't supported on MinGW yet
1103 #ifndef __MINGW32__
1104 // DbgHelp.h functions.
1105 typedef BOOL (__stdcall *DLL_FUNC_TYPE(SymInitialize))(IN HANDLE hProcess,
1106 IN PSTR UserSearchPath,
1107 IN BOOL fInvadeProcess);
1108 typedef DWORD (__stdcall *DLL_FUNC_TYPE(SymGetOptions))(VOID);
1109 typedef DWORD (__stdcall *DLL_FUNC_TYPE(SymSetOptions))(IN DWORD SymOptions);
1110 typedef BOOL (__stdcall *DLL_FUNC_TYPE(SymGetSearchPath))(
1111 IN HANDLE hProcess,
1112 OUT PSTR SearchPath,
1113 IN DWORD SearchPathLength);
1114 typedef DWORD64 (__stdcall *DLL_FUNC_TYPE(SymLoadModule64))(
1115 IN HANDLE hProcess,
1116 IN HANDLE hFile,
1117 IN PSTR ImageName,
1118 IN PSTR ModuleName,
1119 IN DWORD64 BaseOfDll,
1120 IN DWORD SizeOfDll);
1121 typedef BOOL (__stdcall *DLL_FUNC_TYPE(StackWalk64))(
1122 DWORD MachineType,
1123 HANDLE hProcess,
1124 HANDLE hThread,
1125 LPSTACKFRAME64 StackFrame,
1126 PVOID ContextRecord,
1127 PREAD_PROCESS_MEMORY_ROUTINE64 ReadMemoryRoutine,
1128 PFUNCTION_TABLE_ACCESS_ROUTINE64 FunctionTableAccessRoutine,
1129 PGET_MODULE_BASE_ROUTINE64 GetModuleBaseRoutine,
1130 PTRANSLATE_ADDRESS_ROUTINE64 TranslateAddress);
1131 typedef BOOL (__stdcall *DLL_FUNC_TYPE(SymGetSymFromAddr64))(
1132 IN HANDLE hProcess,
1133 IN DWORD64 qwAddr,
1134 OUT PDWORD64 pdwDisplacement,
1135 OUT PIMAGEHLP_SYMBOL64 Symbol);
1136 typedef BOOL (__stdcall *DLL_FUNC_TYPE(SymGetLineFromAddr64))(
1137 IN HANDLE hProcess,
1138 IN DWORD64 qwAddr,
1139 OUT PDWORD pdwDisplacement,
1140 OUT PIMAGEHLP_LINE64 Line64);
1141 // DbgHelp.h typedefs. Implementation found in dbghelp.dll.
1142 typedef PVOID (__stdcall *DLL_FUNC_TYPE(SymFunctionTableAccess64))(
1143 HANDLE hProcess,
1144 DWORD64 AddrBase); // DbgHelp.h typedef PFUNCTION_TABLE_ACCESS_ROUTINE64
1145 typedef DWORD64 (__stdcall *DLL_FUNC_TYPE(SymGetModuleBase64))(
1146 HANDLE hProcess,
1147 DWORD64 AddrBase); // DbgHelp.h typedef PGET_MODULE_BASE_ROUTINE64
1148
1149 // TlHelp32.h functions.
1150 typedef HANDLE (__stdcall *DLL_FUNC_TYPE(CreateToolhelp32Snapshot))(
1151 DWORD dwFlags,
1152 DWORD th32ProcessID);
1153 typedef BOOL (__stdcall *DLL_FUNC_TYPE(Module32FirstW))(HANDLE hSnapshot,
1154 LPMODULEENTRY32W lpme);
1155 typedef BOOL (__stdcall *DLL_FUNC_TYPE(Module32NextW))(HANDLE hSnapshot,
1156 LPMODULEENTRY32W lpme);
1157
1158 #undef IN
1159 #undef VOID
1160
1161 // Declare a variable for each dynamically loaded DLL function.
1162 #define DEF_DLL_FUNCTION(name) DLL_FUNC_TYPE(name) DLL_FUNC_VAR(name) = NULL;
1163 DBGHELP_FUNCTION_LIST(DEF_DLL_FUNCTION)
TLHELP32_FUNCTION_LIST(DEF_DLL_FUNCTION)1164 TLHELP32_FUNCTION_LIST(DEF_DLL_FUNCTION)
1165 #undef DEF_DLL_FUNCTION
1166
1167 // Load the functions. This function has a lot of "ugly" macros in order to
1168 // keep down code duplication.
1169
1170 static bool LoadDbgHelpAndTlHelp32() {
1171 static bool dbghelp_loaded = false;
1172
1173 if (dbghelp_loaded) return true;
1174
1175 HMODULE module;
1176
1177 // Load functions from the dbghelp.dll module.
1178 module = LoadLibrary(TEXT("dbghelp.dll"));
1179 if (module == NULL) {
1180 return false;
1181 }
1182
1183 #define LOAD_DLL_FUNC(name) \
1184 DLL_FUNC_VAR(name) = \
1185 reinterpret_cast<DLL_FUNC_TYPE(name)>(GetProcAddress(module, #name));
1186
1187 DBGHELP_FUNCTION_LIST(LOAD_DLL_FUNC)
1188
1189 #undef LOAD_DLL_FUNC
1190
1191 // Load functions from the kernel32.dll module (the TlHelp32.h function used
1192 // to be in tlhelp32.dll but are now moved to kernel32.dll).
