• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===------------ FixedLenDecoderEmitter.cpp - Decoder Generator ----------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // It contains the tablegen backend that emits the decoder functions for
11 // targets with fixed length instruction set.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #define DEBUG_TYPE "decoder-emitter"
16 
17 #include "CodeGenTarget.h"
18 #include "llvm/TableGen/Record.h"
19 #include "llvm/ADT/APInt.h"
20 #include "llvm/ADT/SmallString.h"
21 #include "llvm/ADT/StringExtras.h"
22 #include "llvm/ADT/StringRef.h"
23 #include "llvm/ADT/Twine.h"
24 #include "llvm/MC/MCFixedLenDisassembler.h"
25 #include "llvm/Support/DataTypes.h"
26 #include "llvm/Support/Debug.h"
27 #include "llvm/Support/FormattedStream.h"
28 #include "llvm/Support/LEB128.h"
29 #include "llvm/Support/raw_ostream.h"
30 #include "llvm/TableGen/TableGenBackend.h"
31 
32 #include <vector>
33 #include <map>
34 #include <string>
35 
36 using namespace llvm;
37 
38 namespace {
39 struct EncodingField {
40   unsigned Base, Width, Offset;
EncodingField__anon214b46220111::EncodingField41   EncodingField(unsigned B, unsigned W, unsigned O)
42     : Base(B), Width(W), Offset(O) { }
43 };
44 
45 struct OperandInfo {
46   std::vector<EncodingField> Fields;
47   std::string Decoder;
48 
OperandInfo__anon214b46220111::OperandInfo49   OperandInfo(std::string D)
50     : Decoder(D) { }
51 
addField__anon214b46220111::OperandInfo52   void addField(unsigned Base, unsigned Width, unsigned Offset) {
53     Fields.push_back(EncodingField(Base, Width, Offset));
54   }
55 
numFields__anon214b46220111::OperandInfo56   unsigned numFields() const { return Fields.size(); }
57 
58   typedef std::vector<EncodingField>::const_iterator const_iterator;
59 
begin__anon214b46220111::OperandInfo60   const_iterator begin() const { return Fields.begin(); }
end__anon214b46220111::OperandInfo61   const_iterator end() const   { return Fields.end();   }
62 };
63 
64 typedef std::vector<uint8_t> DecoderTable;
65 typedef uint32_t DecoderFixup;
66 typedef std::vector<DecoderFixup> FixupList;
67 typedef std::vector<FixupList> FixupScopeList;
68 typedef SetVector<std::string> PredicateSet;
69 typedef SetVector<std::string> DecoderSet;
70 struct DecoderTableInfo {
71   DecoderTable Table;
72   FixupScopeList FixupStack;
73   PredicateSet Predicates;
74   DecoderSet Decoders;
75 };
76 
77 } // End anonymous namespace
78 
79 namespace {
80 class FixedLenDecoderEmitter {
81   const std::vector<const CodeGenInstruction*> *NumberedInstructions;
82 public:
83 
84   // Defaults preserved here for documentation, even though they aren't
85   // strictly necessary given the way that this is currently being called.
FixedLenDecoderEmitter(RecordKeeper & R,std::string PredicateNamespace,std::string GPrefix="if (",std::string GPostfix=" == MCDisassembler::Fail)"" return MCDisassembler::Fail;",std::string ROK="MCDisassembler::Success",std::string RFail="MCDisassembler::Fail",std::string L="")86   FixedLenDecoderEmitter(RecordKeeper &R,
87                          std::string PredicateNamespace,
88                          std::string GPrefix  = "if (",
89                          std::string GPostfix = " == MCDisassembler::Fail)"
90                          " return MCDisassembler::Fail;",
91                          std::string ROK      = "MCDisassembler::Success",
92                          std::string RFail    = "MCDisassembler::Fail",
93                          std::string L        = "") :
94     Target(R),
95     PredicateNamespace(PredicateNamespace),
96     GuardPrefix(GPrefix), GuardPostfix(GPostfix),
97     ReturnOK(ROK), ReturnFail(RFail), Locals(L) {}
98 
99   // Emit the decoder state machine table.
100   void emitTable(formatted_raw_ostream &o, DecoderTable &Table,
101                  unsigned Indentation, unsigned BitWidth,
102                  StringRef Namespace) const;
103   void emitPredicateFunction(formatted_raw_ostream &OS,
104                              PredicateSet &Predicates,
105                              unsigned Indentation) const;
106   void emitDecoderFunction(formatted_raw_ostream &OS,
107                            DecoderSet &Decoders,
108                            unsigned Indentation) const;
109 
110   // run - Output the code emitter
111   void run(raw_ostream &o);
112 
113 private:
114   CodeGenTarget Target;
115 public:
116   std::string PredicateNamespace;
117   std::string GuardPrefix, GuardPostfix;
118   std::string ReturnOK, ReturnFail;
119   std::string Locals;
120 };
121 } // End anonymous namespace
122 
123 // The set (BIT_TRUE, BIT_FALSE, BIT_UNSET) represents a ternary logic system
124 // for a bit value.
125 //
126 // BIT_UNFILTERED is used as the init value for a filter position.  It is used
127 // only for filter processings.
128 typedef enum {
129   BIT_TRUE,      // '1'
130   BIT_FALSE,     // '0'
131   BIT_UNSET,     // '?'
132   BIT_UNFILTERED // unfiltered
133 } bit_value_t;
134 
ValueSet(bit_value_t V)135 static bool ValueSet(bit_value_t V) {
136   return (V == BIT_TRUE || V == BIT_FALSE);
137 }
ValueNotSet(bit_value_t V)138 static bool ValueNotSet(bit_value_t V) {
139   return (V == BIT_UNSET);
140 }
Value(bit_value_t V)141 static int Value(bit_value_t V) {
142   return ValueNotSet(V) ? -1 : (V == BIT_FALSE ? 0 : 1);
143 }
bitFromBits(const BitsInit & bits,unsigned index)144 static bit_value_t bitFromBits(const BitsInit &bits, unsigned index) {
145   if (BitInit *bit = dynamic_cast<BitInit*>(bits.getBit(index)))
146     return bit->getValue() ? BIT_TRUE : BIT_FALSE;
147 
148   // The bit is uninitialized.
149   return BIT_UNSET;
150 }
151 // Prints the bit value for each position.
dumpBits(raw_ostream & o,const BitsInit & bits)152 static void dumpBits(raw_ostream &o, const BitsInit &bits) {
153   for (unsigned index = bits.getNumBits(); index > 0; --index) {
154     switch (bitFromBits(bits, index - 1)) {
155     case BIT_TRUE:
156       o << "1";
157       break;
158     case BIT_FALSE:
159       o << "0";
160       break;
161     case BIT_UNSET:
162       o << "_";
163       break;
164     default:
165       llvm_unreachable("unexpected return value from bitFromBits");
166     }
167   }
168 }
169 
getBitsField(const Record & def,const char * str)170 static BitsInit &getBitsField(const Record &def, const char *str) {
171   BitsInit *bits = def.getValueAsBitsInit(str);
172   return *bits;
173 }
174 
175 // Forward declaration.
176 namespace {
177 class FilterChooser;
178 } // End anonymous namespace
179 
180 // Representation of the instruction to work on.
181 typedef std::vector<bit_value_t> insn_t;
182 
183 /// Filter - Filter works with FilterChooser to produce the decoding tree for
184 /// the ISA.
185 ///
186 /// It is useful to think of a Filter as governing the switch stmts of the
187 /// decoding tree in a certain level.  Each case stmt delegates to an inferior
188 /// FilterChooser to decide what further decoding logic to employ, or in another
189 /// words, what other remaining bits to look at.  The FilterChooser eventually
190 /// chooses a best Filter to do its job.
191 ///
192 /// This recursive scheme ends when the number of Opcodes assigned to the
193 /// FilterChooser becomes 1 or if there is a conflict.  A conflict happens when
194 /// the Filter/FilterChooser combo does not know how to distinguish among the
195 /// Opcodes assigned.
196 ///
197 /// An example of a conflict is
198 ///
199 /// Conflict:
200 ///                     111101000.00........00010000....
201 ///                     111101000.00........0001........
202 ///                     1111010...00........0001........
203 ///                     1111010...00....................
204 ///                     1111010.........................
205 ///                     1111............................
206 ///                     ................................
207 ///     VST4q8a         111101000_00________00010000____
208 ///     VST4q8b         111101000_00________00010000____
209 ///
210 /// The Debug output shows the path that the decoding tree follows to reach the
211 /// the conclusion that there is a conflict.  VST4q8a is a vst4 to double-spaced
212 /// even registers, while VST4q8b is a vst4 to double-spaced odd regsisters.
213 ///
214 /// The encoding info in the .td files does not specify this meta information,
215 /// which could have been used by the decoder to resolve the conflict.  The
216 /// decoder could try to decode the even/odd register numbering and assign to
217 /// VST4q8a or VST4q8b, but for the time being, the decoder chooses the "a"
218 /// version and return the Opcode since the two have the same Asm format string.
219 namespace {
220 class Filter {
221 protected:
222   const FilterChooser *Owner;// points to the FilterChooser who owns this filter
223   unsigned StartBit; // the starting bit position
224   unsigned NumBits; // number of bits to filter
225   bool Mixed; // a mixed region contains both set and unset bits
226 
227   // Map of well-known segment value to the set of uid's with that value.
228   std::map<uint64_t, std::vector<unsigned> > FilteredInstructions;
229 
230   // Set of uid's with non-constant segment values.
231   std::vector<unsigned> VariableInstructions;
232 
233   // Map of well-known segment value to its delegate.
234   std::map<unsigned, const FilterChooser*> FilterChooserMap;
235 
236   // Number of instructions which fall under FilteredInstructions category.
237   unsigned NumFiltered;
238 
239   // Keeps track of the last opcode in the filtered bucket.
240   unsigned LastOpcFiltered;
241 
242 public:
getNumFiltered() const243   unsigned getNumFiltered() const { return NumFiltered; }
getSingletonOpc() const244   unsigned getSingletonOpc() const {
245     assert(NumFiltered == 1);
246     return LastOpcFiltered;
247   }
248   // Return the filter chooser for the group of instructions without constant
249   // segment values.
getVariableFC() const250   const FilterChooser &getVariableFC() const {
251     assert(NumFiltered == 1);
252     assert(FilterChooserMap.size() == 1);
253     return *(FilterChooserMap.find((unsigned)-1)->second);
254   }
255 
256   Filter(const Filter &f);
257   Filter(FilterChooser &owner, unsigned startBit, unsigned numBits, bool mixed);
258 
259   ~Filter();
260 
261   // Divides the decoding task into sub tasks and delegates them to the
262   // inferior FilterChooser's.
263   //
264   // A special case arises when there's only one entry in the filtered
265   // instructions.  In order to unambiguously decode the singleton, we need to
266   // match the remaining undecoded encoding bits against the singleton.
267   void recurse();
268 
269   // Emit table entries to decode instructions given a segment or segments of
270   // bits.
271   void emitTableEntry(DecoderTableInfo &TableInfo) const;
272 
273   // Returns the number of fanout produced by the filter.  More fanout implies
274   // the filter distinguishes more categories of instructions.
275   unsigned usefulness() const;
276 }; // End of class Filter
277 } // End anonymous namespace
278 
279 // These are states of our finite state machines used in FilterChooser's
280 // filterProcessor() which produces the filter candidates to use.
281 typedef enum {
282   ATTR_NONE,
283   ATTR_FILTERED,
284   ATTR_ALL_SET,
285   ATTR_ALL_UNSET,
286   ATTR_MIXED
287 } bitAttr_t;
288 
289 /// FilterChooser - FilterChooser chooses the best filter among a set of Filters
290 /// in order to perform the decoding of instructions at the current level.
