1 //=== RecordLayoutBuilder.cpp - Helper class for building record layouts ---==//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9
10 #include "clang/AST/ASTContext.h"
11 #include "clang/AST/Attr.h"
12 #include "clang/AST/CXXInheritance.h"
13 #include "clang/AST/Decl.h"
14 #include "clang/AST/DeclCXX.h"
15 #include "clang/AST/DeclObjC.h"
16 #include "clang/AST/Expr.h"
17 #include "clang/AST/RecordLayout.h"
18 #include "clang/Basic/TargetInfo.h"
19 #include "clang/Sema/SemaDiagnostic.h"
20 #include "llvm/Support/Format.h"
21 #include "llvm/ADT/SmallSet.h"
22 #include "llvm/Support/MathExtras.h"
23 #include "llvm/Support/CrashRecoveryContext.h"
24
25 using namespace clang;
26
27 namespace {
28
29 /// BaseSubobjectInfo - Represents a single base subobject in a complete class.
30 /// For a class hierarchy like
31 ///
32 /// class A { };
33 /// class B : A { };
34 /// class C : A, B { };
35 ///
36 /// The BaseSubobjectInfo graph for C will have three BaseSubobjectInfo
37 /// instances, one for B and two for A.
38 ///
39 /// If a base is virtual, it will only have one BaseSubobjectInfo allocated.
40 struct BaseSubobjectInfo {
41 /// Class - The class for this base info.
42 const CXXRecordDecl *Class;
43
44 /// IsVirtual - Whether the BaseInfo represents a virtual base or not.
45 bool IsVirtual;
46
47 /// Bases - Information about the base subobjects.
48 SmallVector<BaseSubobjectInfo*, 4> Bases;
49
50 /// PrimaryVirtualBaseInfo - Holds the base info for the primary virtual base
51 /// of this base info (if one exists).
52 BaseSubobjectInfo *PrimaryVirtualBaseInfo;
53
54 // FIXME: Document.
55 const BaseSubobjectInfo *Derived;
56 };
57
58 /// EmptySubobjectMap - Keeps track of which empty subobjects exist at different
59 /// offsets while laying out a C++ class.
60 class EmptySubobjectMap {
61 const ASTContext &Context;
62 uint64_t CharWidth;
63
64 /// Class - The class whose empty entries we're keeping track of.
65 const CXXRecordDecl *Class;
66
67 /// EmptyClassOffsets - A map from offsets to empty record decls.
68 typedef SmallVector<const CXXRecordDecl *, 1> ClassVectorTy;
69 typedef llvm::DenseMap<CharUnits, ClassVectorTy> EmptyClassOffsetsMapTy;
70 EmptyClassOffsetsMapTy EmptyClassOffsets;
71
72 /// MaxEmptyClassOffset - The highest offset known to contain an empty
73 /// base subobject.
74 CharUnits MaxEmptyClassOffset;
75
76 /// ComputeEmptySubobjectSizes - Compute the size of the largest base or
77 /// member subobject that is empty.
78 void ComputeEmptySubobjectSizes();
79
80 void AddSubobjectAtOffset(const CXXRecordDecl *RD, CharUnits Offset);
81
82 void UpdateEmptyBaseSubobjects(const BaseSubobjectInfo *Info,
83 CharUnits Offset, bool PlacingEmptyBase);
84
85 void UpdateEmptyFieldSubobjects(const CXXRecordDecl *RD,
86 const CXXRecordDecl *Class,
87 CharUnits Offset);
88 void UpdateEmptyFieldSubobjects(const FieldDecl *FD, CharUnits Offset);
89
90 /// AnyEmptySubobjectsBeyondOffset - Returns whether there are any empty
91 /// subobjects beyond the given offset.
AnyEmptySubobjectsBeyondOffset(CharUnits Offset) const92 bool AnyEmptySubobjectsBeyondOffset(CharUnits Offset) const {
93 return Offset <= MaxEmptyClassOffset;
94 }
95
96 CharUnits
getFieldOffset(const ASTRecordLayout & Layout,unsigned FieldNo) const97 getFieldOffset(const ASTRecordLayout &Layout, unsigned FieldNo) const {
98 uint64_t FieldOffset = Layout.getFieldOffset(FieldNo);
99 assert(FieldOffset % CharWidth == 0 &&
100 "Field offset not at char boundary!");
101
102 return Context.toCharUnitsFromBits(FieldOffset);
103 }
104
105 protected:
106 bool CanPlaceSubobjectAtOffset(const CXXRecordDecl *RD,
107 CharUnits Offset) const;
108
109 bool CanPlaceBaseSubobjectAtOffset(const BaseSubobjectInfo *Info,
110 CharUnits Offset);
111
112 bool CanPlaceFieldSubobjectAtOffset(const CXXRecordDecl *RD,
113 const CXXRecordDecl *Class,
114 CharUnits Offset) const;
115 bool CanPlaceFieldSubobjectAtOffset(const FieldDecl *FD,
116 CharUnits Offset) const;
117
118 public:
119 /// This holds the size of the largest empty subobject (either a base
120 /// or a member). Will be zero if the record being built doesn't contain
121 /// any empty classes.
122 CharUnits SizeOfLargestEmptySubobject;
123
EmptySubobjectMap(const ASTContext & Context,const CXXRecordDecl * Class)124 EmptySubobjectMap(const ASTContext &Context, const CXXRecordDecl *Class)
125 : Context(Context), CharWidth(Context.getCharWidth()), Class(Class) {
126 ComputeEmptySubobjectSizes();
127 }
128
129 /// CanPlaceBaseAtOffset - Return whether the given base class can be placed
130 /// at the given offset.
131 /// Returns false if placing the record will result in two components
132 /// (direct or indirect) of the same type having the same offset.
133 bool CanPlaceBaseAtOffset(const BaseSubobjectInfo *Info,
134 CharUnits Offset);
135
136 /// CanPlaceFieldAtOffset - Return whether a field can be placed at the given
137 /// offset.
138 bool CanPlaceFieldAtOffset(const FieldDecl *FD, CharUnits Offset);
139 };
140
ComputeEmptySubobjectSizes()141 void EmptySubobjectMap::ComputeEmptySubobjectSizes() {
142 // Check the bases.
143 for (CXXRecordDecl::base_class_const_iterator I = Class->bases_begin(),
144 E = Class->bases_end(); I != E; ++I) {
145 const CXXRecordDecl *BaseDecl =
146 cast<CXXRecordDecl>(I->getType()->getAs<RecordType>()->getDecl());
147
148 CharUnits EmptySize;
149 const ASTRecordLayout &Layout = Context.getASTRecordLayout(BaseDecl);
150 if (BaseDecl->isEmpty()) {
151 // If the class decl is empty, get its size.
152 EmptySize = Layout.getSize();
153 } else {
154 // Otherwise, we get the largest empty subobject for the decl.
155 EmptySize = Layout.getSizeOfLargestEmptySubobject();
156 }
157
158 if (EmptySize > SizeOfLargestEmptySubobject)
159 SizeOfLargestEmptySubobject = EmptySize;
160 }
161
162 // Check the fields.
163 for (CXXRecordDecl::field_iterator I = Class->field_begin(),
164 E = Class->field_end(); I != E; ++I) {
165
166 const RecordType *RT =
167 Context.getBaseElementType(I->getType())->getAs<RecordType>();
168
169 // We only care about record types.
170 if (!RT)
171 continue;
172
173 CharUnits EmptySize;
174 const CXXRecordDecl *MemberDecl = cast<CXXRecordDecl>(RT->getDecl());
175 const ASTRecordLayout &Layout = Context.getASTRecordLayout(MemberDecl);
176 if (MemberDecl->isEmpty()) {
177 // If the class decl is empty, get its size.
178 EmptySize = Layout.getSize();
179 } else {
180 // Otherwise, we get the largest empty subobject for the decl.
181 EmptySize = Layout.getSizeOfLargestEmptySubobject();
182 }
183
184 if (EmptySize > SizeOfLargestEmptySubobject)
185 SizeOfLargestEmptySubobject = EmptySize;
186 }
187 }
188
189 bool
CanPlaceSubobjectAtOffset(const CXXRecordDecl * RD,CharUnits Offset) const190 EmptySubobjectMap::CanPlaceSubobjectAtOffset(const CXXRecordDecl *RD,
191 CharUnits Offset) const {
192 // We only need to check empty bases.
193 if (!RD->isEmpty())
194 return true;
195
196 EmptyClassOffsetsMapTy::const_iterator I = EmptyClassOffsets.find(Offset);
197 if (I == EmptyClassOffsets.end())
198 return true;
199
200 const ClassVectorTy& Classes = I->second;
201 if (std::find(Classes.begin(), Classes.end(), RD) == Classes.end())
202 return true;
203
204 // There is already an empty class of the same type at this offset.
205 return false;
206 }
207
AddSubobjectAtOffset(const CXXRecordDecl * RD,CharUnits Offset)208 void EmptySubobjectMap::AddSubobjectAtOffset(const CXXRecordDecl *RD,
209 CharUnits Offset) {
210 // We only care about empty bases.
211 if (!RD->isEmpty())
212 return;
213
214 // If we have empty structures inside an union, we can assign both
215 // the same offset. Just avoid pushing them twice in the list.
216 ClassVectorTy& Classes = EmptyClassOffsets[Offset];
217 if (std::find(Classes.begin(), Classes.end(), RD) != Classes.end())
218 return;
219
220 Classes.push_back(RD);
221
222 // Update the empty class offset.
223 if (Offset > MaxEmptyClassOffset)
224 MaxEmptyClassOffset = Offset;
225 }
226
227 bool
CanPlaceBaseSubobjectAtOffset(const BaseSubobjectInfo * Info,CharUnits Offset)228 EmptySubobjectMap::CanPlaceBaseSubobjectAtOffset(const BaseSubobjectInfo *Info,
229 CharUnits Offset) {
230 // We don't have to keep looking past the maximum offset that's known to
231 // contain an empty class.
232 if (!AnyEmptySubobjectsBeyondOffset(Offset))
233 return true;
234
235 if (!CanPlaceSubobjectAtOffset(Info->Class, Offset))
236 return false;
237
238 // Traverse all non-virtual bases.
239 const ASTRecordLayout &Layout = Context.getASTRecordLayout(Info->Class);
240 for (unsigned I = 0, E = Info->Bases.size(); I != E; ++I) {
241 BaseSubobjectInfo* Base = Info->Bases[I];
242 if (Base->IsVirtual)
243 continue;
244
245 CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(Base->Class);
246
247 if (!CanPlaceBaseSubobjectAtOffset(Base, BaseOffset))
248 return false;
249 }
250
251 if (Info->PrimaryVirtualBaseInfo) {
252 BaseSubobjectInfo *PrimaryVirtualBaseInfo = Info->PrimaryVirtualBaseInfo;
253
254 if (Info == PrimaryVirtualBaseInfo->Derived) {
255 if (!CanPlaceBaseSubobjectAtOffset(PrimaryVirtualBaseInfo, Offset))
256 return false;
257 }
258 }
259
260 // Traverse all member variables.
261 unsigned FieldNo = 0;
262 for (CXXRecordDecl::field_iterator I = Info->Class->field_begin(),
263 E = Info->Class->field_end(); I != E; ++I, ++FieldNo) {
264 if (I->isBitField())
265 continue;
266
267 CharUnits FieldOffset = Offset + getFieldOffset(Layout, FieldNo);
268 if (!CanPlaceFieldSubobjectAtOffset(*I, FieldOffset))
269 return false;
270 }
271
272 return true;
273 }
274
UpdateEmptyBaseSubobjects(const BaseSubobjectInfo * Info,CharUnits Offset,bool PlacingEmptyBase)275 void EmptySubobjectMap::UpdateEmptyBaseSubobjects(const BaseSubobjectInfo *Info,
276 CharUnits Offset,
277 bool PlacingEmptyBase) {
278 if (!PlacingEmptyBase && Offset >= SizeOfLargestEmptySubobject) {
279 // We know that the only empty subobjects that can conflict with empty
280 // subobject of non-empty bases, are empty bases that can be placed at
281 // offset zero. Because of this, we only need to keep track of empty base
282 // subobjects with offsets less than the size of the largest empty
283 // subobject for our class.
284 return;
285 }
286
287 AddSubobjectAtOffset(Info->Class, Offset);
288
289 // Traverse all non-virtual bases.
290 const ASTRecordLayout &Layout = Context.getASTRecordLayout(Info->Class);
291 for (unsigned I = 0, E = Info->Bases.size(); I != E; ++I) {
292 BaseSubobjectInfo* Base = Info->Bases[I];
293 if (Base->IsVirtual)
294 continue;
295
296 CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(Base->Class);
297 UpdateEmptyBaseSubobjects(Base, BaseOffset, PlacingEmptyBase);
298 }
299
300 if (Info->PrimaryVirtualBaseInfo) {
301 BaseSubobjectInfo *PrimaryVirtualBaseInfo = Info->PrimaryVirtualBaseInfo;
302
303 if (Info == PrimaryVirtualBaseInfo->Derived)
304 UpdateEmptyBaseSubobjects(PrimaryVirtualBaseInfo, Offset,
305 PlacingEmptyBase);
306 }
307
308 // Traverse all member variables.
309 unsigned FieldNo = 0;
310 for (CXXRecordDecl::field_iterator I = Info->Class->field_begin(),
311 E = Info->Class->field_end(); I != E; ++I, ++FieldNo) {
312 if (I->isBitField())
313 continue;
314
315 CharUnits FieldOffset = Offset + getFieldOffset(Layout, FieldNo);
316 UpdateEmptyFieldSubobjects(*I, FieldOffset);
317 }
318 }
319
CanPlaceBaseAtOffset(const BaseSubobjectInfo * Info,CharUnits Offset)320 bool EmptySubobjectMap::CanPlaceBaseAtOffset(const BaseSubobjectInfo *Info,
321 CharUnits Offset) {
322 // If we know this class doesn't have any empty subobjects we don't need to
323 // bother checking.
324 if (SizeOfLargestEmptySubobject.isZero())
325 return true;
326
327 if (!CanPlaceBaseSubobjectAtOffset(Info, Offset))
328 return false;
329
330 // We are able to place the base at this offset. Make sure to update the
331 // empty base subobject map.
332 UpdateEmptyBaseSubobjects(Info, Offset, Info->Class->isEmpty());
333 return true;
334 }
335
336 bool
CanPlaceFieldSubobjectAtOffset(const CXXRecordDecl * RD,const CXXRecordDecl * Class,CharUnits Offset) const337 EmptySubobjectMap::CanPlaceFieldSubobjectAtOffset(const CXXRecordDecl *RD,
338 const CXXRecordDecl *Class,
339 CharUnits Offset) const {
340 // We don't have to keep looking past the maximum offset that's known to
341 // contain an empty class.
342 if (!AnyEmptySubobjectsBeyondOffset(Offset))
343 return true;
344
345 if (!CanPlaceSubobjectAtOffset(RD, Offset))
346 return false;
347
348 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
349
350 // Traverse all non-virtual bases.
351 for (CXXRecordDecl::base_class_const_iterator I = RD->bases_begin(),
352 E = RD->bases_end(); I != E; ++I) {
353 if (I->isVirtual())
354 continue;
355
356 const CXXRecordDecl *BaseDecl =
357 cast<CXXRecordDecl>(I->getType()->getAs<RecordType>()->getDecl());
358
359 CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(BaseDecl);
360 if (!CanPlaceFieldSubobjectAtOffset(BaseDecl, Class, BaseOffset))
361 return false;
362 }
363
364 if (RD == Class) {
365 // This is the most derived class, traverse virtual bases as well.