1193 module = LoadLibrary(TEXT("kernel32.dll"));
1194 if (module == NULL) {
1195 return false;
1196 }
1197
1198 #define LOAD_DLL_FUNC(name) \
1199 DLL_FUNC_VAR(name) = \
1200 reinterpret_cast<DLL_FUNC_TYPE(name)>(GetProcAddress(module, #name));
1201
1202 TLHELP32_FUNCTION_LIST(LOAD_DLL_FUNC)
1203
1204 #undef LOAD_DLL_FUNC
1205
1206 // Check that all functions where loaded.
1207 bool result =
1208 #define DLL_FUNC_LOADED(name) (DLL_FUNC_VAR(name) != NULL) &&
1209
1210 DBGHELP_FUNCTION_LIST(DLL_FUNC_LOADED)
1211 TLHELP32_FUNCTION_LIST(DLL_FUNC_LOADED)
1212
1213 #undef DLL_FUNC_LOADED
1214 true;
1215
1216 dbghelp_loaded = result;
1217 return result;
1218 // NOTE: The modules are never unloaded and will stay around until the
1219 // application is closed.
1220 }
1221
1222
1223 // Load the symbols for generating stack traces.
LoadSymbols(HANDLE process_handle)1224 static bool LoadSymbols(HANDLE process_handle) {
1225 static bool symbols_loaded = false;
1226
1227 if (symbols_loaded) return true;
1228
1229 BOOL ok;
1230
1231 // Initialize the symbol engine.
1232 ok = _SymInitialize(process_handle, // hProcess
1233 NULL, // UserSearchPath
1234 false); // fInvadeProcess
1235 if (!ok) return false;
1236
1237 DWORD options = _SymGetOptions();
1238 options |= SYMOPT_LOAD_LINES;
1239 options |= SYMOPT_FAIL_CRITICAL_ERRORS;
1240 options = _SymSetOptions(options);
1241
1242 char buf[OS::kStackWalkMaxNameLen] = {0};
1243 ok = _SymGetSearchPath(process_handle, buf, OS::kStackWalkMaxNameLen);
1244 if (!ok) {
1245 int err = GetLastError();
1246 PrintF("%d\n", err);
1247 return false;
1248 }
1249
1250 HANDLE snapshot = _CreateToolhelp32Snapshot(
1251 TH32CS_SNAPMODULE, // dwFlags
1252 GetCurrentProcessId()); // th32ProcessId
1253 if (snapshot == INVALID_HANDLE_VALUE) return false;
1254 MODULEENTRY32W module_entry;
1255 module_entry.dwSize = sizeof(module_entry); // Set the size of the structure.
1256 BOOL cont = _Module32FirstW(snapshot, &module_entry);
1257 while (cont) {
1258 DWORD64 base;
1259 // NOTE the SymLoadModule64 function has the peculiarity of accepting a
1260 // both unicode and ASCII strings even though the parameter is PSTR.
1261 base = _SymLoadModule64(
1262 process_handle, // hProcess
1263 0, // hFile
1264 reinterpret_cast<PSTR>(module_entry.szExePath), // ImageName
1265 reinterpret_cast<PSTR>(module_entry.szModule), // ModuleName
1266 reinterpret_cast<DWORD64>(module_entry.modBaseAddr), // BaseOfDll
1267 module_entry.modBaseSize); // SizeOfDll
1268 if (base == 0) {
1269 int err = GetLastError();
1270 if (err != ERROR_MOD_NOT_FOUND &&
1271 err != ERROR_INVALID_HANDLE) return false;
1272 }
1273 LOG(i::Isolate::Current(),
1274 SharedLibraryEvent(
1275 module_entry.szExePath,
1276 reinterpret_cast<unsigned int>(module_entry.modBaseAddr),
1277 reinterpret_cast<unsigned int>(module_entry.modBaseAddr +
1278 module_entry.modBaseSize)));
1279 cont = _Module32NextW(snapshot, &module_entry);
1280 }
1281 CloseHandle(snapshot);
1282
1283 symbols_loaded = true;
1284 return true;
1285 }
1286
1287
LogSharedLibraryAddresses()1288 void OS::LogSharedLibraryAddresses() {
1289 // SharedLibraryEvents are logged when loading symbol information.
1290 // Only the shared libraries loaded at the time of the call to
1291 // LogSharedLibraryAddresses are logged. DLLs loaded after
1292 // initialization are not accounted for.
1293 if (!LoadDbgHelpAndTlHelp32()) return;
1294 HANDLE process_handle = GetCurrentProcess();
1295 LoadSymbols(process_handle);
1296 }
1297
1298
SignalCodeMovingGC()1299 void OS::SignalCodeMovingGC() {
1300 }
1301
1302
1303 // Walk the stack using the facilities in dbghelp.dll and tlhelp32.dll
1304
1305 // Switch off warning 4748 (/GS can not protect parameters and local variables
1306 // from local buffer overrun because optimizations are disabled in function) as
1307 // it is triggered by the use of inline assembler.
