• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===----- CriticalAntiDepBreaker.cpp - Anti-dep breaker -------- ---------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the CriticalAntiDepBreaker class, which
11 // implements register anti-dependence breaking along a blocks
12 // critical path during post-RA scheduler.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #define DEBUG_TYPE "post-RA-sched"
17 #include "CriticalAntiDepBreaker.h"
18 #include "llvm/CodeGen/MachineBasicBlock.h"
19 #include "llvm/CodeGen/MachineFrameInfo.h"
20 #include "llvm/Target/TargetMachine.h"
21 #include "llvm/Target/TargetInstrInfo.h"
22 #include "llvm/Target/TargetRegisterInfo.h"
23 #include "llvm/Support/Debug.h"
24 #include "llvm/Support/ErrorHandling.h"
25 #include "llvm/Support/raw_ostream.h"
26 
27 using namespace llvm;
28 
29 CriticalAntiDepBreaker::
CriticalAntiDepBreaker(MachineFunction & MFi,const RegisterClassInfo & RCI)30 CriticalAntiDepBreaker(MachineFunction& MFi, const RegisterClassInfo &RCI) :
31   AntiDepBreaker(), MF(MFi),
32   MRI(MF.getRegInfo()),
33   TII(MF.getTarget().getInstrInfo()),
34   TRI(MF.getTarget().getRegisterInfo()),
35   RegClassInfo(RCI),
36   Classes(TRI->getNumRegs(), static_cast<const TargetRegisterClass *>(0)),
37   KillIndices(TRI->getNumRegs(), 0),
38   DefIndices(TRI->getNumRegs(), 0),
39   KeepRegs(TRI->getNumRegs(), false) {}
40 
~CriticalAntiDepBreaker()41 CriticalAntiDepBreaker::~CriticalAntiDepBreaker() {
42 }
43 
StartBlock(MachineBasicBlock * BB)44 void CriticalAntiDepBreaker::StartBlock(MachineBasicBlock *BB) {
45   const unsigned BBSize = BB->size();
46   for (unsigned i = 0, e = TRI->getNumRegs(); i != e; ++i) {
47     // Clear out the register class data.
48     Classes[i] = static_cast<const TargetRegisterClass *>(0);
49 
50     // Initialize the indices to indicate that no registers are live.
51     KillIndices[i] = ~0u;
52     DefIndices[i] = BBSize;
53   }
54 
55   // Clear "do not change" set.
56   KeepRegs.reset();
57 
58   bool IsReturnBlock = (BBSize != 0 && BB->back().isReturn());
59 
60   // Determine the live-out physregs for this block.
61   if (IsReturnBlock) {
62     // In a return block, examine the function live-out regs.
63     for (MachineRegisterInfo::liveout_iterator I = MRI.liveout_begin(),
64          E = MRI.liveout_end(); I != E; ++I) {
65       for (MCRegAliasIterator AI(*I, TRI, true); AI.isValid(); ++AI) {
66         unsigned Reg = *AI;
67         Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
68         KillIndices[Reg] = BBSize;
69         DefIndices[Reg] = ~0u;
70       }
71     }
72   }
73 
74   // In a non-return block, examine the live-in regs of all successors.
75   // Note a return block can have successors if the return instruction is
76   // predicated.
77   for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(),
78          SE = BB->succ_end(); SI != SE; ++SI)
79     for (MachineBasicBlock::livein_iterator I = (*SI)->livein_begin(),
80            E = (*SI)->livein_end(); I != E; ++I) {
81       for (MCRegAliasIterator AI(*I, TRI, true); AI.isValid(); ++AI) {
82         unsigned Reg = *AI;
83         Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
84         KillIndices[Reg] = BBSize;
85         DefIndices[Reg] = ~0u;
86       }
87     }
88 
89   // Mark live-out callee-saved registers. In a return block this is
90   // all callee-saved registers. In non-return this is any
91   // callee-saved register that is not saved in the prolog.
