• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Redistribution and use in source and binary forms, with or without
3 // modification, are permitted provided that the following conditions are
4 // met:
5 //
6 //     * Redistributions of source code must retain the above copyright
7 //       notice, this list of conditions and the following disclaimer.
8 //     * Redistributions in binary form must reproduce the above
9 //       copyright notice, this list of conditions and the following
10 //       disclaimer in the documentation and/or other materials provided
11 //       with the distribution.
12 //     * Neither the name of Google Inc. nor the names of its
13 //       contributors may be used to endorse or promote products derived
14 //       from this software without specific prior written permission.
15 //
16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 
28 // Platform specific code for Win32.
29 
30 #define V8_WIN32_HEADERS_FULL
31 #include "win32-headers.h"
32 
33 #include "v8.h"
34 
35 #include "codegen.h"
36 #include "platform.h"
37 #include "vm-state-inl.h"
38 
39 #ifdef _MSC_VER
40 
41 // Case-insensitive bounded string comparisons. Use stricmp() on Win32. Usually
42 // defined in strings.h.
strncasecmp(const char * s1,const char * s2,int n)43 int strncasecmp(const char* s1, const char* s2, int n) {
44   return _strnicmp(s1, s2, n);
45 }
46 
47 #endif  // _MSC_VER
48 
49 
50 // Extra functions for MinGW. Most of these are the _s functions which are in
51 // the Microsoft Visual Studio C++ CRT.
52 #ifdef __MINGW32__
53 
localtime_s(tm * out_tm,const time_t * time)54 int localtime_s(tm* out_tm, const time_t* time) {
55   tm* posix_local_time_struct = localtime(time);
56   if (posix_local_time_struct == NULL) return 1;
57   *out_tm = *posix_local_time_struct;
58   return 0;
59 }
60 
61 
fopen_s(FILE ** pFile,const char * filename,const char * mode)62 int fopen_s(FILE** pFile, const char* filename, const char* mode) {
63   *pFile = fopen(filename, mode);
64   return *pFile != NULL ? 0 : 1;
65 }
66 
67 
68 #ifndef __MINGW64_VERSION_MAJOR
69 
70 // Not sure this the correct interpretation of _mkgmtime
_mkgmtime(tm * timeptr)71 time_t _mkgmtime(tm* timeptr) {
72   return mktime(timeptr);
73 }
74 
75 
76 #define _TRUNCATE 0
77 #define STRUNCATE 80
78 
79 #endif  // __MINGW64_VERSION_MAJOR
80 
81 
_vsnprintf_s(char * buffer,size_t sizeOfBuffer,size_t count,const char * format,va_list argptr)82 int _vsnprintf_s(char* buffer, size_t sizeOfBuffer, size_t count,
83                  const char* format, va_list argptr) {
84   ASSERT(count == _TRUNCATE);
85   return _vsnprintf(buffer, sizeOfBuffer, format, argptr);
86 }
87 
88 
strncpy_s(char * dest,size_t dest_size,const char * source,size_t count)89 int strncpy_s(char* dest, size_t dest_size, const char* source, size_t count) {
90   CHECK(source != NULL);
91   CHECK(dest != NULL);
92   CHECK_GT(dest_size, 0);
93 
94   if (count == _TRUNCATE) {
95     while (dest_size > 0 && *source != 0) {
96       *(dest++) = *(source++);
97       --dest_size;
98     }
99     if (dest_size == 0) {
100       *(dest - 1) = 0;
101       return STRUNCATE;
102     }
103   } else {
104     while (dest_size > 0 && count > 0 && *source != 0) {
105       *(dest++) = *(source++);
106       --dest_size;
107       --count;
108     }
109   }
110   CHECK_GT(dest_size, 0);
111   *dest = 0;
112   return 0;
113 }
114 
115 
116 #ifndef __MINGW64_VERSION_MAJOR
117 
MemoryBarrier()118 inline void MemoryBarrier() {
119   int barrier = 0;
120   __asm__ __volatile__("xchgl %%eax,%0 ":"=r" (barrier));
121 }
122 
123 #endif  // __MINGW64_VERSION_MAJOR
124 
125 
126 #endif  // __MINGW32__
127 
128 // Generate a pseudo-random number in the range 0-2^31-1. Usually
129 // defined in stdlib.h. Missing in both Microsoft Visual Studio C++ and MinGW.
random()130 int random() {
131   return rand();
132 }
133 
134 
135 namespace v8 {
136 namespace internal {
137 
MaxVirtualMemory()138 intptr_t OS::MaxVirtualMemory() {
139   return 0;
140 }
141 
142 
ceiling(double x)143 double ceiling(double x) {
144   return ceil(x);
145 }
146 
147 
148 static Mutex* limit_mutex = NULL;
149 
150 #if defined(V8_TARGET_ARCH_IA32)
151 static OS::MemCopyFunction memcopy_function = NULL;
152 static LazyMutex memcopy_function_mutex = LAZY_MUTEX_INITIALIZER;
153 // Defined in codegen-ia32.cc.
154 OS::MemCopyFunction CreateMemCopyFunction();
155 
156 // Copy memory area to disjoint memory area.
MemCopy(void * dest,const void * src,size_t size)157 void OS::MemCopy(void* dest, const void* src, size_t size) {
158   if (memcopy_function == NULL) {
159     ScopedLock lock(memcopy_function_mutex.Pointer());
160     if (memcopy_function == NULL) {
161       OS::MemCopyFunction temp = CreateMemCopyFunction();
162       MemoryBarrier();
163       memcopy_function = temp;
164     }
165   }
166   // Note: here we rely on dependent reads being ordered. This is true
167   // on all architectures we currently support.
168   (*memcopy_function)(dest, src, size);
169 #ifdef DEBUG
170   CHECK_EQ(0, memcmp(dest, src, size));
171 #endif
172 }
173 #endif  // V8_TARGET_ARCH_IA32
174 
175 #ifdef _WIN64
176 typedef double (*ModuloFunction)(double, double);
177 static ModuloFunction modulo_function = NULL;
178 // Defined in codegen-x64.cc.
179 ModuloFunction CreateModuloFunction();
180 
init_modulo_function()181 void init_modulo_function() {
182   modulo_function = CreateModuloFunction();
183 }
184 
modulo(double x,double y)185 double modulo(double x, double y) {
186   // Note: here we rely on dependent reads being ordered. This is true
187   // on all architectures we currently support.
188   return (*modulo_function)(x, y);
189 }
190 #else  // Win32
191 
modulo(double x,double y)192 double modulo(double x, double y) {
193   // Workaround MS fmod bugs. ECMA-262 says:
194   // dividend is finite and divisor is an infinity => result equals dividend
195   // dividend is a zero and divisor is nonzero finite => result equals dividend
196   if (!(isfinite(x) && (!isfinite(y) && !isnan(y))) &&
197       !(x == 0 && (y != 0 && isfinite(y)))) {
198     x = fmod(x, y);
199   }
200   return x;
201 }
202 
203 #endif  // _WIN64
204 
205 
206 #define UNARY_MATH_FUNCTION(name, generator)             \
207 static UnaryMathFunction fast_##name##_function = NULL;  \
208 void init_fast_##name##_function() {                     \
209   fast_##name##_function = generator;                    \
210 }                                                        \
211 double fast_##name(double x) {                           \
212   return (*fast_##name##_function)(x);                   \
213 }
214 
UNARY_MATH_FUNCTION(sin,CreateTranscendentalFunction (TranscendentalCache::SIN))215 UNARY_MATH_FUNCTION(sin, CreateTranscendentalFunction(TranscendentalCache::SIN))
216 UNARY_MATH_FUNCTION(cos, CreateTranscendentalFunction(TranscendentalCache::COS))
217 UNARY_MATH_FUNCTION(tan, CreateTranscendentalFunction(TranscendentalCache::TAN))
218 UNARY_MATH_FUNCTION(log, CreateTranscendentalFunction(TranscendentalCache::LOG))
219 UNARY_MATH_FUNCTION(sqrt, CreateSqrtFunction())
220 
221 #undef MATH_FUNCTION
222 
223 
224 void MathSetup() {
225 #ifdef _WIN64
226   init_modulo_function();
227 #endif
228   init_fast_sin_function();
229   init_fast_cos_function();
230   init_fast_tan_function();
231   init_fast_log_function();
232   init_fast_sqrt_function();
233 }
234 
235 
236 // ----------------------------------------------------------------------------
237 // The Time class represents time on win32. A timestamp is represented as
238 // a 64-bit integer in 100 nanoseconds since January 1, 1601 (UTC). JavaScript
239 // timestamps are represented as a doubles in milliseconds since 00:00:00 UTC,
240 // January 1, 1970.
241 
242 class Time {
243  public:
244   // Constructors.
245   Time();
246   explicit Time(double jstime);
247   Time(int year, int mon, int day, int hour, int min, int sec);
248 
249   // Convert timestamp to JavaScript representation.
250   double ToJSTime();
251 
252   // Set timestamp to current time.
253   void SetToCurrentTime();
254 
255   // Returns the local timezone offset in milliseconds east of UTC. This is
256   // the number of milliseconds you must add to UTC to get local time, i.e.
257   // LocalOffset(CET) = 3600000 and LocalOffset(PST) = -28800000. This
258   // routine also takes into account whether daylight saving is effect
259   // at the time.
260   int64_t LocalOffset();
261 
262   // Returns the daylight savings time offset for the time in milliseconds.
263   int64_t DaylightSavingsOffset();
264 
265   // Returns a string identifying the current timezone for the
266   // timestamp taking into account daylight saving.
267   char* LocalTimezone();
268 
269  private:
270   // Constants for time conversion.
271   static const int64_t kTimeEpoc = 116444736000000000LL;
272   static const int64_t kTimeScaler = 10000;
273   static const int64_t kMsPerMinute = 60000;
274 
275   // Constants for timezone information.
276   static const int kTzNameSize = 128;
277   static const bool kShortTzNames = false;
278 
279   // Timezone information. We need to have static buffers for the
280   // timezone names because we return pointers to these in
281   // LocalTimezone().
282   static bool tz_initialized_;
283   static TIME_ZONE_INFORMATION tzinfo_;
284   static char std_tz_name_[kTzNameSize];
285   static char dst_tz_name_[kTzNameSize];
286 
287   // Initialize the timezone information (if not already done).
288   static void TzSet();
289 
290   // Guess the name of the timezone from the bias.
291   static const char* GuessTimezoneNameFromBias(int bias);
292 
293   // Return whether or not daylight savings time is in effect at this time.
294   bool InDST();
295 
296   // Return the difference (in milliseconds) between this timestamp and
297   // another timestamp.