1308 #pragma warning(push)
1309 #pragma warning(disable : 4748)
StackWalk(Vector<OS::StackFrame> frames)1310 int OS::StackWalk(Vector<OS::StackFrame> frames) {
1311 BOOL ok;
1312
1313 // Load the required functions from DLL's.
1314 if (!LoadDbgHelpAndTlHelp32()) return kStackWalkError;
1315
1316 // Get the process and thread handles.
1317 HANDLE process_handle = GetCurrentProcess();
1318 HANDLE thread_handle = GetCurrentThread();
1319
1320 // Read the symbols.
1321 if (!LoadSymbols(process_handle)) return kStackWalkError;
1322
1323 // Capture current context.
1324 CONTEXT context;
1325 RtlCaptureContext(&context);
1326
1327 // Initialize the stack walking
1328 STACKFRAME64 stack_frame;
1329 memset(&stack_frame, 0, sizeof(stack_frame));
1330 #ifdef _WIN64
1331 stack_frame.AddrPC.Offset = context.Rip;
1332 stack_frame.AddrFrame.Offset = context.Rbp;
1333 stack_frame.AddrStack.Offset = context.Rsp;
1334 #else
1335 stack_frame.AddrPC.Offset = context.Eip;
1336 stack_frame.AddrFrame.Offset = context.Ebp;
1337 stack_frame.AddrStack.Offset = context.Esp;
1338 #endif
1339 stack_frame.AddrPC.Mode = AddrModeFlat;
1340 stack_frame.AddrFrame.Mode = AddrModeFlat;
1341 stack_frame.AddrStack.Mode = AddrModeFlat;
1342 int frames_count = 0;
1343
1344 // Collect stack frames.
1345 int frames_size = frames.length();
1346 while (frames_count < frames_size) {
1347 ok = _StackWalk64(
1348 IMAGE_FILE_MACHINE_I386, // MachineType
1349 process_handle, // hProcess
1350 thread_handle, // hThread
1351 &stack_frame, // StackFrame
1352 &context, // ContextRecord
1353 NULL, // ReadMemoryRoutine
1354 _SymFunctionTableAccess64, // FunctionTableAccessRoutine
1355 _SymGetModuleBase64, // GetModuleBaseRoutine
1356 NULL); // TranslateAddress
1357 if (!ok) break;
1358
1359 // Store the address.
1360 ASSERT((stack_frame.AddrPC.Offset >> 32) == 0); // 32-bit address.
1361 frames[frames_count].address =
1362 reinterpret_cast<void*>(stack_frame.AddrPC.Offset);
1363
1364 // Try to locate a symbol for this frame.
1365 DWORD64 symbol_displacement;
1366 SmartArrayPointer<IMAGEHLP_SYMBOL64> symbol(
1367 NewArray<IMAGEHLP_SYMBOL64>(kStackWalkMaxNameLen));
1368 if (symbol.is_empty()) return kStackWalkError; // Out of memory.
1369 memset(*symbol, 0, sizeof(IMAGEHLP_SYMBOL64) + kStackWalkMaxNameLen);
1370 (*symbol)->SizeOfStruct = sizeof(IMAGEHLP_SYMBOL64);
1371 (*symbol)->MaxNameLength = kStackWalkMaxNameLen;
1372 ok = _SymGetSymFromAddr64(process_handle, // hProcess
1373 stack_frame.AddrPC.Offset, // Address
1374 &symbol_displacement, // Displacement
1375 *symbol); // Symbol
1376 if (ok) {
1377 // Try to locate more source information for the symbol.
1378 IMAGEHLP_LINE64 Line;
1379 memset(&Line, 0, sizeof(Line));
1380 Line.SizeOfStruct = sizeof(Line);
1381 DWORD line_displacement;
1382 ok = _SymGetLineFromAddr64(
1383 process_handle, // hProcess
1384 stack_frame.AddrPC.Offset, // dwAddr
1385 &line_displacement, // pdwDisplacement
1386 &Line); // Line
1387 // Format a text representation of the frame based on the information
1388 // available.
1389 if (ok) {
1390 SNPrintF(MutableCStrVector(frames[frames_count].text,
1391 kStackWalkMaxTextLen),
1392 "%s %s:%d:%d",
1393 (*symbol)->Name, Line.FileName, Line.LineNumber,
1394 line_displacement);
1395 } else {
1396 SNPrintF(MutableCStrVector(frames[frames_count].text,
1397 kStackWalkMaxTextLen),
1398 "%s",
1399 (*symbol)->Name);
1400 }
1401 // Make sure line termination is in place.
1402 frames[frames_count].text[kStackWalkMaxTextLen - 1] = '\0';
1403 } else {
1404 // No text representation of this frame
1405 frames[frames_count].text[0] = '\0';
1406
1407 // Continue if we are just missing a module (for non C/C++ frames a
1408 // module will never be found).
1409 int err = GetLastError();
1410 if (err != ERROR_MOD_NOT_FOUND) {
1411 break;
1412 }
1413 }
1414
1415 frames_count++;
1416 }
1417
1418 // Return the number of frames filled in.