291 ///
292 /// Decoding proceeds from the top down.  Based on the well-known encoding bits
293 /// of instructions available, FilterChooser builds up the possible Filters that
294 /// can further the task of decoding by distinguishing among the remaining
295 /// candidate instructions.
296 ///
297 /// Once a filter has been chosen, it is called upon to divide the decoding task
298 /// into sub-tasks and delegates them to its inferior FilterChoosers for further
299 /// processings.
300 ///
301 /// It is useful to think of a Filter as governing the switch stmts of the
302 /// decoding tree.  And each case is delegated to an inferior FilterChooser to
303 /// decide what further remaining bits to look at.
304 namespace {
305 class FilterChooser {
306 protected:
307   friend class Filter;
308 
309   // Vector of codegen instructions to choose our filter.
310   const std::vector<const CodeGenInstruction*> &AllInstructions;
311 
312   // Vector of uid's for this filter chooser to work on.
313   const std::vector<unsigned> &Opcodes;
314 
315   // Lookup table for the operand decoding of instructions.
316   const std::map<unsigned, std::vector<OperandInfo> > &Operands;
317 
318   // Vector of candidate filters.
319   std::vector<Filter> Filters;
320 
321   // Array of bit values passed down from our parent.
322   // Set to all BIT_UNFILTERED's for Parent == NULL.
323   std::vector<bit_value_t> FilterBitValues;
324 
325   // Links to the FilterChooser above us in the decoding tree.
326   const FilterChooser *Parent;
327 
328   // Index of the best filter from Filters.
329   int BestIndex;
330 
331   // Width of instructions
332   unsigned BitWidth;
333 
334   // Parent emitter
335   const FixedLenDecoderEmitter *Emitter;
336 
337 public:
FilterChooser(const FilterChooser & FC)338   FilterChooser(const FilterChooser &FC)
339     : AllInstructions(FC.AllInstructions), Opcodes(FC.Opcodes),
340       Operands(FC.Operands), Filters(FC.Filters),
341       FilterBitValues(FC.FilterBitValues), Parent(FC.Parent),
342       BestIndex(FC.BestIndex), BitWidth(FC.BitWidth),
343       Emitter(FC.Emitter) { }
344 
FilterChooser(const std::vector<const CodeGenInstruction * > & Insts,const std::vector<unsigned> & IDs,const std::map<unsigned,std::vector<OperandInfo>> & Ops,unsigned BW,const FixedLenDecoderEmitter * E)345   FilterChooser(const std::vector<const CodeGenInstruction*> &Insts,
346                 const std::vector<unsigned> &IDs,
347                 const std::map<unsigned, std::vector<OperandInfo> > &Ops,
348                 unsigned BW,
349                 const FixedLenDecoderEmitter *E)
350     : AllInstructions(Insts), Opcodes(IDs), Operands(Ops), Filters(),
351       Parent(NULL), BestIndex(-1), BitWidth(BW), Emitter(E) {
352     for (unsigned i = 0; i < BitWidth; ++i)
353       FilterBitValues.push_back(BIT_UNFILTERED);
354 
355     doFilter();
356   }
357 
FilterChooser(const std::vector<const CodeGenInstruction * > & Insts,const std::vector<unsigned> & IDs,const std::map<unsigned,std::vector<OperandInfo>> & Ops,const std::vector<bit_value_t> & ParentFilterBitValues,const FilterChooser & parent)358   FilterChooser(const std::vector<const CodeGenInstruction*> &Insts,
359                 const std::vector<unsigned> &IDs,
360                 const std::map<unsigned, std::vector<OperandInfo> > &Ops,
361                 const std::vector<bit_value_t> &ParentFilterBitValues,
362                 const FilterChooser &parent)
363     : AllInstructions(Insts), Opcodes(IDs), Operands(Ops),
364       Filters(), FilterBitValues(ParentFilterBitValues),
365       Parent(&parent), BestIndex(-1), BitWidth(parent.BitWidth),
366       Emitter(parent.Emitter) {
367     doFilter();
368   }
369 
getBitWidth() const370   unsigned getBitWidth() const { return BitWidth; }
371 
372 protected:
373   // Populates the insn given the uid.
insnWithID(insn_t & Insn,unsigned Opcode) const374   void insnWithID(insn_t &Insn, unsigned Opcode) const {
375     BitsInit &Bits = getBitsField(*AllInstructions[Opcode]->TheDef, "Inst");
376 
377     // We may have a SoftFail bitmask, which specifies a mask where an encoding
378     // may differ from the value in "Inst" and yet still be valid, but the
379     // disassembler should return SoftFail instead of Success.
380     //
381     // This is used for marking UNPREDICTABLE instructions in the ARM world.
382     BitsInit *SFBits =
383       AllInstructions[Opcode]->TheDef->getValueAsBitsInit("SoftFail");
384 
385     for (unsigned i = 0; i < BitWidth; ++i) {
386       if (SFBits && bitFromBits(*SFBits, i) == BIT_TRUE)
387         Insn.push_back(BIT_UNSET);
388       else
389         Insn.push_back(bitFromBits(Bits, i));
390     }
391   }
392 
393   // Returns the record name.
nameWithID(unsigned Opcode) const394   const std::string &nameWithID(unsigned Opcode) const {
395     return AllInstructions[Opcode]->TheDef->getName();
396   }
397 
398   // Populates the field of the insn given the start position and the number of
399   // consecutive bits to scan for.
400   //
401   // Returns false if there exists any uninitialized bit value in the range.
402   // Returns true, otherwise.
403   bool fieldFromInsn(uint64_t &Field, insn_t &Insn, unsigned StartBit,
404                      unsigned NumBits) const;
405 
406   /// dumpFilterArray - dumpFilterArray prints out debugging info for the given
407   /// filter array as a series of chars.
408   void dumpFilterArray(raw_ostream &o,
409                        const std::vector<bit_value_t> & filter) const;
410 
411   /// dumpStack - dumpStack traverses the filter chooser chain and calls
412   /// dumpFilterArray on each filter chooser up to the top level one.
413   void dumpStack(raw_ostream &o, const char *prefix) const;
414 
bestFilter()415   Filter &bestFilter() {
416     assert(BestIndex != -1 && "BestIndex not set");
417     return Filters[BestIndex];
418   }
419 
420   // Called from Filter::recurse() when singleton exists.  For debug purpose.
421   void SingletonExists(unsigned Opc) const;
422 
PositionFiltered(unsigned i) const423   bool PositionFiltered(unsigned i) const {
424     return ValueSet(FilterBitValues[i]);
425   }
426 
427   // Calculates the island(s) needed to decode the instruction.
428   // This returns a lit of undecoded bits of an instructions, for example,
429   // Inst{20} = 1 && Inst{3-0} == 0b1111 represents two islands of yet-to-be
430   // decoded bits in order to verify that the instruction matches the Opcode.
431   unsigned getIslands(std::vector<unsigned> &StartBits,
432                       std::vector<unsigned> &EndBits,
433                       std::vector<uint64_t> &FieldVals,
434                       const insn_t &Insn) const;
435 
436   // Emits code to check the Predicates member of an instruction are true.
437   // Returns true if predicate matches were emitted, false otherwise.
438   bool emitPredicateMatch(raw_ostream &o, unsigned &Indentation,
439                           unsigned Opc) const;
440 
441   bool doesOpcodeNeedPredicate(unsigned Opc) const;
442   unsigned getPredicateIndex(DecoderTableInfo &TableInfo, StringRef P) const;
443   void emitPredicateTableEntry(DecoderTableInfo &TableInfo,
444                                unsigned Opc) const;
445 
446   void emitSoftFailTableEntry(DecoderTableInfo &TableInfo,
447                               unsigned Opc) const;
448 
449   // Emits table entries to decode the singleton.
450   void emitSingletonTableEntry(DecoderTableInfo &TableInfo,
451                                unsigned Opc) const;
452 
453   // Emits code to decode the singleton, and then to decode the rest.
454   void emitSingletonTableEntry(DecoderTableInfo &TableInfo,
455                                const Filter &Best) const;
456 
457   void emitBinaryParser(raw_ostream &o, unsigned &Indentation,
458                         const OperandInfo &OpInfo) const;
459 
460   void emitDecoder(raw_ostream &OS, unsigned Indentation, unsigned Opc) const;
461   unsigned getDecoderIndex(DecoderSet &Decoders, unsigned Opc) const;
462 
463   // Assign a single filter and run with it.
464   void runSingleFilter(unsigned startBit, unsigned numBit, bool mixed);
465 
466   // reportRegion is a helper function for filterProcessor to mark a region as
467   // eligible for use as a filter region.
468   void reportRegion(bitAttr_t RA, unsigned StartBit, unsigned BitIndex,
469                     bool AllowMixed);
470 
471   // FilterProcessor scans the well-known encoding bits of the instructions and
472   // builds up a list of candidate filters.  It chooses the best filter and
473   // recursively descends down the decoding tree.
474   bool filterProcessor(bool AllowMixed, bool Greedy = true);
475 
476   // Decides on the best configuration of filter(s) to use in order to decode
477   // the instructions.  A conflict of instructions may occur, in which case we
478   // dump the conflict set to the standard error.
479   void doFilter();
480 
481 public:
482   // emitTableEntries - Emit state machine entries to decode our share of
483   // instructions.
484   void emitTableEntries(DecoderTableInfo &TableInfo) const;
485 };
486 } // End anonymous namespace
487 
488 ///////////////////////////
489 //                       //
490 // Filter Implementation //
491 //                       //
492 ///////////////////////////
493 
Filter(const Filter & f)494 Filter::Filter(const Filter &f)
495   : Owner(f.Owner), StartBit(f.StartBit), NumBits(f.NumBits), Mixed(f.Mixed),
496     FilteredInstructions(f.FilteredInstructions),
497     VariableInstructions(f.VariableInstructions),
498     FilterChooserMap(f.FilterChooserMap), NumFiltered(f.NumFiltered),
499     LastOpcFiltered(f.LastOpcFiltered) {
500 }
501 
Filter(FilterChooser & owner,unsigned startBit,unsigned numBits,bool mixed)502 Filter::Filter(FilterChooser &owner, unsigned startBit, unsigned numBits,
503                bool mixed)
504   : Owner(&owner), StartBit(startBit), NumBits(numBits), Mixed(mixed) {
505   assert(StartBit + NumBits - 1 < Owner->BitWidth);
506 
507   NumFiltered = 0;
508   LastOpcFiltered = 0;
509 
510   for (unsigned i = 0, e = Owner->Opcodes.size(); i != e; ++i) {
511     insn_t Insn;
512 
513     // Populates the insn given the uid.
514     Owner->insnWithID(Insn, Owner->Opcodes[i]);
515 
516     uint64_t Field;
517     // Scans the segment for possibly well-specified encoding bits.
518     bool ok = Owner->fieldFromInsn(Field, Insn, StartBit, NumBits);
519 
520     if (ok) {
521       // The encoding bits are well-known.  Lets add the uid of the
522       // instruction into the bucket keyed off the constant field value.
523       LastOpcFiltered = Owner->Opcodes[i];
524       FilteredInstructions[Field].push_back(LastOpcFiltered);
525       ++NumFiltered;
526     } else {
527       // Some of the encoding bit(s) are unspecified.  This contributes to
528       // one additional member of "Variable" instructions.
529       VariableInstructions.push_back(Owner->Opcodes[i]);
530     }
531   }
532 
533   assert((FilteredInstructions.size() + VariableInstructions.size() > 0)
534          && "Filter returns no instruction categories");
535 }
536 
~Filter()537 Filter::~Filter() {
538   std::map<unsigned, const FilterChooser*>::iterator filterIterator;
539   for (filterIterator = FilterChooserMap.begin();
540        filterIterator != FilterChooserMap.end();
541        filterIterator++) {
542     delete filterIterator->second;
543   }
544 }
545 
546 // Divides the decoding task into sub tasks and delegates them to the
547 // inferior FilterChooser's.