92   const MachineFrameInfo *MFI = MF.getFrameInfo();
93   BitVector Pristine = MFI->getPristineRegs(BB);
94   for (const uint16_t *I = TRI->getCalleeSavedRegs(&MF); *I; ++I) {
95     if (!IsReturnBlock && !Pristine.test(*I)) continue;
96     for (MCRegAliasIterator AI(*I, TRI, true); AI.isValid(); ++AI) {
97       unsigned Reg = *AI;
98       Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
99       KillIndices[Reg] = BBSize;
100       DefIndices[Reg] = ~0u;
101     }
102   }
103 }
104 
FinishBlock()105 void CriticalAntiDepBreaker::FinishBlock() {
106   RegRefs.clear();
107   KeepRegs.reset();
108 }
109 
Observe(MachineInstr * MI,unsigned Count,unsigned InsertPosIndex)110 void CriticalAntiDepBreaker::Observe(MachineInstr *MI, unsigned Count,
111                                      unsigned InsertPosIndex) {
112   if (MI->isDebugValue())
113     return;
114   assert(Count < InsertPosIndex && "Instruction index out of expected range!");
115 
116   for (unsigned Reg = 0; Reg != TRI->getNumRegs(); ++Reg) {
117     if (KillIndices[Reg] != ~0u) {
118       // If Reg is currently live, then mark that it can't be renamed as
119       // we don't know the extent of its live-range anymore (now that it
120       // has been scheduled).
121       Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
122       KillIndices[Reg] = Count;
123     } else if (DefIndices[Reg] < InsertPosIndex && DefIndices[Reg] >= Count) {
124       // Any register which was defined within the previous scheduling region
125       // may have been rescheduled and its lifetime may overlap with registers
126       // in ways not reflected in our current liveness state. For each such
127       // register, adjust the liveness state to be conservatively correct.
128       Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
129 
130       // Move the def index to the end of the previous region, to reflect
131       // that the def could theoretically have been scheduled at the end.
132       DefIndices[Reg] = InsertPosIndex;
133     }
134   }
135 
136   PrescanInstruction(MI);
137   ScanInstruction(MI, Count);
138 }
139 
140 /// CriticalPathStep - Return the next SUnit after SU on the bottom-up
141 /// critical path.
CriticalPathStep(const SUnit * SU)142 static const SDep *CriticalPathStep(const SUnit *SU) {
143   const SDep *Next = 0;
144   unsigned NextDepth = 0;
145   // Find the predecessor edge with the greatest depth.
146   for (SUnit::const_pred_iterator P = SU->Preds.begin(), PE = SU->Preds.end();
147        P != PE; ++P) {
148     const SUnit *PredSU = P->getSUnit();
149     unsigned PredLatency = P->getLatency();
150     unsigned PredTotalLatency = PredSU->getDepth() + PredLatency;
151     // In the case of a latency tie, prefer an anti-dependency edge over
152     // other types of edges.
153     if (NextDepth < PredTotalLatency ||
154         (NextDepth == PredTotalLatency && P->getKind() == SDep::Anti)) {
155       NextDepth = PredTotalLatency;
156       Next = &*P;
157     }
158   }
159   return Next;
160 }
161 
PrescanInstruction(MachineInstr * MI)162 void CriticalAntiDepBreaker::PrescanInstruction(MachineInstr *MI) {
163   // It's not safe to change register allocation for source operands of
164   // that have special allocation requirements. Also assume all registers
165   // used in a call must not be changed (ABI).
166   // FIXME: The issue with predicated instruction is more complex. We are being
167   // conservative here because the kill markers cannot be trusted after
168   // if-conversion:
169   // %R6<def> = LDR %SP, %reg0, 92, pred:14, pred:%reg0; mem:LD4[FixedStack14]
170   // ...
171   // STR %R0, %R6<kill>, %reg0, 0, pred:0, pred:%CPSR; mem:ST4[%395]
172   // %R6<def> = LDR %SP, %reg0, 100, pred:0, pred:%CPSR; mem:LD4[FixedStack12]
173   // STR %R0, %R6<kill>, %reg0, 0, pred:14, pred:%reg0; mem:ST4[%396](align=8)
174   //
175   // The first R6 kill is not really a kill since it's killed by a predicated
176   // instruction which may not be executed. The second R6 def may or may not
177   // re-define R6 so it's not safe to change it since the last R6 use cannot be
178   // changed.
