1 //===-- lib/Codegen/MachineRegisterInfo.cpp -------------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Implementation of the MachineRegisterInfo class.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/CodeGen/MachineRegisterInfo.h"
15 #include "llvm/CodeGen/MachineInstrBuilder.h"
16 #include "llvm/Target/TargetInstrInfo.h"
17 #include "llvm/Target/TargetMachine.h"
18 using namespace llvm;
19
MachineRegisterInfo(const TargetRegisterInfo & TRI)20 MachineRegisterInfo::MachineRegisterInfo(const TargetRegisterInfo &TRI)
21 : TRI(&TRI), IsSSA(true), TracksLiveness(true) {
22 VRegInfo.reserve(256);
23 RegAllocHints.reserve(256);
24 UsedPhysRegs.resize(TRI.getNumRegs());
25 UsedPhysRegMask.resize(TRI.getNumRegs());
26
27 // Create the physreg use/def lists.
28 PhysRegUseDefLists = new MachineOperand*[TRI.getNumRegs()];
29 memset(PhysRegUseDefLists, 0, sizeof(MachineOperand*)*TRI.getNumRegs());
30 }
31
~MachineRegisterInfo()32 MachineRegisterInfo::~MachineRegisterInfo() {
33 #ifndef NDEBUG
34 clearVirtRegs();
35 for (unsigned i = 0, e = UsedPhysRegs.size(); i != e; ++i)
36 assert(!PhysRegUseDefLists[i] &&
37 "PhysRegUseDefLists has entries after all instructions are deleted");
38 #endif
39 delete [] PhysRegUseDefLists;
40 }
41
42 /// setRegClass - Set the register class of the specified virtual register.
43 ///
44 void
setRegClass(unsigned Reg,const TargetRegisterClass * RC)45 MachineRegisterInfo::setRegClass(unsigned Reg, const TargetRegisterClass *RC) {
46 VRegInfo[Reg].first = RC;
47 }
48
49 const TargetRegisterClass *
constrainRegClass(unsigned Reg,const TargetRegisterClass * RC,unsigned MinNumRegs)50 MachineRegisterInfo::constrainRegClass(unsigned Reg,
51 const TargetRegisterClass *RC,
52 unsigned MinNumRegs) {
53 const TargetRegisterClass *OldRC = getRegClass(Reg);
54 if (OldRC == RC)
55 return RC;
56 const TargetRegisterClass *NewRC = TRI->getCommonSubClass(OldRC, RC);
57 if (!NewRC || NewRC == OldRC)
58 return NewRC;
59 if (NewRC->getNumRegs() < MinNumRegs)
60 return 0;
61 setRegClass(Reg, NewRC);
62 return NewRC;
63 }
64
65 bool
recomputeRegClass(unsigned Reg,const TargetMachine & TM)66 MachineRegisterInfo::recomputeRegClass(unsigned Reg, const TargetMachine &TM) {
67 const TargetInstrInfo *TII = TM.getInstrInfo();
68 const TargetRegisterClass *OldRC = getRegClass(Reg);
69 const TargetRegisterClass *NewRC = TRI->getLargestLegalSuperClass(OldRC);
70
71 // Stop early if there is no room to grow.
72 if (NewRC == OldRC)
73 return false;
74
75 // Accumulate constraints from all uses.
76 for (reg_nodbg_iterator I = reg_nodbg_begin(Reg), E = reg_nodbg_end(); I != E;
77 ++I) {
78 const TargetRegisterClass *OpRC =
79 I->getRegClassConstraint(I.getOperandNo(), TII, TRI);
80 if (unsigned SubIdx = I.getOperand().getSubReg()) {
81 if (OpRC)
82 NewRC = TRI->getMatchingSuperRegClass(NewRC, OpRC, SubIdx);
83 else
84 NewRC = TRI->getSubClassWithSubReg(NewRC, SubIdx);
85 } else if (OpRC)
86 NewRC = TRI->getCommonSubClass(NewRC, OpRC);
87 if (!NewRC || NewRC == OldRC)
88 return false;
89 }
90 setRegClass(Reg, NewRC);
91 return true;
92 }
93
94 /// createVirtualRegister - Create and return a new virtual register in the
95 /// function with the specified register class.
96 ///
97 unsigned
createVirtualRegister(const TargetRegisterClass * RegClass)98 MachineRegisterInfo::createVirtualRegister(const TargetRegisterClass *RegClass){
99 assert(RegClass && "Cannot create register without RegClass!");
100 assert(RegClass->isAllocatable() &&
101 "Virtual register RegClass must be allocatable.");
102
103 // New virtual register number.