548 //
549 // A special case arises when there's only one entry in the filtered
550 // instructions.  In order to unambiguously decode the singleton, we need to
551 // match the remaining undecoded encoding bits against the singleton.
recurse()552 void Filter::recurse() {
553   std::map<uint64_t, std::vector<unsigned> >::const_iterator mapIterator;
554 
555   // Starts by inheriting our parent filter chooser's filter bit values.
556   std::vector<bit_value_t> BitValueArray(Owner->FilterBitValues);
557 
558   if (VariableInstructions.size()) {
559     // Conservatively marks each segment position as BIT_UNSET.
560     for (unsigned bitIndex = 0; bitIndex < NumBits; ++bitIndex)
561       BitValueArray[StartBit + bitIndex] = BIT_UNSET;
562 
563     // Delegates to an inferior filter chooser for further processing on this
564     // group of instructions whose segment values are variable.
565     FilterChooserMap.insert(std::pair<unsigned, const FilterChooser*>(
566                               (unsigned)-1,
567                               new FilterChooser(Owner->AllInstructions,
568                                                 VariableInstructions,
569                                                 Owner->Operands,
570                                                 BitValueArray,
571                                                 *Owner)
572                               ));
573   }
574 
575   // No need to recurse for a singleton filtered instruction.
576   // See also Filter::emit*().
577   if (getNumFiltered() == 1) {
578     //Owner->SingletonExists(LastOpcFiltered);
579     assert(FilterChooserMap.size() == 1);
580     return;
581   }
582 
583   // Otherwise, create sub choosers.
584   for (mapIterator = FilteredInstructions.begin();
585        mapIterator != FilteredInstructions.end();
586        mapIterator++) {
587 
588     // Marks all the segment positions with either BIT_TRUE or BIT_FALSE.
589     for (unsigned bitIndex = 0; bitIndex < NumBits; ++bitIndex) {
590       if (mapIterator->first & (1ULL << bitIndex))
591         BitValueArray[StartBit + bitIndex] = BIT_TRUE;
592       else
593         BitValueArray[StartBit + bitIndex] = BIT_FALSE;
594     }
595 
596     // Delegates to an inferior filter chooser for further processing on this
597     // category of instructions.
598     FilterChooserMap.insert(std::pair<unsigned, const FilterChooser*>(
599                               mapIterator->first,
600                               new FilterChooser(Owner->AllInstructions,
601                                                 mapIterator->second,
602                                                 Owner->Operands,
603                                                 BitValueArray,
604                                                 *Owner)
605                               ));
606   }
607 }
608 
resolveTableFixups(DecoderTable & Table,const FixupList & Fixups,uint32_t DestIdx)609 static void resolveTableFixups(DecoderTable &Table, const FixupList &Fixups,
610                                uint32_t DestIdx) {
611   // Any NumToSkip fixups in the current scope can resolve to the
612   // current location.
613   for (FixupList::const_reverse_iterator I = Fixups.rbegin(),
614                                          E = Fixups.rend();
615        I != E; ++I) {
616     // Calculate the distance from the byte following the fixup entry byte
617     // to the destination. The Target is calculated from after the 16-bit
618     // NumToSkip entry itself, so subtract two  from the displacement here
619     // to account for that.
620     uint32_t FixupIdx = *I;
621     uint32_t Delta = DestIdx - FixupIdx - 2;
622     // Our NumToSkip entries are 16-bits. Make sure our table isn't too
623     // big.
624     assert(Delta < 65536U && "disassembler decoding table too large!");
625     Table[FixupIdx] = (uint8_t)Delta;
626     Table[FixupIdx + 1] = (uint8_t)(Delta >> 8);
627   }
628 }
629 
630 // Emit table entries to decode instructions given a segment or segments
631 // of bits.
emitTableEntry(DecoderTableInfo & TableInfo) const632 void Filter::emitTableEntry(DecoderTableInfo &TableInfo) const {
633   TableInfo.Table.push_back(MCD::OPC_ExtractField);
634   TableInfo.Table.push_back(StartBit);
635   TableInfo.Table.push_back(NumBits);
636 
637   // A new filter entry begins a new scope for fixup resolution.
638   TableInfo.FixupStack.push_back(FixupList());
639 
640   std::map<unsigned, const FilterChooser*>::const_iterator filterIterator;
641 
642   DecoderTable &Table = TableInfo.Table;
643 
644   size_t PrevFilter = 0;
645   bool HasFallthrough = false;
646   for (filterIterator = FilterChooserMap.begin();
647        filterIterator != FilterChooserMap.end();
648        filterIterator++) {
649     // Field value -1 implies a non-empty set of variable instructions.
650     // See also recurse().
651     if (filterIterator->first == (unsigned)-1) {
652       HasFallthrough = true;
653 
654       // Each scope should always have at least one filter value to check
655       // for.
656       assert(PrevFilter != 0 && "empty filter set!");
657       FixupList &CurScope = TableInfo.FixupStack.back();
658       // Resolve any NumToSkip fixups in the current scope.
659       resolveTableFixups(Table, CurScope, Table.size());
660       CurScope.clear();
661       PrevFilter = 0;  // Don't re-process the filter's fallthrough.
662     } else {
663       Table.push_back(MCD::OPC_FilterValue);
664       // Encode and emit the value to filter against.
665       uint8_t Buffer[8];
666       unsigned Len = encodeULEB128(filterIterator->first, Buffer);
667       Table.insert(Table.end(), Buffer, Buffer + Len);
668       // Reserve space for the NumToSkip entry. We'll backpatch the value
669       // later.
670       PrevFilter = Table.size();
671       Table.push_back(0);
672       Table.push_back(0);
673     }
674 
675     // We arrive at a category of instructions with the same segment value.
676     // Now delegate to the sub filter chooser for further decodings.
677     // The case may fallthrough, which happens if the remaining well-known
678     // encoding bits do not match exactly.
679     filterIterator->second->emitTableEntries(TableInfo);
680 
681     // Now that we've emitted the body of the handler, update the NumToSkip
682     // of the filter itself to be able to skip forward when false. Subtract
683     // two as to account for the width of the NumToSkip field itself.
684     if (PrevFilter) {
685       uint32_t NumToSkip = Table.size() - PrevFilter - 2;
686       assert(NumToSkip < 65536U && "disassembler decoding table too large!");
687       Table[PrevFilter] = (uint8_t)NumToSkip;
688       Table[PrevFilter + 1] = (uint8_t)(NumToSkip >> 8);
689     }
690   }
691 
692   // Any remaining unresolved fixups bubble up to the parent fixup scope.
693   assert(TableInfo.FixupStack.size() > 1 && "fixup stack underflow!");
694   FixupScopeList::iterator Source = TableInfo.FixupStack.end() - 1;
695   FixupScopeList::iterator Dest = Source - 1;
696   Dest->insert(Dest->end(), Source->begin(), Source->end());
697   TableInfo.FixupStack.pop_back();
698 
699   // If there is no fallthrough, then the final filter should get fixed
700   // up according to the enclosing scope rather than the current position.
701   if (!HasFallthrough)
702     TableInfo.FixupStack.back().push_back(PrevFilter);
703 }
704 
705 // Returns the number of fanout produced by the filter.  More fanout implies
706 // the filter distinguishes more categories of instructions.
usefulness() const707 unsigned Filter::usefulness() const {
708   if (VariableInstructions.size())
709     return FilteredInstructions.size();
710   else
711     return FilteredInstructions.size() + 1;
712 }
713 
714 //////////////////////////////////
715 //                              //
716 // Filterchooser Implementation //
717 //                              //
718 //////////////////////////////////
719 
720 // Emit the decoder state machine table.
emitTable(formatted_raw_ostream & OS,DecoderTable & Table,unsigned Indentation,unsigned BitWidth,StringRef Namespace) const721 void FixedLenDecoderEmitter::emitTable(formatted_raw_ostream &OS,
722                                        DecoderTable &Table,
723                                        unsigned Indentation,
724                                        unsigned BitWidth,
725                                        StringRef Namespace) const {
726   OS.indent(Indentation) << "static const uint8_t DecoderTable" << Namespace
727     << BitWidth << "[] = {\n";
728 
729   Indentation += 2;
730 
731   // FIXME: We may be able to use the NumToSkip values to recover
732   // appropriate indentation levels.
733   DecoderTable::const_iterator I = Table.begin();
734   DecoderTable::const_iterator E = Table.end();
735   while (I != E) {
736     assert (I < E && "incomplete decode table entry!");
737 
738     uint64_t Pos = I - Table.begin();
739     OS << "/* " << Pos << " */";
740     OS.PadToColumn(12);
741 
742     switch (*I) {
743     default:
744       throw "invalid decode table opcode";
745     case MCD::OPC_ExtractField: {
746       ++I;
747       unsigned Start = *I++;
748       unsigned Len = *I++;
749       OS.indent(Indentation) << "MCD::OPC_ExtractField, " << Start << ", "
750         << Len << ",  // Inst{";
751       if (Len > 1)
752         OS << (Start + Len - 1) << "-";
753       OS << Start << "} ...\n";
754       break;
755     }
756     case MCD::OPC_FilterValue: {
757       ++I;
758       OS.indent(Indentation) << "MCD::OPC_FilterValue, ";
759       // The filter value is ULEB128 encoded.
760       while (*I >= 128)
761         OS << utostr(*I++) << ", ";
762       OS << utostr(*I++) << ", ";
763 
764       // 16-bit numtoskip value.
765       uint8_t Byte = *I++;
766       uint32_t NumToSkip = Byte;
767       OS << utostr(Byte) << ", ";
768       Byte = *I++;
769       OS << utostr(Byte) << ", ";
770       NumToSkip |= Byte << 8;
771       OS << "// Skip to: " << ((I - Table.begin()) + NumToSkip) << "\n";
772       break;
773     }
774     case MCD::OPC_CheckField: {
775       ++I;
776       unsigned Start = *I++;
777       unsigned Len = *I++;
778       OS.indent(Indentation) << "MCD::OPC_CheckField, " << Start << ", "
779         << Len << ", ";// << Val << ", " << NumToSkip << ",\n";
780       // ULEB128 encoded field value.
781       for (; *I >= 128; ++I)
782         OS << utostr(*I) << ", ";
783       OS << utostr(*I++) << ", ";
784       // 16-bit numtoskip value.
785       uint8_t Byte = *I++;
786       uint32_t NumToSkip = Byte;
787       OS << utostr(Byte) << ", ";
788       Byte = *I++;
789       OS << utostr(Byte) << ", ";
790       NumToSkip |= Byte << 8;
791       OS << "// Skip to: " << ((I - Table.begin()) + NumToSkip) << "\n";
792       break;
793     }
794     case MCD::OPC_CheckPredicate: {
795       ++I;
796       OS.indent(Indentation) << "MCD::OPC_CheckPredicate, ";
797       for (; *I >= 128; ++I)
798         OS << utostr(*I) << ", ";
799       OS << utostr(*I++) << ", ";
800 
801       // 16-bit numtoskip value.
802       uint8_t Byte = *I++;
803       uint32_t NumToSkip = Byte;
804       OS << utostr(Byte) << ", ";
805       Byte = *I++;
806       OS << utostr(Byte) << ", ";
807       NumToSkip |= Byte << 8;
808       OS << "// Skip to: " << ((I - Table.begin()) + NumToSkip) << "\n";
809       break;
810     }
811     case MCD::OPC_Decode: {
812       ++I;
813       // Extract the ULEB128 encoded Opcode to a buffer.
814       uint8_t Buffer[8], *p = Buffer;
815       while ((*p++ = *I++) >= 128)
816         assert((p - Buffer) <= (ptrdiff_t)sizeof(Buffer)
817                && "ULEB128 value too large!");
818       // Decode the Opcode value.