179   bool Special = MI->isCall() ||
180     MI->hasExtraSrcRegAllocReq() ||
181     TII->isPredicated(MI);
182 
183   // Scan the register operands for this instruction and update
184   // Classes and RegRefs.
185   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
186     MachineOperand &MO = MI->getOperand(i);
187     if (!MO.isReg()) continue;
188     unsigned Reg = MO.getReg();
189     if (Reg == 0) continue;
190     const TargetRegisterClass *NewRC = 0;
191 
192     if (i < MI->getDesc().getNumOperands())
193       NewRC = TII->getRegClass(MI->getDesc(), i, TRI, MF);
194 
195     // For now, only allow the register to be changed if its register
196     // class is consistent across all uses.
197     if (!Classes[Reg] && NewRC)
198       Classes[Reg] = NewRC;
199     else if (!NewRC || Classes[Reg] != NewRC)
200       Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
201 
202     // Now check for aliases.
203     for (MCRegAliasIterator AI(Reg, TRI, false); AI.isValid(); ++AI) {
204       // If an alias of the reg is used during the live range, give up.
205       // Note that this allows us to skip checking if AntiDepReg
206       // overlaps with any of the aliases, among other things.
207       unsigned AliasReg = *AI;
208       if (Classes[AliasReg]) {
209         Classes[AliasReg] = reinterpret_cast<TargetRegisterClass *>(-1);
210         Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
211       }
212     }
213 
214     // If we're still willing to consider this register, note the reference.
215     if (Classes[Reg] != reinterpret_cast<TargetRegisterClass *>(-1))
216       RegRefs.insert(std::make_pair(Reg, &MO));
217 
218     if (MO.isUse() && Special) {
219       if (!KeepRegs.test(Reg)) {
220         KeepRegs.set(Reg);
221         for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs)
222           KeepRegs.set(*SubRegs);
223       }
224     }
225   }
226 }
227 
ScanInstruction(MachineInstr * MI,unsigned Count)228 void CriticalAntiDepBreaker::ScanInstruction(MachineInstr *MI,
229                                              unsigned Count) {
230   // Update liveness.
231   // Proceeding upwards, registers that are defed but not used in this
232   // instruction are now dead.
233 
234   if (!TII->isPredicated(MI)) {
235     // Predicated defs are modeled as read + write, i.e. similar to two
236     // address updates.
237     for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
238       MachineOperand &MO = MI->getOperand(i);
239 
240       if (MO.isRegMask())
241         for (unsigned i = 0, e = TRI->getNumRegs(); i != e; ++i)
242           if (MO.clobbersPhysReg(i)) {
243             DefIndices[i] = Count;
244             KillIndices[i] = ~0u;
245             KeepRegs.reset(i);
246             Classes[i] = 0;
247             RegRefs.erase(i);
248           }
249 
250       if (!MO.isReg()) continue;
251       unsigned Reg = MO.getReg();
252       if (Reg == 0) continue;
253       if (!MO.isDef()) continue;
254       // Ignore two-addr defs.
255       if (MI->isRegTiedToUseOperand(i)) continue;
256 
257       DefIndices[Reg] = Count;
258       KillIndices[Reg] = ~0u;
259       assert(((KillIndices[Reg] == ~0u) !=
260               (DefIndices[Reg] == ~0u)) &&
261              "Kill and Def maps aren't consistent for Reg!");
262       KeepRegs.reset(Reg);
263       Classes[Reg] = 0;
264       RegRefs.erase(Reg);
265       // Repeat, for all subregs.
266       for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs) {
267         unsigned SubregReg = *SubRegs;
268         DefIndices[SubregReg] = Count;
269         KillIndices[SubregReg] = ~0u;
270         KeepRegs.reset(SubregReg);
271         Classes[SubregReg] = 0;
272         RegRefs.erase(SubregReg);
273       }
274       // Conservatively mark super-registers as unusable.
275       for (MCSuperRegIterator SR(Reg, TRI); SR.isValid(); ++SR)
276         Classes[*SR] = reinterpret_cast<TargetRegisterClass *>(-1);
277     }
278   }
279   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
280     MachineOperand &MO = MI->getOperand(i);
281     if (!MO.isReg()) continue;
282     unsigned Reg = MO.getReg();
283     if (Reg == 0) continue;
284     if (!MO.isUse()) continue;
285 
286     const TargetRegisterClass *NewRC = 0;
287     if (i < MI->getDesc().getNumOperands())
288       NewRC = TII->getRegClass(MI->getDesc(), i, TRI, MF);
289 
290     // For now, only allow the register to be changed if its register
291     // class is consistent across all uses.