298   int64_t Diff(Time* other);
299 
300   // Accessor for FILETIME representation.
ft()301   FILETIME& ft() { return time_.ft_; }
302 
303   // Accessor for integer representation.
t()304   int64_t& t() { return time_.t_; }
305 
306   // Although win32 uses 64-bit integers for representing timestamps,
307   // these are packed into a FILETIME structure. The FILETIME structure
308   // is just a struct representing a 64-bit integer. The TimeStamp union
309   // allows access to both a FILETIME and an integer representation of
310   // the timestamp.
311   union TimeStamp {
312     FILETIME ft_;
313     int64_t t_;
314   };
315 
316   TimeStamp time_;
317 };
318 
319 // Static variables.
320 bool Time::tz_initialized_ = false;
321 TIME_ZONE_INFORMATION Time::tzinfo_;
322 char Time::std_tz_name_[kTzNameSize];
323 char Time::dst_tz_name_[kTzNameSize];
324 
325 
326 // Initialize timestamp to start of epoc.
Time()327 Time::Time() {
328   t() = 0;
329 }
330 
331 
332 // Initialize timestamp from a JavaScript timestamp.
Time(double jstime)333 Time::Time(double jstime) {
334   t() = static_cast<int64_t>(jstime) * kTimeScaler + kTimeEpoc;
335 }
336 
337 
338 // Initialize timestamp from date/time components.
Time(int year,int mon,int day,int hour,int min,int sec)339 Time::Time(int year, int mon, int day, int hour, int min, int sec) {
340   SYSTEMTIME st;
341   st.wYear = year;
342   st.wMonth = mon;
343   st.wDay = day;
344   st.wHour = hour;
345   st.wMinute = min;
346   st.wSecond = sec;
347   st.wMilliseconds = 0;
348   SystemTimeToFileTime(&st, &ft());
349 }
350 
351 
352 // Convert timestamp to JavaScript timestamp.
ToJSTime()353 double Time::ToJSTime() {
354   return static_cast<double>((t() - kTimeEpoc) / kTimeScaler);
355 }
356 
357 
358 // Guess the name of the timezone from the bias.
359 // The guess is very biased towards the northern hemisphere.
GuessTimezoneNameFromBias(int bias)360 const char* Time::GuessTimezoneNameFromBias(int bias) {
361   static const int kHour = 60;
362   switch (-bias) {
363     case -9*kHour: return "Alaska";
364     case -8*kHour: return "Pacific";
365     case -7*kHour: return "Mountain";
366     case -6*kHour: return "Central";
367     case -5*kHour: return "Eastern";
368     case -4*kHour: return "Atlantic";
369     case  0*kHour: return "GMT";
370     case +1*kHour: return "Central Europe";
371     case +2*kHour: return "Eastern Europe";
372     case +3*kHour: return "Russia";
373     case +5*kHour + 30: return "India";
374     case +8*kHour: return "China";
375     case +9*kHour: return "Japan";
376     case +12*kHour: return "New Zealand";
377     default: return "Local";
378   }
379 }
380 
381 
382 // Initialize timezone information. The timezone information is obtained from
383 // windows. If we cannot get the timezone information we fall back to CET.
384 // Please notice that this code is not thread-safe.
TzSet()385 void Time::TzSet() {
386   // Just return if timezone information has already been initialized.
387   if (tz_initialized_) return;
388 
389   // Initialize POSIX time zone data.
390   _tzset();
391   // Obtain timezone information from operating system.
392   memset(&tzinfo_, 0, sizeof(tzinfo_));
393   if (GetTimeZoneInformation(&tzinfo_) == TIME_ZONE_ID_INVALID) {
394     // If we cannot get timezone information we fall back to CET.
395     tzinfo_.Bias = -60;
396     tzinfo_.StandardDate.wMonth = 10;
397     tzinfo_.StandardDate.wDay = 5;
398     tzinfo_.StandardDate.wHour = 3;
399     tzinfo_.StandardBias = 0;
400     tzinfo_.DaylightDate.wMonth = 3;
401     tzinfo_.DaylightDate.wDay = 5;
402     tzinfo_.DaylightDate.wHour = 2;
403     tzinfo_.DaylightBias = -60;
404   }
405 
406   // Make standard and DST timezone names.
407   WideCharToMultiByte(CP_UTF8, 0, tzinfo_.StandardName, -1,
408                       std_tz_name_, kTzNameSize, NULL, NULL);
409   std_tz_name_[kTzNameSize - 1] = '\0';
410   WideCharToMultiByte(CP_UTF8, 0, tzinfo_.DaylightName, -1,
411                       dst_tz_name_, kTzNameSize, NULL, NULL);
412   dst_tz_name_[kTzNameSize - 1] = '\0';
413 
414   // If OS returned empty string or resource id (like "@tzres.dll,-211")
415   // simply guess the name from the UTC bias of the timezone.
416   // To properly resolve the resource identifier requires a library load,
417   // which is not possible in a sandbox.
418   if (std_tz_name_[0] == '\0' || std_tz_name_[0] == '@') {
419     OS::SNPrintF(Vector<char>(std_tz_name_, kTzNameSize - 1),
420                  "%s Standard Time",
421                  GuessTimezoneNameFromBias(tzinfo_.Bias));
422   }
423   if (dst_tz_name_[0] == '\0' || dst_tz_name_[0] == '@') {
424     OS::SNPrintF(Vector<char>(dst_tz_name_, kTzNameSize - 1),
425                  "%s Daylight Time",
426                  GuessTimezoneNameFromBias(tzinfo_.Bias));
427   }
428 
429   // Timezone information initialized.
430   tz_initialized_ = true;
431 }
432 
433 
434 // Return the difference in milliseconds between this and another timestamp.
Diff(Time * other)435 int64_t Time::Diff(Time* other) {
436   return (t() - other->t()) / kTimeScaler;
437 }
438 
439 
440 // Set timestamp to current time.
SetToCurrentTime()441 void Time::SetToCurrentTime() {
442   // The default GetSystemTimeAsFileTime has a ~15.5ms resolution.
443   // Because we're fast, we like fast timers which have at least a
444   // 1ms resolution.
445   //
446   // timeGetTime() provides 1ms granularity when combined with
447   // timeBeginPeriod().  If the host application for v8 wants fast
448   // timers, it can use timeBeginPeriod to increase the resolution.
449   //
450   // Using timeGetTime() has a drawback because it is a 32bit value
451   // and hence rolls-over every ~49days.
452   //
453   // To use the clock, we use GetSystemTimeAsFileTime as our base;
454   // and then use timeGetTime to extrapolate current time from the
455   // start time.  To deal with rollovers, we resync the clock
456   // any time when more than kMaxClockElapsedTime has passed or
457   // whenever timeGetTime creates a rollover.
458 
459   static bool initialized = false;
460   static TimeStamp init_time;
461   static DWORD init_ticks;
462   static const int64_t kHundredNanosecondsPerSecond = 10000000;
463   static const int64_t kMaxClockElapsedTime =
464       60*kHundredNanosecondsPerSecond;  // 1 minute
465 
466   // If we are uninitialized, we need to resync the clock.
467   bool needs_resync = !initialized;
468 
469   // Get the current time.
470   TimeStamp time_now;
471   GetSystemTimeAsFileTime(&time_now.ft_);
472   DWORD ticks_now = timeGetTime();
473 
474   // Check if we need to resync due to clock rollover.
475   needs_resync |= ticks_now < init_ticks;
476 
477   // Check if we need to resync due to elapsed time.
478   needs_resync |= (time_now.t_ - init_time.t_) > kMaxClockElapsedTime;
479 
480   // Resync the clock if necessary.
481   if (needs_resync) {
482     GetSystemTimeAsFileTime(&init_time.ft_);
483     init_ticks = ticks_now = timeGetTime();
484     initialized = true;
485   }
486 
487   // Finally, compute the actual time.  Why is this so hard.
488   DWORD elapsed = ticks_now - init_ticks;
489   this->time_.t_ = init_time.t_ + (static_cast<int64_t>(elapsed) * 10000);
490 }
491 
492 
493 // Return the local timezone offset in milliseconds east of UTC. This
494 // takes into account whether daylight saving is in effect at the time.
495 // Only times in the 32-bit Unix range may be passed to this function.
496 // Also, adding the time-zone offset to the input must not overflow.
497 // The function EquivalentTime() in date.js guarantees this.
LocalOffset()498 int64_t Time::LocalOffset() {
499   // Initialize timezone information, if needed.
500   TzSet();
501 
502   Time rounded_to_second(*this);
503   rounded_to_second.t() = rounded_to_second.t() / 1000 / kTimeScaler *
504       1000 * kTimeScaler;
505   // Convert to local time using POSIX localtime function.
506   // Windows XP Service Pack 3 made SystemTimeToTzSpecificLocalTime()
507   // very slow.  Other browsers use localtime().
508 
509   // Convert from JavaScript milliseconds past 1/1/1970 0:00:00 to
510   // POSIX seconds past 1/1/1970 0:00:00.
511   double unchecked_posix_time = rounded_to_second.ToJSTime() / 1000;
512   if (unchecked_posix_time > INT_MAX || unchecked_posix_time < 0) {
513     return 0;
514   }
515   // Because _USE_32BIT_TIME_T is defined, time_t is a 32-bit int.
516   time_t posix_time = static_cast<time_t>(unchecked_posix_time);
517 
518   // Convert to local time, as struct with fields for day, hour, year, etc.
519   tm posix_local_time_struct;
520   if (localtime_s(&posix_local_time_struct, &posix_time)) return 0;
521   // Convert local time in struct to POSIX time as if it were a UTC time.
522   time_t local_posix_time = _mkgmtime(&posix_local_time_struct);
523   Time localtime(1000.0 * local_posix_time);
524 
525   return localtime.Diff(&rounded_to_second);
526 }
527 
528 
529 // Return whether or not daylight savings time is in effect at this time.
InDST()530 bool Time::InDST() {
531   // Initialize timezone information, if needed.
532   TzSet();
533 
534   // Determine if DST is in effect at the specified time.
535   bool in_dst = false;
536   if (tzinfo_.StandardDate.wMonth != 0 || tzinfo_.DaylightDate.wMonth != 0) {
537     // Get the local timezone offset for the timestamp in milliseconds.
538     int64_t offset = LocalOffset();
539 
540     // Compute the offset for DST. The bias parameters in the timezone info
541     // are specified in minutes. These must be converted to milliseconds.
542     int64_t dstofs = -(tzinfo_.Bias + tzinfo_.DaylightBias) * kMsPerMinute;
543 
544     // If the local time offset equals the timezone bias plus the daylight
545     // bias then DST is in effect.