819       unsigned Opc = decodeULEB128(Buffer);
820       OS.indent(Indentation) << "MCD::OPC_Decode, ";
821       for (p = Buffer; *p >= 128; ++p)
822         OS << utostr(*p) << ", ";
823       OS << utostr(*p) << ", ";
824 
825       // Decoder index.
826       for (; *I >= 128; ++I)
827         OS << utostr(*I) << ", ";
828       OS << utostr(*I++) << ", ";
829 
830       OS << "// Opcode: "
831          << NumberedInstructions->at(Opc)->TheDef->getName() << "\n";
832       break;
833     }
834     case MCD::OPC_SoftFail: {
835       ++I;
836       OS.indent(Indentation) << "MCD::OPC_SoftFail";
837       // Positive mask
838       uint64_t Value = 0;
839       unsigned Shift = 0;
840       do {
841         OS << ", " << utostr(*I);
842         Value += (*I & 0x7f) << Shift;
843         Shift += 7;
844       } while (*I++ >= 128);
845       if (Value > 127)
846         OS << " /* 0x" << utohexstr(Value) << " */";
847       // Negative mask
848       Value = 0;
849       Shift = 0;
850       do {
851         OS << ", " << utostr(*I);
852         Value += (*I & 0x7f) << Shift;
853         Shift += 7;
854       } while (*I++ >= 128);
855       if (Value > 127)
856         OS << " /* 0x" << utohexstr(Value) << " */";
857       OS << ",\n";
858       break;
859     }
860     case MCD::OPC_Fail: {
861       ++I;
862       OS.indent(Indentation) << "MCD::OPC_Fail,\n";
863       break;
864     }
865     }
866   }
867   OS.indent(Indentation) << "0\n";
868 
869   Indentation -= 2;
870 
871   OS.indent(Indentation) << "};\n\n";
872 }
873 
874 void FixedLenDecoderEmitter::
emitPredicateFunction(formatted_raw_ostream & OS,PredicateSet & Predicates,unsigned Indentation) const875 emitPredicateFunction(formatted_raw_ostream &OS, PredicateSet &Predicates,
876                       unsigned Indentation) const {
877   // The predicate function is just a big switch statement based on the
878   // input predicate index.
879   OS.indent(Indentation) << "static bool checkDecoderPredicate(unsigned Idx, "
880     << "uint64_t Bits) {\n";
881   Indentation += 2;
882   OS.indent(Indentation) << "switch (Idx) {\n";
883   OS.indent(Indentation) << "default: llvm_unreachable(\"Invalid index!\");\n";
884   unsigned Index = 0;
885   for (PredicateSet::const_iterator I = Predicates.begin(), E = Predicates.end();
886        I != E; ++I, ++Index) {
887     OS.indent(Indentation) << "case " << Index << ":\n";
888     OS.indent(Indentation+2) << "return (" << *I << ");\n";
889   }
890   OS.indent(Indentation) << "}\n";
891   Indentation -= 2;
892   OS.indent(Indentation) << "}\n\n";
893 }
894 
895 void FixedLenDecoderEmitter::
emitDecoderFunction(formatted_raw_ostream & OS,DecoderSet & Decoders,unsigned Indentation) const896 emitDecoderFunction(formatted_raw_ostream &OS, DecoderSet &Decoders,
897                     unsigned Indentation) const {
898   // The decoder function is just a big switch statement based on the
899   // input decoder index.
900   OS.indent(Indentation) << "template<typename InsnType>\n";
901   OS.indent(Indentation) << "static DecodeStatus decodeToMCInst(DecodeStatus S,"
902     << " unsigned Idx, InsnType insn, MCInst &MI,\n";
903   OS.indent(Indentation) << "                                   uint64_t "
904     << "Address, const void *Decoder) {\n";
905   Indentation += 2;
906   OS.indent(Indentation) << "InsnType tmp;\n";
907   OS.indent(Indentation) << "switch (Idx) {\n";
908   OS.indent(Indentation) << "default: llvm_unreachable(\"Invalid index!\");\n";
909   unsigned Index = 0;
910   for (DecoderSet::const_iterator I = Decoders.begin(), E = Decoders.end();
911        I != E; ++I, ++Index) {
912     OS.indent(Indentation) << "case " << Index << ":\n";
913     OS << *I;
914     OS.indent(Indentation+2) << "return S;\n";
915   }
916   OS.indent(Indentation) << "}\n";
917   Indentation -= 2;
918   OS.indent(Indentation) << "}\n\n";
919 }
920 
921 // Populates the field of the insn given the start position and the number of
922 // consecutive bits to scan for.
923 //
924 // Returns false if and on the first uninitialized bit value encountered.
925 // Returns true, otherwise.
fieldFromInsn(uint64_t & Field,insn_t & Insn,unsigned StartBit,unsigned NumBits) const926 bool FilterChooser::fieldFromInsn(uint64_t &Field, insn_t &Insn,
927                                   unsigned StartBit, unsigned NumBits) const {
928   Field = 0;
929 
930   for (unsigned i = 0; i < NumBits; ++i) {
931     if (Insn[StartBit + i] == BIT_UNSET)
932       return false;
933 
934     if (Insn[StartBit + i] == BIT_TRUE)
935       Field = Field | (1ULL << i);
936   }
937 
938   return true;
939 }
940 
941 /// dumpFilterArray - dumpFilterArray prints out debugging info for the given
942 /// filter array as a series of chars.
dumpFilterArray(raw_ostream & o,const std::vector<bit_value_t> & filter) const943 void FilterChooser::dumpFilterArray(raw_ostream &o,
944                                  const std::vector<bit_value_t> &filter) const {
945   for (unsigned bitIndex = BitWidth; bitIndex > 0; bitIndex--) {
946     switch (filter[bitIndex - 1]) {
947     case BIT_UNFILTERED:
948       o << ".";
949       break;
950     case BIT_UNSET:
951       o << "_";
952       break;
953     case BIT_TRUE:
954       o << "1";
955       break;
956     case BIT_FALSE:
957       o << "0";
958       break;
959     }
960   }
961 }
962 
963 /// dumpStack - dumpStack traverses the filter chooser chain and calls
964 /// dumpFilterArray on each filter chooser up to the top level one.
dumpStack(raw_ostream & o,const char * prefix) const965 void FilterChooser::dumpStack(raw_ostream &o, const char *prefix) const {
966   const FilterChooser *current = this;
967 
968   while (current) {
969     o << prefix;
970     dumpFilterArray(o, current->FilterBitValues);
971     o << '\n';
972     current = current->Parent;
973   }
974 }
975 
976 // Called from Filter::recurse() when singleton exists.  For debug purpose.
SingletonExists(unsigned Opc) const977 void FilterChooser::SingletonExists(unsigned Opc) const {
978   insn_t Insn0;
979   insnWithID(Insn0, Opc);
980 
981   errs() << "Singleton exists: " << nameWithID(Opc)
982          << " with its decoding dominating ";
983   for (unsigned i = 0; i < Opcodes.size(); ++i) {
984     if (Opcodes[i] == Opc) continue;
985     errs() << nameWithID(Opcodes[i]) << ' ';
986   }
987   errs() << '\n';
988 
989   dumpStack(errs(), "\t\t");
990   for (unsigned i = 0; i < Opcodes.size(); ++i) {
991     const std::string &Name = nameWithID(Opcodes[i]);
992 
993     errs() << '\t' << Name << " ";
994     dumpBits(errs(),
995              getBitsField(*AllInstructions[Opcodes[i]]->TheDef, "Inst"));
996     errs() << '\n';
997   }
998 }
999 
1000 // Calculates the island(s) needed to decode the instruction.
1001 // This returns a list of undecoded bits of an instructions, for example,
1002 // Inst{20} = 1 && Inst{3-0} == 0b1111 represents two islands of yet-to-be
1003 // decoded bits in order to verify that the instruction matches the Opcode.
getIslands(std::vector<unsigned> & StartBits,std::vector<unsigned> & EndBits,std::vector<uint64_t> & FieldVals,const insn_t & Insn) const1004 unsigned FilterChooser::getIslands(std::vector<unsigned> &StartBits,
1005                                    std::vector<unsigned> &EndBits,
1006                                    std::vector<uint64_t> &FieldVals,
1007                                    const insn_t &Insn) const {
1008   unsigned Num, BitNo;
1009   Num = BitNo = 0;
1010 
1011   uint64_t FieldVal = 0;
1012 
1013   // 0: Init
1014   // 1: Water (the bit value does not affect decoding)
1015   // 2: Island (well-known bit value needed for decoding)
1016   int State = 0;
1017   int Val = -1;
1018 
1019   for (unsigned i = 0; i < BitWidth; ++i) {
1020     Val = Value(Insn[i]);
1021     bool Filtered = PositionFiltered(i);
1022     switch (State) {
1023     default: llvm_unreachable("Unreachable code!");
1024     case 0:
1025     case 1:
1026       if (Filtered || Val == -1)
1027         State = 1; // Still in Water
1028       else {
1029         State = 2; // Into the Island
1030         BitNo = 0;
1031         StartBits.push_back(i);
1032         FieldVal = Val;
1033       }
1034       break;
1035     case 2:
1036       if (Filtered || Val == -1) {
1037         State = 1; // Into the Water
1038         EndBits.push_back(i - 1);
1039         FieldVals.push_back(FieldVal);
1040         ++Num;
1041       } else {
1042         State = 2; // Still in Island
1043         ++BitNo;
1044         FieldVal = FieldVal | Val << BitNo;
1045       }
1046       break;
1047     }
1048   }
1049   // If we are still in Island after the loop, do some housekeeping.
1050   if (State == 2) {
1051     EndBits.push_back(BitWidth - 1);
1052     FieldVals.push_back(FieldVal);
1053     ++Num;
1054   }
1055 
1056   assert(StartBits.size() == Num && EndBits.size() == Num &&
1057          FieldVals.size() == Num);
1058   return Num;
1059 }
1060 
emitBinaryParser(raw_ostream & o,unsigned & Indentation,const OperandInfo & OpInfo) const1061 void FilterChooser::emitBinaryParser(raw_ostream &o, unsigned &Indentation,
1062                                      const OperandInfo &OpInfo) const {
1063   const std::string &Decoder = OpInfo.Decoder;
1064 
1065   if (OpInfo.numFields() == 1) {
1066     OperandInfo::const_iterator OI = OpInfo.begin();
1067     o.indent(Indentation) << "tmp = fieldFromInstruction"
1068                           << "(insn, " << OI->Base << ", " << OI->Width
1069                           << ");\n";
1070   } else {
1071     o.indent(Indentation) << "tmp = 0;\n";
1072     for (OperandInfo::const_iterator OI = OpInfo.begin(), OE = OpInfo.end();
1073          OI != OE; ++OI) {
1074       o.indent(Indentation) << "tmp |= (fieldFromInstruction"
1075                             << "(insn, " << OI->Base << ", " << OI->Width
1076                             << ") << " << OI->Offset << ");\n";
1077     }
1078   }
1079 
1080   if (Decoder != "")
1081     o.indent(Indentation) << Emitter->GuardPrefix << Decoder
1082                           << "(MI, tmp, Address, Decoder)"
1083                           << Emitter->GuardPostfix << "\n";
1084   else
1085     o.indent(Indentation) << "MI.addOperand(MCOperand::CreateImm(tmp));\n";
1086 
1087 }
1088 
emitDecoder(raw_ostream & OS,unsigned Indentation,unsigned Opc) const1089 void FilterChooser::emitDecoder(raw_ostream &OS, unsigned Indentation,
1090                                 unsigned Opc) const {
1091   std::map<unsigned, std::vector<OperandInfo> >::const_iterator OpIter =
1092     Operands.find(Opc);
1093   const std::vector<OperandInfo>& InsnOperands = OpIter->second;
1094   for (std::vector<OperandInfo>::const_iterator
1095        I = InsnOperands.begin(), E = InsnOperands.end(); I != E; ++I) {
1096     // If a custom instruction decoder was specified, use that.