292     if (!Classes[Reg] && NewRC)
293       Classes[Reg] = NewRC;
294     else if (!NewRC || Classes[Reg] != NewRC)
295       Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
296 
297     RegRefs.insert(std::make_pair(Reg, &MO));
298 
299     // It wasn't previously live but now it is, this is a kill.
300     if (KillIndices[Reg] == ~0u) {
301       KillIndices[Reg] = Count;
302       DefIndices[Reg] = ~0u;
303           assert(((KillIndices[Reg] == ~0u) !=
304                   (DefIndices[Reg] == ~0u)) &&
305                "Kill and Def maps aren't consistent for Reg!");
306     }
307     // Repeat, for all aliases.
308     for (MCRegAliasIterator AI(Reg, TRI, false); AI.isValid(); ++AI) {
309       unsigned AliasReg = *AI;
310       if (KillIndices[AliasReg] == ~0u) {
311         KillIndices[AliasReg] = Count;
312         DefIndices[AliasReg] = ~0u;
313       }
314     }
315   }
316 }
317 
318 // Check all machine operands that reference the antidependent register and must
319 // be replaced by NewReg. Return true if any of their parent instructions may
320 // clobber the new register.
321 //
322 // Note: AntiDepReg may be referenced by a two-address instruction such that
323 // it's use operand is tied to a def operand. We guard against the case in which
324 // the two-address instruction also defines NewReg, as may happen with
325 // pre/postincrement loads. In this case, both the use and def operands are in
326 // RegRefs because the def is inserted by PrescanInstruction and not erased
327 // during ScanInstruction. So checking for an instructions with definitions of
328 // both NewReg and AntiDepReg covers it.
329 bool
isNewRegClobberedByRefs(RegRefIter RegRefBegin,RegRefIter RegRefEnd,unsigned NewReg)330 CriticalAntiDepBreaker::isNewRegClobberedByRefs(RegRefIter RegRefBegin,
331                                                 RegRefIter RegRefEnd,
332                                                 unsigned NewReg)
333 {
334   for (RegRefIter I = RegRefBegin; I != RegRefEnd; ++I ) {
335     MachineOperand *RefOper = I->second;
336 
337     // Don't allow the instruction defining AntiDepReg to earlyclobber its
338     // operands, in case they may be assigned to NewReg. In this case antidep
339     // breaking must fail, but it's too rare to bother optimizing.
340     if (RefOper->isDef() && RefOper->isEarlyClobber())
341       return true;
342 
343     // Handle cases in which this instructions defines NewReg.
344     MachineInstr *MI = RefOper->getParent();
345     for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
346       const MachineOperand &CheckOper = MI->getOperand(i);
347 
348       if (CheckOper.isRegMask() && CheckOper.clobbersPhysReg(NewReg))
349         return true;
350 
351       if (!CheckOper.isReg() || !CheckOper.isDef() ||
352           CheckOper.getReg() != NewReg)
353         continue;
354 
355       // Don't allow the instruction to define NewReg and AntiDepReg.
356       // When AntiDepReg is renamed it will be an illegal op.
357       if (RefOper->isDef())
358         return true;
359 
360       // Don't allow an instruction using AntiDepReg to be earlyclobbered by
361       // NewReg
362       if (CheckOper.isEarlyClobber())
363         return true;
364 
365       // Don't allow inline asm to define NewReg at all. Who know what it's
366       // doing with it.
367       if (MI->isInlineAsm())
368         return true;
369     }
370   }
371   return false;
372 }
373 
374 unsigned
findSuitableFreeRegister(RegRefIter RegRefBegin,RegRefIter RegRefEnd,unsigned AntiDepReg,unsigned LastNewReg,const TargetRegisterClass * RC)375 CriticalAntiDepBreaker::findSuitableFreeRegister(RegRefIter RegRefBegin,
376                                                  RegRefIter RegRefEnd,
377                                                  unsigned AntiDepReg,
378                                                  unsigned LastNewReg,
379                                                  const TargetRegisterClass *RC)
380 {
381   ArrayRef<unsigned> Order = RegClassInfo.getOrder(RC);
382   for (unsigned i = 0; i != Order.size(); ++i) {
383     unsigned NewReg = Order[i];
384     // Don't replace a register with itself.