546     in_dst = offset == dstofs;
547   }
548 
549   return in_dst;
550 }
551 
552 
553 // Return the daylight savings time offset for this time.
DaylightSavingsOffset()554 int64_t Time::DaylightSavingsOffset() {
555   return InDST() ? 60 * kMsPerMinute : 0;
556 }
557 
558 
559 // Returns a string identifying the current timezone for the
560 // timestamp taking into account daylight saving.
LocalTimezone()561 char* Time::LocalTimezone() {
562   // Return the standard or DST time zone name based on whether daylight
563   // saving is in effect at the given time.
564   return InDST() ? dst_tz_name_ : std_tz_name_;
565 }
566 
567 
SetUp()568 void OS::SetUp() {
569   // Seed the random number generator.
570   // Convert the current time to a 64-bit integer first, before converting it
571   // to an unsigned. Going directly can cause an overflow and the seed to be
572   // set to all ones. The seed will be identical for different instances that
573   // call this setup code within the same millisecond.
574   uint64_t seed = static_cast<uint64_t>(TimeCurrentMillis());
575   srand(static_cast<unsigned int>(seed));
576   limit_mutex = CreateMutex();
577 }
578 
579 
PostSetUp()580 void OS::PostSetUp() {
581   // Math functions depend on CPU features therefore they are initialized after
582   // CPU.
583   MathSetup();
584 }
585 
586 
587 // Returns the accumulated user time for thread.
GetUserTime(uint32_t * secs,uint32_t * usecs)588 int OS::GetUserTime(uint32_t* secs,  uint32_t* usecs) {
589   FILETIME dummy;
590   uint64_t usertime;
591 
592   // Get the amount of time that the thread has executed in user mode.
593   if (!GetThreadTimes(GetCurrentThread(), &dummy, &dummy, &dummy,
594                       reinterpret_cast<FILETIME*>(&usertime))) return -1;
595 
596   // Adjust the resolution to micro-seconds.
597   usertime /= 10;
598 
599   // Convert to seconds and microseconds
600   *secs = static_cast<uint32_t>(usertime / 1000000);
601   *usecs = static_cast<uint32_t>(usertime % 1000000);
602   return 0;
603 }
604 
605 
606 // Returns current time as the number of milliseconds since
607 // 00:00:00 UTC, January 1, 1970.
TimeCurrentMillis()608 double OS::TimeCurrentMillis() {
609   Time t;
610   t.SetToCurrentTime();
611   return t.ToJSTime();
612 }
613 
614 // Returns the tickcounter based on timeGetTime.
Ticks()615 int64_t OS::Ticks() {
616   return timeGetTime() * 1000;  // Convert to microseconds.
617 }
618 
619 
620 // Returns a string identifying the current timezone taking into
621 // account daylight saving.
LocalTimezone(double time)622 const char* OS::LocalTimezone(double time) {
623   return Time(time).LocalTimezone();
624 }
625 
626 
627 // Returns the local time offset in milliseconds east of UTC without
628 // taking daylight savings time into account.
LocalTimeOffset()629 double OS::LocalTimeOffset() {
630   // Use current time, rounded to the millisecond.
631   Time t(TimeCurrentMillis());
632   // Time::LocalOffset inlcudes any daylight savings offset, so subtract it.
633   return static_cast<double>(t.LocalOffset() - t.DaylightSavingsOffset());
634 }
635 
636 
637 // Returns the daylight savings offset in milliseconds for the given
638 // time.
DaylightSavingsOffset(double time)639 double OS::DaylightSavingsOffset(double time) {
640   int64_t offset = Time(time).DaylightSavingsOffset();
641   return static_cast<double>(offset);
642 }
643 
644 
GetLastError()645 int OS::GetLastError() {
646   return ::GetLastError();
647 }
648 
649 
650 // ----------------------------------------------------------------------------
651 // Win32 console output.
652 //
653 // If a Win32 application is linked as a console application it has a normal
654 // standard output and standard error. In this case normal printf works fine
655 // for output. However, if the application is linked as a GUI application,
656 // the process doesn't have a console, and therefore (debugging) output is lost.
657 // This is the case if we are embedded in a windows program (like a browser).
658 // In order to be able to get debug output in this case the the debugging
659 // facility using OutputDebugString. This output goes to the active debugger
660 // for the process (if any). Else the output can be monitored using DBMON.EXE.
661 
662 enum OutputMode {
663   UNKNOWN,  // Output method has not yet been determined.
664   CONSOLE,  // Output is written to stdout.
665   ODS       // Output is written to debug facility.
666 };
667 
668 static OutputMode output_mode = UNKNOWN;  // Current output mode.
669 
670 
671 // Determine if the process has a console for output.
HasConsole()672 static bool HasConsole() {
673   // Only check the first time. Eventual race conditions are not a problem,
674   // because all threads will eventually determine the same mode.
675   if (output_mode == UNKNOWN) {
676     // We cannot just check that the standard output is attached to a console
677     // because this would fail if output is redirected to a file. Therefore we
678     // say that a process does not have an output console if either the
679     // standard output handle is invalid or its file type is unknown.
680     if (GetStdHandle(STD_OUTPUT_HANDLE) != INVALID_HANDLE_VALUE &&
681         GetFileType(GetStdHandle(STD_OUTPUT_HANDLE)) != FILE_TYPE_UNKNOWN)
682       output_mode = CONSOLE;
683     else
684       output_mode = ODS;
685   }
686   return output_mode == CONSOLE;
687 }
688 
689 
VPrintHelper(FILE * stream,const char * format,va_list args)690 static void VPrintHelper(FILE* stream, const char* format, va_list args) {
691   if (HasConsole()) {
692     vfprintf(stream, format, args);
693   } else {
694     // It is important to use safe print here in order to avoid
695     // overflowing the buffer. We might truncate the output, but this
696     // does not crash.
697     EmbeddedVector<char, 4096> buffer;
698     OS::VSNPrintF(buffer, format, args);
699     OutputDebugStringA(buffer.start());
700   }
701 }
702 
703 
FOpen(const char * path,const char * mode)704 FILE* OS::FOpen(const char* path, const char* mode) {
705   FILE* result;
706   if (fopen_s(&result, path, mode) == 0) {
707     return result;
708   } else {
709     return NULL;
710   }
711 }
712 
713 
Remove(const char * path)714 bool OS::Remove(const char* path) {
715   return (DeleteFileA(path) != 0);
716 }
717 
718 
OpenTemporaryFile()719 FILE* OS::OpenTemporaryFile() {
720   // tmpfile_s tries to use the root dir, don't use it.
721   char tempPathBuffer[MAX_PATH];
722   DWORD path_result = 0;
723   path_result = GetTempPathA(MAX_PATH, tempPathBuffer);
724   if (path_result > MAX_PATH || path_result == 0) return NULL;
725   UINT name_result = 0;
726   char tempNameBuffer[MAX_PATH];
727   name_result = GetTempFileNameA(tempPathBuffer, "", 0, tempNameBuffer);
728   if (name_result == 0) return NULL;
729   FILE* result = FOpen(tempNameBuffer, "w+");  // Same mode as tmpfile uses.
730   if (result != NULL) {
731     Remove(tempNameBuffer);  // Delete on close.
732   }
733   return result;
734 }
735 
736 
737 // Open log file in binary mode to avoid /n -> /r/n conversion.
738 const char* const OS::LogFileOpenMode = "wb";
739 
740 
741 // Print (debug) message to console.
Print(const char * format,...)742 void OS::Print(const char* format, ...) {
743   va_list args;
744   va_start(args, format);
745   VPrint(format, args);
746   va_end(args);
747 }
748 
749 
VPrint(const char * format,va_list args)750 void OS::VPrint(const char* format, va_list args) {
751   VPrintHelper(stdout, format, args);
752 }
753 
754 
FPrint(FILE * out,const char * format,...)755 void OS::FPrint(FILE* out, const char* format, ...) {
756   va_list args;
757   va_start(args, format);
758   VFPrint(out, format, args);
759   va_end(args);
760 }
761 
762 
VFPrint(FILE * out,const char * format,va_list args)763 void OS::VFPrint(FILE* out, const char* format, va_list args) {
764   VPrintHelper(out, format, args);
765 }
766 
767 
768 // Print error message to console.
PrintError(const char * format,...)769 void OS::PrintError(const char* format, ...) {
770   va_list args;
771   va_start(args, format);
772   VPrintError(format, args);
773   va_end(args);
774 }
775 
776 
VPrintError(const char * format,va_list args)777 void OS::VPrintError(const char* format, va_list args) {
778   VPrintHelper(stderr, format, args);
779 }
780 
781 
SNPrintF(Vector<char> str,const char * format,...)782 int OS::SNPrintF(Vector<char> str, const char* format, ...) {
783   va_list args;
784   va_start(args, format);
785   int result = VSNPrintF(str, format, args);
786   va_end(args);
787   return result;
788 }
789 
790 
VSNPrintF(Vector<char> str,const char * format,va_list args)791 int OS::VSNPrintF(Vector<char> str, const char* format, va_list args) {
792   int n = _vsnprintf_s(str.start(), str.length(), _TRUNCATE, format, args);
793   // Make sure to zero-terminate the string if the output was
794   // truncated or if there was an error.
795   if (n < 0 || n >= str.length()) {
796     if (str.length() > 0)
797       str[str.length() - 1] = '\0';
798     return -1;
799   } else {
800     return n;
801   }
802 }
803 
804 
StrChr(char * str,int c)805 char* OS::StrChr(char* str, int c) {
806   return const_cast<char*>(strchr(str, c));
807 }
808 
809 
StrNCpy(Vector<char> dest,const char * src,size_t n)810 void OS::StrNCpy(Vector<char> dest, const char* src, size_t n) {
811   // Use _TRUNCATE or strncpy_s crashes (by design) if buffer is too small.
812   size_t buffer_size = static_cast<size_t>(dest.length());
813   if (n + 1 > buffer_size)  // count for trailing '\0'
814     n = _TRUNCATE;
815   int result = strncpy_s(dest.start(), dest.length(), src, n);
816   USE(result);
817   ASSERT(result == 0 || (n == _TRUNCATE && result == STRUNCATE));
818 }
819 
820 
821 // We keep the lowest and highest addresses mapped as a quick way of
822 // determining that pointers are outside the heap (used mostly in assertions
823 // and verification).  The estimate is conservative, i.e., not all addresses in
824 // 'allocated' space are actually allocated to our heap.  The range is
825 // [lowest, highest), inclusive on the low and and exclusive on the high end.