1097     if (I->numFields() == 0 && I->Decoder.size()) {
1098       OS.indent(Indentation) << Emitter->GuardPrefix << I->Decoder
1099         << "(MI, insn, Address, Decoder)"
1100         << Emitter->GuardPostfix << "\n";
1101       break;
1102     }
1103 
1104     emitBinaryParser(OS, Indentation, *I);
1105   }
1106 }
1107 
getDecoderIndex(DecoderSet & Decoders,unsigned Opc) const1108 unsigned FilterChooser::getDecoderIndex(DecoderSet &Decoders,
1109                                         unsigned Opc) const {
1110   // Build up the predicate string.
1111   SmallString<256> Decoder;
1112   // FIXME: emitDecoder() function can take a buffer directly rather than
1113   // a stream.
1114   raw_svector_ostream S(Decoder);
1115   unsigned I = 4;
1116   emitDecoder(S, I, Opc);
1117   S.flush();
1118 
1119   // Using the full decoder string as the key value here is a bit
1120   // heavyweight, but is effective. If the string comparisons become a
1121   // performance concern, we can implement a mangling of the predicate
1122   // data easilly enough with a map back to the actual string. That's
1123   // overkill for now, though.
1124 
1125   // Make sure the predicate is in the table.
1126   Decoders.insert(Decoder.str());
1127   // Now figure out the index for when we write out the table.
1128   DecoderSet::const_iterator P = std::find(Decoders.begin(),
1129                                            Decoders.end(),
1130                                            Decoder.str());
1131   return (unsigned)(P - Decoders.begin());
1132 }
1133 
emitSinglePredicateMatch(raw_ostream & o,StringRef str,const std::string & PredicateNamespace)1134 static void emitSinglePredicateMatch(raw_ostream &o, StringRef str,
1135                                      const std::string &PredicateNamespace) {
1136   if (str[0] == '!')
1137     o << "!(Bits & " << PredicateNamespace << "::"
1138       << str.slice(1,str.size()) << ")";
1139   else
1140     o << "(Bits & " << PredicateNamespace << "::" << str << ")";
1141 }
1142 
emitPredicateMatch(raw_ostream & o,unsigned & Indentation,unsigned Opc) const1143 bool FilterChooser::emitPredicateMatch(raw_ostream &o, unsigned &Indentation,
1144                                        unsigned Opc) const {
1145   ListInit *Predicates =
1146     AllInstructions[Opc]->TheDef->getValueAsListInit("Predicates");
1147   for (unsigned i = 0; i < Predicates->getSize(); ++i) {
1148     Record *Pred = Predicates->getElementAsRecord(i);
1149     if (!Pred->getValue("AssemblerMatcherPredicate"))
1150       continue;
1151 
1152     std::string P = Pred->getValueAsString("AssemblerCondString");
1153 
1154     if (!P.length())
1155       continue;
1156 
1157     if (i != 0)
1158       o << " && ";
1159 
1160     StringRef SR(P);
1161     std::pair<StringRef, StringRef> pairs = SR.split(',');
1162     while (pairs.second.size()) {
1163       emitSinglePredicateMatch(o, pairs.first, Emitter->PredicateNamespace);
1164       o << " && ";
1165       pairs = pairs.second.split(',');
1166     }
1167     emitSinglePredicateMatch(o, pairs.first, Emitter->PredicateNamespace);
1168   }
1169   return Predicates->getSize() > 0;
1170 }
1171 
doesOpcodeNeedPredicate(unsigned Opc) const1172 bool FilterChooser::doesOpcodeNeedPredicate(unsigned Opc) const {
1173   ListInit *Predicates =
1174     AllInstructions[Opc]->TheDef->getValueAsListInit("Predicates");
1175   for (unsigned i = 0; i < Predicates->getSize(); ++i) {
1176     Record *Pred = Predicates->getElementAsRecord(i);
1177     if (!Pred->getValue("AssemblerMatcherPredicate"))
1178       continue;
1179 
1180     std::string P = Pred->getValueAsString("AssemblerCondString");
1181 
1182     if (!P.length())
1183       continue;
1184 
1185     return true;
1186   }
1187   return false;
1188 }
1189 
getPredicateIndex(DecoderTableInfo & TableInfo,StringRef Predicate) const1190 unsigned FilterChooser::getPredicateIndex(DecoderTableInfo &TableInfo,
1191                                           StringRef Predicate) const {
1192   // Using the full predicate string as the key value here is a bit
1193   // heavyweight, but is effective. If the string comparisons become a
1194   // performance concern, we can implement a mangling of the predicate
1195   // data easilly enough with a map back to the actual string. That's
1196   // overkill for now, though.
1197 
1198   // Make sure the predicate is in the table.
1199   TableInfo.Predicates.insert(Predicate.str());
1200   // Now figure out the index for when we write out the table.
1201   PredicateSet::const_iterator P = std::find(TableInfo.Predicates.begin(),
1202                                              TableInfo.Predicates.end(),
1203                                              Predicate.str());
1204   return (unsigned)(P - TableInfo.Predicates.begin());
1205 }
1206 
emitPredicateTableEntry(DecoderTableInfo & TableInfo,unsigned Opc) const1207 void FilterChooser::emitPredicateTableEntry(DecoderTableInfo &TableInfo,
1208                                             unsigned Opc) const {
1209   if (!doesOpcodeNeedPredicate(Opc))
1210     return;
1211 
1212   // Build up the predicate string.
1213   SmallString<256> Predicate;
1214   // FIXME: emitPredicateMatch() functions can take a buffer directly rather
1215   // than a stream.
1216   raw_svector_ostream PS(Predicate);
1217   unsigned I = 0;
1218   emitPredicateMatch(PS, I, Opc);
1219 
1220   // Figure out the index into the predicate table for the predicate just
1221   // computed.
1222   unsigned PIdx = getPredicateIndex(TableInfo, PS.str());
1223   SmallString<16> PBytes;
1224   raw_svector_ostream S(PBytes);
1225   encodeULEB128(PIdx, S);
1226   S.flush();
1227 
1228   TableInfo.Table.push_back(MCD::OPC_CheckPredicate);
1229   // Predicate index
1230   for (unsigned i = 0, e = PBytes.size(); i != e; ++i)
1231     TableInfo.Table.push_back(PBytes[i]);
1232   // Push location for NumToSkip backpatching.
1233   TableInfo.FixupStack.back().push_back(TableInfo.Table.size());
1234   TableInfo.Table.push_back(0);
1235   TableInfo.Table.push_back(0);
1236 }
1237 
emitSoftFailTableEntry(DecoderTableInfo & TableInfo,unsigned Opc) const1238 void FilterChooser::emitSoftFailTableEntry(DecoderTableInfo &TableInfo,
1239                                            unsigned Opc) const {
1240   BitsInit *SFBits =
1241     AllInstructions[Opc]->TheDef->getValueAsBitsInit("SoftFail");
1242   if (!SFBits) return;
1243   BitsInit *InstBits = AllInstructions[Opc]->TheDef->getValueAsBitsInit("Inst");
1244 
1245   APInt PositiveMask(BitWidth, 0ULL);
1246   APInt NegativeMask(BitWidth, 0ULL);
1247   for (unsigned i = 0; i < BitWidth; ++i) {
1248     bit_value_t B = bitFromBits(*SFBits, i);
1249     bit_value_t IB = bitFromBits(*InstBits, i);
1250 
1251     if (B != BIT_TRUE) continue;
1252 
1253     switch (IB) {
1254     case BIT_FALSE:
1255       // The bit is meant to be false, so emit a check to see if it is true.
1256       PositiveMask.setBit(i);
1257       break;
1258     case BIT_TRUE:
1259       // The bit is meant to be true, so emit a check to see if it is false.
1260       NegativeMask.setBit(i);
1261       break;
1262     default:
1263       // The bit is not set; this must be an error!
1264       StringRef Name = AllInstructions[Opc]->TheDef->getName();
1265       errs() << "SoftFail Conflict: bit SoftFail{" << i << "} in " << Name
1266              << " is set but Inst{" << i << "} is unset!\n"
1267              << "  - You can only mark a bit as SoftFail if it is fully defined"
1268              << " (1/0 - not '?') in Inst\n";
1269       return;
1270     }
1271   }
1272 
1273   bool NeedPositiveMask = PositiveMask.getBoolValue();
1274   bool NeedNegativeMask = NegativeMask.getBoolValue();
1275 
1276   if (!NeedPositiveMask && !NeedNegativeMask)
1277     return;
1278 
1279   TableInfo.Table.push_back(MCD::OPC_SoftFail);
1280 
1281   SmallString<16> MaskBytes;
1282   raw_svector_ostream S(MaskBytes);
1283   if (NeedPositiveMask) {
1284     encodeULEB128(PositiveMask.getZExtValue(), S);
1285     S.flush();
1286     for (unsigned i = 0, e = MaskBytes.size(); i != e; ++i)
1287       TableInfo.Table.push_back(MaskBytes[i]);
1288   } else
1289     TableInfo.Table.push_back(0);
1290   if (NeedNegativeMask) {
1291     MaskBytes.clear();
1292     S.resync();
1293     encodeULEB128(NegativeMask.getZExtValue(), S);
1294     S.flush();
1295     for (unsigned i = 0, e = MaskBytes.size(); i != e; ++i)
1296       TableInfo.Table.push_back(MaskBytes[i]);
1297   } else
1298     TableInfo.Table.push_back(0);
1299 }
1300 
1301 // Emits table entries to decode the singleton.
emitSingletonTableEntry(DecoderTableInfo & TableInfo,unsigned Opc) const1302 void FilterChooser::emitSingletonTableEntry(DecoderTableInfo &TableInfo,
1303                                             unsigned Opc) const {
1304   std::vector<unsigned> StartBits;
1305   std::vector<unsigned> EndBits;
1306   std::vector<uint64_t> FieldVals;
1307   insn_t Insn;
1308   insnWithID(Insn, Opc);
1309 
1310   // Look for islands of undecoded bits of the singleton.
1311   getIslands(StartBits, EndBits, FieldVals, Insn);
1312 
1313   unsigned Size = StartBits.size();
1314 
1315   // Emit the predicate table entry if one is needed.
1316   emitPredicateTableEntry(TableInfo, Opc);
1317 
1318   // Check any additional encoding fields needed.
1319   for (unsigned I = Size; I != 0; --I) {
1320     unsigned NumBits = EndBits[I-1] - StartBits[I-1] + 1;
1321     TableInfo.Table.push_back(MCD::OPC_CheckField);
1322     TableInfo.Table.push_back(StartBits[I-1]);
1323     TableInfo.Table.push_back(NumBits);
1324     uint8_t Buffer[8], *p;
1325     encodeULEB128(FieldVals[I-1], Buffer);
1326     for (p = Buffer; *p >= 128 ; ++p)
1327       TableInfo.Table.push_back(*p);
1328     TableInfo.Table.push_back(*p);
1329     // Push location for NumToSkip backpatching.
1330     TableInfo.FixupStack.back().push_back(TableInfo.Table.size());
1331     // The fixup is always 16-bits, so go ahead and allocate the space
1332     // in the table so all our relative position calculations work OK even
1333     // before we fully resolve the real value here.
1334     TableInfo.Table.push_back(0);
1335     TableInfo.Table.push_back(0);
1336   }
1337 
1338   // Check for soft failure of the match.