385     if (NewReg == AntiDepReg) continue;
386     // Don't replace a register with one that was recently used to repair
387     // an anti-dependence with this AntiDepReg, because that would
388     // re-introduce that anti-dependence.
389     if (NewReg == LastNewReg) continue;
390     // If any instructions that define AntiDepReg also define the NewReg, it's
391     // not suitable.  For example, Instruction with multiple definitions can
392     // result in this condition.
393     if (isNewRegClobberedByRefs(RegRefBegin, RegRefEnd, NewReg)) continue;
394     // If NewReg is dead and NewReg's most recent def is not before
395     // AntiDepReg's kill, it's safe to replace AntiDepReg with NewReg.
396     assert(((KillIndices[AntiDepReg] == ~0u) != (DefIndices[AntiDepReg] == ~0u))
397            && "Kill and Def maps aren't consistent for AntiDepReg!");
398     assert(((KillIndices[NewReg] == ~0u) != (DefIndices[NewReg] == ~0u))
399            && "Kill and Def maps aren't consistent for NewReg!");
400     if (KillIndices[NewReg] != ~0u ||
401         Classes[NewReg] == reinterpret_cast<TargetRegisterClass *>(-1) ||
402         KillIndices[AntiDepReg] > DefIndices[NewReg])
403       continue;
404     return NewReg;
405   }
406 
407   // No registers are free and available!
408   return 0;
409 }
410 
411 unsigned CriticalAntiDepBreaker::
BreakAntiDependencies(const std::vector<SUnit> & SUnits,MachineBasicBlock::iterator Begin,MachineBasicBlock::iterator End,unsigned InsertPosIndex,DbgValueVector & DbgValues)412 BreakAntiDependencies(const std::vector<SUnit>& SUnits,
413                       MachineBasicBlock::iterator Begin,
414                       MachineBasicBlock::iterator End,
415                       unsigned InsertPosIndex,
416                       DbgValueVector &DbgValues) {
417   // The code below assumes that there is at least one instruction,
418   // so just duck out immediately if the block is empty.
419   if (SUnits.empty()) return 0;
420 
421   // Keep a map of the MachineInstr*'s back to the SUnit representing them.
422   // This is used for updating debug information.
423   //
424   // FIXME: Replace this with the existing map in ScheduleDAGInstrs::MISUnitMap
425   DenseMap<MachineInstr*,const SUnit*> MISUnitMap;
426 
427   // Find the node at the bottom of the critical path.
428   const SUnit *Max = 0;
429   for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
430     const SUnit *SU = &SUnits[i];
431     MISUnitMap[SU->getInstr()] = SU;
432     if (!Max || SU->getDepth() + SU->Latency > Max->getDepth() + Max->Latency)
433       Max = SU;
434   }
435 
436 #ifndef NDEBUG
437   {
438     DEBUG(dbgs() << "Critical path has total latency "
439           << (Max->getDepth() + Max->Latency) << "\n");
440     DEBUG(dbgs() << "Available regs:");
441     for (unsigned Reg = 0; Reg < TRI->getNumRegs(); ++Reg) {
442       if (KillIndices[Reg] == ~0u)
443         DEBUG(dbgs() << " " << TRI->getName(Reg));
444     }
445     DEBUG(dbgs() << '\n');
446   }
447 #endif
448 
449   // Track progress along the critical path through the SUnit graph as we walk
450   // the instructions.
451   const SUnit *CriticalPathSU = Max;
452   MachineInstr *CriticalPathMI = CriticalPathSU->getInstr();
453 
454   // Consider this pattern:
455   //   A = ...
456   //   ... = A
457   //   A = ...
458   //   ... = A
459   //   A = ...
460   //   ... = A
461   //   A = ...
462   //   ... = A
463   // There are three anti-dependencies here, and without special care,
464   // we'd break all of them using the same register:
465   //   A = ...