826 static void* lowest_ever_allocated = reinterpret_cast<void*>(-1);
827 static void* highest_ever_allocated = reinterpret_cast<void*>(0);
828 
829 
UpdateAllocatedSpaceLimits(void * address,int size)830 static void UpdateAllocatedSpaceLimits(void* address, int size) {
831   ASSERT(limit_mutex != NULL);
832   ScopedLock lock(limit_mutex);
833 
834   lowest_ever_allocated = Min(lowest_ever_allocated, address);
835   highest_ever_allocated =
836       Max(highest_ever_allocated,
837           reinterpret_cast<void*>(reinterpret_cast<char*>(address) + size));
838 }
839 
840 
IsOutsideAllocatedSpace(void * pointer)841 bool OS::IsOutsideAllocatedSpace(void* pointer) {
842   if (pointer < lowest_ever_allocated || pointer >= highest_ever_allocated)
843     return true;
844   // Ask the Windows API
845   if (IsBadWritePtr(pointer, 1))
846     return true;
847   return false;
848 }
849 
850 
851 // Get the system's page size used by VirtualAlloc() or the next power
852 // of two. The reason for always returning a power of two is that the
853 // rounding up in OS::Allocate expects that.
GetPageSize()854 static size_t GetPageSize() {
855   static size_t page_size = 0;
856   if (page_size == 0) {
857     SYSTEM_INFO info;
858     GetSystemInfo(&info);
859     page_size = RoundUpToPowerOf2(info.dwPageSize);
860   }
861   return page_size;
862 }
863 
864 
865 // The allocation alignment is the guaranteed alignment for
866 // VirtualAlloc'ed blocks of memory.
AllocateAlignment()867 size_t OS::AllocateAlignment() {
868   static size_t allocate_alignment = 0;
869   if (allocate_alignment == 0) {
870     SYSTEM_INFO info;
871     GetSystemInfo(&info);
872     allocate_alignment = info.dwAllocationGranularity;
873   }
874   return allocate_alignment;
875 }
876 
877 
GetRandomAddr()878 static void* GetRandomAddr() {
879   Isolate* isolate = Isolate::UncheckedCurrent();
880   // Note that the current isolate isn't set up in a call path via
881   // CpuFeatures::Probe. We don't care about randomization in this case because
882   // the code page is immediately freed.
883   if (isolate != NULL) {
884     // The address range used to randomize RWX allocations in OS::Allocate
885     // Try not to map pages into the default range that windows loads DLLs
886     // Use a multiple of 64k to prevent committing unused memory.
887     // Note: This does not guarantee RWX regions will be within the
888     // range kAllocationRandomAddressMin to kAllocationRandomAddressMax
889 #ifdef V8_HOST_ARCH_64_BIT
890     static const intptr_t kAllocationRandomAddressMin = 0x0000000080000000;
891     static const intptr_t kAllocationRandomAddressMax = 0x000003FFFFFF0000;
892 #else
893     static const intptr_t kAllocationRandomAddressMin = 0x04000000;
894     static const intptr_t kAllocationRandomAddressMax = 0x3FFF0000;
895 #endif
896     uintptr_t address = (V8::RandomPrivate(isolate) << kPageSizeBits)
897         | kAllocationRandomAddressMin;
898     address &= kAllocationRandomAddressMax;
899     return reinterpret_cast<void *>(address);
900   }
901   return NULL;
902 }
903 
904 
RandomizedVirtualAlloc(size_t size,int action,int protection)905 static void* RandomizedVirtualAlloc(size_t size, int action, int protection) {
906   LPVOID base = NULL;
907 
908   if (protection == PAGE_EXECUTE_READWRITE || protection == PAGE_NOACCESS) {
909     // For exectutable pages try and randomize the allocation address
910     for (size_t attempts = 0; base == NULL && attempts < 3; ++attempts) {
911       base = VirtualAlloc(GetRandomAddr(), size, action, protection);
912     }
913   }
914 
915   // After three attempts give up and let the OS find an address to use.
916   if (base == NULL) base = VirtualAlloc(NULL, size, action, protection);
917 
918   return base;
919 }
920 
921 
Allocate(const size_t requested,size_t * allocated,bool is_executable)922 void* OS::Allocate(const size_t requested,
923                    size_t* allocated,
924                    bool is_executable) {
925   // VirtualAlloc rounds allocated size to page size automatically.
926   size_t msize = RoundUp(requested, static_cast<int>(GetPageSize()));
927 
928   // Windows XP SP2 allows Data Excution Prevention (DEP).
929   int prot = is_executable ? PAGE_EXECUTE_READWRITE : PAGE_READWRITE;
930 
931   LPVOID mbase = RandomizedVirtualAlloc(msize,
932                                         MEM_COMMIT | MEM_RESERVE,
933                                         prot);
934 
935   if (mbase == NULL) {
936     LOG(ISOLATE, StringEvent("OS::Allocate", "VirtualAlloc failed"));
937     return NULL;
938   }
939 
940   ASSERT(IsAligned(reinterpret_cast<size_t>(mbase), OS::AllocateAlignment()));
941 
942   *allocated = msize;
943   UpdateAllocatedSpaceLimits(mbase, static_cast<int>(msize));
944   return mbase;
945 }
946 
947 
Free(void * address,const size_t size)948 void OS::Free(void* address, const size_t size) {
949   // TODO(1240712): VirtualFree has a return value which is ignored here.
950   VirtualFree(address, 0, MEM_RELEASE);
951   USE(size);
952 }
953 
954 
CommitPageSize()955 intptr_t OS::CommitPageSize() {
956   return 4096;
957 }
958 
959 
ProtectCode(void * address,const size_t size)960 void OS::ProtectCode(void* address, const size_t size) {
961   DWORD old_protect;
962   VirtualProtect(address, size, PAGE_EXECUTE_READ, &old_protect);
963 }
964 
965 
Guard(void * address,const size_t size)966 void OS::Guard(void* address, const size_t size) {
967   DWORD oldprotect;
968   VirtualProtect(address, size, PAGE_READONLY | PAGE_GUARD, &oldprotect);
969 }
970 
971 
Sleep(int milliseconds)972 void OS::Sleep(int milliseconds) {
973   ::Sleep(milliseconds);
974 }
975 
976 
Abort()977 void OS::Abort() {
978   if (IsDebuggerPresent() || FLAG_break_on_abort) {
979     DebugBreak();
980   } else {
981     // Make the MSVCRT do a silent abort.
982     raise(SIGABRT);
983   }
984 }
985 
986 
DebugBreak()987 void OS::DebugBreak() {
988 #ifdef _MSC_VER
989   __debugbreak();
990 #else
991   ::DebugBreak();
992 #endif
993 }
994 
995 
996 class Win32MemoryMappedFile : public OS::MemoryMappedFile {
997  public:
Win32MemoryMappedFile(HANDLE file,HANDLE file_mapping,void * memory,int size)998   Win32MemoryMappedFile(HANDLE file,
999                         HANDLE file_mapping,
1000                         void* memory,
1001                         int size)
1002       : file_(file),
1003         file_mapping_(file_mapping),
1004         memory_(memory),
1005         size_(size) { }
1006   virtual ~Win32MemoryMappedFile();
memory()1007   virtual void* memory() { return memory_; }
size()1008   virtual int size() { return size_; }
1009  private:
1010   HANDLE file_;
1011   HANDLE file_mapping_;
1012   void* memory_;
1013   int size_;
1014 };
1015 
1016 
open(const char * name)1017 OS::MemoryMappedFile* OS::MemoryMappedFile::open(const char* name) {
1018   // Open a physical file
1019   HANDLE file = CreateFileA(name, GENERIC_READ | GENERIC_WRITE,
1020       FILE_SHARE_READ | FILE_SHARE_WRITE, NULL, OPEN_EXISTING, 0, NULL);
1021   if (file == INVALID_HANDLE_VALUE) return NULL;
1022 
1023   int size = static_cast<int>(GetFileSize(file, NULL));
1024 
1025   // Create a file mapping for the physical file
1026   HANDLE file_mapping = CreateFileMapping(file, NULL,
1027       PAGE_READWRITE, 0, static_cast<DWORD>(size), NULL);
1028   if (file_mapping == NULL) return NULL;
1029 
1030   // Map a view of the file into memory
1031   void* memory = MapViewOfFile(file_mapping, FILE_MAP_ALL_ACCESS, 0, 0, size);
1032   return new Win32MemoryMappedFile(file, file_mapping, memory, size);
1033 }
1034 
1035 
create(const char * name,int size,void * initial)1036 OS::MemoryMappedFile* OS::MemoryMappedFile::create(const char* name, int size,
1037     void* initial) {
1038   // Open a physical file
1039   HANDLE file = CreateFileA(name, GENERIC_READ | GENERIC_WRITE,
1040       FILE_SHARE_READ | FILE_SHARE_WRITE, NULL, OPEN_ALWAYS, 0, NULL);
1041   if (file == NULL) return NULL;
1042   // Create a file mapping for the physical file
1043   HANDLE file_mapping = CreateFileMapping(file, NULL,
1044       PAGE_READWRITE, 0, static_cast<DWORD>(size), NULL);
1045   if (file_mapping == NULL) return NULL;
1046   // Map a view of the file into memory
1047   void* memory = MapViewOfFile(file_mapping, FILE_MAP_ALL_ACCESS, 0, 0, size);
1048   if (memory) memmove(memory, initial, size);
1049   return new Win32MemoryMappedFile(file, file_mapping, memory, size);
1050 }
1051 
1052 
~Win32MemoryMappedFile()1053 Win32MemoryMappedFile::~Win32MemoryMappedFile() {
1054   if (memory_ != NULL)
1055     UnmapViewOfFile(memory_);
1056   CloseHandle(file_mapping_);
1057   CloseHandle(file_);
1058 }
1059 
1060 
1061 // The following code loads functions defined in DbhHelp.h and TlHelp32.h
1062 // dynamically. This is to avoid being depending on dbghelp.dll and
1063 // tlhelp32.dll when running (the functions in tlhelp32.dll have been moved to
1064 // kernel32.dll at some point so loading functions defines in TlHelp32.h
1065 // dynamically might not be necessary any more - for some versions of Windows?).
1066 
1067 // Function pointers to functions dynamically loaded from dbghelp.dll.
1068 #define DBGHELP_FUNCTION_LIST(V)  \
1069   V(SymInitialize)                \
1070   V(SymGetOptions)                \
1071   V(SymSetOptions)                \
1072   V(SymGetSearchPath)             \
1073   V(SymLoadModule64)              \
1074   V(StackWalk64)                  \
1075   V(SymGetSymFromAddr64)          \
1076   V(SymGetLineFromAddr64)         \
1077   V(SymFunctionTableAccess64)     \
1078   V(SymGetModuleBase64)
1079 
1080 // Function pointers to functions dynamically loaded from dbghelp.dll.