1419 return frames_count;
1420 }
1421
1422 // Restore warnings to previous settings.
1423 #pragma warning(pop)
1424
1425 #else // __MINGW32__
LogSharedLibraryAddresses()1426 void OS::LogSharedLibraryAddresses() { }
SignalCodeMovingGC()1427 void OS::SignalCodeMovingGC() { }
StackWalk(Vector<OS::StackFrame> frames)1428 int OS::StackWalk(Vector<OS::StackFrame> frames) { return 0; }
1429 #endif // __MINGW32__
1430
1431
CpuFeaturesImpliedByPlatform()1432 uint64_t OS::CpuFeaturesImpliedByPlatform() {
1433 return 0; // Windows runs on anything.
1434 }
1435
1436
nan_value()1437 double OS::nan_value() {
1438 #ifdef _MSC_VER
1439 // Positive Quiet NaN with no payload (aka. Indeterminate) has all bits
1440 // in mask set, so value equals mask.
1441 static const __int64 nanval = kQuietNaNMask;
1442 return *reinterpret_cast<const double*>(&nanval);
1443 #else // _MSC_VER
1444 return NAN;
1445 #endif // _MSC_VER
1446 }
1447
1448
ActivationFrameAlignment()1449 int OS::ActivationFrameAlignment() {
1450 #ifdef _WIN64
1451 return 16; // Windows 64-bit ABI requires the stack to be 16-byte aligned.
1452 #else
1453 return 8; // Floating-point math runs faster with 8-byte alignment.
1454 #endif
1455 }
1456
1457
ReleaseStore(volatile AtomicWord * ptr,AtomicWord value)1458 void OS::ReleaseStore(volatile AtomicWord* ptr, AtomicWord value) {
1459 MemoryBarrier();
1460 *ptr = value;
1461 }
1462
1463
VirtualMemory()1464 VirtualMemory::VirtualMemory() : address_(NULL), size_(0) { }
1465
1466
VirtualMemory(size_t size)1467 VirtualMemory::VirtualMemory(size_t size)
1468 : address_(ReserveRegion(size)), size_(size) { }
1469
1470
VirtualMemory(size_t size,size_t alignment)1471 VirtualMemory::VirtualMemory(size_t size, size_t alignment)
1472 : address_(NULL), size_(0) {
1473 ASSERT(IsAligned(alignment, static_cast<intptr_t>(OS::AllocateAlignment())));
1474 size_t request_size = RoundUp(size + alignment,
1475 static_cast<intptr_t>(OS::AllocateAlignment()));
1476 void* address = ReserveRegion(request_size);
1477 if (address == NULL) return;
1478 Address base = RoundUp(static_cast<Address>(address), alignment);
1479 // Try reducing the size by freeing and then reallocating a specific area.
1480 bool result = ReleaseRegion(address, request_size);
1481 USE(result);
1482 ASSERT(result);
1483 address = VirtualAlloc(base, size, MEM_RESERVE, PAGE_NOACCESS);
1484 if (address != NULL) {
1485 request_size = size;
1486 ASSERT(base == static_cast<Address>(address));
1487 } else {
1488 // Resizing failed, just go with a bigger area.
1489 address = ReserveRegion(request_size);
1490 if (address == NULL) return;
1491 }
1492 address_ = address;
1493 size_ = request_size;
1494 }
1495
1496
~VirtualMemory()1497 VirtualMemory::~VirtualMemory() {
1498 if (IsReserved()) {
1499 bool result = ReleaseRegion(address_, size_);
1500 ASSERT(result);
1501 USE(result);
1502 }
1503 }
1504
1505
IsReserved()1506 bool VirtualMemory::IsReserved() {
1507 return address_ != NULL;
1508 }
1509
1510
Reset()1511 void VirtualMemory::Reset() {
1512 address_ = NULL;
1513 size_ = 0;
1514 }
1515
1516
Commit(void * address,size_t size,bool is_executable)1517 bool VirtualMemory::Commit(void* address, size_t size, bool is_executable) {
1518 if (CommitRegion(address, size, is_executable)) {
1519 UpdateAllocatedSpaceLimits(address, static_cast<int>(size));
1520 return true;
1521 }
1522 return false;
1523 }
1524
1525
Uncommit(void * address,size_t size)1526 bool VirtualMemory::Uncommit(void* address, size_t size) {
1527 ASSERT(IsReserved());
1528 return UncommitRegion(address, size);
1529 }
1530
1531
ReserveRegion(size_t size)1532 void* VirtualMemory::ReserveRegion(size_t size) {
1533 return RandomizedVirtualAlloc(size, MEM_RESERVE, PAGE_NOACCESS);
1534 }
1535
1536
CommitRegion(void * base,size_t size,bool is_executable)1537 bool VirtualMemory::CommitRegion(void* base, size_t size, bool is_executable) {
1538 int prot = is_executable ? PAGE_EXECUTE_READWRITE : PAGE_READWRITE;
1539 if (NULL == VirtualAlloc(base, size, MEM_COMMIT, prot)) {
1540 return false;
1541 }
1542
1543 UpdateAllocatedSpaceLimits(base, static_cast<int>(size));
1544 return true;
1545 }
1546
1547
Guard(void * address)1548 bool VirtualMemory::Guard(void* address) {
1549 if (NULL == VirtualAlloc(address,
1550 OS::CommitPageSize(),
1551 MEM_COMMIT,
1552 PAGE_READONLY | PAGE_GUARD)) {
1553 return false;
1554 }
1555 return true;
1556 }
1557
1558
UncommitRegion(void * base,size_t size)1559 bool VirtualMemory::UncommitRegion(void* base, size_t size) {
1560 return VirtualFree(base, size, MEM_DECOMMIT) != 0;
1561 }
1562
1563
ReleaseRegion(void * base,size_t size)1564 bool VirtualMemory::ReleaseRegion(void* base, size_t size) {
1565 return VirtualFree(base, 0, MEM_RELEASE) != 0;
1566 }
1567
1568
1569 // ----------------------------------------------------------------------------
1570 // Win32 thread support.