1339   emitSoftFailTableEntry(TableInfo, Opc);
1340 
1341   TableInfo.Table.push_back(MCD::OPC_Decode);
1342   uint8_t Buffer[8], *p;
1343   encodeULEB128(Opc, Buffer);
1344   for (p = Buffer; *p >= 128 ; ++p)
1345     TableInfo.Table.push_back(*p);
1346   TableInfo.Table.push_back(*p);
1347 
1348   unsigned DIdx = getDecoderIndex(TableInfo.Decoders, Opc);
1349   SmallString<16> Bytes;
1350   raw_svector_ostream S(Bytes);
1351   encodeULEB128(DIdx, S);
1352   S.flush();
1353 
1354   // Decoder index
1355   for (unsigned i = 0, e = Bytes.size(); i != e; ++i)
1356     TableInfo.Table.push_back(Bytes[i]);
1357 }
1358 
1359 // Emits table entries to decode the singleton, and then to decode the rest.
emitSingletonTableEntry(DecoderTableInfo & TableInfo,const Filter & Best) const1360 void FilterChooser::emitSingletonTableEntry(DecoderTableInfo &TableInfo,
1361                                             const Filter &Best) const {
1362   unsigned Opc = Best.getSingletonOpc();
1363 
1364   // complex singletons need predicate checks from the first singleton
1365   // to refer forward to the variable filterchooser that follows.
1366   TableInfo.FixupStack.push_back(FixupList());
1367 
1368   emitSingletonTableEntry(TableInfo, Opc);
1369 
1370   resolveTableFixups(TableInfo.Table, TableInfo.FixupStack.back(),
1371                      TableInfo.Table.size());
1372   TableInfo.FixupStack.pop_back();
1373 
1374   Best.getVariableFC().emitTableEntries(TableInfo);
1375 }
1376 
1377 
1378 // Assign a single filter and run with it.  Top level API client can initialize
1379 // with a single filter to start the filtering process.
runSingleFilter(unsigned startBit,unsigned numBit,bool mixed)1380 void FilterChooser::runSingleFilter(unsigned startBit, unsigned numBit,
1381                                     bool mixed) {
1382   Filters.clear();
1383   Filter F(*this, startBit, numBit, true);
1384   Filters.push_back(F);
1385   BestIndex = 0; // Sole Filter instance to choose from.
1386   bestFilter().recurse();
1387 }
1388 
1389 // reportRegion is a helper function for filterProcessor to mark a region as
1390 // eligible for use as a filter region.
reportRegion(bitAttr_t RA,unsigned StartBit,unsigned BitIndex,bool AllowMixed)1391 void FilterChooser::reportRegion(bitAttr_t RA, unsigned StartBit,
1392                                  unsigned BitIndex, bool AllowMixed) {
1393   if (RA == ATTR_MIXED && AllowMixed)
1394     Filters.push_back(Filter(*this, StartBit, BitIndex - StartBit, true));
1395   else if (RA == ATTR_ALL_SET && !AllowMixed)
1396     Filters.push_back(Filter(*this, StartBit, BitIndex - StartBit, false));
1397 }
1398 
1399 // FilterProcessor scans the well-known encoding bits of the instructions and
1400 // builds up a list of candidate filters.  It chooses the best filter and
1401 // recursively descends down the decoding tree.
filterProcessor(bool AllowMixed,bool Greedy)1402 bool FilterChooser::filterProcessor(bool AllowMixed, bool Greedy) {
1403   Filters.clear();
1404   BestIndex = -1;
1405   unsigned numInstructions = Opcodes.size();
1406 
1407   assert(numInstructions && "Filter created with no instructions");
1408 
1409   // No further filtering is necessary.
1410   if (numInstructions == 1)
1411     return true;
1412 
1413   // Heuristics.  See also doFilter()'s "Heuristics" comment when num of
1414   // instructions is 3.
1415   if (AllowMixed && !Greedy) {
1416     assert(numInstructions == 3);
1417 
1418     for (unsigned i = 0; i < Opcodes.size(); ++i) {
1419       std::vector<unsigned> StartBits;
1420       std::vector<unsigned> EndBits;
1421       std::vector<uint64_t> FieldVals;
1422       insn_t Insn;
1423 
1424       insnWithID(Insn, Opcodes[i]);
1425 
1426       // Look for islands of undecoded bits of any instruction.
1427       if (getIslands(StartBits, EndBits, FieldVals, Insn) > 0) {
1428         // Found an instruction with island(s).  Now just assign a filter.
1429         runSingleFilter(StartBits[0], EndBits[0] - StartBits[0] + 1, true);
1430         return true;
1431       }
1432     }
1433   }
1434 
1435   unsigned BitIndex;
1436 
1437   // We maintain BIT_WIDTH copies of the bitAttrs automaton.
1438   // The automaton consumes the corresponding bit from each
1439   // instruction.
1440   //
1441   //   Input symbols: 0, 1, and _ (unset).
1442   //   States:        NONE, FILTERED, ALL_SET, ALL_UNSET, and MIXED.
1443   //   Initial state: NONE.
1444   //
1445   // (NONE) ------- [01] -> (ALL_SET)
1446   // (NONE) ------- _ ----> (ALL_UNSET)
1447   // (ALL_SET) ---- [01] -> (ALL_SET)
1448   // (ALL_SET) ---- _ ----> (MIXED)
1449   // (ALL_UNSET) -- [01] -> (MIXED)
1450   // (ALL_UNSET) -- _ ----> (ALL_UNSET)
1451   // (MIXED) ------ . ----> (MIXED)
1452   // (FILTERED)---- . ----> (FILTERED)
1453 
1454   std::vector<bitAttr_t> bitAttrs;
1455 
1456   // FILTERED bit positions provide no entropy and are not worthy of pursuing.
1457   // Filter::recurse() set either BIT_TRUE or BIT_FALSE for each position.
1458   for (BitIndex = 0; BitIndex < BitWidth; ++BitIndex)
1459     if (FilterBitValues[BitIndex] == BIT_TRUE ||
1460         FilterBitValues[BitIndex] == BIT_FALSE)
1461       bitAttrs.push_back(ATTR_FILTERED);
1462     else
1463       bitAttrs.push_back(ATTR_NONE);
1464 
1465   for (unsigned InsnIndex = 0; InsnIndex < numInstructions; ++InsnIndex) {
1466     insn_t insn;
1467 
1468     insnWithID(insn, Opcodes[InsnIndex]);
1469 
1470     for (BitIndex = 0; BitIndex < BitWidth; ++BitIndex) {
1471       switch (bitAttrs[BitIndex]) {
1472       case ATTR_NONE:
1473         if (insn[BitIndex] == BIT_UNSET)
1474           bitAttrs[BitIndex] = ATTR_ALL_UNSET;
1475         else
1476           bitAttrs[BitIndex] = ATTR_ALL_SET;
1477         break;
1478       case ATTR_ALL_SET:
1479         if (insn[BitIndex] == BIT_UNSET)
1480           bitAttrs[BitIndex] = ATTR_MIXED;
1481         break;
1482       case ATTR_ALL_UNSET:
1483         if (insn[BitIndex] != BIT_UNSET)
1484           bitAttrs[BitIndex] = ATTR_MIXED;
1485         break;
1486       case ATTR_MIXED:
1487       case ATTR_FILTERED:
1488         break;
1489       }
1490     }
1491   }
1492 
1493   // The regionAttr automaton consumes the bitAttrs automatons' state,
1494   // lowest-to-highest.
1495   //
1496   //   Input symbols: F(iltered), (all_)S(et), (all_)U(nset), M(ixed)
1497   //   States:        NONE, ALL_SET, MIXED
1498   //   Initial state: NONE
1499   //
1500   // (NONE) ----- F --> (NONE)
1501   // (NONE) ----- S --> (ALL_SET)     ; and set region start
1502   // (NONE) ----- U --> (NONE)
1503   // (NONE) ----- M --> (MIXED)       ; and set region start
1504   // (ALL_SET) -- F --> (NONE)        ; and report an ALL_SET region
1505   // (ALL_SET) -- S --> (ALL_SET)
1506   // (ALL_SET) -- U --> (NONE)        ; and report an ALL_SET region
1507   // (ALL_SET) -- M --> (MIXED)       ; and report an ALL_SET region
1508   // (MIXED) ---- F --> (NONE)        ; and report a MIXED region
1509   // (MIXED) ---- S --> (ALL_SET)     ; and report a MIXED region
1510   // (MIXED) ---- U --> (NONE)        ; and report a MIXED region
1511   // (MIXED) ---- M --> (MIXED)
1512 
1513   bitAttr_t RA = ATTR_NONE;
1514   unsigned StartBit = 0;
1515 
1516   for (BitIndex = 0; BitIndex < BitWidth; ++BitIndex) {
1517     bitAttr_t bitAttr = bitAttrs[BitIndex];
1518 
1519     assert(bitAttr != ATTR_NONE && "Bit without attributes");
1520 
1521     switch (RA) {
1522     case ATTR_NONE:
1523       switch (bitAttr) {
1524       case ATTR_FILTERED:
1525         break;
1526       case ATTR_ALL_SET:
1527         StartBit = BitIndex;
1528         RA = ATTR_ALL_SET;
1529         break;
1530       case ATTR_ALL_UNSET:
1531         break;
1532       case ATTR_MIXED:
1533         StartBit = BitIndex;
1534         RA = ATTR_MIXED;
1535         break;
1536       default:
1537         llvm_unreachable("Unexpected bitAttr!");
1538       }
1539       break;
1540     case ATTR_ALL_SET:
1541       switch (bitAttr) {
1542       case ATTR_FILTERED:
1543         reportRegion(RA, StartBit, BitIndex, AllowMixed);
1544         RA = ATTR_NONE;
1545         break;
1546       case ATTR_ALL_SET:
1547         break;
1548       case ATTR_ALL_UNSET:
1549         reportRegion(RA, StartBit, BitIndex, AllowMixed);
1550         RA = ATTR_NONE;
1551         break;
1552       case ATTR_MIXED:
1553         reportRegion(RA, StartBit, BitIndex, AllowMixed);
1554         StartBit = BitIndex;
1555         RA = ATTR_MIXED;
1556         break;
1557       default:
1558         llvm_unreachable("Unexpected bitAttr!");
1559       }
1560       break;
1561     case ATTR_MIXED:
1562       switch (bitAttr) {
1563       case ATTR_FILTERED:
1564         reportRegion(RA, StartBit, BitIndex, AllowMixed);
1565         StartBit = BitIndex;
1566         RA = ATTR_NONE;
1567         break;
1568       case ATTR_ALL_SET:
1569         reportRegion(RA, StartBit, BitIndex, AllowMixed);
1570         StartBit = BitIndex;
1571         RA = ATTR_ALL_SET;
1572         break;
1573       case ATTR_ALL_UNSET:
1574         reportRegion(RA, StartBit, BitIndex, AllowMixed);
1575         RA = ATTR_NONE;
1576         break;
1577       case ATTR_MIXED:
1578         break;
1579       default:
1580         llvm_unreachable("Unexpected bitAttr!");
1581       }
1582       break;
1583     case ATTR_ALL_UNSET:
1584       llvm_unreachable("regionAttr state machine has no ATTR_UNSET state");
1585     case ATTR_FILTERED:
1586       llvm_unreachable("regionAttr state machine has no ATTR_FILTERED state");
1587     }
1588   }
1589 
1590   // At the end, if we're still in ALL_SET or MIXED states, report a region
1591   switch (RA) {
1592   case ATTR_NONE:
1593     break;
1594   case ATTR_FILTERED:
1595     break;
1596   case ATTR_ALL_SET:
1597     reportRegion(RA, StartBit, BitIndex, AllowMixed);
1598     break;
1599   case ATTR_ALL_UNSET:
1600     break;
1601   case ATTR_MIXED:
1602     reportRegion(RA, StartBit, BitIndex, AllowMixed);
1603     break;
1604   }
1605 
1606   // We have finished with the filter processings.  Now it's time to choose
1607   // the best performing filter.