1081 #define TLHELP32_FUNCTION_LIST(V)  \
1082   V(CreateToolhelp32Snapshot)      \
1083   V(Module32FirstW)                \
1084   V(Module32NextW)
1085 
1086 // Define the decoration to use for the type and variable name used for
1087 // dynamically loaded DLL function..
1088 #define DLL_FUNC_TYPE(name) _##name##_
1089 #define DLL_FUNC_VAR(name) _##name
1090 
1091 // Define the type for each dynamically loaded DLL function. The function
1092 // definitions are copied from DbgHelp.h and TlHelp32.h. The IN and VOID macros
1093 // from the Windows include files are redefined here to have the function
1094 // definitions to be as close to the ones in the original .h files as possible.
1095 #ifndef IN
1096 #define IN
1097 #endif
1098 #ifndef VOID
1099 #define VOID void
1100 #endif
1101 
1102 // DbgHelp isn't supported on MinGW yet
1103 #ifndef __MINGW32__
1104 // DbgHelp.h functions.
1105 typedef BOOL (__stdcall *DLL_FUNC_TYPE(SymInitialize))(IN HANDLE hProcess,
1106                                                        IN PSTR UserSearchPath,
1107                                                        IN BOOL fInvadeProcess);
1108 typedef DWORD (__stdcall *DLL_FUNC_TYPE(SymGetOptions))(VOID);
1109 typedef DWORD (__stdcall *DLL_FUNC_TYPE(SymSetOptions))(IN DWORD SymOptions);
1110 typedef BOOL (__stdcall *DLL_FUNC_TYPE(SymGetSearchPath))(
1111     IN HANDLE hProcess,
1112     OUT PSTR SearchPath,
1113     IN DWORD SearchPathLength);
1114 typedef DWORD64 (__stdcall *DLL_FUNC_TYPE(SymLoadModule64))(
1115     IN HANDLE hProcess,
1116     IN HANDLE hFile,
1117     IN PSTR ImageName,
1118     IN PSTR ModuleName,
1119     IN DWORD64 BaseOfDll,
1120     IN DWORD SizeOfDll);
1121 typedef BOOL (__stdcall *DLL_FUNC_TYPE(StackWalk64))(
1122     DWORD MachineType,
1123     HANDLE hProcess,
1124     HANDLE hThread,
1125     LPSTACKFRAME64 StackFrame,
1126     PVOID ContextRecord,
1127     PREAD_PROCESS_MEMORY_ROUTINE64 ReadMemoryRoutine,
1128     PFUNCTION_TABLE_ACCESS_ROUTINE64 FunctionTableAccessRoutine,
1129     PGET_MODULE_BASE_ROUTINE64 GetModuleBaseRoutine,
1130     PTRANSLATE_ADDRESS_ROUTINE64 TranslateAddress);
1131 typedef BOOL (__stdcall *DLL_FUNC_TYPE(SymGetSymFromAddr64))(
1132     IN HANDLE hProcess,
1133     IN DWORD64 qwAddr,
1134     OUT PDWORD64 pdwDisplacement,
1135     OUT PIMAGEHLP_SYMBOL64 Symbol);
1136 typedef BOOL (__stdcall *DLL_FUNC_TYPE(SymGetLineFromAddr64))(
1137     IN HANDLE hProcess,
1138     IN DWORD64 qwAddr,
1139     OUT PDWORD pdwDisplacement,
1140     OUT PIMAGEHLP_LINE64 Line64);
1141 // DbgHelp.h typedefs. Implementation found in dbghelp.dll.
1142 typedef PVOID (__stdcall *DLL_FUNC_TYPE(SymFunctionTableAccess64))(
1143     HANDLE hProcess,
1144     DWORD64 AddrBase);  // DbgHelp.h typedef PFUNCTION_TABLE_ACCESS_ROUTINE64
1145 typedef DWORD64 (__stdcall *DLL_FUNC_TYPE(SymGetModuleBase64))(
1146     HANDLE hProcess,
1147     DWORD64 AddrBase);  // DbgHelp.h typedef PGET_MODULE_BASE_ROUTINE64
1148 
1149 // TlHelp32.h functions.
1150 typedef HANDLE (__stdcall *DLL_FUNC_TYPE(CreateToolhelp32Snapshot))(
1151     DWORD dwFlags,
1152     DWORD th32ProcessID);
1153 typedef BOOL (__stdcall *DLL_FUNC_TYPE(Module32FirstW))(HANDLE hSnapshot,
1154                                                         LPMODULEENTRY32W lpme);
1155 typedef BOOL (__stdcall *DLL_FUNC_TYPE(Module32NextW))(HANDLE hSnapshot,
1156                                                        LPMODULEENTRY32W lpme);
1157 
1158 #undef IN
1159 #undef VOID
1160 
1161 // Declare a variable for each dynamically loaded DLL function.
1162 #define DEF_DLL_FUNCTION(name) DLL_FUNC_TYPE(name) DLL_FUNC_VAR(name) = NULL;
1163 DBGHELP_FUNCTION_LIST(DEF_DLL_FUNCTION)
TLHELP32_FUNCTION_LIST(DEF_DLL_FUNCTION)1164 TLHELP32_FUNCTION_LIST(DEF_DLL_FUNCTION)
1165 #undef DEF_DLL_FUNCTION
1166 
1167 // Load the functions. This function has a lot of "ugly" macros in order to
1168 // keep down code duplication.
1169 
1170 static bool LoadDbgHelpAndTlHelp32() {
1171   static bool dbghelp_loaded = false;
1172 
1173   if (dbghelp_loaded) return true;
1174 
1175   HMODULE module;
1176 
1177   // Load functions from the dbghelp.dll module.
1178   module = LoadLibrary(TEXT("dbghelp.dll"));
1179   if (module == NULL) {
1180     return false;
1181   }
1182 
1183 #define LOAD_DLL_FUNC(name)                                                 \
1184   DLL_FUNC_VAR(name) =                                                      \
1185       reinterpret_cast<DLL_FUNC_TYPE(name)>(GetProcAddress(module, #name));
1186 
1187 DBGHELP_FUNCTION_LIST(LOAD_DLL_FUNC)
1188 
1189 #undef LOAD_DLL_FUNC
1190 
1191   // Load functions from the kernel32.dll module (the TlHelp32.h function used
1192   // to be in tlhelp32.dll but are now moved to kernel32.dll).
1193   module = LoadLibrary(TEXT("kernel32.dll"));
1194   if (module == NULL) {
1195     return false;
1196   }
1197 
1198 #define LOAD_DLL_FUNC(name)                                                 \
1199   DLL_FUNC_VAR(name) =                                                      \
1200       reinterpret_cast<DLL_FUNC_TYPE(name)>(GetProcAddress(module, #name));
1201 
1202 TLHELP32_FUNCTION_LIST(LOAD_DLL_FUNC)
1203 
1204 #undef LOAD_DLL_FUNC
1205 
1206   // Check that all functions where loaded.
1207   bool result =
1208 #define DLL_FUNC_LOADED(name) (DLL_FUNC_VAR(name) != NULL) &&
1209 
1210 DBGHELP_FUNCTION_LIST(DLL_FUNC_LOADED)
1211 TLHELP32_FUNCTION_LIST(DLL_FUNC_LOADED)
1212 
1213 #undef DLL_FUNC_LOADED
1214   true;
1215 
1216   dbghelp_loaded = result;
1217   return result;
1218   // NOTE: The modules are never unloaded and will stay around until the
1219   // application is closed.
1220 }
1221 
1222 
1223 // Load the symbols for generating stack traces.
LoadSymbols(HANDLE process_handle)1224 static bool LoadSymbols(HANDLE process_handle) {
1225   static bool symbols_loaded = false;
1226 
1227   if (symbols_loaded) return true;
1228 
1229   BOOL ok;
1230 
1231   // Initialize the symbol engine.
1232   ok = _SymInitialize(process_handle,  // hProcess
1233                       NULL,            // UserSearchPath
1234                       false);          // fInvadeProcess
1235   if (!ok) return false;
1236 
1237   DWORD options = _SymGetOptions();
1238   options |= SYMOPT_LOAD_LINES;
1239   options |= SYMOPT_FAIL_CRITICAL_ERRORS;
1240   options = _SymSetOptions(options);
1241 
1242   char buf[OS::kStackWalkMaxNameLen] = {0};
1243   ok = _SymGetSearchPath(process_handle, buf, OS::kStackWalkMaxNameLen);
1244   if (!ok) {
1245     int err = GetLastError();
1246     PrintF("%d\n", err);
1247     return false;
1248   }
1249 
1250   HANDLE snapshot = _CreateToolhelp32Snapshot(
1251       TH32CS_SNAPMODULE,       // dwFlags
1252       GetCurrentProcessId());  // th32ProcessId
1253   if (snapshot == INVALID_HANDLE_VALUE) return false;
1254   MODULEENTRY32W module_entry;
1255   module_entry.dwSize = sizeof(module_entry);  // Set the size of the structure.
1256   BOOL cont = _Module32FirstW(snapshot, &module_entry);
1257   while (cont) {
1258     DWORD64 base;
1259     // NOTE the SymLoadModule64 function has the peculiarity of accepting a
1260     // both unicode and ASCII strings even though the parameter is PSTR.
1261     base = _SymLoadModule64(
1262         process_handle,                                       // hProcess
1263         0,                                                    // hFile
1264         reinterpret_cast<PSTR>(module_entry.szExePath),       // ImageName
1265         reinterpret_cast<PSTR>(module_entry.szModule),        // ModuleName
1266         reinterpret_cast<DWORD64>(module_entry.modBaseAddr),  // BaseOfDll
1267         module_entry.modBaseSize);                            // SizeOfDll
1268     if (base == 0) {
1269       int err = GetLastError();
1270       if (err != ERROR_MOD_NOT_FOUND &&
1271           err != ERROR_INVALID_HANDLE) return false;
1272     }
1273     LOG(i::Isolate::Current(),
1274         SharedLibraryEvent(
1275             module_entry.szExePath,
1276             reinterpret_cast<unsigned int>(module_entry.modBaseAddr),
1277             reinterpret_cast<unsigned int>(module_entry.modBaseAddr +
1278                                            module_entry.modBaseSize)));
1279     cont = _Module32NextW(snapshot, &module_entry);
1280   }
1281   CloseHandle(snapshot);
1282 
1283   symbols_loaded = true;
1284   return true;
1285 }
1286 
1287 
LogSharedLibraryAddresses()1288 void OS::LogSharedLibraryAddresses() {
1289   // SharedLibraryEvents are logged when loading symbol information.