1571
1572 // Definition of invalid thread handle and id.
1573 static const HANDLE kNoThread = INVALID_HANDLE_VALUE;
1574
1575 // Entry point for threads. The supplied argument is a pointer to the thread
1576 // object. The entry function dispatches to the run method in the thread
1577 // object. It is important that this function has __stdcall calling
1578 // convention.
ThreadEntry(void * arg)1579 static unsigned int __stdcall ThreadEntry(void* arg) {
1580 Thread* thread = reinterpret_cast<Thread*>(arg);
1581 thread->Run();
1582 return 0;
1583 }
1584
1585
1586 class Thread::PlatformData : public Malloced {
1587 public:
PlatformData(HANDLE thread)1588 explicit PlatformData(HANDLE thread) : thread_(thread) {}
1589 HANDLE thread_;
1590 unsigned thread_id_;
1591 };
1592
1593
1594 // Initialize a Win32 thread object. The thread has an invalid thread
1595 // handle until it is started.
1596
Thread(const Options & options)1597 Thread::Thread(const Options& options)
1598 : stack_size_(options.stack_size()) {
1599 data_ = new PlatformData(kNoThread);
1600 set_name(options.name());
1601 }
1602
1603
set_name(const char * name)1604 void Thread::set_name(const char* name) {
1605 OS::StrNCpy(Vector<char>(name_, sizeof(name_)), name, strlen(name));
1606 name_[sizeof(name_) - 1] = '\0';
1607 }
1608
1609
1610 // Close our own handle for the thread.
~Thread()1611 Thread::~Thread() {
1612 if (data_->thread_ != kNoThread) CloseHandle(data_->thread_);
1613 delete data_;
1614 }
1615
1616
1617 // Create a new thread. It is important to use _beginthreadex() instead of
1618 // the Win32 function CreateThread(), because the CreateThread() does not
1619 // initialize thread specific structures in the C runtime library.
Start()1620 void Thread::Start() {
1621 data_->thread_ = reinterpret_cast<HANDLE>(
1622 _beginthreadex(NULL,
1623 static_cast<unsigned>(stack_size_),
1624 ThreadEntry,
1625 this,
1626 0,
1627 &data_->thread_id_));
1628 }
1629
1630
1631 // Wait for thread to terminate.
Join()1632 void Thread::Join() {
1633 if (data_->thread_id_ != GetCurrentThreadId()) {
1634 WaitForSingleObject(data_->thread_, INFINITE);
1635 }
1636 }
1637
1638
CreateThreadLocalKey()1639 Thread::LocalStorageKey Thread::CreateThreadLocalKey() {
1640 DWORD result = TlsAlloc();
1641 ASSERT(result != TLS_OUT_OF_INDEXES);
1642 return static_cast<LocalStorageKey>(result);
1643 }
1644
1645
DeleteThreadLocalKey(LocalStorageKey key)1646 void Thread::DeleteThreadLocalKey(LocalStorageKey key) {
1647 BOOL result = TlsFree(static_cast<DWORD>(key));
1648 USE(result);
1649 ASSERT(result);
1650 }
1651
1652
GetThreadLocal(LocalStorageKey key)1653 void* Thread::GetThreadLocal(LocalStorageKey key) {
1654 return TlsGetValue(static_cast<DWORD>(key));
1655 }
1656
1657
SetThreadLocal(LocalStorageKey key,void * value)1658 void Thread::SetThreadLocal(LocalStorageKey key, void* value) {
1659 BOOL result = TlsSetValue(static_cast<DWORD>(key), value);
1660 USE(result);
1661 ASSERT(result);
1662 }
1663
1664
1665
YieldCPU()1666 void Thread::YieldCPU() {
1667 Sleep(0);
1668 }
1669
1670
1671 // ----------------------------------------------------------------------------
1672 // Win32 mutex support.
1673 //
1674 // On Win32 mutexes are implemented using CRITICAL_SECTION objects. These are
1675 // faster than Win32 Mutex objects because they are implemented using user mode
1676 // atomic instructions. Therefore we only do ring transitions if there is lock
1677 // contention.