366 for (CXXRecordDecl::base_class_const_iterator I = RD->vbases_begin(),
367 E = RD->vbases_end(); I != E; ++I) {
368 const CXXRecordDecl *VBaseDecl =
369 cast<CXXRecordDecl>(I->getType()->getAs<RecordType>()->getDecl());
370
371 CharUnits VBaseOffset = Offset + Layout.getVBaseClassOffset(VBaseDecl);
372 if (!CanPlaceFieldSubobjectAtOffset(VBaseDecl, Class, VBaseOffset))
373 return false;
374 }
375 }
376
377 // Traverse all member variables.
378 unsigned FieldNo = 0;
379 for (CXXRecordDecl::field_iterator I = RD->field_begin(), E = RD->field_end();
380 I != E; ++I, ++FieldNo) {
381 if (I->isBitField())
382 continue;
383
384 CharUnits FieldOffset = Offset + getFieldOffset(Layout, FieldNo);
385
386 if (!CanPlaceFieldSubobjectAtOffset(*I, FieldOffset))
387 return false;
388 }
389
390 return true;
391 }
392
393 bool
CanPlaceFieldSubobjectAtOffset(const FieldDecl * FD,CharUnits Offset) const394 EmptySubobjectMap::CanPlaceFieldSubobjectAtOffset(const FieldDecl *FD,
395 CharUnits Offset) const {
396 // We don't have to keep looking past the maximum offset that's known to
397 // contain an empty class.
398 if (!AnyEmptySubobjectsBeyondOffset(Offset))
399 return true;
400
401 QualType T = FD->getType();
402 if (const RecordType *RT = T->getAs<RecordType>()) {
403 const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
404 return CanPlaceFieldSubobjectAtOffset(RD, RD, Offset);
405 }
406
407 // If we have an array type we need to look at every element.
408 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(T)) {
409 QualType ElemTy = Context.getBaseElementType(AT);
410 const RecordType *RT = ElemTy->getAs<RecordType>();
411 if (!RT)
412 return true;
413
414 const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
415 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
416
417 uint64_t NumElements = Context.getConstantArrayElementCount(AT);
418 CharUnits ElementOffset = Offset;
419 for (uint64_t I = 0; I != NumElements; ++I) {
420 // We don't have to keep looking past the maximum offset that's known to
421 // contain an empty class.
422 if (!AnyEmptySubobjectsBeyondOffset(ElementOffset))
423 return true;
424
425 if (!CanPlaceFieldSubobjectAtOffset(RD, RD, ElementOffset))
426 return false;
427
428 ElementOffset += Layout.getSize();
429 }
430 }
431
432 return true;
433 }
434
435 bool
CanPlaceFieldAtOffset(const FieldDecl * FD,CharUnits Offset)436 EmptySubobjectMap::CanPlaceFieldAtOffset(const FieldDecl *FD,
437 CharUnits Offset) {
438 if (!CanPlaceFieldSubobjectAtOffset(FD, Offset))
439 return false;
440
441 // We are able to place the member variable at this offset.
442 // Make sure to update the empty base subobject map.
443 UpdateEmptyFieldSubobjects(FD, Offset);
444 return true;
445 }
446
UpdateEmptyFieldSubobjects(const CXXRecordDecl * RD,const CXXRecordDecl * Class,CharUnits Offset)447 void EmptySubobjectMap::UpdateEmptyFieldSubobjects(const CXXRecordDecl *RD,
448 const CXXRecordDecl *Class,
449 CharUnits Offset) {
450 // We know that the only empty subobjects that can conflict with empty
451 // field subobjects are subobjects of empty bases that can be placed at offset
452 // zero. Because of this, we only need to keep track of empty field
453 // subobjects with offsets less than the size of the largest empty
454 // subobject for our class.
455 if (Offset >= SizeOfLargestEmptySubobject)
456 return;
457
458 AddSubobjectAtOffset(RD, Offset);
459
460 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
461
462 // Traverse all non-virtual bases.
463 for (CXXRecordDecl::base_class_const_iterator I = RD->bases_begin(),
464 E = RD->bases_end(); I != E; ++I) {
465 if (I->isVirtual())
466 continue;
467
468 const CXXRecordDecl *BaseDecl =
469 cast<CXXRecordDecl>(I->getType()->getAs<RecordType>()->getDecl());
470
471 CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(BaseDecl);
472 UpdateEmptyFieldSubobjects(BaseDecl, Class, BaseOffset);
473 }
474
475 if (RD == Class) {
476 // This is the most derived class, traverse virtual bases as well.
477 for (CXXRecordDecl::base_class_const_iterator I = RD->vbases_begin(),
478 E = RD->vbases_end(); I != E; ++I) {
479 const CXXRecordDecl *VBaseDecl =
480 cast<CXXRecordDecl>(I->getType()->getAs<RecordType>()->getDecl());
481
482 CharUnits VBaseOffset = Offset + Layout.getVBaseClassOffset(VBaseDecl);
483 UpdateEmptyFieldSubobjects(VBaseDecl, Class, VBaseOffset);
484 }
485 }
486
487 // Traverse all member variables.
488 unsigned FieldNo = 0;
489 for (CXXRecordDecl::field_iterator I = RD->field_begin(), E = RD->field_end();
490 I != E; ++I, ++FieldNo) {
491 if (I->isBitField())
492 continue;
493
494 CharUnits FieldOffset = Offset + getFieldOffset(Layout, FieldNo);
495
496 UpdateEmptyFieldSubobjects(*I, FieldOffset);
497 }
498 }
499
UpdateEmptyFieldSubobjects(const FieldDecl * FD,CharUnits Offset)500 void EmptySubobjectMap::UpdateEmptyFieldSubobjects(const FieldDecl *FD,
501 CharUnits Offset) {
502 QualType T = FD->getType();
503 if (const RecordType *RT = T->getAs<RecordType>()) {
504 const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
505 UpdateEmptyFieldSubobjects(RD, RD, Offset);
506 return;
507 }
508
509 // If we have an array type we need to update every element.
510 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(T)) {
511 QualType ElemTy = Context.getBaseElementType(AT);
512 const RecordType *RT = ElemTy->getAs<RecordType>();
513 if (!RT)
514 return;
515
516 const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
517 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
518
519 uint64_t NumElements = Context.getConstantArrayElementCount(AT);
520 CharUnits ElementOffset = Offset;
521
522 for (uint64_t I = 0; I != NumElements; ++I) {
523 // We know that the only empty subobjects that can conflict with empty
524 // field subobjects are subobjects of empty bases that can be placed at
525 // offset zero. Because of this, we only need to keep track of empty field
526 // subobjects with offsets less than the size of the largest empty
527 // subobject for our class.
528 if (ElementOffset >= SizeOfLargestEmptySubobject)
529 return;
530
531 UpdateEmptyFieldSubobjects(RD, RD, ElementOffset);
532 ElementOffset += Layout.getSize();
533 }
534 }
535 }
536
537 typedef llvm::SmallPtrSet<const CXXRecordDecl*, 4> ClassSetTy;
538
539 class RecordLayoutBuilder {
540 protected:
541 // FIXME: Remove this and make the appropriate fields public.
542 friend class clang::ASTContext;
543
544 const ASTContext &Context;
545
546 EmptySubobjectMap *EmptySubobjects;
547
548 /// Size - The current size of the record layout.
549 uint64_t Size;
550
551 /// Alignment - The current alignment of the record layout.
552 CharUnits Alignment;
553
554 /// \brief The alignment if attribute packed is not used.
555 CharUnits UnpackedAlignment;
556
557 SmallVector<uint64_t, 16> FieldOffsets;
558
559 /// \brief Whether the external AST source has provided a layout for this
560 /// record.
561 unsigned ExternalLayout : 1;
562
563 /// \brief Whether we need to infer alignment, even when we have an
564 /// externally-provided layout.
565 unsigned InferAlignment : 1;
566
567 /// Packed - Whether the record is packed or not.
568 unsigned Packed : 1;
569
570 unsigned IsUnion : 1;
571
572 unsigned IsMac68kAlign : 1;
573
574 unsigned IsMsStruct : 1;
575
576 /// UnfilledBitsInLastByte - If the last field laid out was a bitfield,
577 /// this contains the number of bits in the last byte that can be used for
578 /// an adjacent bitfield if necessary.
579 unsigned char UnfilledBitsInLastByte;
580
581 /// MaxFieldAlignment - The maximum allowed field alignment. This is set by
582 /// #pragma pack.
583 CharUnits MaxFieldAlignment;
584
585 /// DataSize - The data size of the record being laid out.
586 uint64_t DataSize;
587
588 CharUnits NonVirtualSize;
589 CharUnits NonVirtualAlignment;
590
591 FieldDecl *ZeroLengthBitfield;
592
593 /// PrimaryBase - the primary base class (if one exists) of the class
594 /// we're laying out.
595 const CXXRecordDecl *PrimaryBase;
596
597 /// PrimaryBaseIsVirtual - Whether the primary base of the class we're laying
598 /// out is virtual.
599 bool PrimaryBaseIsVirtual;
600
601 /// HasOwnVFPtr - Whether the class provides its own vtable/vftbl
602 /// pointer, as opposed to inheriting one from a primary base class.
603 bool HasOwnVFPtr;
604
605 /// VBPtrOffset - Virtual base table offset. Only for MS layout.
606 CharUnits VBPtrOffset;
607
608 typedef llvm::DenseMap<const CXXRecordDecl *, CharUnits> BaseOffsetsMapTy;
609
610 /// Bases - base classes and their offsets in the record.
611 BaseOffsetsMapTy Bases;
612
613 // VBases - virtual base classes and their offsets in the record.
614 ASTRecordLayout::VBaseOffsetsMapTy VBases;
615
616 /// IndirectPrimaryBases - Virtual base classes, direct or indirect, that are
617 /// primary base classes for some other direct or indirect base class.
618 CXXIndirectPrimaryBaseSet IndirectPrimaryBases;
619
620 /// FirstNearlyEmptyVBase - The first nearly empty virtual base class in
621 /// inheritance graph order. Used for determining the primary base class.
622 const CXXRecordDecl *FirstNearlyEmptyVBase;
623
624 /// VisitedVirtualBases - A set of all the visited virtual bases, used to
625 /// avoid visiting virtual bases more than once.
626 llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBases;
627
628 /// \brief Externally-provided size.
629 uint64_t ExternalSize;
630
631 /// \brief Externally-provided alignment.
632 uint64_t ExternalAlign;
633
634 /// \brief Externally-provided field offsets.
635 llvm::DenseMap<const FieldDecl *, uint64_t> ExternalFieldOffsets;
636
637 /// \brief Externally-provided direct, non-virtual base offsets.
638 llvm::DenseMap<const CXXRecordDecl *, CharUnits> ExternalBaseOffsets;
639
640 /// \brief Externally-provided virtual base offsets.
641 llvm::DenseMap<const CXXRecordDecl *, CharUnits> ExternalVirtualBaseOffsets;
642
RecordLayoutBuilder(const ASTContext & Context,EmptySubobjectMap * EmptySubobjects)643 RecordLayoutBuilder(const ASTContext &Context,
644 EmptySubobjectMap *EmptySubobjects)
645 : Context(Context), EmptySubobjects(EmptySubobjects), Size(0),
646 Alignment(CharUnits::One()), UnpackedAlignment(CharUnits::One()),
647 ExternalLayout(false), InferAlignment(false),
648 Packed(false), IsUnion(false), IsMac68kAlign(false), IsMsStruct(false),
649 UnfilledBitsInLastByte(0), MaxFieldAlignment(CharUnits::Zero()),
650 DataSize(0), NonVirtualSize(CharUnits::Zero()),
651 NonVirtualAlignment(CharUnits::One()),
652 ZeroLengthBitfield(0), PrimaryBase(0),
653 PrimaryBaseIsVirtual(false),
654 HasOwnVFPtr(false),
655 VBPtrOffset(CharUnits::fromQuantity(-1)),
656 FirstNearlyEmptyVBase(0) { }
657
658 /// Reset this RecordLayoutBuilder to a fresh state, using the given
659 /// alignment as the initial alignment. This is used for the
660 /// correct layout of vb-table pointers in MSVC.
resetWithTargetAlignment(CharUnits TargetAlignment)661 void resetWithTargetAlignment(CharUnits TargetAlignment) {
662 const ASTContext &Context = this->Context;
663 EmptySubobjectMap *EmptySubobjects = this->EmptySubobjects;
664 this->~RecordLayoutBuilder();
665 new (this) RecordLayoutBuilder(Context, EmptySubobjects);
666 Alignment = UnpackedAlignment = TargetAlignment;
667 }
668
669 void Layout(const RecordDecl *D);
670 void Layout(const CXXRecordDecl *D);
671 void Layout(const ObjCInterfaceDecl *D);
672
673 void LayoutFields(const RecordDecl *D);
674 void LayoutField(const FieldDecl *D);
675 void LayoutWideBitField(uint64_t FieldSize, uint64_t TypeSize,
676 bool FieldPacked, const FieldDecl *D);
677 void LayoutBitField(const FieldDecl *D);
678
isMicrosoftCXXABI() const679 bool isMicrosoftCXXABI() const {
680 return Context.getTargetInfo().getCXXABI() == CXXABI_Microsoft;
681 }
682
683 void MSLayoutVirtualBases(const CXXRecordDecl *RD);
684
685 /// BaseSubobjectInfoAllocator - Allocator for BaseSubobjectInfo objects.
686 llvm::SpecificBumpPtrAllocator<BaseSubobjectInfo> BaseSubobjectInfoAllocator;
687
688 typedef llvm::DenseMap<const CXXRecordDecl *, BaseSubobjectInfo *>
689 BaseSubobjectInfoMapTy;
690
691 /// VirtualBaseInfo - Map from all the (direct or indirect) virtual bases
692 /// of the class we're laying out to their base subobject info.
693 BaseSubobjectInfoMapTy VirtualBaseInfo;
694
695 /// NonVirtualBaseInfo - Map from all the direct non-virtual bases of the
696 /// class we're laying out to their base subobject info.
697 BaseSubobjectInfoMapTy NonVirtualBaseInfo;
698
699 /// ComputeBaseSubobjectInfo - Compute the base subobject information for the
700 /// bases of the given class.
701 void ComputeBaseSubobjectInfo(const CXXRecordDecl *RD);
702
703 /// ComputeBaseSubobjectInfo - Compute the base subobject information for a
704 /// single class and all of its base classes.
705 BaseSubobjectInfo *ComputeBaseSubobjectInfo(const CXXRecordDecl *RD,
706 bool IsVirtual,
707 BaseSubobjectInfo *Derived);
708
709 /// DeterminePrimaryBase - Determine the primary base of the given class.
710 void DeterminePrimaryBase(const CXXRecordDecl *RD);
711
712 void SelectPrimaryVBase(const CXXRecordDecl *RD);
713
714 void EnsureVTablePointerAlignment(CharUnits UnpackedBaseAlign);
715
716 /// LayoutNonVirtualBases - Determines the primary base class (if any) and
717 /// lays it out. Will then proceed to lay out all non-virtual base clasess.
718 void LayoutNonVirtualBases(const CXXRecordDecl *RD);
719
720 /// LayoutNonVirtualBase - Lays out a single non-virtual base.