1290   // Only the shared libraries loaded at the time of the call to
1291   // LogSharedLibraryAddresses are logged.  DLLs loaded after
1292   // initialization are not accounted for.
1293   if (!LoadDbgHelpAndTlHelp32()) return;
1294   HANDLE process_handle = GetCurrentProcess();
1295   LoadSymbols(process_handle);
1296 }
1297 
1298 
SignalCodeMovingGC()1299 void OS::SignalCodeMovingGC() {
1300 }
1301 
1302 
1303 // Walk the stack using the facilities in dbghelp.dll and tlhelp32.dll
1304 
1305 // Switch off warning 4748 (/GS can not protect parameters and local variables
1306 // from local buffer overrun because optimizations are disabled in function) as
1307 // it is triggered by the use of inline assembler.
1308 #pragma warning(push)
1309 #pragma warning(disable : 4748)
StackWalk(Vector<OS::StackFrame> frames)1310 int OS::StackWalk(Vector<OS::StackFrame> frames) {
1311   BOOL ok;
1312 
1313   // Load the required functions from DLL's.
1314   if (!LoadDbgHelpAndTlHelp32()) return kStackWalkError;
1315 
1316   // Get the process and thread handles.
1317   HANDLE process_handle = GetCurrentProcess();
1318   HANDLE thread_handle = GetCurrentThread();
1319 
1320   // Read the symbols.
1321   if (!LoadSymbols(process_handle)) return kStackWalkError;
1322 
1323   // Capture current context.
1324   CONTEXT context;
1325   RtlCaptureContext(&context);
1326 
1327   // Initialize the stack walking
1328   STACKFRAME64 stack_frame;
1329   memset(&stack_frame, 0, sizeof(stack_frame));
1330 #ifdef  _WIN64
1331   stack_frame.AddrPC.Offset = context.Rip;
1332   stack_frame.AddrFrame.Offset = context.Rbp;
1333   stack_frame.AddrStack.Offset = context.Rsp;
1334 #else
1335   stack_frame.AddrPC.Offset = context.Eip;
1336   stack_frame.AddrFrame.Offset = context.Ebp;
1337   stack_frame.AddrStack.Offset = context.Esp;
1338 #endif
1339   stack_frame.AddrPC.Mode = AddrModeFlat;
1340   stack_frame.AddrFrame.Mode = AddrModeFlat;
1341   stack_frame.AddrStack.Mode = AddrModeFlat;
1342   int frames_count = 0;
1343 
1344   // Collect stack frames.
1345   int frames_size = frames.length();
1346   while (frames_count < frames_size) {
1347     ok = _StackWalk64(
1348         IMAGE_FILE_MACHINE_I386,    // MachineType
1349         process_handle,             // hProcess
1350         thread_handle,              // hThread
1351         &stack_frame,               // StackFrame
1352         &context,                   // ContextRecord
1353         NULL,                       // ReadMemoryRoutine
1354         _SymFunctionTableAccess64,  // FunctionTableAccessRoutine
1355         _SymGetModuleBase64,        // GetModuleBaseRoutine
1356         NULL);                      // TranslateAddress
1357     if (!ok) break;
1358 
1359     // Store the address.
1360     ASSERT((stack_frame.AddrPC.Offset >> 32) == 0);  // 32-bit address.
1361     frames[frames_count].address =
1362         reinterpret_cast<void*>(stack_frame.AddrPC.Offset);
1363 
1364     // Try to locate a symbol for this frame.
1365     DWORD64 symbol_displacement;
1366     SmartArrayPointer<IMAGEHLP_SYMBOL64> symbol(
1367         NewArray<IMAGEHLP_SYMBOL64>(kStackWalkMaxNameLen));
1368     if (symbol.is_empty()) return kStackWalkError;  // Out of memory.
1369     memset(*symbol, 0, sizeof(IMAGEHLP_SYMBOL64) + kStackWalkMaxNameLen);
1370     (*symbol)->SizeOfStruct = sizeof(IMAGEHLP_SYMBOL64);
1371     (*symbol)->MaxNameLength = kStackWalkMaxNameLen;
1372     ok = _SymGetSymFromAddr64(process_handle,             // hProcess
1373                               stack_frame.AddrPC.Offset,  // Address
1374                               &symbol_displacement,       // Displacement
1375                               *symbol);                   // Symbol
1376     if (ok) {
1377       // Try to locate more source information for the symbol.
1378       IMAGEHLP_LINE64 Line;
1379       memset(&Line, 0, sizeof(Line));
1380       Line.SizeOfStruct = sizeof(Line);
1381       DWORD line_displacement;
1382       ok = _SymGetLineFromAddr64(
1383           process_handle,             // hProcess
1384           stack_frame.AddrPC.Offset,  // dwAddr
1385           &line_displacement,         // pdwDisplacement
1386           &Line);                     // Line
1387       // Format a text representation of the frame based on the information
1388       // available.
1389       if (ok) {
1390         SNPrintF(MutableCStrVector(frames[frames_count].text,
1391                                    kStackWalkMaxTextLen),
1392                  "%s %s:%d:%d",
1393                  (*symbol)->Name, Line.FileName, Line.LineNumber,
1394                  line_displacement);
1395       } else {
1396         SNPrintF(MutableCStrVector(frames[frames_count].text,
1397                                    kStackWalkMaxTextLen),
1398                  "%s",
1399                  (*symbol)->Name);
1400       }
1401       // Make sure line termination is in place.
1402       frames[frames_count].text[kStackWalkMaxTextLen - 1] = '\0';
1403     } else {
1404       // No text representation of this frame
1405       frames[frames_count].text[0] = '\0';
1406 
1407       // Continue if we are just missing a module (for non C/C++ frames a
1408       // module will never be found).
1409       int err = GetLastError();
1410       if (err != ERROR_MOD_NOT_FOUND) {
1411         break;
1412       }
1413     }
1414 
1415     frames_count++;
1416   }
1417 
1418   // Return the number of frames filled in.
1419   return frames_count;
1420 }
1421 
1422 // Restore warnings to previous settings.
1423 #pragma warning(pop)
1424 
1425 #else  // __MINGW32__
LogSharedLibraryAddresses()1426 void OS::LogSharedLibraryAddresses() { }
SignalCodeMovingGC()1427 void OS::SignalCodeMovingGC() { }
StackWalk(Vector<OS::StackFrame> frames)1428 int OS::StackWalk(Vector<OS::StackFrame> frames) { return 0; }
1429 #endif  // __MINGW32__
1430 
1431 
CpuFeaturesImpliedByPlatform()1432 uint64_t OS::CpuFeaturesImpliedByPlatform() {
1433   return 0;  // Windows runs on anything.
1434 }
1435 
1436 
nan_value()1437 double OS::nan_value() {
1438 #ifdef _MSC_VER
1439   // Positive Quiet NaN with no payload (aka. Indeterminate) has all bits
1440   // in mask set, so value equals mask.
1441   static const __int64 nanval = kQuietNaNMask;
1442   return *reinterpret_cast<const double*>(&nanval);
1443 #else  // _MSC_VER
1444   return NAN;
1445 #endif  // _MSC_VER
1446 }
1447 
1448 
ActivationFrameAlignment()1449 int OS::ActivationFrameAlignment() {
1450 #ifdef _WIN64
1451   return 16;  // Windows 64-bit ABI requires the stack to be 16-byte aligned.
1452 #else
1453   return 8;  // Floating-point math runs faster with 8-byte alignment.
1454 #endif
1455 }
1456 
1457 
ReleaseStore(volatile AtomicWord * ptr,AtomicWord value)1458 void OS::ReleaseStore(volatile AtomicWord* ptr, AtomicWord value) {
1459   MemoryBarrier();
1460   *ptr = value;
1461 }
1462 
1463 
VirtualMemory()1464 VirtualMemory::VirtualMemory() : address_(NULL), size_(0) { }
1465 
1466 
VirtualMemory(size_t size)1467 VirtualMemory::VirtualMemory(size_t size)
1468     : address_(ReserveRegion(size)), size_(size) { }
1469 
1470 
VirtualMemory(size_t size,size_t alignment)1471 VirtualMemory::VirtualMemory(size_t size, size_t alignment)
1472     : address_(NULL), size_(0) {
1473   ASSERT(IsAligned(alignment, static_cast<intptr_t>(OS::AllocateAlignment())));
1474   size_t request_size = RoundUp(size + alignment,
1475                                 static_cast<intptr_t>(OS::AllocateAlignment()));
1476   void* address = ReserveRegion(request_size);
1477   if (address == NULL) return;
1478   Address base = RoundUp(static_cast<Address>(address), alignment);
1479   // Try reducing the size by freeing and then reallocating a specific area.
1480   bool result = ReleaseRegion(address, request_size);
1481   USE(result);
1482   ASSERT(result);
1483   address = VirtualAlloc(base, size, MEM_RESERVE, PAGE_NOACCESS);
1484   if (address != NULL) {
1485     request_size = size;
1486     ASSERT(base == static_cast<Address>(address));
1487   } else {
1488     // Resizing failed, just go with a bigger area.
1489     address = ReserveRegion(request_size);
1490     if (address == NULL) return;
1491   }
1492   address_ = address;
1493   size_ = request_size;
1494 }
1495 
1496 
~VirtualMemory()1497 VirtualMemory::~VirtualMemory() {
1498   if (IsReserved()) {
1499     bool result = ReleaseRegion(address_, size_);
1500     ASSERT(result);
1501     USE(result);
1502   }
1503 }
1504 
1505 
IsReserved()1506 bool VirtualMemory::IsReserved() {
1507   return address_ != NULL;
1508 }
1509 
1510 
Reset()1511 void VirtualMemory::Reset() {
1512   address_ = NULL;
1513   size_ = 0;
1514 }
1515 
1516 
Commit(void * address,size_t size,bool is_executable)1517 bool VirtualMemory::Commit(void* address, size_t size, bool is_executable) {
1518   if (CommitRegion(address, size, is_executable)) {
1519     UpdateAllocatedSpaceLimits(address, static_cast<int>(size));
1520     return true;
1521   }
1522   return false;
1523 }
1524 
1525 
Uncommit(void * address,size_t size)1526 bool VirtualMemory::Uncommit(void* address, size_t size) {
1527   ASSERT(IsReserved());
1528   return UncommitRegion(address, size);
1529 }
1530 
1531 
ReserveRegion(size_t size)1532 void* VirtualMemory::ReserveRegion(size_t size) {
1533   return RandomizedVirtualAlloc(size, MEM_RESERVE, PAGE_NOACCESS);
1534 }
1535 
1536 
CommitRegion(void * base,size_t size,bool is_executable)1537 bool VirtualMemory::CommitRegion(void* base, size_t size, bool is_executable) {
1538   int prot = is_executable ? PAGE_EXECUTE_READWRITE : PAGE_READWRITE;
1539   if (NULL == VirtualAlloc(base, size, MEM_COMMIT, prot)) {
1540     return false;
1541   }
1542 
1543   UpdateAllocatedSpaceLimits(base, static_cast<int>(size));
1544   return true;
1545 }
1546 
1547 
Guard(void * address)1548 bool VirtualMemory::Guard(void* address) {
1549   if (NULL == VirtualAlloc(address,
1550                            OS::CommitPageSize(),
1551                            MEM_COMMIT,
1552                            PAGE_READONLY | PAGE_GUARD)) {
1553     return false;
1554   }
1555   return true;
1556 }
1557 
1558 
UncommitRegion(void * base,size_t size)1559 bool VirtualMemory::UncommitRegion(void* base, size_t size) {
1560   return VirtualFree(base, size, MEM_DECOMMIT) != 0;
1561 }
1562 
1563 
ReleaseRegion(void * base,size_t size)1564 bool VirtualMemory::ReleaseRegion(void* base, size_t size) {
1565   return VirtualFree(base, 0, MEM_RELEASE) != 0;
1566 }
1567 
1568 
1569 // ----------------------------------------------------------------------------
1570 // Win32 thread support.