1678
1679 class Win32Mutex : public Mutex {
1680 public:
Win32Mutex()1681 Win32Mutex() { InitializeCriticalSection(&cs_); }
1682
~Win32Mutex()1683 virtual ~Win32Mutex() { DeleteCriticalSection(&cs_); }
1684
Lock()1685 virtual int Lock() {
1686 EnterCriticalSection(&cs_);
1687 return 0;
1688 }
1689
Unlock()1690 virtual int Unlock() {
1691 LeaveCriticalSection(&cs_);
1692 return 0;
1693 }
1694
1695
TryLock()1696 virtual bool TryLock() {
1697 // Returns non-zero if critical section is entered successfully entered.
1698 return TryEnterCriticalSection(&cs_);
1699 }
1700
1701 private:
1702 CRITICAL_SECTION cs_; // Critical section used for mutex
1703 };
1704
1705
CreateMutex()1706 Mutex* OS::CreateMutex() {
1707 return new Win32Mutex();
1708 }
1709
1710
1711 // ----------------------------------------------------------------------------
1712 // Win32 semaphore support.
1713 //
1714 // On Win32 semaphores are implemented using Win32 Semaphore objects. The
1715 // semaphores are anonymous. Also, the semaphores are initialized to have
1716 // no upper limit on count.
1717
1718
1719 class Win32Semaphore : public Semaphore {
1720 public:
Win32Semaphore(int count)1721 explicit Win32Semaphore(int count) {
1722 sem = ::CreateSemaphoreA(NULL, count, 0x7fffffff, NULL);
1723 }
1724
~Win32Semaphore()1725 ~Win32Semaphore() {
1726 CloseHandle(sem);
1727 }
1728
Wait()1729 void Wait() {
1730 WaitForSingleObject(sem, INFINITE);
1731 }
1732
Wait(int timeout)1733 bool Wait(int timeout) {
1734 // Timeout in Windows API is in milliseconds.
1735 DWORD millis_timeout = timeout / 1000;
1736 return WaitForSingleObject(sem, millis_timeout) != WAIT_TIMEOUT;
1737 }
1738
Signal()1739 void Signal() {
1740 LONG dummy;
1741 ReleaseSemaphore(sem, 1, &dummy);
1742 }
1743
1744 private:
1745 HANDLE sem;
1746 };
1747
1748
CreateSemaphore(int count)1749 Semaphore* OS::CreateSemaphore(int count) {
1750 return new Win32Semaphore(count);
1751 }
1752
1753
1754 // ----------------------------------------------------------------------------
1755 // Win32 socket support.
1756 //
1757
1758 class Win32Socket : public Socket {
1759 public:
Win32Socket()1760 explicit Win32Socket() {
1761 // Create the socket.
1762 socket_ = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP);
1763 }
Win32Socket(SOCKET socket)1764 explicit Win32Socket(SOCKET socket): socket_(socket) { }
~Win32Socket()1765 virtual ~Win32Socket() { Shutdown(); }
1766
1767 // Server initialization.
1768 bool Bind(const int port);
1769 bool Listen(int backlog) const;
1770 Socket* Accept() const;
1771
1772 // Client initialization.
1773 bool Connect(const char* host, const char* port);
1774
1775 // Shutdown socket for both read and write.
1776 bool Shutdown();
1777
1778 // Data Transimission
1779 int Send(const char* data, int len) const;
1780 int Receive(char* data, int len) const;
1781
1782 bool SetReuseAddress(bool reuse_address);
1783
IsValid() const1784 bool IsValid() const { return socket_ != INVALID_SOCKET; }
1785
1786 private:
1787 SOCKET socket_;
1788 };
1789
1790
Bind(const int port)1791 bool Win32Socket::Bind(const int port) {
1792 if (!IsValid()) {
1793 return false;
1794 }
1795
1796 sockaddr_in addr;
1797 memset(&addr, 0, sizeof(addr));
1798 addr.sin_family = AF_INET;
1799 addr.sin_addr.s_addr = htonl(INADDR_LOOPBACK);
1800 addr.sin_port = htons(port);
1801 int status = bind(socket_,
1802 reinterpret_cast<struct sockaddr *>(&addr),
1803 sizeof(addr));
1804 return status == 0;
1805 }
1806
1807
Listen(int backlog) const1808 bool Win32Socket::Listen(int backlog) const {
1809 if (!IsValid()) {
1810 return false;
1811 }
1812
1813 int status = listen(socket_, backlog);
1814 return status == 0;
1815 }
1816
1817
Accept() const1818 Socket* Win32Socket::Accept() const {
1819 if (!IsValid()) {
1820 return NULL;
1821 }
1822
1823 SOCKET socket = accept(socket_, NULL, NULL);
1824 if (socket == INVALID_SOCKET) {
1825 return NULL;
1826 } else {
1827 return new Win32Socket(socket);
1828 }
1829 }
1830
1831
Connect(const char * host,const char * port)1832 bool Win32Socket::Connect(const char* host, const char* port) {
1833 if (!IsValid()) {
1834 return false;
1835 }
1836
1837 // Lookup host and port.
1838 struct addrinfo *result = NULL;
1839 struct addrinfo hints;
1840 memset(&hints, 0, sizeof(addrinfo));
1841 hints.ai_family = AF_INET;
1842 hints.ai_socktype = SOCK_STREAM;
1843 hints.ai_protocol = IPPROTO_TCP;
1844 int status = getaddrinfo(host, port, &hints, &result);
1845 if (status != 0) {
1846 return false;
1847 }
1848
1849 // Connect.