721 void LayoutNonVirtualBase(const BaseSubobjectInfo *Base);
722
723 void AddPrimaryVirtualBaseOffsets(const BaseSubobjectInfo *Info,
724 CharUnits Offset);
725
726 bool needsVFTable(const CXXRecordDecl *RD) const;
727 bool hasNewVirtualFunction(const CXXRecordDecl *RD,
728 bool IgnoreDestructor = false) const;
729 bool isPossiblePrimaryBase(const CXXRecordDecl *Base) const;
730
731 void computeVtordisps(const CXXRecordDecl *RD,
732 ClassSetTy &VtordispVBases);
733
734 /// LayoutVirtualBases - Lays out all the virtual bases.
735 void LayoutVirtualBases(const CXXRecordDecl *RD,
736 const CXXRecordDecl *MostDerivedClass);
737
738 /// LayoutVirtualBase - Lays out a single virtual base.
739 void LayoutVirtualBase(const BaseSubobjectInfo *Base,
740 bool IsVtordispNeed = false);
741
742 /// LayoutBase - Will lay out a base and return the offset where it was
743 /// placed, in chars.
744 CharUnits LayoutBase(const BaseSubobjectInfo *Base);
745
746 /// InitializeLayout - Initialize record layout for the given record decl.
747 void InitializeLayout(const Decl *D);
748
749 /// FinishLayout - Finalize record layout. Adjust record size based on the
750 /// alignment.
751 void FinishLayout(const NamedDecl *D);
752
753 void UpdateAlignment(CharUnits NewAlignment, CharUnits UnpackedNewAlignment);
UpdateAlignment(CharUnits NewAlignment)754 void UpdateAlignment(CharUnits NewAlignment) {
755 UpdateAlignment(NewAlignment, NewAlignment);
756 }
757
758 /// \brief Retrieve the externally-supplied field offset for the given
759 /// field.
760 ///
761 /// \param Field The field whose offset is being queried.
762 /// \param ComputedOffset The offset that we've computed for this field.
763 uint64_t updateExternalFieldOffset(const FieldDecl *Field,
764 uint64_t ComputedOffset);
765
766 void CheckFieldPadding(uint64_t Offset, uint64_t UnpaddedOffset,
767 uint64_t UnpackedOffset, unsigned UnpackedAlign,
768 bool isPacked, const FieldDecl *D);
769
770 DiagnosticBuilder Diag(SourceLocation Loc, unsigned DiagID);
771
getSize() const772 CharUnits getSize() const {
773 assert(Size % Context.getCharWidth() == 0);
774 return Context.toCharUnitsFromBits(Size);
775 }
getSizeInBits() const776 uint64_t getSizeInBits() const { return Size; }
777
setSize(CharUnits NewSize)778 void setSize(CharUnits NewSize) { Size = Context.toBits(NewSize); }
setSize(uint64_t NewSize)779 void setSize(uint64_t NewSize) { Size = NewSize; }
780
getAligment() const781 CharUnits getAligment() const { return Alignment; }
782
getDataSize() const783 CharUnits getDataSize() const {
784 assert(DataSize % Context.getCharWidth() == 0);
785 return Context.toCharUnitsFromBits(DataSize);
786 }
getDataSizeInBits() const787 uint64_t getDataSizeInBits() const { return DataSize; }
788
setDataSize(CharUnits NewSize)789 void setDataSize(CharUnits NewSize) { DataSize = Context.toBits(NewSize); }
setDataSize(uint64_t NewSize)790 void setDataSize(uint64_t NewSize) { DataSize = NewSize; }
791
792 RecordLayoutBuilder(const RecordLayoutBuilder&); // DO NOT IMPLEMENT
793 void operator=(const RecordLayoutBuilder&); // DO NOT IMPLEMENT
794 public:
795 static const CXXMethodDecl *ComputeKeyFunction(const CXXRecordDecl *RD);
796 };
797 } // end anonymous namespace
798
799 void
SelectPrimaryVBase(const CXXRecordDecl * RD)800 RecordLayoutBuilder::SelectPrimaryVBase(const CXXRecordDecl *RD) {
801 for (CXXRecordDecl::base_class_const_iterator I = RD->bases_begin(),
802 E = RD->bases_end(); I != E; ++I) {
803 assert(!I->getType()->isDependentType() &&
804 "Cannot layout class with dependent bases.");
805
806 const CXXRecordDecl *Base =
807 cast<CXXRecordDecl>(I->getType()->getAs<RecordType>()->getDecl());
808
809 // Check if this is a nearly empty virtual base.
810 if (I->isVirtual() && Context.isNearlyEmpty(Base)) {
811 // If it's not an indirect primary base, then we've found our primary
812 // base.
813 if (!IndirectPrimaryBases.count(Base)) {
814 PrimaryBase = Base;
815 PrimaryBaseIsVirtual = true;
816 return;
817 }
818
819 // Is this the first nearly empty virtual base?
820 if (!FirstNearlyEmptyVBase)
821 FirstNearlyEmptyVBase = Base;
822 }
823
824 SelectPrimaryVBase(Base);
825 if (PrimaryBase)
826 return;
827 }
828 }
829
830 /// DeterminePrimaryBase - Determine the primary base of the given class.
DeterminePrimaryBase(const CXXRecordDecl * RD)831 void RecordLayoutBuilder::DeterminePrimaryBase(const CXXRecordDecl *RD) {
832 // If the class isn't dynamic, it won't have a primary base.
833 if (!RD->isDynamicClass())
834 return;
835
836 // Compute all the primary virtual bases for all of our direct and
837 // indirect bases, and record all their primary virtual base classes.
838 RD->getIndirectPrimaryBases(IndirectPrimaryBases);
839
840 // If the record has a dynamic base class, attempt to choose a primary base
841 // class. It is the first (in direct base class order) non-virtual dynamic
842 // base class, if one exists.
843 for (CXXRecordDecl::base_class_const_iterator i = RD->bases_begin(),
844 e = RD->bases_end(); i != e; ++i) {
845 // Ignore virtual bases.
846 if (i->isVirtual())
847 continue;
848
849 const CXXRecordDecl *Base =
850 cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());
851
852 if (isPossiblePrimaryBase(Base)) {
853 // We found it.
854 PrimaryBase = Base;
855 PrimaryBaseIsVirtual = false;
856 return;
857 }
858 }
859
860 // The Microsoft ABI doesn't have primary virtual bases.
861 if (isMicrosoftCXXABI()) {
862 assert(!PrimaryBase && "Should not get here with a primary base!");
863 return;
864 }
865
866 // Under the Itanium ABI, if there is no non-virtual primary base class,
867 // try to compute the primary virtual base. The primary virtual base is
868 // the first nearly empty virtual base that is not an indirect primary
869 // virtual base class, if one exists.
870 if (RD->getNumVBases() != 0) {
871 SelectPrimaryVBase(RD);
872 if (PrimaryBase)
873 return;
874 }
875
876 // Otherwise, it is the first indirect primary base class, if one exists.
877 if (FirstNearlyEmptyVBase) {
878 PrimaryBase = FirstNearlyEmptyVBase;
879 PrimaryBaseIsVirtual = true;
880 return;
881 }
882
883 assert(!PrimaryBase && "Should not get here with a primary base!");
884 }
885
886 BaseSubobjectInfo *
ComputeBaseSubobjectInfo(const CXXRecordDecl * RD,bool IsVirtual,BaseSubobjectInfo * Derived)887 RecordLayoutBuilder::ComputeBaseSubobjectInfo(const CXXRecordDecl *RD,
888 bool IsVirtual,
889 BaseSubobjectInfo *Derived) {
890 BaseSubobjectInfo *Info;
891
892 if (IsVirtual) {
893 // Check if we already have info about this virtual base.
894 BaseSubobjectInfo *&InfoSlot = VirtualBaseInfo[RD];
895 if (InfoSlot) {
896 assert(InfoSlot->Class == RD && "Wrong class for virtual base info!");
897 return InfoSlot;
898 }
899
900 // We don't, create it.
901 InfoSlot = new (BaseSubobjectInfoAllocator.Allocate()) BaseSubobjectInfo;
902 Info = InfoSlot;
903 } else {
904 Info = new (BaseSubobjectInfoAllocator.Allocate()) BaseSubobjectInfo;
905 }
906
907 Info->Class = RD;
908 Info->IsVirtual = IsVirtual;
909 Info->Derived = 0;
910 Info->PrimaryVirtualBaseInfo = 0;
911
912 const CXXRecordDecl *PrimaryVirtualBase = 0;
913 BaseSubobjectInfo *PrimaryVirtualBaseInfo = 0;
914
915 // Check if this base has a primary virtual base.
916 if (RD->getNumVBases()) {
917 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
918 if (Layout.isPrimaryBaseVirtual()) {
919 // This base does have a primary virtual base.
920 PrimaryVirtualBase = Layout.getPrimaryBase();
921 assert(PrimaryVirtualBase && "Didn't have a primary virtual base!");
922
923 // Now check if we have base subobject info about this primary base.
924 PrimaryVirtualBaseInfo = VirtualBaseInfo.lookup(PrimaryVirtualBase);
925
926 if (PrimaryVirtualBaseInfo) {
927 if (PrimaryVirtualBaseInfo->Derived) {
928 // We did have info about this primary base, and it turns out that it
929 // has already been claimed as a primary virtual base for another
930 // base.
931 PrimaryVirtualBase = 0;
932 } else {
933 // We can claim this base as our primary base.
934 Info->PrimaryVirtualBaseInfo = PrimaryVirtualBaseInfo;
935 PrimaryVirtualBaseInfo->Derived = Info;
936 }
937 }
938 }
939 }
940
941 // Now go through all direct bases.
942 for (CXXRecordDecl::base_class_const_iterator I = RD->bases_begin(),
943 E = RD->bases_end(); I != E; ++I) {
944 bool IsVirtual = I->isVirtual();
945
946 const CXXRecordDecl *BaseDecl =
947 cast<CXXRecordDecl>(I->getType()->getAs<RecordType>()->getDecl());
948
949 Info->Bases.push_back(ComputeBaseSubobjectInfo(BaseDecl, IsVirtual, Info));
950 }
951
952 if (PrimaryVirtualBase && !PrimaryVirtualBaseInfo) {
953 // Traversing the bases must have created the base info for our primary
954 // virtual base.
955 PrimaryVirtualBaseInfo = VirtualBaseInfo.lookup(PrimaryVirtualBase);
956 assert(PrimaryVirtualBaseInfo &&
957 "Did not create a primary virtual base!");
958
959 // Claim the primary virtual base as our primary virtual base.
960 Info->PrimaryVirtualBaseInfo = PrimaryVirtualBaseInfo;
961 PrimaryVirtualBaseInfo->Derived = Info;
962 }
963
964 return Info;
965 }
966
ComputeBaseSubobjectInfo(const CXXRecordDecl * RD)967 void RecordLayoutBuilder::ComputeBaseSubobjectInfo(const CXXRecordDecl *RD) {
968 for (CXXRecordDecl::base_class_const_iterator I = RD->bases_begin(),
969 E = RD->bases_end(); I != E; ++I) {
970 bool IsVirtual = I->isVirtual();
971
972 const CXXRecordDecl *BaseDecl =
973 cast<CXXRecordDecl>(I->getType()->getAs<RecordType>()->getDecl());
974
975 // Compute the base subobject info for this base.
976 BaseSubobjectInfo *Info = ComputeBaseSubobjectInfo(BaseDecl, IsVirtual, 0);
977
978 if (IsVirtual) {
979 // ComputeBaseInfo has already added this base for us.
980 assert(VirtualBaseInfo.count(BaseDecl) &&
981 "Did not add virtual base!");
982 } else {
983 // Add the base info to the map of non-virtual bases.
984 assert(!NonVirtualBaseInfo.count(BaseDecl) &&
985 "Non-virtual base already exists!");
986 NonVirtualBaseInfo.insert(std::make_pair(BaseDecl, Info));
987 }
988 }
989 }
990
991 void
EnsureVTablePointerAlignment(CharUnits UnpackedBaseAlign)992 RecordLayoutBuilder::EnsureVTablePointerAlignment(CharUnits UnpackedBaseAlign) {
993 CharUnits BaseAlign = (Packed) ? CharUnits::One() : UnpackedBaseAlign;
994
995 // The maximum field alignment overrides base align.
996 if (!MaxFieldAlignment.isZero()) {
997 BaseAlign = std::min(BaseAlign, MaxFieldAlignment);
998 UnpackedBaseAlign = std::min(UnpackedBaseAlign, MaxFieldAlignment);
999 }
1000
1001 // Round up the current record size to pointer alignment.
1002 setSize(getSize().RoundUpToAlignment(BaseAlign));
1003 setDataSize(getSize());
1004
1005 // Update the alignment.
1006 UpdateAlignment(BaseAlign, UnpackedBaseAlign);
1007 }
1008
1009 void
LayoutNonVirtualBases(const CXXRecordDecl * RD)1010 RecordLayoutBuilder::LayoutNonVirtualBases(const CXXRecordDecl *RD) {
1011 // Then, determine the primary base class.
1012 DeterminePrimaryBase(RD);
1013
1014 // Compute base subobject info.
1015 ComputeBaseSubobjectInfo(RD);
1016
1017 // If we have a primary base class, lay it out.
1018 if (PrimaryBase) {
1019 if (PrimaryBaseIsVirtual) {
1020 // If the primary virtual base was a primary virtual base of some other
1021 // base class we'll have to steal it.
1022 BaseSubobjectInfo *PrimaryBaseInfo = VirtualBaseInfo.lookup(PrimaryBase);
1023 PrimaryBaseInfo->Derived = 0;
1024
1025 // We have a virtual primary base, insert it as an indirect primary base.
1026 IndirectPrimaryBases.insert(PrimaryBase);
1027
1028 assert(!VisitedVirtualBases.count(PrimaryBase) &&
1029 "vbase already visited!");
1030 VisitedVirtualBases.insert(PrimaryBase);
1031
1032 LayoutVirtualBase(PrimaryBaseInfo);
1033 } else {
1034 BaseSubobjectInfo *PrimaryBaseInfo =
1035 NonVirtualBaseInfo.lookup(PrimaryBase);
1036 assert(PrimaryBaseInfo &&
1037 "Did not find base info for non-virtual primary base!");
1038
1039 LayoutNonVirtualBase(PrimaryBaseInfo);
1040 }
1041
1042 // If this class needs a vtable/vf-table and didn't get one from a
1043 // primary base, add it in now.
1044 } else if (needsVFTable(RD)) {
1045 assert(DataSize == 0 && "Vtable pointer must be at offset zero!");
1046 CharUnits PtrWidth =
1047 Context.toCharUnitsFromBits(Context.getTargetInfo().getPointerWidth(0));
1048 CharUnits PtrAlign =
1049 Context.toCharUnitsFromBits(Context.getTargetInfo().getPointerAlign(0));
1050 EnsureVTablePointerAlignment(PtrAlign);
1051 HasOwnVFPtr = true;
1052 setSize(getSize() + PtrWidth);
1053 setDataSize(getSize());
1054 }
1055
1056 bool HasDirectVirtualBases = false;
1057 bool HasNonVirtualBaseWithVBTable = false;
1058
1059 // Now lay out the non-virtual bases.
1060 for (CXXRecordDecl::base_class_const_iterator I = RD->bases_begin(),
1061 E = RD->bases_end(); I != E; ++I) {
1062
1063 // Ignore virtual bases, but remember that we saw one.
1064 if (I->isVirtual()) {
1065 HasDirectVirtualBases = true;
1066 continue;
1067 }
1068
1069 const CXXRecordDecl *BaseDecl =
1070 cast<CXXRecordDecl>(I->getType()->castAs<RecordType>()->getDecl());
1071
1072 // Remember if this base has virtual bases itself.