1571 
1572 // Definition of invalid thread handle and id.
1573 static const HANDLE kNoThread = INVALID_HANDLE_VALUE;
1574 
1575 // Entry point for threads. The supplied argument is a pointer to the thread
1576 // object. The entry function dispatches to the run method in the thread
1577 // object. It is important that this function has __stdcall calling
1578 // convention.
ThreadEntry(void * arg)1579 static unsigned int __stdcall ThreadEntry(void* arg) {
1580   Thread* thread = reinterpret_cast<Thread*>(arg);
1581   thread->Run();
1582   return 0;
1583 }
1584 
1585 
1586 class Thread::PlatformData : public Malloced {
1587  public:
PlatformData(HANDLE thread)1588   explicit PlatformData(HANDLE thread) : thread_(thread) {}
1589   HANDLE thread_;
1590   unsigned thread_id_;
1591 };
1592 
1593 
1594 // Initialize a Win32 thread object. The thread has an invalid thread
1595 // handle until it is started.
1596 
Thread(const Options & options)1597 Thread::Thread(const Options& options)
1598     : stack_size_(options.stack_size()) {
1599   data_ = new PlatformData(kNoThread);
1600   set_name(options.name());
1601 }
1602 
1603 
set_name(const char * name)1604 void Thread::set_name(const char* name) {
1605   OS::StrNCpy(Vector<char>(name_, sizeof(name_)), name, strlen(name));
1606   name_[sizeof(name_) - 1] = '\0';
1607 }
1608 
1609 
1610 // Close our own handle for the thread.
~Thread()1611 Thread::~Thread() {
1612   if (data_->thread_ != kNoThread) CloseHandle(data_->thread_);
1613   delete data_;
1614 }
1615 
1616 
1617 // Create a new thread. It is important to use _beginthreadex() instead of
1618 // the Win32 function CreateThread(), because the CreateThread() does not
1619 // initialize thread specific structures in the C runtime library.
Start()1620 void Thread::Start() {
1621   data_->thread_ = reinterpret_cast<HANDLE>(
1622       _beginthreadex(NULL,
1623                      static_cast<unsigned>(stack_size_),
1624                      ThreadEntry,
1625                      this,
1626                      0,
1627                      &data_->thread_id_));
1628 }
1629 
1630 
1631 // Wait for thread to terminate.
Join()1632 void Thread::Join() {
1633   if (data_->thread_id_ != GetCurrentThreadId()) {
1634     WaitForSingleObject(data_->thread_, INFINITE);
1635   }
1636 }
1637 
1638 
CreateThreadLocalKey()1639 Thread::LocalStorageKey Thread::CreateThreadLocalKey() {
1640   DWORD result = TlsAlloc();
1641   ASSERT(result != TLS_OUT_OF_INDEXES);
1642   return static_cast<LocalStorageKey>(result);
1643 }
1644 
1645 
DeleteThreadLocalKey(LocalStorageKey key)1646 void Thread::DeleteThreadLocalKey(LocalStorageKey key) {
1647   BOOL result = TlsFree(static_cast<DWORD>(key));
1648   USE(result);
1649   ASSERT(result);
1650 }
1651 
1652 
GetThreadLocal(LocalStorageKey key)1653 void* Thread::GetThreadLocal(LocalStorageKey key) {
1654   return TlsGetValue(static_cast<DWORD>(key));
1655 }
1656 
1657 
SetThreadLocal(LocalStorageKey key,void * value)1658 void Thread::SetThreadLocal(LocalStorageKey key, void* value) {
1659   BOOL result = TlsSetValue(static_cast<DWORD>(key), value);
1660   USE(result);
1661   ASSERT(result);
1662 }
1663 
1664 
1665 
YieldCPU()1666 void Thread::YieldCPU() {
1667   Sleep(0);
1668 }
1669 
1670 
1671 // ----------------------------------------------------------------------------
1672 // Win32 mutex support.
1673 //
1674 // On Win32 mutexes are implemented using CRITICAL_SECTION objects. These are
1675 // faster than Win32 Mutex objects because they are implemented using user mode
1676 // atomic instructions. Therefore we only do ring transitions if there is lock
1677 // contention.
1678 
1679 class Win32Mutex : public Mutex {
1680  public:
Win32Mutex()1681   Win32Mutex() { InitializeCriticalSection(&cs_); }
1682 
~Win32Mutex()1683   virtual ~Win32Mutex() { DeleteCriticalSection(&cs_); }
1684 
Lock()1685   virtual int Lock() {
1686     EnterCriticalSection(&cs_);
1687     return 0;
1688   }
1689 
Unlock()1690   virtual int Unlock() {
1691     LeaveCriticalSection(&cs_);
1692     return 0;
1693   }
1694 
1695 
TryLock()1696   virtual bool TryLock() {
1697     // Returns non-zero if critical section is entered successfully entered.
1698     return TryEnterCriticalSection(&cs_);
1699   }
1700 
1701  private:
1702   CRITICAL_SECTION cs_;  // Critical section used for mutex
1703 };
1704 
1705 
CreateMutex()1706 Mutex* OS::CreateMutex() {
1707   return new Win32Mutex();
1708 }
1709 
1710 
1711 // ----------------------------------------------------------------------------
1712 // Win32 semaphore support.
1713 //
1714 // On Win32 semaphores are implemented using Win32 Semaphore objects. The
1715 // semaphores are anonymous. Also, the semaphores are initialized to have
1716 // no upper limit on count.
1717 
1718 
1719 class Win32Semaphore : public Semaphore {
1720  public:
Win32Semaphore(int count)1721   explicit Win32Semaphore(int count) {
1722     sem = ::CreateSemaphoreA(NULL, count, 0x7fffffff, NULL);
1723   }
1724 
~Win32Semaphore()1725   ~Win32Semaphore() {
1726     CloseHandle(sem);
1727   }
1728 
Wait()1729   void Wait() {
1730     WaitForSingleObject(sem, INFINITE);
1731   }
1732 
Wait(int timeout)1733   bool Wait(int timeout) {
1734     // Timeout in Windows API is in milliseconds.
1735     DWORD millis_timeout = timeout / 1000;
1736     return WaitForSingleObject(sem, millis_timeout) != WAIT_TIMEOUT;
1737   }
1738 
Signal()1739   void Signal() {
1740     LONG dummy;
1741     ReleaseSemaphore(sem, 1, &dummy);
1742   }
1743 
1744  private:
1745   HANDLE sem;
1746 };
1747 
1748 
CreateSemaphore(int count)1749 Semaphore* OS::CreateSemaphore(int count) {
1750   return new Win32Semaphore(count);
1751 }
1752 
1753 
1754 // ----------------------------------------------------------------------------
1755 // Win32 socket support.
1756 //
1757 
1758 class Win32Socket : public Socket {
1759  public:
Win32Socket()1760   explicit Win32Socket() {
1761     // Create the socket.
1762     socket_ = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP);
1763   }
Win32Socket(SOCKET socket)1764   explicit Win32Socket(SOCKET socket): socket_(socket) { }
~Win32Socket()1765   virtual ~Win32Socket() { Shutdown(); }
1766 
1767   // Server initialization.
1768   bool Bind(const int port);
1769   bool Listen(int backlog) const;
1770   Socket* Accept() const;
1771 
1772   // Client initialization.
1773   bool Connect(const char* host, const char* port);
1774 
1775   // Shutdown socket for both read and write.
1776   bool Shutdown();
1777 
1778   // Data Transimission
1779   int Send(const char* data, int len) const;
1780   int Receive(char* data, int len) const;
1781 
1782   bool SetReuseAddress(bool reuse_address);
1783 
IsValid() const1784   bool IsValid() const { return socket_ != INVALID_SOCKET; }
1785 
1786  private:
1787   SOCKET socket_;
1788 };
1789 
1790 
Bind(const int port)1791 bool Win32Socket::Bind(const int port) {
1792   if (!IsValid())  {
1793     return false;
1794   }
1795 
1796   sockaddr_in addr;
1797   memset(&addr, 0, sizeof(addr));
1798   addr.sin_family = AF_INET;
1799   addr.sin_addr.s_addr = htonl(INADDR_LOOPBACK);
1800   addr.sin_port = htons(port);
1801   int status = bind(socket_,
1802                     reinterpret_cast<struct sockaddr *>(&addr),
1803                     sizeof(addr));
1804   return status == 0;
1805 }
1806 
1807 
Listen(int backlog) const1808 bool Win32Socket::Listen(int backlog) const {
1809   if (!IsValid()) {
1810     return false;
1811   }
1812 
1813   int status = listen(socket_, backlog);
1814   return status == 0;
1815 }
1816 
1817 
Accept() const1818 Socket* Win32Socket::Accept() const {
1819   if (!IsValid()) {
1820     return NULL;
1821   }
1822 
1823   SOCKET socket = accept(socket_, NULL, NULL);
1824   if (socket == INVALID_SOCKET) {
1825     return NULL;
1826   } else {
1827     return new Win32Socket(socket);
1828   }
1829 }
1830 
1831 
Connect(const char * host,const char * port)1832 bool Win32Socket::Connect(const char* host, const char* port) {
1833   if (!IsValid()) {
1834     return false;
1835   }
1836 
1837   // Lookup host and port.