466   //   ... = A
467   //   B = ...
468   //   ... = B
469   //   B = ...
470   //   ... = B
471   //   B = ...
472   //   ... = B
473   // because at each anti-dependence, B is the first register that
474   // isn't A which is free.  This re-introduces anti-dependencies
475   // at all but one of the original anti-dependencies that we were
476   // trying to break.  To avoid this, keep track of the most recent
477   // register that each register was replaced with, avoid
478   // using it to repair an anti-dependence on the same register.
479   // This lets us produce this:
480   //   A = ...
481   //   ... = A
482   //   B = ...
483   //   ... = B
484   //   C = ...
485   //   ... = C
486   //   B = ...
487   //   ... = B
488   // This still has an anti-dependence on B, but at least it isn't on the
489   // original critical path.
490   //
491   // TODO: If we tracked more than one register here, we could potentially
492   // fix that remaining critical edge too. This is a little more involved,
493   // because unlike the most recent register, less recent registers should
494   // still be considered, though only if no other registers are available.
495   std::vector<unsigned> LastNewReg(TRI->getNumRegs(), 0);
496 
497   // Attempt to break anti-dependence edges on the critical path. Walk the
498   // instructions from the bottom up, tracking information about liveness
499   // as we go to help determine which registers are available.
500   unsigned Broken = 0;
501   unsigned Count = InsertPosIndex - 1;
502   for (MachineBasicBlock::iterator I = End, E = Begin;
503        I != E; --Count) {
504     MachineInstr *MI = --I;
505     if (MI->isDebugValue())
506       continue;
507 
508     // Check if this instruction has a dependence on the critical path that
509     // is an anti-dependence that we may be able to break. If it is, set
510     // AntiDepReg to the non-zero register associated with the anti-dependence.
511     //
512     // We limit our attention to the critical path as a heuristic to avoid
513     // breaking anti-dependence edges that aren't going to significantly
514     // impact the overall schedule. There are a limited number of registers
515     // and we want to save them for the important edges.
516     //
517     // TODO: Instructions with multiple defs could have multiple
518     // anti-dependencies. The current code here only knows how to break one
519     // edge per instruction. Note that we'd have to be able to break all of
520     // the anti-dependencies in an instruction in order to be effective.
521     unsigned AntiDepReg = 0;
522     if (MI == CriticalPathMI) {
523       if (const SDep *Edge = CriticalPathStep(CriticalPathSU)) {
524         const SUnit *NextSU = Edge->getSUnit();
525 
526         // Only consider anti-dependence edges.
527         if (Edge->getKind() == SDep::Anti) {
528           AntiDepReg = Edge->getReg();
529           assert(AntiDepReg != 0 && "Anti-dependence on reg0?");
530           if (!RegClassInfo.isAllocatable(AntiDepReg))
531             // Don't break anti-dependencies on non-allocatable registers.
532             AntiDepReg = 0;
533           else if (KeepRegs.test(AntiDepReg))
534             // Don't break anti-dependencies if an use down below requires
535             // this exact register.
536             AntiDepReg = 0;
537           else {
538             // If the SUnit has other dependencies on the SUnit that it
539             // anti-depends on, don't bother breaking the anti-dependency
540             // since those edges would prevent such units from being
541             // scheduled past each other regardless.
542             //
543             // Also, if there are dependencies on other SUnits with the
544             // same register as the anti-dependency, don't attempt to
545             // break it.
546             for (SUnit::const_pred_iterator P = CriticalPathSU->Preds.begin(),
547                  PE = CriticalPathSU->Preds.end(); P != PE; ++P)
548               if (P->getSUnit() == NextSU ?
549                     (P->getKind() != SDep::Anti || P->getReg() != AntiDepReg) :
550                     (P->getKind() == SDep::Data && P->getReg() == AntiDepReg)) {
551                 AntiDepReg = 0;
552                 break;
553               }
554           }
555         }
556         CriticalPathSU = NextSU;
557         CriticalPathMI = CriticalPathSU->getInstr();
558       } else {
559         // We've reached the end of the critical path.
560         CriticalPathSU = 0;
561         CriticalPathMI = 0;
562       }
563     }
564 
565     PrescanInstruction(MI);
566 
567     // If MI's defs have a special allocation requirement, don't allow
568     // any def registers to be changed. Also assume all registers
569     // defined in a call must not be changed (ABI).