1073 if (BaseDecl->getNumVBases())
1074 HasNonVirtualBaseWithVBTable = true;
1075
1076 // Skip the primary base, because we've already laid it out. The
1077 // !PrimaryBaseIsVirtual check is required because we might have a
1078 // non-virtual base of the same type as a primary virtual base.
1079 if (BaseDecl == PrimaryBase && !PrimaryBaseIsVirtual)
1080 continue;
1081
1082 // Lay out the base.
1083 BaseSubobjectInfo *BaseInfo = NonVirtualBaseInfo.lookup(BaseDecl);
1084 assert(BaseInfo && "Did not find base info for non-virtual base!");
1085
1086 LayoutNonVirtualBase(BaseInfo);
1087 }
1088
1089 // In the MS ABI, add the vb-table pointer if we need one, which is
1090 // whenever we have a virtual base and we can't re-use a vb-table
1091 // pointer from a non-virtual base.
1092 if (isMicrosoftCXXABI() &&
1093 HasDirectVirtualBases && !HasNonVirtualBaseWithVBTable) {
1094 CharUnits PtrWidth =
1095 Context.toCharUnitsFromBits(Context.getTargetInfo().getPointerWidth(0));
1096 CharUnits PtrAlign =
1097 Context.toCharUnitsFromBits(Context.getTargetInfo().getPointerAlign(0));
1098
1099 // MSVC potentially over-aligns the vb-table pointer by giving it
1100 // the max alignment of all the non-virtual objects in the class.
1101 // This is completely unnecessary, but we're not here to pass
1102 // judgment.
1103 //
1104 // Note that we've only laid out the non-virtual bases, so on the
1105 // first pass Alignment won't be set correctly here, but if the
1106 // vb-table doesn't end up aligned correctly we'll come through
1107 // and redo the layout from scratch with the right alignment.
1108 //
1109 // TODO: Instead of doing this, just lay out the fields as if the
1110 // vb-table were at offset zero, then retroactively bump the field
1111 // offsets up.
1112 PtrAlign = std::max(PtrAlign, Alignment);
1113
1114 EnsureVTablePointerAlignment(PtrAlign);
1115 VBPtrOffset = getSize();
1116 setSize(getSize() + PtrWidth);
1117 setDataSize(getSize());
1118 }
1119 }
1120
LayoutNonVirtualBase(const BaseSubobjectInfo * Base)1121 void RecordLayoutBuilder::LayoutNonVirtualBase(const BaseSubobjectInfo *Base) {
1122 // Layout the base.
1123 CharUnits Offset = LayoutBase(Base);
1124
1125 // Add its base class offset.
1126 assert(!Bases.count(Base->Class) && "base offset already exists!");
1127 Bases.insert(std::make_pair(Base->Class, Offset));
1128
1129 AddPrimaryVirtualBaseOffsets(Base, Offset);
1130 }
1131
1132 void
AddPrimaryVirtualBaseOffsets(const BaseSubobjectInfo * Info,CharUnits Offset)1133 RecordLayoutBuilder::AddPrimaryVirtualBaseOffsets(const BaseSubobjectInfo *Info,
1134 CharUnits Offset) {
1135 // This base isn't interesting, it has no virtual bases.
1136 if (!Info->Class->getNumVBases())
1137 return;
1138
1139 // First, check if we have a virtual primary base to add offsets for.
1140 if (Info->PrimaryVirtualBaseInfo) {
1141 assert(Info->PrimaryVirtualBaseInfo->IsVirtual &&
1142 "Primary virtual base is not virtual!");
1143 if (Info->PrimaryVirtualBaseInfo->Derived == Info) {
1144 // Add the offset.
1145 assert(!VBases.count(Info->PrimaryVirtualBaseInfo->Class) &&
1146 "primary vbase offset already exists!");
1147 VBases.insert(std::make_pair(Info->PrimaryVirtualBaseInfo->Class,
1148 ASTRecordLayout::VBaseInfo(Offset, false)));
1149
1150 // Traverse the primary virtual base.
1151 AddPrimaryVirtualBaseOffsets(Info->PrimaryVirtualBaseInfo, Offset);
1152 }
1153 }
1154
1155 // Now go through all direct non-virtual bases.
1156 const ASTRecordLayout &Layout = Context.getASTRecordLayout(Info->Class);
1157 for (unsigned I = 0, E = Info->Bases.size(); I != E; ++I) {
1158 const BaseSubobjectInfo *Base = Info->Bases[I];
1159 if (Base->IsVirtual)
1160 continue;
1161
1162 CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(Base->Class);
1163 AddPrimaryVirtualBaseOffsets(Base, BaseOffset);
1164 }
1165 }
1166
1167 /// needsVFTable - Return true if this class needs a vtable or vf-table
1168 /// when laid out as a base class. These are treated the same because
1169 /// they're both always laid out at offset zero.
1170 ///
1171 /// This function assumes that the class has no primary base.
needsVFTable(const CXXRecordDecl * RD) const1172 bool RecordLayoutBuilder::needsVFTable(const CXXRecordDecl *RD) const {
1173 assert(!PrimaryBase);
1174
1175 // In the Itanium ABI, every dynamic class needs a vtable: even if
1176 // this class has no virtual functions as a base class (i.e. it's
1177 // non-polymorphic or only has virtual functions from virtual
1178 // bases),x it still needs a vtable to locate its virtual bases.
1179 if (!isMicrosoftCXXABI())
1180 return RD->isDynamicClass();
1181
1182 // In the MS ABI, we need a vfptr if the class has virtual functions
1183 // other than those declared by its virtual bases. The AST doesn't
1184 // tell us that directly, and checking manually for virtual
1185 // functions that aren't overrides is expensive, but there are
1186 // some important shortcuts:
1187
1188 // - Non-polymorphic classes have no virtual functions at all.
1189 if (!RD->isPolymorphic()) return false;
1190
1191 // - Polymorphic classes with no virtual bases must either declare
1192 // virtual functions directly or inherit them, but in the latter
1193 // case we would have a primary base.
1194 if (RD->getNumVBases() == 0) return true;
1195
1196 return hasNewVirtualFunction(RD);
1197 }
1198
1199 /// Does the given class inherit non-virtually from any of the classes
1200 /// in the given set?
hasNonVirtualBaseInSet(const CXXRecordDecl * RD,const ClassSetTy & set)1201 static bool hasNonVirtualBaseInSet(const CXXRecordDecl *RD,
1202 const ClassSetTy &set) {
1203 for (CXXRecordDecl::base_class_const_iterator
1204 I = RD->bases_begin(), E = RD->bases_end(); I != E; ++I) {
1205 // Ignore virtual links.
1206 if (I->isVirtual()) continue;
1207
1208 // Check whether the set contains the base.
1209 const CXXRecordDecl *base = I->getType()->getAsCXXRecordDecl();
1210 if (set.count(base))
1211 return true;
1212
1213 // Otherwise, recurse and propagate.
1214 if (hasNonVirtualBaseInSet(base, set))
1215 return true;
1216 }
1217
1218 return false;
1219 }
1220
1221 /// Does the given method (B::foo()) already override a method (A::foo())
1222 /// such that A requires a vtordisp in B? If so, we don't need to add a
1223 /// new vtordisp for B in a yet-more-derived class C providing C::foo().
overridesMethodRequiringVtorDisp(const ASTContext & Context,const CXXMethodDecl * M)1224 static bool overridesMethodRequiringVtorDisp(const ASTContext &Context,
1225 const CXXMethodDecl *M) {
1226 CXXMethodDecl::method_iterator
1227 I = M->begin_overridden_methods(), E = M->end_overridden_methods();
1228 if (I == E) return false;
1229
1230 const ASTRecordLayout::VBaseOffsetsMapTy &offsets =
1231 Context.getASTRecordLayout(M->getParent()).getVBaseOffsetsMap();
1232 do {
1233 const CXXMethodDecl *overridden = *I;
1234
1235 // If the overridden method's class isn't recognized as a virtual
1236 // base in the derived class, ignore it.
1237 ASTRecordLayout::VBaseOffsetsMapTy::const_iterator
1238 it = offsets.find(overridden->getParent());
1239 if (it == offsets.end()) continue;
1240
1241 // Otherwise, check if the overridden method's class needs a vtordisp.
1242 if (it->second.hasVtorDisp()) return true;
1243
1244 } while (++I != E);
1245 return false;
1246 }
1247
1248 /// In the Microsoft ABI, decide which of the virtual bases require a
1249 /// vtordisp field.
computeVtordisps(const CXXRecordDecl * RD,ClassSetTy & vtordispVBases)1250 void RecordLayoutBuilder::computeVtordisps(const CXXRecordDecl *RD,
1251 ClassSetTy &vtordispVBases) {
1252 // Bail out if we have no virtual bases.
1253 assert(RD->getNumVBases());
1254
1255 // Build up the set of virtual bases that we haven't decided yet.
1256 ClassSetTy undecidedVBases;
1257 for (CXXRecordDecl::base_class_const_iterator
1258 I = RD->vbases_begin(), E = RD->vbases_end(); I != E; ++I) {
1259 const CXXRecordDecl *vbase = I->getType()->getAsCXXRecordDecl();
1260 undecidedVBases.insert(vbase);
1261 }
1262 assert(!undecidedVBases.empty());
1263
1264 // A virtual base requires a vtordisp field in a derived class if it
1265 // requires a vtordisp field in a base class. Walk all the direct
1266 // bases and collect this information.
1267 for (CXXRecordDecl::base_class_const_iterator I = RD->bases_begin(),
1268 E = RD->bases_end(); I != E; ++I) {
1269 const CXXRecordDecl *base = I->getType()->getAsCXXRecordDecl();
1270 const ASTRecordLayout &baseLayout = Context.getASTRecordLayout(base);
1271
1272 // Iterate over the set of virtual bases provided by this class.
1273 for (ASTRecordLayout::VBaseOffsetsMapTy::const_iterator
1274 VI = baseLayout.getVBaseOffsetsMap().begin(),
1275 VE = baseLayout.getVBaseOffsetsMap().end(); VI != VE; ++VI) {
1276 // If it doesn't need a vtordisp in this base, ignore it.
1277 if (!VI->second.hasVtorDisp()) continue;
1278
1279 // If we've already seen it and decided it needs a vtordisp, ignore it.
1280 if (!undecidedVBases.erase(VI->first))
1281 continue;
1282
1283 // Add it.
1284 vtordispVBases.insert(VI->first);
1285
1286 // Quit as soon as we've decided everything.
1287 if (undecidedVBases.empty())
1288 return;
1289 }
1290 }
1291
1292 // Okay, we have virtual bases that we haven't yet decided about. A
1293 // virtual base requires a vtordisp if any the non-destructor
1294 // virtual methods declared in this class directly override a method
1295 // provided by that virtual base. (If so, we need to emit a thunk
1296 // for that method, to be used in the construction vftable, which
1297 // applies an additional 'vtordisp' this-adjustment.)
1298
1299 // Collect the set of bases directly overridden by any method in this class.
1300 // It's possible that some of these classes won't be virtual bases, or won't be
1301 // provided by virtual bases, or won't be virtual bases in the overridden
1302 // instance but are virtual bases elsewhere. Only the last matters for what
1303 // we're doing, and we can ignore those: if we don't directly override
1304 // a method provided by a virtual copy of a base class, but we do directly
1305 // override a method provided by a non-virtual copy of that base class,
1306 // then we must indirectly override the method provided by the virtual base,
1307 // and so we should already have collected it in the loop above.
1308 ClassSetTy overriddenBases;
1309 for (CXXRecordDecl::method_iterator
1310 M = RD->method_begin(), E = RD->method_end(); M != E; ++M) {
1311 // Ignore non-virtual methods and destructors.
1312 if (isa<CXXDestructorDecl>(*M) || !M->isVirtual())
1313 continue;
1314
1315 for (CXXMethodDecl::method_iterator I = M->begin_overridden_methods(),
1316 E = M->end_overridden_methods(); I != E; ++I) {
1317 const CXXMethodDecl *overriddenMethod = (*I);
1318
1319 // Ignore methods that override methods from vbases that require
1320 // require vtordisps.
1321 if (overridesMethodRequiringVtorDisp(Context, overriddenMethod))
1322 continue;
1323
1324 // As an optimization, check immediately whether we're overriding
1325 // something from the undecided set.
1326 const CXXRecordDecl *overriddenBase = overriddenMethod->getParent();
1327 if (undecidedVBases.erase(overriddenBase)) {
1328 vtordispVBases.insert(overriddenBase);
1329 if (undecidedVBases.empty()) return;
1330
1331 // We can't 'continue;' here because one of our undecided
1332 // vbases might non-virtually inherit from this base.
1333 // Consider:
1334 // struct A { virtual void foo(); };
1335 // struct B : A {};
1336 // struct C : virtual A, virtual B { virtual void foo(); };
1337 // We need a vtordisp for B here.
1338 }
1339
1340 // Otherwise, just collect it.
1341 overriddenBases.insert(overriddenBase);
1342 }
1343 }
1344
1345 // Walk the undecided v-bases and check whether they (non-virtually)
1346 // provide any of the overridden bases. We don't need to consider
1347 // virtual links because the vtordisp inheres to the layout
1348 // subobject containing the base.
1349 for (ClassSetTy::const_iterator
1350 I = undecidedVBases.begin(), E = undecidedVBases.end(); I != E; ++I) {
1351 if (hasNonVirtualBaseInSet(*I, overriddenBases))
1352 vtordispVBases.insert(*I);
1353 }
1354 }
1355
1356 /// hasNewVirtualFunction - Does the given polymorphic class declare a
1357 /// virtual function that does not override a method from any of its
1358 /// base classes?
1359 bool
hasNewVirtualFunction(const CXXRecordDecl * RD,bool IgnoreDestructor) const1360 RecordLayoutBuilder::hasNewVirtualFunction(const CXXRecordDecl *RD,
1361 bool IgnoreDestructor) const {
1362 if (!RD->getNumBases())
1363 return true;
1364
1365 for (CXXRecordDecl::method_iterator method = RD->method_begin();
1366 method != RD->method_end();
1367 ++method) {
1368 if (method->isVirtual() && !method->size_overridden_methods() &&
1369 !(IgnoreDestructor && method->getKind() == Decl::CXXDestructor)) {
1370 return true;
1371 }
1372 }
1373 return false;
1374 }
1375
1376 /// isPossiblePrimaryBase - Is the given base class an acceptable
1377 /// primary base class?
1378 bool
isPossiblePrimaryBase(const CXXRecordDecl * base) const1379 RecordLayoutBuilder::isPossiblePrimaryBase(const CXXRecordDecl *base) const {
1380 // In the Itanium ABI, a class can be a primary base class if it has
1381 // a vtable for any reason.
1382 if (!isMicrosoftCXXABI())
1383 return base->isDynamicClass();
1384
1385 // In the MS ABI, a class can only be a primary base class if it
1386 // provides a vf-table at a static offset. That means it has to be
1387 // non-virtual base. The existence of a separate vb-table means
1388 // that it's possible to get virtual functions only from a virtual
1389 // base, which we have to guard against.
1390
1391 // First off, it has to have virtual functions.
1392 if (!base->isPolymorphic()) return false;
1393
1394 // If it has no virtual bases, then the vfptr must be at a static offset.
1395 if (!base->getNumVBases()) return true;
1396
1397 // Otherwise, the necessary information is cached in the layout.
1398 const ASTRecordLayout &layout = Context.getASTRecordLayout(base);
1399
1400 // If the base has its own vfptr, it can be a primary base.