1838   struct addrinfo *result = NULL;
1839   struct addrinfo hints;
1840   memset(&hints, 0, sizeof(addrinfo));
1841   hints.ai_family = AF_INET;
1842   hints.ai_socktype = SOCK_STREAM;
1843   hints.ai_protocol = IPPROTO_TCP;
1844   int status = getaddrinfo(host, port, &hints, &result);
1845   if (status != 0) {
1846     return false;
1847   }
1848 
1849   // Connect.
1850   status = connect(socket_,
1851                    result->ai_addr,
1852                    static_cast<int>(result->ai_addrlen));
1853   freeaddrinfo(result);
1854   return status == 0;
1855 }
1856 
1857 
Shutdown()1858 bool Win32Socket::Shutdown() {
1859   if (IsValid()) {
1860     // Shutdown socket for both read and write.
1861     int status = shutdown(socket_, SD_BOTH);
1862     closesocket(socket_);
1863     socket_ = INVALID_SOCKET;
1864     return status == SOCKET_ERROR;
1865   }
1866   return true;
1867 }
1868 
1869 
Send(const char * data,int len) const1870 int Win32Socket::Send(const char* data, int len) const {
1871   int status = send(socket_, data, len, 0);
1872   return status;
1873 }
1874 
1875 
Receive(char * data,int len) const1876 int Win32Socket::Receive(char* data, int len) const {
1877   int status = recv(socket_, data, len, 0);
1878   return status;
1879 }
1880 
1881 
SetReuseAddress(bool reuse_address)1882 bool Win32Socket::SetReuseAddress(bool reuse_address) {
1883   BOOL on = reuse_address ? true : false;
1884   int status = setsockopt(socket_, SOL_SOCKET, SO_REUSEADDR,
1885                           reinterpret_cast<char*>(&on), sizeof(on));
1886   return status == SOCKET_ERROR;
1887 }
1888 
1889 
SetUp()1890 bool Socket::SetUp() {
1891   // Initialize Winsock32
1892   int err;
1893   WSADATA winsock_data;
1894   WORD version_requested = MAKEWORD(1, 0);
1895   err = WSAStartup(version_requested, &winsock_data);
1896   if (err != 0) {
1897     PrintF("Unable to initialize Winsock, err = %d\n", Socket::LastError());
1898   }
1899 
1900   return err == 0;
1901 }
1902 
1903 
LastError()1904 int Socket::LastError() {
1905   return WSAGetLastError();
1906 }
1907 
1908 
HToN(uint16_t value)1909 uint16_t Socket::HToN(uint16_t value) {
1910   return htons(value);
1911 }
1912 
1913 
NToH(uint16_t value)1914 uint16_t Socket::NToH(uint16_t value) {
1915   return ntohs(value);
1916 }
1917 
1918 
HToN(uint32_t value)1919 uint32_t Socket::HToN(uint32_t value) {
1920   return htonl(value);
1921 }
1922 
1923 
NToH(uint32_t value)1924 uint32_t Socket::NToH(uint32_t value) {
1925   return ntohl(value);
1926 }
1927 
1928 
CreateSocket()1929 Socket* OS::CreateSocket() {
1930   return new Win32Socket();
1931 }
1932 
1933 
1934 // ----------------------------------------------------------------------------
1935 // Win32 profiler support.
1936 
1937 class Sampler::PlatformData : public Malloced {
1938  public:
1939   // Get a handle to the calling thread. This is the thread that we are
1940   // going to profile. We need to make a copy of the handle because we are
1941   // going to use it in the sampler thread. Using GetThreadHandle() will
1942   // not work in this case. We're using OpenThread because DuplicateHandle
1943   // for some reason doesn't work in Chrome's sandbox.
PlatformData()1944   PlatformData() : profiled_thread_(OpenThread(THREAD_GET_CONTEXT |
1945                                                THREAD_SUSPEND_RESUME |
1946                                                THREAD_QUERY_INFORMATION,
1947                                                false,
1948                                                GetCurrentThreadId())) {}
1949 
~PlatformData()1950   ~PlatformData() {
1951     if (profiled_thread_ != NULL) {
1952       CloseHandle(profiled_thread_);
1953       profiled_thread_ = NULL;
1954     }
1955   }
1956 
profiled_thread()1957   HANDLE profiled_thread() { return profiled_thread_; }
1958 
1959  private:
1960   HANDLE profiled_thread_;
1961 };
1962 
1963 
1964 class SamplerThread : public Thread {
1965  public:
1966   static const int kSamplerThreadStackSize = 64 * KB;
1967 
SamplerThread(int interval)1968   explicit SamplerThread(int interval)
1969       : Thread(Thread::Options("SamplerThread", kSamplerThreadStackSize)),
1970         interval_(interval) {}
1971 
AddActiveSampler(Sampler * sampler)1972   static void AddActiveSampler(Sampler* sampler) {
1973     ScopedLock lock(mutex_.Pointer());
1974     SamplerRegistry::AddActiveSampler(sampler);
1975     if (instance_ == NULL) {
1976       instance_ = new SamplerThread(sampler->interval());
1977       instance_->Start();
1978     } else {
1979       ASSERT(instance_->interval_ == sampler->interval());
1980     }
1981   }
1982 
RemoveActiveSampler(Sampler * sampler)1983   static void RemoveActiveSampler(Sampler* sampler) {
1984     ScopedLock lock(mutex_.Pointer());
1985     SamplerRegistry::RemoveActiveSampler(sampler);
1986     if (SamplerRegistry::GetState() == SamplerRegistry::HAS_NO_SAMPLERS) {
1987       RuntimeProfiler::StopRuntimeProfilerThreadBeforeShutdown(instance_);
1988       delete instance_;
1989       instance_ = NULL;
1990     }
1991   }
1992 
1993   // Implement Thread::Run().
Run()1994   virtual void Run() {
1995     SamplerRegistry::State state;
1996     while ((state = SamplerRegistry::GetState()) !=
1997            SamplerRegistry::HAS_NO_SAMPLERS) {
1998       bool cpu_profiling_enabled =
1999           (state == SamplerRegistry::HAS_CPU_PROFILING_SAMPLERS);
2000       bool runtime_profiler_enabled = RuntimeProfiler::IsEnabled();
2001       // When CPU profiling is enabled both JavaScript and C++ code is
2002       // profiled. We must not suspend.
2003       if (!cpu_profiling_enabled) {
2004         if (rate_limiter_.SuspendIfNecessary()) continue;
2005       }
2006       if (cpu_profiling_enabled) {
2007         if (!SamplerRegistry::IterateActiveSamplers(&DoCpuProfile, this)) {
2008           return;
2009         }
2010       }
2011       if (runtime_profiler_enabled) {
2012         if (!SamplerRegistry::IterateActiveSamplers(&DoRuntimeProfile, NULL)) {
2013           return;
2014         }
2015       }
2016       OS::Sleep(interval_);
2017     }
2018   }
2019 
DoCpuProfile(Sampler * sampler,void * raw_sampler_thread)2020   static void DoCpuProfile(Sampler* sampler, void* raw_sampler_thread) {
2021     if (!sampler->isolate()->IsInitialized()) return;
2022     if (!sampler->IsProfiling()) return;
2023     SamplerThread* sampler_thread =
2024         reinterpret_cast<SamplerThread*>(raw_sampler_thread);
2025     sampler_thread->SampleContext(sampler);
2026   }
2027 
DoRuntimeProfile(Sampler * sampler,void * ignored)2028   static void DoRuntimeProfile(Sampler* sampler, void* ignored) {
2029     if (!sampler->isolate()->IsInitialized()) return;
2030     sampler->isolate()->runtime_profiler()->NotifyTick();
2031   }
2032 
SampleContext(Sampler * sampler)2033   void SampleContext(Sampler* sampler) {
2034     HANDLE profiled_thread = sampler->platform_data()->profiled_thread();
2035     if (profiled_thread == NULL) return;
2036 
2037     // Context used for sampling the register state of the profiled thread.
2038     CONTEXT context;
2039     memset(&context, 0, sizeof(context));
2040 
2041     TickSample sample_obj;
2042     TickSample* sample = CpuProfiler::TickSampleEvent(sampler->isolate());
2043     if (sample == NULL) sample = &sample_obj;
2044 
2045     static const DWORD kSuspendFailed = static_cast<DWORD>(-1);
2046     if (SuspendThread(profiled_thread) == kSuspendFailed) return;
2047     sample->state = sampler->isolate()->current_vm_state();
2048 
2049     context.ContextFlags = CONTEXT_FULL;
2050     if (GetThreadContext(profiled_thread, &context) != 0) {
2051 #if V8_HOST_ARCH_X64
2052       sample->pc = reinterpret_cast<Address>(context.Rip);
2053       sample->sp = reinterpret_cast<Address>(context.Rsp);
2054       sample->fp = reinterpret_cast<Address>(context.Rbp);
2055 #else
2056       sample->pc = reinterpret_cast<Address>(context.Eip);
2057       sample->sp = reinterpret_cast<Address>(context.Esp);
2058       sample->fp = reinterpret_cast<Address>(context.Ebp);
2059 #endif
2060       sampler->SampleStack(sample);
2061       sampler->Tick(sample);
2062     }
2063     ResumeThread(profiled_thread);
2064   }
2065 
2066   const int interval_;
2067   RuntimeProfilerRateLimiter rate_limiter_;
2068 
2069   // Protects the process wide state below.
2070   static LazyMutex mutex_;
2071   static SamplerThread* instance_;
2072 
2073  private:
2074   DISALLOW_COPY_AND_ASSIGN(SamplerThread);
2075 };
2076 
2077 
2078 LazyMutex SamplerThread::mutex_ = LAZY_MUTEX_INITIALIZER;
2079 SamplerThread* SamplerThread::instance_ = NULL;
2080 
2081 
Sampler(Isolate * isolate,int interval)2082 Sampler::Sampler(Isolate* isolate, int interval)
2083     : isolate_(isolate),
2084       interval_(interval),
2085       profiling_(false),
2086       active_(false),
2087       samples_taken_(0) {
2088   data_ = new PlatformData;
2089 }
2090 
2091 
~Sampler()2092 Sampler::~Sampler() {
2093   ASSERT(!IsActive());
2094   delete data_;
2095 }
2096 
2097 
Start()2098 void Sampler::Start() {
2099   ASSERT(!IsActive());
2100   SetActive(true);
2101   SamplerThread::AddActiveSampler(this);
2102 }
2103 
2104 
Stop()2105 void Sampler::Stop() {
2106   ASSERT(IsActive());
2107   SamplerThread::RemoveActiveSampler(this);
2108   SetActive(false);
2109 }
2110 
2111 
2112 } }  // namespace v8::internal
2113