1608   BestIndex = 0;
1609   bool AllUseless = true;
1610   unsigned BestScore = 0;
1611 
1612   for (unsigned i = 0, e = Filters.size(); i != e; ++i) {
1613     unsigned Usefulness = Filters[i].usefulness();
1614 
1615     if (Usefulness)
1616       AllUseless = false;
1617 
1618     if (Usefulness > BestScore) {
1619       BestIndex = i;
1620       BestScore = Usefulness;
1621     }
1622   }
1623 
1624   if (!AllUseless)
1625     bestFilter().recurse();
1626 
1627   return !AllUseless;
1628 } // end of FilterChooser::filterProcessor(bool)
1629 
1630 // Decides on the best configuration of filter(s) to use in order to decode
1631 // the instructions.  A conflict of instructions may occur, in which case we
1632 // dump the conflict set to the standard error.
doFilter()1633 void FilterChooser::doFilter() {
1634   unsigned Num = Opcodes.size();
1635   assert(Num && "FilterChooser created with no instructions");
1636 
1637   // Try regions of consecutive known bit values first.
1638   if (filterProcessor(false))
1639     return;
1640 
1641   // Then regions of mixed bits (both known and unitialized bit values allowed).
1642   if (filterProcessor(true))
1643     return;
1644 
1645   // Heuristics to cope with conflict set {t2CMPrs, t2SUBSrr, t2SUBSrs} where
1646   // no single instruction for the maximum ATTR_MIXED region Inst{14-4} has a
1647   // well-known encoding pattern.  In such case, we backtrack and scan for the
1648   // the very first consecutive ATTR_ALL_SET region and assign a filter to it.
1649   if (Num == 3 && filterProcessor(true, false))
1650     return;
1651 
1652   // If we come to here, the instruction decoding has failed.
1653   // Set the BestIndex to -1 to indicate so.
1654   BestIndex = -1;
1655 }
1656 
1657 // emitTableEntries - Emit state machine entries to decode our share of
1658 // instructions.
emitTableEntries(DecoderTableInfo & TableInfo) const1659 void FilterChooser::emitTableEntries(DecoderTableInfo &TableInfo) const {
1660   if (Opcodes.size() == 1) {
1661     // There is only one instruction in the set, which is great!
1662     // Call emitSingletonDecoder() to see whether there are any remaining
1663     // encodings bits.
1664     emitSingletonTableEntry(TableInfo, Opcodes[0]);
1665     return;
1666   }
1667 
1668   // Choose the best filter to do the decodings!
1669   if (BestIndex != -1) {
1670     const Filter &Best = Filters[BestIndex];
1671     if (Best.getNumFiltered() == 1)
1672       emitSingletonTableEntry(TableInfo, Best);
1673     else
1674       Best.emitTableEntry(TableInfo);
1675     return;
1676   }
1677 
1678   // We don't know how to decode these instructions!  Dump the
1679   // conflict set and bail.
1680 
1681   // Print out useful conflict information for postmortem analysis.
1682   errs() << "Decoding Conflict:\n";
1683 
1684   dumpStack(errs(), "\t\t");
1685 
1686   for (unsigned i = 0; i < Opcodes.size(); ++i) {
1687     const std::string &Name = nameWithID(Opcodes[i]);
1688 
1689     errs() << '\t' << Name << " ";
1690     dumpBits(errs(),
1691              getBitsField(*AllInstructions[Opcodes[i]]->TheDef, "Inst"));
1692     errs() << '\n';
1693   }
1694 }
1695 
populateInstruction(const CodeGenInstruction & CGI,unsigned Opc,std::map<unsigned,std::vector<OperandInfo>> & Operands)1696 static bool populateInstruction(const CodeGenInstruction &CGI, unsigned Opc,
1697                        std::map<unsigned, std::vector<OperandInfo> > &Operands){
1698   const Record &Def = *CGI.TheDef;
1699   // If all the bit positions are not specified; do not decode this instruction.
1700   // We are bound to fail!  For proper disassembly, the well-known encoding bits
1701   // of the instruction must be fully specified.
1702   //
1703   // This also removes pseudo instructions from considerations of disassembly,
1704   // which is a better design and less fragile than the name matchings.
1705   // Ignore "asm parser only" instructions.
1706   if (Def.getValueAsBit("isAsmParserOnly") ||
1707       Def.getValueAsBit("isCodeGenOnly"))
1708     return false;
1709 
1710   BitsInit &Bits = getBitsField(Def, "Inst");
1711   if (Bits.allInComplete()) return false;
1712 
1713   std::vector<OperandInfo> InsnOperands;
1714 
1715   // If the instruction has specified a custom decoding hook, use that instead
1716   // of trying to auto-generate the decoder.
1717   std::string InstDecoder = Def.getValueAsString("DecoderMethod");
1718   if (InstDecoder != "") {
1719     InsnOperands.push_back(OperandInfo(InstDecoder));
1720     Operands[Opc] = InsnOperands;
1721     return true;
1722   }
1723 
1724   // Generate a description of the operand of the instruction that we know
1725   // how to decode automatically.
1726   // FIXME: We'll need to have a way to manually override this as needed.
1727 
1728   // Gather the outputs/inputs of the instruction, so we can find their
1729   // positions in the encoding.  This assumes for now that they appear in the
1730   // MCInst in the order that they're listed.
1731   std::vector<std::pair<Init*, std::string> > InOutOperands;
1732   DagInit *Out  = Def.getValueAsDag("OutOperandList");
1733   DagInit *In  = Def.getValueAsDag("InOperandList");
1734   for (unsigned i = 0; i < Out->getNumArgs(); ++i)
1735     InOutOperands.push_back(std::make_pair(Out->getArg(i), Out->getArgName(i)));
1736   for (unsigned i = 0; i < In->getNumArgs(); ++i)
1737     InOutOperands.push_back(std::make_pair(In->getArg(i), In->getArgName(i)));
1738 
1739   // Search for tied operands, so that we can correctly instantiate
1740   // operands that are not explicitly represented in the encoding.
1741   std::map<std::string, std::string> TiedNames;
1742   for (unsigned i = 0; i < CGI.Operands.size(); ++i) {
1743     int tiedTo = CGI.Operands[i].getTiedRegister();
1744     if (tiedTo != -1) {
1745       TiedNames[InOutOperands[i].second] = InOutOperands[tiedTo].second;
1746       TiedNames[InOutOperands[tiedTo].second] = InOutOperands[i].second;
1747     }
1748   }
1749 
1750   // For each operand, see if we can figure out where it is encoded.
1751   for (std::vector<std::pair<Init*, std::string> >::const_iterator
1752        NI = InOutOperands.begin(), NE = InOutOperands.end(); NI != NE; ++NI) {
1753     std::string Decoder = "";
1754 
1755     // At this point, we can locate the field, but we need to know how to
1756     // interpret it.  As a first step, require the target to provide callbacks
1757     // for decoding register classes.
1758     // FIXME: This need to be extended to handle instructions with custom
1759     // decoder methods, and operands with (simple) MIOperandInfo's.
1760     TypedInit *TI = dynamic_cast<TypedInit*>(NI->first);
1761     RecordRecTy *Type = dynamic_cast<RecordRecTy*>(TI->getType());
1762     Record *TypeRecord = Type->getRecord();
1763     bool isReg = false;
1764     if (TypeRecord->isSubClassOf("RegisterOperand"))
1765       TypeRecord = TypeRecord->getValueAsDef("RegClass");
1766     if (TypeRecord->isSubClassOf("RegisterClass")) {
1767       Decoder = "Decode" + TypeRecord->getName() + "RegisterClass";
1768       isReg = true;
1769     }
1770 
1771     RecordVal *DecoderString = TypeRecord->getValue("DecoderMethod");
1772     StringInit *String = DecoderString ?
1773       dynamic_cast<StringInit*>(DecoderString->getValue()) : 0;
1774     if (!isReg && String && String->getValue() != "")
1775       Decoder = String->getValue();
1776 
1777     OperandInfo OpInfo(Decoder);
1778     unsigned Base = ~0U;
1779     unsigned Width = 0;
1780     unsigned Offset = 0;
1781 
1782     for (unsigned bi = 0; bi < Bits.getNumBits(); ++bi) {
1783       VarInit *Var = 0;
1784       VarBitInit *BI = dynamic_cast<VarBitInit*>(Bits.getBit(bi));
1785       if (BI)
1786         Var = dynamic_cast<VarInit*>(BI->getBitVar());
1787       else
1788         Var = dynamic_cast<VarInit*>(Bits.getBit(bi));
1789 
1790       if (!Var) {
1791         if (Base != ~0U) {
1792           OpInfo.addField(Base, Width, Offset);
1793           Base = ~0U;
1794           Width = 0;
1795           Offset = 0;
1796         }
1797         continue;
1798       }
1799 
1800       if (Var->getName() != NI->second &&
1801           Var->getName() != TiedNames[NI->second]) {
1802         if (Base != ~0U) {
1803           OpInfo.addField(Base, Width, Offset);
1804           Base = ~0U;
1805           Width = 0;
1806           Offset = 0;
1807         }
1808         continue;
1809       }
1810 
1811       if (Base == ~0U) {
1812         Base = bi;
1813         Width = 1;
1814         Offset = BI ? BI->getBitNum() : 0;
1815       } else if (BI && BI->getBitNum() != Offset + Width) {
1816         OpInfo.addField(Base, Width, Offset);
1817         Base = bi;
1818         Width = 1;
1819         Offset = BI->getBitNum();
1820       } else {
1821         ++Width;
1822       }
1823     }
1824 
1825     if (Base != ~0U)
1826       OpInfo.addField(Base, Width, Offset);
1827 
1828     if (OpInfo.numFields() > 0)
1829       InsnOperands.push_back(OpInfo);
1830   }
1831 
1832   Operands[Opc] = InsnOperands;
1833 
1834 
1835 #if 0
1836   DEBUG({
1837       // Dumps the instruction encoding bits.
1838       dumpBits(errs(), Bits);
1839 
1840       errs() << '\n';
1841 
1842       // Dumps the list of operand info.
1843       for (unsigned i = 0, e = CGI.Operands.size(); i != e; ++i) {
1844         const CGIOperandList::OperandInfo &Info = CGI.Operands[i];
1845         const std::string &OperandName = Info.Name;
1846         const Record &OperandDef = *Info.Rec;
1847 
1848         errs() << "\t" << OperandName << " (" << OperandDef.getName() << ")\n";
1849       }
1850     });
1851 #endif
1852 
1853   return true;
1854 }
1855 
1856 // emitFieldFromInstruction - Emit the templated helper function
1857 // fieldFromInstruction().
emitFieldFromInstruction(formatted_raw_ostream & OS)1858 static void emitFieldFromInstruction(formatted_raw_ostream &OS) {
1859   OS << "// Helper function for extracting fields from encoded instructions.\n"
1860      << "template<typename InsnType>\n"
1861    << "static InsnType fieldFromInstruction(InsnType insn, unsigned startBit,\n"
1862      << "                                     unsigned numBits) {\n"
1863      << "    assert(startBit + numBits <= (sizeof(InsnType)*8) &&\n"
1864      << "           \"Instruction field out of bounds!\");\n"
1865      << "    InsnType fieldMask;\n"
1866      << "    if (numBits == sizeof(InsnType)*8)\n"
1867      << "      fieldMask = (InsnType)(-1LL);\n"
1868      << "    else\n"
1869      << "      fieldMask = ((1 << numBits) - 1) << startBit;\n"
1870      << "    return (insn & fieldMask) >> startBit;\n"
1871      << "}\n\n";
1872 }
1873 
1874 // emitDecodeInstruction - Emit the templated helper function
1875 // decodeInstruction().