1401 if (layout.hasOwnVFPtr()) return true;
1402
1403 // If the base has a primary base class, then it can be a primary base.
1404 if (layout.getPrimaryBase()) return true;
1405
1406 // Otherwise it can't.
1407 return false;
1408 }
1409
1410 void
LayoutVirtualBases(const CXXRecordDecl * RD,const CXXRecordDecl * MostDerivedClass)1411 RecordLayoutBuilder::LayoutVirtualBases(const CXXRecordDecl *RD,
1412 const CXXRecordDecl *MostDerivedClass) {
1413 const CXXRecordDecl *PrimaryBase;
1414 bool PrimaryBaseIsVirtual;
1415
1416 if (MostDerivedClass == RD) {
1417 PrimaryBase = this->PrimaryBase;
1418 PrimaryBaseIsVirtual = this->PrimaryBaseIsVirtual;
1419 } else {
1420 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
1421 PrimaryBase = Layout.getPrimaryBase();
1422 PrimaryBaseIsVirtual = Layout.isPrimaryBaseVirtual();
1423 }
1424
1425 for (CXXRecordDecl::base_class_const_iterator I = RD->bases_begin(),
1426 E = RD->bases_end(); I != E; ++I) {
1427 assert(!I->getType()->isDependentType() &&
1428 "Cannot layout class with dependent bases.");
1429
1430 const CXXRecordDecl *BaseDecl =
1431 cast<CXXRecordDecl>(I->getType()->castAs<RecordType>()->getDecl());
1432
1433 if (I->isVirtual()) {
1434 if (PrimaryBase != BaseDecl || !PrimaryBaseIsVirtual) {
1435 bool IndirectPrimaryBase = IndirectPrimaryBases.count(BaseDecl);
1436
1437 // Only lay out the virtual base if it's not an indirect primary base.
1438 if (!IndirectPrimaryBase) {
1439 // Only visit virtual bases once.
1440 if (!VisitedVirtualBases.insert(BaseDecl))
1441 continue;
1442
1443 const BaseSubobjectInfo *BaseInfo = VirtualBaseInfo.lookup(BaseDecl);
1444 assert(BaseInfo && "Did not find virtual base info!");
1445 LayoutVirtualBase(BaseInfo);
1446 }
1447 }
1448 }
1449
1450 if (!BaseDecl->getNumVBases()) {
1451 // This base isn't interesting since it doesn't have any virtual bases.
1452 continue;
1453 }
1454
1455 LayoutVirtualBases(BaseDecl, MostDerivedClass);
1456 }
1457 }
1458
MSLayoutVirtualBases(const CXXRecordDecl * RD)1459 void RecordLayoutBuilder::MSLayoutVirtualBases(const CXXRecordDecl *RD) {
1460 if (!RD->getNumVBases())
1461 return;
1462
1463 ClassSetTy VtordispVBases;
1464 computeVtordisps(RD, VtordispVBases);
1465
1466 // This is substantially simplified because there are no virtual
1467 // primary bases.
1468 for (CXXRecordDecl::base_class_const_iterator I = RD->vbases_begin(),
1469 E = RD->vbases_end(); I != E; ++I) {
1470 const CXXRecordDecl *BaseDecl = I->getType()->getAsCXXRecordDecl();
1471 const BaseSubobjectInfo *BaseInfo = VirtualBaseInfo.lookup(BaseDecl);
1472 assert(BaseInfo && "Did not find virtual base info!");
1473
1474 // If this base requires a vtordisp, add enough space for an int field.
1475 // This is apparently always 32-bits, even on x64.
1476 bool vtordispNeeded = false;
1477 if (VtordispVBases.count(BaseDecl)) {
1478 CharUnits IntSize =
1479 CharUnits::fromQuantity(Context.getTargetInfo().getIntWidth() / 8);
1480
1481 setSize(getSize() + IntSize);
1482 setDataSize(getSize());
1483 vtordispNeeded = true;
1484 }
1485
1486 LayoutVirtualBase(BaseInfo, vtordispNeeded);
1487 }
1488 }
1489
LayoutVirtualBase(const BaseSubobjectInfo * Base,bool IsVtordispNeed)1490 void RecordLayoutBuilder::LayoutVirtualBase(const BaseSubobjectInfo *Base,
1491 bool IsVtordispNeed) {
1492 assert(!Base->Derived && "Trying to lay out a primary virtual base!");
1493
1494 // Layout the base.
1495 CharUnits Offset = LayoutBase(Base);
1496
1497 // Add its base class offset.
1498 assert(!VBases.count(Base->Class) && "vbase offset already exists!");
1499 VBases.insert(std::make_pair(Base->Class,
1500 ASTRecordLayout::VBaseInfo(Offset, IsVtordispNeed)));
1501
1502 if (!isMicrosoftCXXABI())
1503 AddPrimaryVirtualBaseOffsets(Base, Offset);
1504 }
1505
LayoutBase(const BaseSubobjectInfo * Base)1506 CharUnits RecordLayoutBuilder::LayoutBase(const BaseSubobjectInfo *Base) {
1507 const ASTRecordLayout &Layout = Context.getASTRecordLayout(Base->Class);
1508
1509
1510 CharUnits Offset;
1511
1512 // Query the external layout to see if it provides an offset.
1513 bool HasExternalLayout = false;
1514 if (ExternalLayout) {
1515 llvm::DenseMap<const CXXRecordDecl *, CharUnits>::iterator Known;
1516 if (Base->IsVirtual) {
1517 Known = ExternalVirtualBaseOffsets.find(Base->Class);
1518 if (Known != ExternalVirtualBaseOffsets.end()) {
1519 Offset = Known->second;
1520 HasExternalLayout = true;
1521 }
1522 } else {
1523 Known = ExternalBaseOffsets.find(Base->Class);
1524 if (Known != ExternalBaseOffsets.end()) {
1525 Offset = Known->second;
1526 HasExternalLayout = true;
1527 }
1528 }
1529 }
1530
1531 // If we have an empty base class, try to place it at offset 0.
1532 if (Base->Class->isEmpty() &&
1533 (!HasExternalLayout || Offset == CharUnits::Zero()) &&
1534 EmptySubobjects->CanPlaceBaseAtOffset(Base, CharUnits::Zero())) {
1535 setSize(std::max(getSize(), Layout.getSize()));
1536
1537 return CharUnits::Zero();
1538 }
1539
1540 CharUnits UnpackedBaseAlign = Layout.getNonVirtualAlign();
1541 CharUnits BaseAlign = (Packed) ? CharUnits::One() : UnpackedBaseAlign;
1542
1543 // The maximum field alignment overrides base align.
1544 if (!MaxFieldAlignment.isZero()) {
1545 BaseAlign = std::min(BaseAlign, MaxFieldAlignment);
1546 UnpackedBaseAlign = std::min(UnpackedBaseAlign, MaxFieldAlignment);
1547 }
1548
1549 if (!HasExternalLayout) {
1550 // Round up the current record size to the base's alignment boundary.
1551 Offset = getDataSize().RoundUpToAlignment(BaseAlign);
1552
1553 // Try to place the base.
1554 while (!EmptySubobjects->CanPlaceBaseAtOffset(Base, Offset))
1555 Offset += BaseAlign;
1556 } else {
1557 bool Allowed = EmptySubobjects->CanPlaceBaseAtOffset(Base, Offset);
1558 (void)Allowed;
1559 assert(Allowed && "Base subobject externally placed at overlapping offset");
1560 }
1561
1562 if (!Base->Class->isEmpty()) {
1563 // Update the data size.
1564 setDataSize(Offset + Layout.getNonVirtualSize());
1565
1566 setSize(std::max(getSize(), getDataSize()));
1567 } else
1568 setSize(std::max(getSize(), Offset + Layout.getSize()));
1569
1570 // Remember max struct/class alignment.
1571 UpdateAlignment(BaseAlign, UnpackedBaseAlign);
1572
1573 return Offset;
1574 }
1575
InitializeLayout(const Decl * D)1576 void RecordLayoutBuilder::InitializeLayout(const Decl *D) {
1577 if (const RecordDecl *RD = dyn_cast<RecordDecl>(D))
1578 IsUnion = RD->isUnion();
1579
1580 Packed = D->hasAttr<PackedAttr>();
1581
1582 IsMsStruct = D->hasAttr<MsStructAttr>();
1583
1584 // Honor the default struct packing maximum alignment flag.
1585 if (unsigned DefaultMaxFieldAlignment = Context.getLangOpts().PackStruct) {
1586 MaxFieldAlignment = CharUnits::fromQuantity(DefaultMaxFieldAlignment);
1587 }
1588
1589 // mac68k alignment supersedes maximum field alignment and attribute aligned,
1590 // and forces all structures to have 2-byte alignment. The IBM docs on it
1591 // allude to additional (more complicated) semantics, especially with regard
1592 // to bit-fields, but gcc appears not to follow that.
1593 if (D->hasAttr<AlignMac68kAttr>()) {
1594 IsMac68kAlign = true;
1595 MaxFieldAlignment = CharUnits::fromQuantity(2);
1596 Alignment = CharUnits::fromQuantity(2);
1597 } else {
1598 if (const MaxFieldAlignmentAttr *MFAA = D->getAttr<MaxFieldAlignmentAttr>())
1599 MaxFieldAlignment = Context.toCharUnitsFromBits(MFAA->getAlignment());
1600
1601 if (unsigned MaxAlign = D->getMaxAlignment())
1602 UpdateAlignment(Context.toCharUnitsFromBits(MaxAlign));
1603 }
1604
1605 // If there is an external AST source, ask it for the various offsets.
1606 if (const RecordDecl *RD = dyn_cast<RecordDecl>(D))
1607 if (ExternalASTSource *External = Context.getExternalSource()) {
1608 ExternalLayout = External->layoutRecordType(RD,
1609 ExternalSize,
1610 ExternalAlign,
1611 ExternalFieldOffsets,
1612 ExternalBaseOffsets,
1613 ExternalVirtualBaseOffsets);
1614
1615 // Update based on external alignment.
1616 if (ExternalLayout) {
1617 if (ExternalAlign > 0) {
1618 Alignment = Context.toCharUnitsFromBits(ExternalAlign);
1619 UnpackedAlignment = Alignment;
1620 } else {
1621 // The external source didn't have alignment information; infer it.
1622 InferAlignment = true;
1623 }
1624 }
1625 }
1626 }
1627
Layout(const RecordDecl * D)1628 void RecordLayoutBuilder::Layout(const RecordDecl *D) {
1629 InitializeLayout(D);
1630 LayoutFields(D);
1631
1632 // Finally, round the size of the total struct up to the alignment of the
1633 // struct itself.
1634 FinishLayout(D);
1635 }
1636
Layout(const CXXRecordDecl * RD)1637 void RecordLayoutBuilder::Layout(const CXXRecordDecl *RD) {
1638 InitializeLayout(RD);
1639
1640 // Lay out the vtable and the non-virtual bases.
1641 LayoutNonVirtualBases(RD);
1642
1643 LayoutFields(RD);
1644
1645 NonVirtualSize = Context.toCharUnitsFromBits(
1646 llvm::RoundUpToAlignment(getSizeInBits(),
1647 Context.getTargetInfo().getCharAlign()));
1648 NonVirtualAlignment = Alignment;
1649
1650 if (isMicrosoftCXXABI()) {
1651 if (NonVirtualSize != NonVirtualSize.RoundUpToAlignment(Alignment)) {
1652 CharUnits AlignMember =
1653 NonVirtualSize.RoundUpToAlignment(Alignment) - NonVirtualSize;
1654
1655 setSize(getSize() + AlignMember);
1656 setDataSize(getSize());
1657
1658 NonVirtualSize = Context.toCharUnitsFromBits(
1659 llvm::RoundUpToAlignment(getSizeInBits(),
1660 Context.getTargetInfo().getCharAlign()));
1661 }
1662
1663 MSLayoutVirtualBases(RD);
1664 } else {
1665 // Lay out the virtual bases and add the primary virtual base offsets.
1666 LayoutVirtualBases(RD, RD);
1667 }
1668
1669 // Finally, round the size of the total struct up to the alignment
1670 // of the struct itself.
1671 FinishLayout(RD);
1672
1673 #ifndef NDEBUG
1674 // Check that we have base offsets for all bases.
1675 for (CXXRecordDecl::base_class_const_iterator I = RD->bases_begin(),
1676 E = RD->bases_end(); I != E; ++I) {
1677 if (I->isVirtual())
1678 continue;
1679
1680 const CXXRecordDecl *BaseDecl =
1681 cast<CXXRecordDecl>(I->getType()->getAs<RecordType>()->getDecl());
1682
1683 assert(Bases.count(BaseDecl) && "Did not find base offset!");
1684 }
1685
1686 // And all virtual bases.
1687 for (CXXRecordDecl::base_class_const_iterator I = RD->vbases_begin(),
1688 E = RD->vbases_end(); I != E; ++I) {
1689 const CXXRecordDecl *BaseDecl =
1690 cast<CXXRecordDecl>(I->getType()->getAs<RecordType>()->getDecl());
1691
1692 assert(VBases.count(BaseDecl) && "Did not find base offset!");
1693 }
1694 #endif
1695 }
1696
Layout(const ObjCInterfaceDecl * D)1697 void RecordLayoutBuilder::Layout(const ObjCInterfaceDecl *D) {
1698 if (ObjCInterfaceDecl *SD = D->getSuperClass()) {
1699 const ASTRecordLayout &SL = Context.getASTObjCInterfaceLayout(SD);
1700
1701 UpdateAlignment(SL.getAlignment());
1702
1703 // We start laying out ivars not at the end of the superclass
1704 // structure, but at the next byte following the last field.
1705 setSize(SL.getDataSize());
1706 setDataSize(getSize());
1707 }
1708
1709 InitializeLayout(D);
1710 // Layout each ivar sequentially.
1711 for (const ObjCIvarDecl *IVD = D->all_declared_ivar_begin(); IVD;
1712 IVD = IVD->getNextIvar())
1713 LayoutField(IVD);
1714
1715 // Finally, round the size of the total struct up to the alignment of the
1716 // struct itself.
1717 FinishLayout(D);
1718 }
1719
LayoutFields(const RecordDecl * D)1720 void RecordLayoutBuilder::LayoutFields(const RecordDecl *D) {
1721 // Layout each field, for now, just sequentially, respecting alignment. In
1722 // the future, this will need to be tweakable by targets.
1723 const FieldDecl *LastFD = 0;
1724 ZeroLengthBitfield = 0;
1725 unsigned RemainingInAlignment = 0;
1726 for (RecordDecl::field_iterator Field = D->field_begin(),
1727 FieldEnd = D->field_end(); Field != FieldEnd; ++Field) {
1728 if (IsMsStruct) {
1729 FieldDecl *FD = *Field;
1730 if (Context.ZeroBitfieldFollowsBitfield(FD, LastFD))
1731 ZeroLengthBitfield = FD;
1732 // Zero-length bitfields following non-bitfield members are
1733 // ignored:
1734 else if (Context.ZeroBitfieldFollowsNonBitfield(FD, LastFD))
1735 continue;
1736 // FIXME. streamline these conditions into a simple one.
1737 else if (Context.BitfieldFollowsBitfield(FD, LastFD) ||
1738 Context.BitfieldFollowsNonBitfield(FD, LastFD) ||
1739 Context.NonBitfieldFollowsBitfield(FD, LastFD)) {
1740 // 1) Adjacent bit fields are packed into the same 1-, 2-, or
1741 // 4-byte allocation unit if the integral types are the same
1742 // size and if the next bit field fits into the current
1743 // allocation unit without crossing the boundary imposed by the
1744 // common alignment requirements of the bit fields.