1850 status = connect(socket_,
1851 result->ai_addr,
1852 static_cast<int>(result->ai_addrlen));
1853 freeaddrinfo(result);
1854 return status == 0;
1855 }
1856
1857
Shutdown()1858 bool Win32Socket::Shutdown() {
1859 if (IsValid()) {
1860 // Shutdown socket for both read and write.
1861 int status = shutdown(socket_, SD_BOTH);
1862 closesocket(socket_);
1863 socket_ = INVALID_SOCKET;
1864 return status == SOCKET_ERROR;
1865 }
1866 return true;
1867 }
1868
1869
Send(const char * data,int len) const1870 int Win32Socket::Send(const char* data, int len) const {
1871 int status = send(socket_, data, len, 0);
1872 return status;
1873 }
1874
1875
Receive(char * data,int len) const1876 int Win32Socket::Receive(char* data, int len) const {
1877 int status = recv(socket_, data, len, 0);
1878 return status;
1879 }
1880
1881
SetReuseAddress(bool reuse_address)1882 bool Win32Socket::SetReuseAddress(bool reuse_address) {
1883 BOOL on = reuse_address ? true : false;
1884 int status = setsockopt(socket_, SOL_SOCKET, SO_REUSEADDR,
1885 reinterpret_cast<char*>(&on), sizeof(on));
1886 return status == SOCKET_ERROR;
1887 }
1888
1889
SetUp()1890 bool Socket::SetUp() {
1891 // Initialize Winsock32
1892 int err;
1893 WSADATA winsock_data;
1894 WORD version_requested = MAKEWORD(1, 0);
1895 err = WSAStartup(version_requested, &winsock_data);
1896 if (err != 0) {
1897 PrintF("Unable to initialize Winsock, err = %d\n", Socket::LastError());
1898 }
1899
1900 return err == 0;
1901 }
1902
1903
LastError()1904 int Socket::LastError() {
1905 return WSAGetLastError();
1906 }
1907
1908
HToN(uint16_t value)1909 uint16_t Socket::HToN(uint16_t value) {
1910 return htons(value);
1911 }
1912
1913
NToH(uint16_t value)1914 uint16_t Socket::NToH(uint16_t value) {
1915 return ntohs(value);
1916 }
1917
1918
HToN(uint32_t value)1919 uint32_t Socket::HToN(uint32_t value) {
1920 return htonl(value);
1921 }
1922
1923
NToH(uint32_t value)1924 uint32_t Socket::NToH(uint32_t value) {
1925 return ntohl(value);
1926 }
1927
1928
CreateSocket()1929 Socket* OS::CreateSocket() {
1930 return new Win32Socket();
1931 }
1932
1933
1934 // ----------------------------------------------------------------------------
1935 // Win32 profiler support.
1936
1937 class Sampler::PlatformData : public Malloced {
1938 public:
1939 // Get a handle to the calling thread. This is the thread that we are
1940 // going to profile. We need to make a copy of the handle because we are
1941 // going to use it in the sampler thread. Using GetThreadHandle() will
1942 // not work in this case. We're using OpenThread because DuplicateHandle
1943 // for some reason doesn't work in Chrome's sandbox.
PlatformData()1944 PlatformData() : profiled_thread_(OpenThread(THREAD_GET_CONTEXT |
1945 THREAD_SUSPEND_RESUME |
1946 THREAD_QUERY_INFORMATION,
1947 false,
1948 GetCurrentThreadId())) {}
1949
~PlatformData()1950 ~PlatformData() {
1951 if (profiled_thread_ != NULL) {
1952 CloseHandle(profiled_thread_);
1953 profiled_thread_ = NULL;
1954 }
1955 }
1956
profiled_thread()1957 HANDLE profiled_thread() { return profiled_thread_; }
1958
1959 private:
1960 HANDLE profiled_thread_;
1961 };
1962
1963
1964 class SamplerThread : public Thread {
1965 public:
1966 static const int kSamplerThreadStackSize = 64 * KB;
1967
SamplerThread(int interval)1968 explicit SamplerThread(int interval)
1969 : Thread(Thread::Options("SamplerThread", kSamplerThreadStackSize)),
1970 interval_(interval) {}
1971
AddActiveSampler(Sampler * sampler)1972 static void AddActiveSampler(Sampler* sampler) {
1973 ScopedLock lock(mutex_.Pointer());
1974 SamplerRegistry::AddActiveSampler(sampler);
1975 if (instance_ == NULL) {
1976 instance_ = new SamplerThread(sampler->interval());
1977 instance_->Start();
1978 } else {
1979 ASSERT(instance_->interval_ == sampler->interval());
1980 }
1981 }
1982
RemoveActiveSampler(Sampler * sampler)1983 static void RemoveActiveSampler(Sampler* sampler) {
1984 ScopedLock lock(mutex_.Pointer());
1985 SamplerRegistry::RemoveActiveSampler(sampler);
1986 if (SamplerRegistry::GetState() == SamplerRegistry::HAS_NO_SAMPLERS) {
1987 RuntimeProfiler::StopRuntimeProfilerThreadBeforeShutdown(instance_);
1988 delete instance_;
1989 instance_ = NULL;
1990 }
1991 }
1992
1993 // Implement Thread::Run().