570     if (MI->isCall() || MI->hasExtraDefRegAllocReq() ||
571         TII->isPredicated(MI))
572       // If this instruction's defs have special allocation requirement, don't
573       // break this anti-dependency.
574       AntiDepReg = 0;
575     else if (AntiDepReg) {
576       // If this instruction has a use of AntiDepReg, breaking it
577       // is invalid.
578       for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
579         MachineOperand &MO = MI->getOperand(i);
580         if (!MO.isReg()) continue;
581         unsigned Reg = MO.getReg();
582         if (Reg == 0) continue;
583         if (MO.isUse() && TRI->regsOverlap(AntiDepReg, Reg)) {
584           AntiDepReg = 0;
585           break;
586         }
587       }
588     }
589 
590     // Determine AntiDepReg's register class, if it is live and is
591     // consistently used within a single class.
592     const TargetRegisterClass *RC = AntiDepReg != 0 ? Classes[AntiDepReg] : 0;
593     assert((AntiDepReg == 0 || RC != NULL) &&
594            "Register should be live if it's causing an anti-dependence!");
595     if (RC == reinterpret_cast<TargetRegisterClass *>(-1))
596       AntiDepReg = 0;
597 
598     // Look for a suitable register to use to break the anti-depenence.
599     //
600     // TODO: Instead of picking the first free register, consider which might
601     // be the best.
602     if (AntiDepReg != 0) {
603       std::pair<std::multimap<unsigned, MachineOperand *>::iterator,
604                 std::multimap<unsigned, MachineOperand *>::iterator>
605         Range = RegRefs.equal_range(AntiDepReg);
606       if (unsigned NewReg = findSuitableFreeRegister(Range.first, Range.second,
607                                                      AntiDepReg,
608                                                      LastNewReg[AntiDepReg],
609                                                      RC)) {
610         DEBUG(dbgs() << "Breaking anti-dependence edge on "
611               << TRI->getName(AntiDepReg)
612               << " with " << RegRefs.count(AntiDepReg) << " references"
613               << " using " << TRI->getName(NewReg) << "!\n");
614 
615         // Update the references to the old register to refer to the new
616         // register.
617         for (std::multimap<unsigned, MachineOperand *>::iterator
618              Q = Range.first, QE = Range.second; Q != QE; ++Q) {
619           Q->second->setReg(NewReg);
620           // If the SU for the instruction being updated has debug information
621           // related to the anti-dependency register, make sure to update that
622           // as well.
623           const SUnit *SU = MISUnitMap[Q->second->getParent()];
624           if (!SU) continue;
625           for (DbgValueVector::iterator DVI = DbgValues.begin(),
626                  DVE = DbgValues.end(); DVI != DVE; ++DVI)
627             if (DVI->second == Q->second->getParent())
628               UpdateDbgValue(DVI->first, AntiDepReg, NewReg);
629         }
630 
631         // We just went back in time and modified history; the
632         // liveness information for the anti-dependence reg is now
633         // inconsistent. Set the state as if it were dead.
634         Classes[NewReg] = Classes[AntiDepReg];
635         DefIndices[NewReg] = DefIndices[AntiDepReg];
636         KillIndices[NewReg] = KillIndices[AntiDepReg];
637         assert(((KillIndices[NewReg] == ~0u) !=
638                 (DefIndices[NewReg] == ~0u)) &&
639              "Kill and Def maps aren't consistent for NewReg!");
640 
641         Classes[AntiDepReg] = 0;
642         DefIndices[AntiDepReg] = KillIndices[AntiDepReg];
643         KillIndices[AntiDepReg] = ~0u;
644         assert(((KillIndices[AntiDepReg] == ~0u) !=
645                 (DefIndices[AntiDepReg] == ~0u)) &&
646              "Kill and Def maps aren't consistent for AntiDepReg!");
647 
648         RegRefs.erase(AntiDepReg);
649         LastNewReg[AntiDepReg] = NewReg;
650         ++Broken;
651       }
652     }
653 
654     ScanInstruction(MI, Count);
655   }
656 
657   return Broken;
658 }
659