1745 // 2) Establish a new alignment for a bitfield following
1746 // a non-bitfield if size of their types differ.
1747 // 3) Establish a new alignment for a non-bitfield following
1748 // a bitfield if size of their types differ.
1749 std::pair<uint64_t, unsigned> FieldInfo =
1750 Context.getTypeInfo(FD->getType());
1751 uint64_t TypeSize = FieldInfo.first;
1752 unsigned FieldAlign = FieldInfo.second;
1753 // This check is needed for 'long long' in -m32 mode.
1754 if (TypeSize > FieldAlign &&
1755 (Context.hasSameType(FD->getType(),
1756 Context.UnsignedLongLongTy)
1757 ||Context.hasSameType(FD->getType(),
1758 Context.LongLongTy)))
1759 FieldAlign = TypeSize;
1760 FieldInfo = Context.getTypeInfo(LastFD->getType());
1761 uint64_t TypeSizeLastFD = FieldInfo.first;
1762 unsigned FieldAlignLastFD = FieldInfo.second;
1763 // This check is needed for 'long long' in -m32 mode.
1764 if (TypeSizeLastFD > FieldAlignLastFD &&
1765 (Context.hasSameType(LastFD->getType(),
1766 Context.UnsignedLongLongTy)
1767 || Context.hasSameType(LastFD->getType(),
1768 Context.LongLongTy)))
1769 FieldAlignLastFD = TypeSizeLastFD;
1770
1771 if (TypeSizeLastFD != TypeSize) {
1772 if (RemainingInAlignment &&
1773 LastFD && LastFD->isBitField() &&
1774 LastFD->getBitWidthValue(Context)) {
1775 // If previous field was a bitfield with some remaining unfilled
1776 // bits, pad the field so current field starts on its type boundary.
1777 uint64_t FieldOffset =
1778 getDataSizeInBits() - UnfilledBitsInLastByte;
1779 uint64_t NewSizeInBits = RemainingInAlignment + FieldOffset;
1780 setDataSize(llvm::RoundUpToAlignment(NewSizeInBits,
1781 Context.getTargetInfo().getCharAlign()));
1782 setSize(std::max(getSizeInBits(), getDataSizeInBits()));
1783 RemainingInAlignment = 0;
1784 }
1785
1786 uint64_t UnpaddedFieldOffset =
1787 getDataSizeInBits() - UnfilledBitsInLastByte;
1788 FieldAlign = std::max(FieldAlign, FieldAlignLastFD);
1789
1790 // The maximum field alignment overrides the aligned attribute.
1791 if (!MaxFieldAlignment.isZero()) {
1792 unsigned MaxFieldAlignmentInBits =
1793 Context.toBits(MaxFieldAlignment);
1794 FieldAlign = std::min(FieldAlign, MaxFieldAlignmentInBits);
1795 }
1796
1797 uint64_t NewSizeInBits =
1798 llvm::RoundUpToAlignment(UnpaddedFieldOffset, FieldAlign);
1799 setDataSize(llvm::RoundUpToAlignment(NewSizeInBits,
1800 Context.getTargetInfo().getCharAlign()));
1801 UnfilledBitsInLastByte = getDataSizeInBits() - NewSizeInBits;
1802 setSize(std::max(getSizeInBits(), getDataSizeInBits()));
1803 }
1804 if (FD->isBitField()) {
1805 uint64_t FieldSize = FD->getBitWidthValue(Context);
1806 assert (FieldSize > 0 && "LayoutFields - ms_struct layout");
1807 if (RemainingInAlignment < FieldSize)
1808 RemainingInAlignment = TypeSize - FieldSize;
1809 else
1810 RemainingInAlignment -= FieldSize;
1811 }
1812 }
1813 else if (FD->isBitField()) {
1814 uint64_t FieldSize = FD->getBitWidthValue(Context);
1815 std::pair<uint64_t, unsigned> FieldInfo =
1816 Context.getTypeInfo(FD->getType());
1817 uint64_t TypeSize = FieldInfo.first;
1818 RemainingInAlignment = TypeSize - FieldSize;
1819 }
1820 LastFD = FD;
1821 }
1822 else if (!Context.getTargetInfo().useBitFieldTypeAlignment() &&
1823 Context.getTargetInfo().useZeroLengthBitfieldAlignment()) {
1824 if (Field->isBitField() && Field->getBitWidthValue(Context) == 0)
1825 ZeroLengthBitfield = *Field;
1826 }
1827 LayoutField(*Field);
1828 }
1829 if (IsMsStruct && RemainingInAlignment &&
1830 LastFD && LastFD->isBitField() && LastFD->getBitWidthValue(Context)) {
1831 // If we ended a bitfield before the full length of the type then
1832 // pad the struct out to the full length of the last type.
1833 uint64_t FieldOffset =
1834 getDataSizeInBits() - UnfilledBitsInLastByte;
1835 uint64_t NewSizeInBits = RemainingInAlignment + FieldOffset;
1836 setDataSize(llvm::RoundUpToAlignment(NewSizeInBits,
1837 Context.getTargetInfo().getCharAlign()));
1838 setSize(std::max(getSizeInBits(), getDataSizeInBits()));
1839 }
1840 }
1841
LayoutWideBitField(uint64_t FieldSize,uint64_t TypeSize,bool FieldPacked,const FieldDecl * D)1842 void RecordLayoutBuilder::LayoutWideBitField(uint64_t FieldSize,
1843 uint64_t TypeSize,
1844 bool FieldPacked,
1845 const FieldDecl *D) {
1846 assert(Context.getLangOpts().CPlusPlus &&
1847 "Can only have wide bit-fields in C++!");
1848
1849 // Itanium C++ ABI 2.4:
1850 // If sizeof(T)*8 < n, let T' be the largest integral POD type with
1851 // sizeof(T')*8 <= n.
1852
1853 QualType IntegralPODTypes[] = {
1854 Context.UnsignedCharTy, Context.UnsignedShortTy, Context.UnsignedIntTy,
1855 Context.UnsignedLongTy, Context.UnsignedLongLongTy
1856 };
1857
1858 QualType Type;
1859 for (unsigned I = 0, E = llvm::array_lengthof(IntegralPODTypes);
1860 I != E; ++I) {
1861 uint64_t Size = Context.getTypeSize(IntegralPODTypes[I]);
1862
1863 if (Size > FieldSize)
1864 break;
1865
1866 Type = IntegralPODTypes[I];
1867 }
1868 assert(!Type.isNull() && "Did not find a type!");
1869
1870 CharUnits TypeAlign = Context.getTypeAlignInChars(Type);
1871
1872 // We're not going to use any of the unfilled bits in the last byte.
1873 UnfilledBitsInLastByte = 0;
1874
1875 uint64_t FieldOffset;
1876 uint64_t UnpaddedFieldOffset = getDataSizeInBits() - UnfilledBitsInLastByte;
1877
1878 if (IsUnion) {
1879 setDataSize(std::max(getDataSizeInBits(), FieldSize));
1880 FieldOffset = 0;
1881 } else {
1882 // The bitfield is allocated starting at the next offset aligned
1883 // appropriately for T', with length n bits.
1884 FieldOffset = llvm::RoundUpToAlignment(getDataSizeInBits(),
1885 Context.toBits(TypeAlign));
1886
1887 uint64_t NewSizeInBits = FieldOffset + FieldSize;
1888
1889 setDataSize(llvm::RoundUpToAlignment(NewSizeInBits,
1890 Context.getTargetInfo().getCharAlign()));
1891 UnfilledBitsInLastByte = getDataSizeInBits() - NewSizeInBits;
1892 }
1893
1894 // Place this field at the current location.
1895 FieldOffsets.push_back(FieldOffset);
1896
1897 CheckFieldPadding(FieldOffset, UnpaddedFieldOffset, FieldOffset,
1898 Context.toBits(TypeAlign), FieldPacked, D);
1899
1900 // Update the size.
1901 setSize(std::max(getSizeInBits(), getDataSizeInBits()));
1902
1903 // Remember max struct/class alignment.
1904 UpdateAlignment(TypeAlign);
1905 }
1906
LayoutBitField(const FieldDecl * D)1907 void RecordLayoutBuilder::LayoutBitField(const FieldDecl *D) {
1908 bool FieldPacked = Packed || D->hasAttr<PackedAttr>();
1909 uint64_t UnpaddedFieldOffset = getDataSizeInBits() - UnfilledBitsInLastByte;
1910 uint64_t FieldOffset = IsUnion ? 0 : UnpaddedFieldOffset;
1911 uint64_t FieldSize = D->getBitWidthValue(Context);
1912
1913 std::pair<uint64_t, unsigned> FieldInfo = Context.getTypeInfo(D->getType());
1914 uint64_t TypeSize = FieldInfo.first;
1915 unsigned FieldAlign = FieldInfo.second;
1916
1917 // This check is needed for 'long long' in -m32 mode.
1918 if (IsMsStruct && (TypeSize > FieldAlign) &&
1919 (Context.hasSameType(D->getType(),
1920 Context.UnsignedLongLongTy)
1921 || Context.hasSameType(D->getType(), Context.LongLongTy)))
1922 FieldAlign = TypeSize;
1923
1924 if (ZeroLengthBitfield) {
1925 std::pair<uint64_t, unsigned> FieldInfo;
1926 unsigned ZeroLengthBitfieldAlignment;
1927 if (IsMsStruct) {
1928 // If a zero-length bitfield is inserted after a bitfield,
1929 // and the alignment of the zero-length bitfield is
1930 // greater than the member that follows it, `bar', `bar'
1931 // will be aligned as the type of the zero-length bitfield.
1932 if (ZeroLengthBitfield != D) {
1933 FieldInfo = Context.getTypeInfo(ZeroLengthBitfield->getType());
1934 ZeroLengthBitfieldAlignment = FieldInfo.second;
1935 // Ignore alignment of subsequent zero-length bitfields.
1936 if ((ZeroLengthBitfieldAlignment > FieldAlign) || (FieldSize == 0))
1937 FieldAlign = ZeroLengthBitfieldAlignment;
1938 if (FieldSize)
1939 ZeroLengthBitfield = 0;
1940 }
1941 } else {
1942 // The alignment of a zero-length bitfield affects the alignment
1943 // of the next member. The alignment is the max of the zero
1944 // length bitfield's alignment and a target specific fixed value.
1945 unsigned ZeroLengthBitfieldBoundary =
1946 Context.getTargetInfo().getZeroLengthBitfieldBoundary();
1947 if (ZeroLengthBitfieldBoundary > FieldAlign)
1948 FieldAlign = ZeroLengthBitfieldBoundary;
1949 }
1950 }
1951
1952 if (FieldSize > TypeSize) {
1953 LayoutWideBitField(FieldSize, TypeSize, FieldPacked, D);
1954 return;
1955 }
1956
1957 // The align if the field is not packed. This is to check if the attribute
1958 // was unnecessary (-Wpacked).
1959 unsigned UnpackedFieldAlign = FieldAlign;
1960 uint64_t UnpackedFieldOffset = FieldOffset;
1961 if (!Context.getTargetInfo().useBitFieldTypeAlignment() && !ZeroLengthBitfield)
1962 UnpackedFieldAlign = 1;
1963
1964 if (FieldPacked ||
1965 (!Context.getTargetInfo().useBitFieldTypeAlignment() && !ZeroLengthBitfield))
1966 FieldAlign = 1;
1967 FieldAlign = std::max(FieldAlign, D->getMaxAlignment());
1968 UnpackedFieldAlign = std::max(UnpackedFieldAlign, D->getMaxAlignment());
1969
1970 // The maximum field alignment overrides the aligned attribute.
1971 if (!MaxFieldAlignment.isZero() && FieldSize != 0) {
1972 unsigned MaxFieldAlignmentInBits = Context.toBits(MaxFieldAlignment);
1973 FieldAlign = std::min(FieldAlign, MaxFieldAlignmentInBits);
1974 UnpackedFieldAlign = std::min(UnpackedFieldAlign, MaxFieldAlignmentInBits);
1975 }
1976
1977 // Check if we need to add padding to give the field the correct alignment.
1978 if (FieldSize == 0 ||
1979 (MaxFieldAlignment.isZero() &&
1980 (FieldOffset & (FieldAlign-1)) + FieldSize > TypeSize))
1981 FieldOffset = llvm::RoundUpToAlignment(FieldOffset, FieldAlign);
1982
1983 if (FieldSize == 0 ||
1984 (MaxFieldAlignment.isZero() &&
1985 (UnpackedFieldOffset & (UnpackedFieldAlign-1)) + FieldSize > TypeSize))
1986 UnpackedFieldOffset = llvm::RoundUpToAlignment(UnpackedFieldOffset,
1987 UnpackedFieldAlign);
1988
1989 // Padding members don't affect overall alignment, unless zero length bitfield
1990 // alignment is enabled.
1991 if (!D->getIdentifier() && !Context.getTargetInfo().useZeroLengthBitfieldAlignment())
1992 FieldAlign = UnpackedFieldAlign = 1;
1993
1994 if (!IsMsStruct)
1995 ZeroLengthBitfield = 0;
1996
1997 if (ExternalLayout)
1998 FieldOffset = updateExternalFieldOffset(D, FieldOffset);
1999
2000 // Place this field at the current location.
2001 FieldOffsets.push_back(FieldOffset);
2002
2003 if (!ExternalLayout)
2004 CheckFieldPadding(FieldOffset, UnpaddedFieldOffset, UnpackedFieldOffset,
2005 UnpackedFieldAlign, FieldPacked, D);
2006
2007 // Update DataSize to include the last byte containing (part of) the bitfield.
2008 if (IsUnion) {
2009 // FIXME: I think FieldSize should be TypeSize here.
2010 setDataSize(std::max(getDataSizeInBits(), FieldSize));
2011 } else {
2012 uint64_t NewSizeInBits = FieldOffset + FieldSize;
2013
2014 setDataSize(llvm::RoundUpToAlignment(NewSizeInBits,
2015 Context.getTargetInfo().getCharAlign()));
2016 UnfilledBitsInLastByte = getDataSizeInBits() - NewSizeInBits;
2017 }
2018
2019 // Update the size.
2020 setSize(std::max(getSizeInBits(), getDataSizeInBits()));
2021
2022 // Remember max struct/class alignment.
2023 UpdateAlignment(Context.toCharUnitsFromBits(FieldAlign),
2024 Context.toCharUnitsFromBits(UnpackedFieldAlign));
2025 }
2026
LayoutField(const FieldDecl * D)2027 void RecordLayoutBuilder::LayoutField(const FieldDecl *D) {
2028 if (D->isBitField()) {
2029 LayoutBitField(D);
2030 return;
2031 }
2032
2033 uint64_t UnpaddedFieldOffset = getDataSizeInBits() - UnfilledBitsInLastByte;
2034
2035 // Reset the unfilled bits.
2036 UnfilledBitsInLastByte = 0;
2037
2038 bool FieldPacked = Packed || D->hasAttr<PackedAttr>();
2039 CharUnits FieldOffset =
2040 IsUnion ? CharUnits::Zero() : getDataSize();
2041 CharUnits FieldSize;
2042 CharUnits FieldAlign;
2043
2044 if (D->getType()->isIncompleteArrayType()) {
2045 // This is a flexible array member; we can't directly
2046 // query getTypeInfo about these, so we figure it out here.
2047 // Flexible array members don't have any size, but they
2048 // have to be aligned appropriately for their element type.