emitDecodeInstruction(formatted_raw_ostream & OS)1876 static void emitDecodeInstruction(formatted_raw_ostream &OS) {
1877   OS << "template<typename InsnType>\n"
1878      << "static DecodeStatus decodeInstruction(const uint8_t DecodeTable[], MCInst &MI,\n"
1879      << "                                      InsnType insn, uint64_t Address,\n"
1880      << "                                      const void *DisAsm,\n"
1881      << "                                      const MCSubtargetInfo &STI) {\n"
1882      << "  uint64_t Bits = STI.getFeatureBits();\n"
1883      << "\n"
1884      << "  const uint8_t *Ptr = DecodeTable;\n"
1885      << "  uint32_t CurFieldValue;\n"
1886      << "  DecodeStatus S = MCDisassembler::Success;\n"
1887      << "  for (;;) {\n"
1888      << "    ptrdiff_t Loc = Ptr - DecodeTable;\n"
1889      << "    switch (*Ptr) {\n"
1890      << "    default:\n"
1891      << "      errs() << Loc << \": Unexpected decode table opcode!\\n\";\n"
1892      << "      return MCDisassembler::Fail;\n"
1893      << "    case MCD::OPC_ExtractField: {\n"
1894      << "      unsigned Start = *++Ptr;\n"
1895      << "      unsigned Len = *++Ptr;\n"
1896      << "      ++Ptr;\n"
1897      << "      CurFieldValue = fieldFromInstruction(insn, Start, Len);\n"
1898      << "      DEBUG(dbgs() << Loc << \": OPC_ExtractField(\" << Start << \", \"\n"
1899      << "                   << Len << \"): \" << CurFieldValue << \"\\n\");\n"
1900      << "      break;\n"
1901      << "    }\n"
1902      << "    case MCD::OPC_FilterValue: {\n"
1903      << "      // Decode the field value.\n"
1904      << "      unsigned Len;\n"
1905      << "      InsnType Val = decodeULEB128(++Ptr, &Len);\n"
1906      << "      Ptr += Len;\n"
1907      << "      // NumToSkip is a plain 16-bit integer.\n"
1908      << "      unsigned NumToSkip = *Ptr++;\n"
1909      << "      NumToSkip |= (*Ptr++) << 8;\n"
1910      << "\n"
1911      << "      // Perform the filter operation.\n"
1912      << "      if (Val != CurFieldValue)\n"
1913      << "        Ptr += NumToSkip;\n"
1914      << "      DEBUG(dbgs() << Loc << \": OPC_FilterValue(\" << Val << \", \" << NumToSkip\n"
1915      << "                   << \"): \" << ((Val != CurFieldValue) ? \"FAIL:\" : \"PASS:\")\n"
1916      << "                   << \" continuing at \" << (Ptr - DecodeTable) << \"\\n\");\n"
1917      << "\n"
1918      << "      break;\n"
1919      << "    }\n"
1920      << "    case MCD::OPC_CheckField: {\n"
1921      << "      unsigned Start = *++Ptr;\n"
1922      << "      unsigned Len = *++Ptr;\n"
1923      << "      InsnType FieldValue = fieldFromInstruction(insn, Start, Len);\n"
1924      << "      // Decode the field value.\n"
1925      << "      uint32_t ExpectedValue = decodeULEB128(++Ptr, &Len);\n"
1926      << "      Ptr += Len;\n"
1927      << "      // NumToSkip is a plain 16-bit integer.\n"
1928      << "      unsigned NumToSkip = *Ptr++;\n"
1929      << "      NumToSkip |= (*Ptr++) << 8;\n"
1930      << "\n"
1931      << "      // If the actual and expected values don't match, skip.\n"
1932      << "      if (ExpectedValue != FieldValue)\n"
1933      << "        Ptr += NumToSkip;\n"
1934      << "      DEBUG(dbgs() << Loc << \": OPC_CheckField(\" << Start << \", \"\n"
1935      << "                   << Len << \", \" << ExpectedValue << \", \" << NumToSkip\n"
1936      << "                   << \"): FieldValue = \" << FieldValue << \", ExpectedValue = \"\n"
1937      << "                   << ExpectedValue << \": \"\n"
1938      << "                   << ((ExpectedValue == FieldValue) ? \"PASS\\n\" : \"FAIL\\n\"));\n"
1939      << "      break;\n"
1940      << "    }\n"
1941      << "    case MCD::OPC_CheckPredicate: {\n"
1942      << "      unsigned Len;\n"
1943      << "      // Decode the Predicate Index value.\n"
1944      << "      unsigned PIdx = decodeULEB128(++Ptr, &Len);\n"
1945      << "      Ptr += Len;\n"
1946      << "      // NumToSkip is a plain 16-bit integer.\n"
1947      << "      unsigned NumToSkip = *Ptr++;\n"
1948      << "      NumToSkip |= (*Ptr++) << 8;\n"
1949      << "      // Check the predicate.\n"
1950      << "      bool Pred;\n"
1951      << "      if (!(Pred = checkDecoderPredicate(PIdx, Bits)))\n"
1952      << "        Ptr += NumToSkip;\n"
1953      << "      (void)Pred;\n"
1954      << "      DEBUG(dbgs() << Loc << \": OPC_CheckPredicate(\" << PIdx << \"): \"\n"
1955      << "            << (Pred ? \"PASS\\n\" : \"FAIL\\n\"));\n"
1956      << "\n"
1957      << "      break;\n"
1958      << "    }\n"
1959      << "    case MCD::OPC_Decode: {\n"
1960      << "      unsigned Len;\n"
1961      << "      // Decode the Opcode value.\n"
1962      << "      unsigned Opc = decodeULEB128(++Ptr, &Len);\n"
1963      << "      Ptr += Len;\n"
1964      << "      unsigned DecodeIdx = decodeULEB128(Ptr, &Len);\n"
1965      << "      Ptr += Len;\n"
1966      << "      DEBUG(dbgs() << Loc << \": OPC_Decode: opcode \" << Opc\n"
1967      << "                   << \", using decoder \" << DecodeIdx << \"\\n\" );\n"
1968      << "      DEBUG(dbgs() << \"----- DECODE SUCCESSFUL -----\\n\");\n"
1969      << "\n"
1970      << "      MI.setOpcode(Opc);\n"
1971      << "      return decodeToMCInst(S, DecodeIdx, insn, MI, Address, DisAsm);\n"
1972      << "    }\n"
1973      << "    case MCD::OPC_SoftFail: {\n"
1974      << "      // Decode the mask values.\n"
1975      << "      unsigned Len;\n"
1976      << "      InsnType PositiveMask = decodeULEB128(++Ptr, &Len);\n"
1977      << "      Ptr += Len;\n"
1978      << "      InsnType NegativeMask = decodeULEB128(Ptr, &Len);\n"
1979      << "      Ptr += Len;\n"
1980      << "      bool Fail = (insn & PositiveMask) || (~insn & NegativeMask);\n"
1981      << "      if (Fail)\n"
1982      << "        S = MCDisassembler::SoftFail;\n"
1983      << "      DEBUG(dbgs() << Loc << \": OPC_SoftFail: \" << (Fail ? \"FAIL\\n\":\"PASS\\n\"));\n"
1984      << "      break;\n"
1985      << "    }\n"
1986      << "    case MCD::OPC_Fail: {\n"
1987      << "      DEBUG(dbgs() << Loc << \": OPC_Fail\\n\");\n"
1988      << "      return MCDisassembler::Fail;\n"
1989      << "    }\n"
1990      << "    }\n"
1991      << "  }\n"
1992      << "  llvm_unreachable(\"bogosity detected in disassembler state machine!\");\n"
1993      << "}\n\n";
1994 }
1995 
1996 // Emits disassembler code for instruction decoding.
run(raw_ostream & o)1997 void FixedLenDecoderEmitter::run(raw_ostream &o) {
1998   formatted_raw_ostream OS(o);
1999   OS << "#include \"llvm/MC/MCInst.h\"\n";
2000   OS << "#include \"llvm/Support/Debug.h\"\n";
2001   OS << "#include \"llvm/Support/DataTypes.h\"\n";
2002   OS << "#include \"llvm/Support/LEB128.h\"\n";
2003   OS << "#include \"llvm/Support/raw_ostream.h\"\n";
2004   OS << "#include <assert.h>\n";
2005   OS << '\n';
2006   OS << "namespace llvm {\n\n";
2007 
2008   emitFieldFromInstruction(OS);
2009 
2010   // Parameterize the decoders based on namespace and instruction width.
2011   NumberedInstructions = &Target.getInstructionsByEnumValue();
2012   std::map<std::pair<std::string, unsigned>,
2013            std::vector<unsigned> > OpcMap;
2014   std::map<unsigned, std::vector<OperandInfo> > Operands;
2015 
2016   for (unsigned i = 0; i < NumberedInstructions->size(); ++i) {
2017     const CodeGenInstruction *Inst = NumberedInstructions->at(i);
2018     const Record *Def = Inst->TheDef;
2019     unsigned Size = Def->getValueAsInt("Size");
2020     if (Def->getValueAsString("Namespace") == "TargetOpcode" ||
2021         Def->getValueAsBit("isPseudo") ||
2022         Def->getValueAsBit("isAsmParserOnly") ||
2023         Def->getValueAsBit("isCodeGenOnly"))
2024       continue;
2025 
2026     std::string DecoderNamespace = Def->getValueAsString("DecoderNamespace");
2027 
2028     if (Size) {
2029       if (populateInstruction(*Inst, i, Operands)) {
2030         OpcMap[std::make_pair(DecoderNamespace, Size)].push_back(i);
2031       }
2032     }
2033   }
2034 
2035   DecoderTableInfo TableInfo;
2036   std::set<unsigned> Sizes;
2037   for (std::map<std::pair<std::string, unsigned>,
2038                 std::vector<unsigned> >::const_iterator
2039        I = OpcMap.begin(), E = OpcMap.end(); I != E; ++I) {
2040     // Emit the decoder for this namespace+width combination.
2041     FilterChooser FC(*NumberedInstructions, I->second, Operands,
2042                      8*I->first.second, this);
2043 
2044     // The decode table is cleared for each top level decoder function. The
2045     // predicates and decoders themselves, however, are shared across all
2046     // decoders to give more opportunities for uniqueing.
2047     TableInfo.Table.clear();
2048     TableInfo.FixupStack.clear();
2049     TableInfo.Table.reserve(16384);
2050     TableInfo.FixupStack.push_back(FixupList());
2051     FC.emitTableEntries(TableInfo);
2052     // Any NumToSkip fixups in the top level scope can resolve to the
2053     // OPC_Fail at the end of the table.
2054     assert(TableInfo.FixupStack.size() == 1 && "fixup stack phasing error!");
2055     // Resolve any NumToSkip fixups in the current scope.
2056     resolveTableFixups(TableInfo.Table, TableInfo.FixupStack.back(),
2057                        TableInfo.Table.size());
2058     TableInfo.FixupStack.clear();
2059 
2060     TableInfo.Table.push_back(MCD::OPC_Fail);
2061 
2062     // Print the table to the output stream.
2063     emitTable(OS, TableInfo.Table, 0, FC.getBitWidth(), I->first.first);
2064     OS.flush();
2065   }
2066 
2067   // Emit the predicate function.
2068   emitPredicateFunction(OS, TableInfo.Predicates, 0);
2069 
2070   // Emit the decoder function.
2071   emitDecoderFunction(OS, TableInfo.Decoders, 0);
2072 
2073   // Emit the main entry point for the decoder, decodeInstruction().
2074   emitDecodeInstruction(OS);
2075 
2076   OS << "\n} // End llvm namespace\n";
2077 }
2078 
2079 namespace llvm {
2080 
EmitFixedLenDecoder(RecordKeeper & RK,raw_ostream & OS,std::string PredicateNamespace,std::string GPrefix,std::string GPostfix,std::string ROK,std::string RFail,std::string L)2081 void EmitFixedLenDecoder(RecordKeeper &RK, raw_ostream &OS,
2082                          std::string PredicateNamespace,
2083                          std::string GPrefix,
2084                          std::string GPostfix,
2085                          std::string ROK,
2086                          std::string RFail,
2087                          std::string L) {
2088   FixedLenDecoderEmitter(RK, PredicateNamespace, GPrefix, GPostfix,
2089                          ROK, RFail, L).run(OS);
2090 }
2091 
2092 } // End llvm namespace
2093