Run()1994 virtual void Run() {
1995 SamplerRegistry::State state;
1996 while ((state = SamplerRegistry::GetState()) !=
1997 SamplerRegistry::HAS_NO_SAMPLERS) {
1998 bool cpu_profiling_enabled =
1999 (state == SamplerRegistry::HAS_CPU_PROFILING_SAMPLERS);
2000 bool runtime_profiler_enabled = RuntimeProfiler::IsEnabled();
2001 // When CPU profiling is enabled both JavaScript and C++ code is
2002 // profiled. We must not suspend.
2003 if (!cpu_profiling_enabled) {
2004 if (rate_limiter_.SuspendIfNecessary()) continue;
2005 }
2006 if (cpu_profiling_enabled) {
2007 if (!SamplerRegistry::IterateActiveSamplers(&DoCpuProfile, this)) {
2008 return;
2009 }
2010 }
2011 if (runtime_profiler_enabled) {
2012 if (!SamplerRegistry::IterateActiveSamplers(&DoRuntimeProfile, NULL)) {
2013 return;
2014 }
2015 }
2016 OS::Sleep(interval_);
2017 }
2018 }
2019
DoCpuProfile(Sampler * sampler,void * raw_sampler_thread)2020 static void DoCpuProfile(Sampler* sampler, void* raw_sampler_thread) {
2021 if (!sampler->isolate()->IsInitialized()) return;
2022 if (!sampler->IsProfiling()) return;
2023 SamplerThread* sampler_thread =
2024 reinterpret_cast<SamplerThread*>(raw_sampler_thread);
2025 sampler_thread->SampleContext(sampler);
2026 }
2027
DoRuntimeProfile(Sampler * sampler,void * ignored)2028 static void DoRuntimeProfile(Sampler* sampler, void* ignored) {
2029 if (!sampler->isolate()->IsInitialized()) return;
2030 sampler->isolate()->runtime_profiler()->NotifyTick();
2031 }
2032
SampleContext(Sampler * sampler)2033 void SampleContext(Sampler* sampler) {
2034 HANDLE profiled_thread = sampler->platform_data()->profiled_thread();
2035 if (profiled_thread == NULL) return;
2036
2037 // Context used for sampling the register state of the profiled thread.
2038 CONTEXT context;
2039 memset(&context, 0, sizeof(context));
2040
2041 TickSample sample_obj;
2042 TickSample* sample = CpuProfiler::TickSampleEvent(sampler->isolate());
2043 if (sample == NULL) sample = &sample_obj;
2044
2045 static const DWORD kSuspendFailed = static_cast<DWORD>(-1);
2046 if (SuspendThread(profiled_thread) == kSuspendFailed) return;
2047 sample->state = sampler->isolate()->current_vm_state();
2048
2049 context.ContextFlags = CONTEXT_FULL;
2050 if (GetThreadContext(profiled_thread, &context) != 0) {
2051 #if V8_HOST_ARCH_X64
2052 sample->pc = reinterpret_cast<Address>(context.Rip);
2053 sample->sp = reinterpret_cast<Address>(context.Rsp);
2054 sample->fp = reinterpret_cast<Address>(context.Rbp);
2055 #else
2056 sample->pc = reinterpret_cast<Address>(context.Eip);
2057 sample->sp = reinterpret_cast<Address>(context.Esp);
2058 sample->fp = reinterpret_cast<Address>(context.Ebp);
2059 #endif
2060 sampler->SampleStack(sample);
2061 sampler->Tick(sample);
2062 }
2063 ResumeThread(profiled_thread);
2064 }
2065
2066 const int interval_;
2067 RuntimeProfilerRateLimiter rate_limiter_;
2068
2069 // Protects the process wide state below.
2070 static LazyMutex mutex_;
2071 static SamplerThread* instance_;
2072
2073 private:
2074 DISALLOW_COPY_AND_ASSIGN(SamplerThread);
2075 };
2076
2077
2078 LazyMutex SamplerThread::mutex_ = LAZY_MUTEX_INITIALIZER;
2079 SamplerThread* SamplerThread::instance_ = NULL;
2080
2081
Sampler(Isolate * isolate,int interval)2082 Sampler::Sampler(Isolate* isolate, int interval)
2083 : isolate_(isolate),
2084 interval_(interval),
2085 profiling_(false),
2086 active_(false),
2087 samples_taken_(0) {
2088 data_ = new PlatformData;
2089 }
2090
2091
~Sampler()2092 Sampler::~Sampler() {
2093 ASSERT(!IsActive());
2094 delete data_;
2095 }
2096
2097
Start()2098 void Sampler::Start() {
2099 ASSERT(!IsActive());
2100 SetActive(true);
2101 SamplerThread::AddActiveSampler(this);
2102 }
2103
2104
Stop()2105 void Sampler::Stop() {
2106 ASSERT(IsActive());
2107 SamplerThread::RemoveActiveSampler(this);
2108 SetActive(false);
2109 }
2110
2111
2112 } } // namespace v8::internal
2113