2049 FieldSize = CharUnits::Zero();
2050 const ArrayType* ATy = Context.getAsArrayType(D->getType());
2051 FieldAlign = Context.getTypeAlignInChars(ATy->getElementType());
2052 } else if (const ReferenceType *RT = D->getType()->getAs<ReferenceType>()) {
2053 unsigned AS = RT->getPointeeType().getAddressSpace();
2054 FieldSize =
2055 Context.toCharUnitsFromBits(Context.getTargetInfo().getPointerWidth(AS));
2056 FieldAlign =
2057 Context.toCharUnitsFromBits(Context.getTargetInfo().getPointerAlign(AS));
2058 } else {
2059 std::pair<CharUnits, CharUnits> FieldInfo =
2060 Context.getTypeInfoInChars(D->getType());
2061 FieldSize = FieldInfo.first;
2062 FieldAlign = FieldInfo.second;
2063
2064 if (ZeroLengthBitfield) {
2065 CharUnits ZeroLengthBitfieldBoundary =
2066 Context.toCharUnitsFromBits(
2067 Context.getTargetInfo().getZeroLengthBitfieldBoundary());
2068 if (ZeroLengthBitfieldBoundary == CharUnits::Zero()) {
2069 // If a zero-length bitfield is inserted after a bitfield,
2070 // and the alignment of the zero-length bitfield is
2071 // greater than the member that follows it, `bar', `bar'
2072 // will be aligned as the type of the zero-length bitfield.
2073 std::pair<CharUnits, CharUnits> FieldInfo =
2074 Context.getTypeInfoInChars(ZeroLengthBitfield->getType());
2075 CharUnits ZeroLengthBitfieldAlignment = FieldInfo.second;
2076 if (ZeroLengthBitfieldAlignment > FieldAlign)
2077 FieldAlign = ZeroLengthBitfieldAlignment;
2078 } else if (ZeroLengthBitfieldBoundary > FieldAlign) {
2079 // Align 'bar' based on a fixed alignment specified by the target.
2080 assert(Context.getTargetInfo().useZeroLengthBitfieldAlignment() &&
2081 "ZeroLengthBitfieldBoundary should only be used in conjunction"
2082 " with useZeroLengthBitfieldAlignment.");
2083 FieldAlign = ZeroLengthBitfieldBoundary;
2084 }
2085 ZeroLengthBitfield = 0;
2086 }
2087
2088 if (Context.getLangOpts().MSBitfields || IsMsStruct) {
2089 // If MS bitfield layout is required, figure out what type is being
2090 // laid out and align the field to the width of that type.
2091
2092 // Resolve all typedefs down to their base type and round up the field
2093 // alignment if necessary.
2094 QualType T = Context.getBaseElementType(D->getType());
2095 if (const BuiltinType *BTy = T->getAs<BuiltinType>()) {
2096 CharUnits TypeSize = Context.getTypeSizeInChars(BTy);
2097 if (TypeSize > FieldAlign)
2098 FieldAlign = TypeSize;
2099 }
2100 }
2101 }
2102
2103 // The align if the field is not packed. This is to check if the attribute
2104 // was unnecessary (-Wpacked).
2105 CharUnits UnpackedFieldAlign = FieldAlign;
2106 CharUnits UnpackedFieldOffset = FieldOffset;
2107
2108 if (FieldPacked)
2109 FieldAlign = CharUnits::One();
2110 CharUnits MaxAlignmentInChars =
2111 Context.toCharUnitsFromBits(D->getMaxAlignment());
2112 FieldAlign = std::max(FieldAlign, MaxAlignmentInChars);
2113 UnpackedFieldAlign = std::max(UnpackedFieldAlign, MaxAlignmentInChars);
2114
2115 // The maximum field alignment overrides the aligned attribute.
2116 if (!MaxFieldAlignment.isZero()) {
2117 FieldAlign = std::min(FieldAlign, MaxFieldAlignment);
2118 UnpackedFieldAlign = std::min(UnpackedFieldAlign, MaxFieldAlignment);
2119 }
2120
2121 // Round up the current record size to the field's alignment boundary.
2122 FieldOffset = FieldOffset.RoundUpToAlignment(FieldAlign);
2123 UnpackedFieldOffset =
2124 UnpackedFieldOffset.RoundUpToAlignment(UnpackedFieldAlign);
2125
2126 if (ExternalLayout) {
2127 FieldOffset = Context.toCharUnitsFromBits(
2128 updateExternalFieldOffset(D, Context.toBits(FieldOffset)));
2129
2130 if (!IsUnion && EmptySubobjects) {
2131 // Record the fact that we're placing a field at this offset.
2132 bool Allowed = EmptySubobjects->CanPlaceFieldAtOffset(D, FieldOffset);
2133 (void)Allowed;
2134 assert(Allowed && "Externally-placed field cannot be placed here");
2135 }
2136 } else {
2137 if (!IsUnion && EmptySubobjects) {
2138 // Check if we can place the field at this offset.
2139 while (!EmptySubobjects->CanPlaceFieldAtOffset(D, FieldOffset)) {
2140 // We couldn't place the field at the offset. Try again at a new offset.
2141 FieldOffset += FieldAlign;
2142 }
2143 }
2144 }
2145
2146 // Place this field at the current location.
2147 FieldOffsets.push_back(Context.toBits(FieldOffset));
2148
2149 if (!ExternalLayout)
2150 CheckFieldPadding(Context.toBits(FieldOffset), UnpaddedFieldOffset,
2151 Context.toBits(UnpackedFieldOffset),
2152 Context.toBits(UnpackedFieldAlign), FieldPacked, D);
2153
2154 // Reserve space for this field.
2155 uint64_t FieldSizeInBits = Context.toBits(FieldSize);
2156 if (IsUnion)
2157 setDataSize(std::max(getDataSizeInBits(), FieldSizeInBits));
2158 else
2159 setDataSize(FieldOffset + FieldSize);
2160
2161 // Update the size.
2162 setSize(std::max(getSizeInBits(), getDataSizeInBits()));
2163
2164 // Remember max struct/class alignment.
2165 UpdateAlignment(FieldAlign, UnpackedFieldAlign);
2166 }
2167
FinishLayout(const NamedDecl * D)2168 void RecordLayoutBuilder::FinishLayout(const NamedDecl *D) {
2169 if (ExternalLayout) {
2170 setSize(ExternalSize);
2171 return;
2172 }
2173
2174 // In C++, records cannot be of size 0.
2175 if (Context.getLangOpts().CPlusPlus && getSizeInBits() == 0) {
2176 if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D)) {
2177 // Compatibility with gcc requires a class (pod or non-pod)
2178 // which is not empty but of size 0; such as having fields of
2179 // array of zero-length, remains of Size 0
2180 if (RD->isEmpty())
2181 setSize(CharUnits::One());
2182 }
2183 else
2184 setSize(CharUnits::One());
2185 }
2186
2187 // MSVC doesn't round up to the alignment of the record with virtual bases.
2188 if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D)) {
2189 if (isMicrosoftCXXABI() && RD->getNumVBases())
2190 return;
2191 }
2192
2193 // Finally, round the size of the record up to the alignment of the
2194 // record itself.
2195 uint64_t UnpaddedSize = getSizeInBits() - UnfilledBitsInLastByte;
2196 uint64_t UnpackedSizeInBits =
2197 llvm::RoundUpToAlignment(getSizeInBits(),
2198 Context.toBits(UnpackedAlignment));
2199 CharUnits UnpackedSize = Context.toCharUnitsFromBits(UnpackedSizeInBits);
2200 setSize(llvm::RoundUpToAlignment(getSizeInBits(), Context.toBits(Alignment)));
2201
2202 unsigned CharBitNum = Context.getTargetInfo().getCharWidth();
2203 if (const RecordDecl *RD = dyn_cast<RecordDecl>(D)) {
2204 // Warn if padding was introduced to the struct/class/union.
2205 if (getSizeInBits() > UnpaddedSize) {
2206 unsigned PadSize = getSizeInBits() - UnpaddedSize;
2207 bool InBits = true;
2208 if (PadSize % CharBitNum == 0) {
2209 PadSize = PadSize / CharBitNum;
2210 InBits = false;
2211 }
2212 Diag(RD->getLocation(), diag::warn_padded_struct_size)
2213 << Context.getTypeDeclType(RD)
2214 << PadSize
2215 << (InBits ? 1 : 0) /*(byte|bit)*/ << (PadSize > 1); // plural or not
2216 }
2217
2218 // Warn if we packed it unnecessarily. If the alignment is 1 byte don't
2219 // bother since there won't be alignment issues.
2220 if (Packed && UnpackedAlignment > CharUnits::One() &&
2221 getSize() == UnpackedSize)
2222 Diag(D->getLocation(), diag::warn_unnecessary_packed)
2223 << Context.getTypeDeclType(RD);
2224 }
2225 }
2226
UpdateAlignment(CharUnits NewAlignment,CharUnits UnpackedNewAlignment)2227 void RecordLayoutBuilder::UpdateAlignment(CharUnits NewAlignment,
2228 CharUnits UnpackedNewAlignment) {
2229 // The alignment is not modified when using 'mac68k' alignment or when
2230 // we have an externally-supplied layout that also provides overall alignment.
2231 if (IsMac68kAlign || (ExternalLayout && !InferAlignment))
2232 return;
2233
2234 if (NewAlignment > Alignment) {
2235 assert(llvm::isPowerOf2_32(NewAlignment.getQuantity() &&
2236 "Alignment not a power of 2"));
2237 Alignment = NewAlignment;
2238 }
2239
2240 if (UnpackedNewAlignment > UnpackedAlignment) {
2241 assert(llvm::isPowerOf2_32(UnpackedNewAlignment.getQuantity() &&
2242 "Alignment not a power of 2"));
2243 UnpackedAlignment = UnpackedNewAlignment;
2244 }
2245 }
2246
2247 uint64_t
updateExternalFieldOffset(const FieldDecl * Field,uint64_t ComputedOffset)2248 RecordLayoutBuilder::updateExternalFieldOffset(const FieldDecl *Field,
2249 uint64_t ComputedOffset) {
2250 assert(ExternalFieldOffsets.find(Field) != ExternalFieldOffsets.end() &&
2251 "Field does not have an external offset");
2252
2253 uint64_t ExternalFieldOffset = ExternalFieldOffsets[Field];
2254
2255 if (InferAlignment && ExternalFieldOffset < ComputedOffset) {
2256 // The externally-supplied field offset is before the field offset we
2257 // computed. Assume that the structure is packed.
2258 Alignment = CharUnits::fromQuantity(1);
2259 InferAlignment = false;
2260 }
2261
2262 // Use the externally-supplied field offset.
2263 return ExternalFieldOffset;
2264 }
2265
2266 /// \brief Get diagnostic %select index for tag kind for
2267 /// field padding diagnostic message.
2268 /// WARNING: Indexes apply to particular diagnostics only!
2269 ///
2270 /// \returns diagnostic %select index.
getPaddingDiagFromTagKind(TagTypeKind Tag)2271 static unsigned getPaddingDiagFromTagKind(TagTypeKind Tag) {
2272 switch (Tag) {
2273 case TTK_Struct: return 0;
2274 case TTK_Interface: return 1;
2275 case TTK_Class: return 2;
2276 default: llvm_unreachable("Invalid tag kind for field padding diagnostic!");
2277 }
2278 }
2279
CheckFieldPadding(uint64_t Offset,uint64_t UnpaddedOffset,uint64_t UnpackedOffset,unsigned UnpackedAlign,bool isPacked,const FieldDecl * D)2280 void RecordLayoutBuilder::CheckFieldPadding(uint64_t Offset,
2281 uint64_t UnpaddedOffset,
2282 uint64_t UnpackedOffset,
2283 unsigned UnpackedAlign,
2284 bool isPacked,
2285 const FieldDecl *D) {
2286 // We let objc ivars without warning, objc interfaces generally are not used
2287 // for padding tricks.
2288 if (isa<ObjCIvarDecl>(D))
2289 return;
2290
2291 // Don't warn about structs created without a SourceLocation. This can
2292 // be done by clients of the AST, such as codegen.
2293 if (D->getLocation().isInvalid())
2294 return;
2295
2296 unsigned CharBitNum = Context.getTargetInfo().getCharWidth();
2297
2298 // Warn if padding was introduced to the struct/class.
2299 if (!IsUnion && Offset > UnpaddedOffset) {
2300 unsigned PadSize = Offset - UnpaddedOffset;
2301 bool InBits = true;
2302 if (PadSize % CharBitNum == 0) {
2303 PadSize = PadSize / CharBitNum;
2304 InBits = false;
2305 }
2306 if (D->getIdentifier())
2307 Diag(D->getLocation(), diag::warn_padded_struct_field)
2308 << getPaddingDiagFromTagKind(D->getParent()->getTagKind())
2309 << Context.getTypeDeclType(D->getParent())
2310 << PadSize
2311 << (InBits ? 1 : 0) /*(byte|bit)*/ << (PadSize > 1) // plural or not
2312 << D->getIdentifier();
2313 else
2314 Diag(D->getLocation(), diag::warn_padded_struct_anon_field)
2315 << getPaddingDiagFromTagKind(D->getParent()->getTagKind())
2316 << Context.getTypeDeclType(D->getParent())
2317 << PadSize
2318 << (InBits ? 1 : 0) /*(byte|bit)*/ << (PadSize > 1); // plural or not
2319 }
2320
2321 // Warn if we packed it unnecessarily. If the alignment is 1 byte don't
2322 // bother since there won't be alignment issues.
2323 if (isPacked && UnpackedAlign > CharBitNum && Offset == UnpackedOffset)
2324 Diag(D->getLocation(), diag::warn_unnecessary_packed)
2325 << D->getIdentifier();
2326 }
2327
2328 const CXXMethodDecl *
ComputeKeyFunction(const CXXRecordDecl * RD)2329 RecordLayoutBuilder::ComputeKeyFunction(const CXXRecordDecl *RD) {
2330 // If a class isn't polymorphic it doesn't have a key function.
2331 if (!RD->isPolymorphic())
2332 return 0;
2333
2334 // A class that is not externally visible doesn't have a key function. (Or
2335 // at least, there's no point to assigning a key function to such a class;
2336 // this doesn't affect the ABI.)
2337 if (RD->getLinkage() != ExternalLinkage)
2338 return 0;
2339
2340 // Template instantiations don't have key functions,see Itanium C++ ABI 5.2.6.
2341 // Same behavior as GCC.
2342 TemplateSpecializationKind TSK = RD->getTemplateSpecializationKind();
2343 if (TSK == TSK_ImplicitInstantiation ||
2344 TSK == TSK_ExplicitInstantiationDefinition)
2345 return 0;
2346
2347 for (CXXRecordDecl::method_iterator I = RD->method_begin(),
2348 E = RD->method_end(); I != E; ++I) {
2349 const CXXMethodDecl *MD = *I;
2350
2351 if (!MD->isVirtual())
2352 continue;
2353
2354 if (MD->isPure())
2355 continue;
2356
2357 // Ignore implicit member functions, they are always marked as inline, but
2358 // they don't have a body until they're defined.
2359 if (MD->isImplicit())
2360 continue;
2361
2362 if (MD->isInlineSpecified())
2363 continue;
2364
2365 if (MD->hasInlineBody())
2366 continue;
2367
2368 // Ignore inline deleted or defaulted functions.
2369 if (!MD->isUserProvided())
2370 continue;
2371
2372 // We found it.
2373 return MD;
2374 }
2375
2376 return 0;
2377 }
2378
2379 DiagnosticBuilder
Diag(SourceLocation Loc,unsigned DiagID)2380 RecordLayoutBuilder::Diag(SourceLocation Loc, unsigned DiagID) {
2381 return Context.getDiagnostics().Report(Loc, DiagID);
2382 }
2383
2384 /// getASTRecordLayout - Get or compute information about the layout of the
2385 /// specified record (struct/union/class), which indicates its size and field
2386 /// position information.
2387 const ASTRecordLayout &
getASTRecordLayout(const RecordDecl * D) const2388 ASTContext::getASTRecordLayout(const RecordDecl *D) const {
2389 // These asserts test different things. A record has a definition
2390 // as soon as we begin to parse the definition. That definition is
2391 // not a complete definition (which is what isDefinition() tests)
2392 // until we *finish* parsing the definition.
2393
2394 if (D->hasExternalLexicalStorage() && !D->getDefinition())
2395 getExternalSource()->CompleteType(const_cast<RecordDecl*>(D));
2396
2397 D = D->getDefinition();
2398 assert(D && "Cannot get layout of forward declarations!");
2399 assert(D->isCompleteDefinition() && "Cannot layout type before complete!");
2400
2401 // Look up this layout, if already laid out, return what we have.
2402 // Note that we can't save a reference to the entry because this function
2403 // is recursive.
2404 const ASTRecordLayout *Entry = ASTRecordLayouts[D];
2405 if (Entry) return *Entry;
2406
2407 const ASTRecordLayout *NewEntry;
2408
2409 if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D)) {
2410 EmptySubobjectMap EmptySubobjects(*this, RD);
2411 RecordLayoutBuilder Builder(*this, &EmptySubobjects);
2412 Builder.Layout(RD);
2413
2414 // MSVC gives the vb-table pointer an alignment equal to that of
2415 // the non-virtual part of the structure. That's an inherently
2416 // multi-pass operation. If our first pass doesn't give us
2417 // adequate alignment, try again with the specified minimum
2418 // alignment. This is *much* more maintainable than computing the
2419 // alignment in advance in a separately-coded pass; it's also
2420 // significantly more efficient in the common case where the
2421 // vb-table doesn't need extra padding.
2422 if (Builder.VBPtrOffset != CharUnits::fromQuantity(-1) &&
2423 (Builder.VBPtrOffset % Builder.NonVirtualAlignment) != 0) {
2424 Builder.resetWithTargetAlignment(Builder.NonVirtualAlignment);
2425 Builder.Layout(RD);
2426 }
2427
2428 // FIXME: This is not always correct. See the part about bitfields at
2429 // http://www.codesourcery.com/public/cxx-abi/abi.html#POD for more info.
2430 // FIXME: IsPODForThePurposeOfLayout should be stored in the record layout.
2431 // This does not affect the calculations of MSVC layouts
2432 bool IsPODForThePurposeOfLayout =
2433 (!Builder.isMicrosoftCXXABI() && cast<CXXRecordDecl>(D)->isPOD());
2434
2435 // FIXME: This should be done in FinalizeLayout.
2436 CharUnits DataSize =
2437 IsPODForThePurposeOfLayout ? Builder.getSize() : Builder.getDataSize();
2438 CharUnits NonVirtualSize =
2439 IsPODForThePurposeOfLayout ? DataSize : Builder.NonVirtualSize;
2440
2441 NewEntry =
2442 new (*this) ASTRecordLayout(*this, Builder.getSize(),
2443 Builder.Alignment,
2444 Builder.HasOwnVFPtr,
2445 Builder.VBPtrOffset,
2446 DataSize,
2447 Builder.FieldOffsets.data(),
2448 Builder.FieldOffsets.size(),
2449 NonVirtualSize,
2450 Builder.NonVirtualAlignment,
2451 EmptySubobjects.SizeOfLargestEmptySubobject,
2452 Builder.PrimaryBase,
2453 Builder.PrimaryBaseIsVirtual,
2454 Builder.Bases, Builder.VBases);
2455 } else {
2456 RecordLayoutBuilder Builder(*this, /*EmptySubobjects=*/0);
2457 Builder.Layout(D);
2458
2459 NewEntry =
2460 new (*this) ASTRecordLayout(*this, Builder.getSize(),
2461 Builder.Alignment,
2462 Builder.getSize(),
2463 Builder.FieldOffsets.data(),
2464 Builder.FieldOffsets.size());
2465 }
2466
2467 ASTRecordLayouts[D] = NewEntry;
2468
2469 if (getLangOpts().DumpRecordLayouts) {
2470 llvm::errs() << "\n*** Dumping AST Record Layout\n";
2471 DumpRecordLayout(D, llvm::errs(), getLangOpts().DumpRecordLayoutsSimple);
2472 }
2473
2474 return *NewEntry;
2475 }
2476
getKeyFunction(const CXXRecordDecl * RD)2477 const CXXMethodDecl *ASTContext::getKeyFunction(const CXXRecordDecl *RD) {
2478 RD = cast<CXXRecordDecl>(RD->getDefinition());
2479 assert(RD && "Cannot get key function for forward declarations!");
2480
2481 const CXXMethodDecl *&Entry = KeyFunctions[RD];
2482 if (!Entry)
2483 Entry = RecordLayoutBuilder::ComputeKeyFunction(RD);
2484
2485 return Entry;
2486 }
2487
getFieldOffset(const ASTContext & C,const FieldDecl * FD)2488 static uint64_t getFieldOffset(const ASTContext &C, const FieldDecl *FD) {
2489 const ASTRecordLayout &Layout = C.getASTRecordLayout(FD->getParent());
2490 return Layout.getFieldOffset(FD->getFieldIndex());
2491 }
2492
getFieldOffset(const ValueDecl * VD) const2493 uint64_t ASTContext::getFieldOffset(const ValueDecl *VD) const {
2494 uint64_t OffsetInBits;
2495 if (const FieldDecl *FD = dyn_cast<FieldDecl>(VD)) {
2496 OffsetInBits = ::getFieldOffset(*this, FD);
2497 } else {
2498 const IndirectFieldDecl *IFD = cast<IndirectFieldDecl>(VD);
2499
2500 OffsetInBits = 0;
2501 for (IndirectFieldDecl::chain_iterator CI = IFD->chain_begin(),
2502 CE = IFD->chain_end();
2503 CI != CE; ++CI)
2504 OffsetInBits += ::getFieldOffset(*this, cast<FieldDecl>(*CI));
2505 }
2506
2507 return OffsetInBits;
2508 }
2509
2510 /// getObjCLayout - Get or compute information about the layout of the
2511 /// given interface.
2512 ///
2513 /// \param Impl - If given, also include the layout of the interface's
2514 /// implementation. This may differ by including synthesized ivars.
2515 const ASTRecordLayout &
getObjCLayout(const ObjCInterfaceDecl * D,const ObjCImplementationDecl * Impl) const2516 ASTContext::getObjCLayout(const ObjCInterfaceDecl *D,
2517 const ObjCImplementationDecl *Impl) const {
2518 // Retrieve the definition
2519 if (D->hasExternalLexicalStorage() && !D->getDefinition())
2520 getExternalSource()->CompleteType(const_cast<ObjCInterfaceDecl*>(D));
2521 D = D->getDefinition();
2522 assert(D && D->isThisDeclarationADefinition() && "Invalid interface decl!");
2523
2524 // Look up this layout, if already laid out, return what we have.
2525 const ObjCContainerDecl *Key =
2526 Impl ? (const ObjCContainerDecl*) Impl : (const ObjCContainerDecl*) D;
2527 if (const ASTRecordLayout *Entry = ObjCLayouts[Key])
2528 return *Entry;
2529
2530 // Add in synthesized ivar count if laying out an implementation.
2531 if (Impl) {
2532 unsigned SynthCount = CountNonClassIvars(D);
2533 // If there aren't any sythesized ivars then reuse the interface
2534 // entry. Note we can't cache this because we simply free all
2535 // entries later; however we shouldn't look up implementations
2536 // frequently.
2537 if (SynthCount == 0)
2538 return getObjCLayout(D, 0);
2539 }
2540
2541 RecordLayoutBuilder Builder(*this, /*EmptySubobjects=*/0);
2542 Builder.Layout(D);
2543
2544 const ASTRecordLayout *NewEntry =
2545 new (*this) ASTRecordLayout(*this, Builder.getSize(),
2546 Builder.Alignment,
2547 Builder.getDataSize(),
2548 Builder.FieldOffsets.data(),
2549 Builder.FieldOffsets.size());
2550
2551 ObjCLayouts[Key] = NewEntry;
2552
2553 return *NewEntry;
2554 }
2555
PrintOffset(raw_ostream & OS,CharUnits Offset,unsigned IndentLevel)2556 static void PrintOffset(raw_ostream &OS,
2557 CharUnits Offset, unsigned IndentLevel) {
2558 OS << llvm::format("%4" PRId64 " | ", (int64_t)Offset.getQuantity());
2559 OS.indent(IndentLevel * 2);
2560 }
2561
DumpCXXRecordLayout(raw_ostream & OS,const CXXRecordDecl * RD,const ASTContext & C,CharUnits Offset,unsigned IndentLevel,const char * Description,bool IncludeVirtualBases)2562 static void DumpCXXRecordLayout(raw_ostream &OS,
2563 const CXXRecordDecl *RD, const ASTContext &C,
2564 CharUnits Offset,
2565 unsigned IndentLevel,
2566 const char* Description,
2567 bool IncludeVirtualBases) {
2568 const ASTRecordLayout &Layout = C.getASTRecordLayout(RD);
2569
2570 PrintOffset(OS, Offset, IndentLevel);
2571 OS << C.getTypeDeclType(const_cast<CXXRecordDecl *>(RD)).getAsString();
2572 if (Description)
2573 OS << ' ' << Description;
2574 if (RD->isEmpty())
2575 OS << " (empty)";
2576 OS << '\n';
2577
2578 IndentLevel++;
2579
2580 const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase();
2581 bool HasVfptr = Layout.hasOwnVFPtr();
2582 bool HasVbptr = Layout.getVBPtrOffset() != CharUnits::fromQuantity(-1);
2583
2584 // Vtable pointer.
2585 if (RD->isDynamicClass() && !PrimaryBase &&
2586 C.getTargetInfo().getCXXABI() != CXXABI_Microsoft) {
2587 PrintOffset(OS, Offset, IndentLevel);
2588 OS << '(' << *RD << " vtable pointer)\n";
2589 }
2590
2591 // Dump (non-virtual) bases
2592 for (CXXRecordDecl::base_class_const_iterator I = RD->bases_begin(),
2593 E = RD->bases_end(); I != E; ++I) {
2594 assert(!I->getType()->isDependentType() &&
2595 "Cannot layout class with dependent bases.");
2596 if (I->isVirtual())
2597 continue;
2598
2599 const CXXRecordDecl *Base =
2600 cast<CXXRecordDecl>(I->getType()->getAs<RecordType>()->getDecl());
2601
2602 CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(Base);
2603
2604 DumpCXXRecordLayout(OS, Base, C, BaseOffset, IndentLevel,
2605 Base == PrimaryBase ? "(primary base)" : "(base)",
2606 /*IncludeVirtualBases=*/false);
2607 }
2608
2609 // vfptr and vbptr (for Microsoft C++ ABI)
2610 if (HasVfptr) {
2611 PrintOffset(OS, Offset, IndentLevel);
2612 OS << '(' << *RD << " vftable pointer)\n";
2613 }
2614 if (HasVbptr) {
2615 PrintOffset(OS, Offset + Layout.getVBPtrOffset(), IndentLevel);
2616 OS << '(' << *RD << " vbtable pointer)\n";
2617 }
2618
2619 // Dump fields.
2620 uint64_t FieldNo = 0;
2621 for (CXXRecordDecl::field_iterator I = RD->field_begin(),
2622 E = RD->field_end(); I != E; ++I, ++FieldNo) {
2623 const FieldDecl &Field = **I;
2624 CharUnits FieldOffset = Offset +
2625 C.toCharUnitsFromBits(Layout.getFieldOffset(FieldNo));
2626
2627 if (const RecordType *RT = Field.getType()->getAs<RecordType>()) {
2628 if (const CXXRecordDecl *D = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
2629 DumpCXXRecordLayout(OS, D, C, FieldOffset, IndentLevel,
2630 Field.getName().data(),
2631 /*IncludeVirtualBases=*/true);
2632 continue;
2633 }
2634 }
2635
2636 PrintOffset(OS, FieldOffset, IndentLevel);
2637 OS << Field.getType().getAsString() << ' ' << Field << '\n';
2638 }
2639
2640 if (!IncludeVirtualBases)
2641 return;
2642
2643 // Dump virtual bases.
2644 const ASTRecordLayout::VBaseOffsetsMapTy &vtordisps =
2645 Layout.getVBaseOffsetsMap();
2646 for (CXXRecordDecl::base_class_const_iterator I = RD->vbases_begin(),
2647 E = RD->vbases_end(); I != E; ++I) {
2648 assert(I->isVirtual() && "Found non-virtual class!");
2649 const CXXRecordDecl *VBase =
2650 cast<CXXRecordDecl>(I->getType()->getAs<RecordType>()->getDecl());
2651
2652 CharUnits VBaseOffset = Offset + Layout.getVBaseClassOffset(VBase);
2653
2654 if (vtordisps.find(VBase)->second.hasVtorDisp()) {
2655 PrintOffset(OS, VBaseOffset - CharUnits::fromQuantity(4), IndentLevel);
2656 OS << "(vtordisp for vbase " << *VBase << ")\n";
2657 }
2658
2659 DumpCXXRecordLayout(OS, VBase, C, VBaseOffset, IndentLevel,
2660 VBase == PrimaryBase ?
2661 "(primary virtual base)" : "(virtual base)",
2662 /*IncludeVirtualBases=*/false);
2663 }
2664
2665 OS << " sizeof=" << Layout.getSize().getQuantity();
2666 OS << ", dsize=" << Layout.getDataSize().getQuantity();
2667 OS << ", align=" << Layout.getAlignment().getQuantity() << '\n';
2668 OS << " nvsize=" << Layout.getNonVirtualSize().getQuantity();
2669 OS << ", nvalign=" << Layout.getNonVirtualAlign().getQuantity() << '\n';
2670 OS << '\n';
2671 }
2672
DumpRecordLayout(const RecordDecl * RD,raw_ostream & OS,bool Simple) const2673 void ASTContext::DumpRecordLayout(const RecordDecl *RD,
2674 raw_ostream &OS,
2675 bool Simple) const {
2676 const ASTRecordLayout &Info = getASTRecordLayout(RD);
2677
2678 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
2679 if (!Simple)
2680 return DumpCXXRecordLayout(OS, CXXRD, *this, CharUnits(), 0, 0,
2681 /*IncludeVirtualBases=*/true);
2682
2683 OS << "Type: " << getTypeDeclType(RD).getAsString() << "\n";
2684 if (!Simple) {
2685 OS << "Record: ";
2686 RD->dump();
2687 }
2688 OS << "\nLayout: ";
2689 OS << "<ASTRecordLayout\n";
2690 OS << " Size:" << toBits(Info.getSize()) << "\n";
2691 OS << " DataSize:" << toBits(Info.getDataSize()) << "\n";
2692 OS << " Alignment:" << toBits(Info.getAlignment()) << "\n";
2693 OS << " FieldOffsets: [";
2694 for (unsigned i = 0, e = Info.getFieldCount(); i != e; ++i) {
2695 if (i) OS << ", ";
2696 OS << Info.getFieldOffset(i);
2697 }
2698 OS << "]>\n";
2699 }
2700