104 unsigned Reg = TargetRegisterInfo::index2VirtReg(getNumVirtRegs());
105 VRegInfo.grow(Reg);
106 VRegInfo[Reg].first = RegClass;
107 RegAllocHints.grow(Reg);
108 return Reg;
109 }
110
111 /// clearVirtRegs - Remove all virtual registers (after physreg assignment).
clearVirtRegs()112 void MachineRegisterInfo::clearVirtRegs() {
113 #ifndef NDEBUG
114 for (unsigned i = 0, e = getNumVirtRegs(); i != e; ++i)
115 assert(VRegInfo[TargetRegisterInfo::index2VirtReg(i)].second == 0 &&
116 "Vreg use list non-empty still?");
117 #endif
118 VRegInfo.clear();
119 }
120
121 /// Add MO to the linked list of operands for its register.
addRegOperandToUseList(MachineOperand * MO)122 void MachineRegisterInfo::addRegOperandToUseList(MachineOperand *MO) {
123 assert(!MO->isOnRegUseList() && "Already on list");
124 MachineOperand *&HeadRef = getRegUseDefListHead(MO->getReg());
125 MachineOperand *const Head = HeadRef;
126
127 // Head points to the first list element.
128 // Next is NULL on the last list element.
129 // Prev pointers are circular, so Head->Prev == Last.
130
131 // Head is NULL for an empty list.
132 if (!Head) {
133 MO->Contents.Reg.Prev = MO;
134 MO->Contents.Reg.Next = 0;
135 HeadRef = MO;
136 return;
137 }
138 assert(MO->getReg() == Head->getReg() && "Different regs on the same list!");
139
140 // Insert MO between Last and Head in the circular Prev chain.
141 MachineOperand *Last = Head->Contents.Reg.Prev;
142 assert(Last && "Inconsistent use list");
143 assert(MO->getReg() == Last->getReg() && "Different regs on the same list!");
144 Head->Contents.Reg.Prev = MO;
145 MO->Contents.Reg.Prev = Last;
146
147 // Def operands always precede uses. This allows def_iterator to stop early.
148 // Insert def operands at the front, and use operands at the back.
149 if (MO->isDef()) {
150 // Insert def at the front.
151 MO->Contents.Reg.Next = Head;
152 HeadRef = MO;
153 } else {
154 // Insert use at the end.
155 MO->Contents.Reg.Next = 0;
156 Last->Contents.Reg.Next = MO;
157 }
158 }
159
160 /// Remove MO from its use-def list.
removeRegOperandFromUseList(MachineOperand * MO)161 void MachineRegisterInfo::removeRegOperandFromUseList(MachineOperand *MO) {
162 assert(MO->isOnRegUseList() && "Operand not on use list");
163 MachineOperand *&HeadRef = getRegUseDefListHead(MO->getReg());
164 MachineOperand *const Head = HeadRef;
165 assert(Head && "List already empty");
166
167 // Unlink this from the doubly linked list of operands.
168 MachineOperand *Next = MO->Contents.Reg.Next;
169 MachineOperand *Prev = MO->Contents.Reg.Prev;
170
171 // Prev links are circular, next link is NULL instead of looping back to Head.
172 if (MO == Head)
173 HeadRef = Next;
174 else
175 Prev->Contents.Reg.Next = Next;
176
177 (Next ? Next : Head)->Contents.Reg.Prev = Prev;
178
179 MO->Contents.Reg.Prev = 0;
180 MO->Contents.Reg.Next = 0;
181 }
182
183 /// replaceRegWith - Replace all instances of FromReg with ToReg in the
184 /// machine function. This is like llvm-level X->replaceAllUsesWith(Y),
185 /// except that it also changes any definitions of the register as well.
replaceRegWith(unsigned FromReg,unsigned ToReg)186 void MachineRegisterInfo::replaceRegWith(unsigned FromReg, unsigned ToReg) {
187 assert(FromReg != ToReg && "Cannot replace a reg with itself");
188
189 // TODO: This could be more efficient by bulk changing the operands.
190 for (reg_iterator I = reg_begin(FromReg), E = reg_end(); I != E; ) {
191 MachineOperand &O = I.getOperand();
192 ++I;
193 O.setReg(ToReg);
194 }
195 }
196
197
198 /// getVRegDef - Return the machine instr that defines the specified virtual
199 /// register or null if none is found. This assumes that the code is in SSA
200 /// form, so there should only be one definition.
getVRegDef(unsigned Reg) const201 MachineInstr *MachineRegisterInfo::getVRegDef(unsigned Reg) const {
202 // Since we are in SSA form, we can use the first definition.
203 def_iterator I = def_begin(Reg);
204 assert((I.atEnd() || llvm::next(I) == def_end()) &&
205 "getVRegDef assumes a single definition or no definition");
206 return !I.atEnd() ? &*I : 0;
207 }
208
209 /// getUniqueVRegDef - Return the unique machine instr that defines the
210 /// specified virtual register or null if none is found. If there are
211 /// multiple definitions or no definition, return null.
getUniqueVRegDef(unsigned Reg) const212 MachineInstr *MachineRegisterInfo::getUniqueVRegDef(unsigned Reg) const {
213 if (def_empty(Reg)) return 0;
214 def_iterator I = def_begin(Reg);
215 if (llvm::next(I) != def_end())
216 return 0;
217 return &*I;
218 }
219
hasOneNonDBGUse(unsigned RegNo) const220 bool MachineRegisterInfo::hasOneNonDBGUse(unsigned RegNo) const {
221 use_nodbg_iterator UI = use_nodbg_begin(RegNo);
222 if (UI == use_nodbg_end())
223 return false;
224 return ++UI == use_nodbg_end();
225 }
226
227 /// clearKillFlags - Iterate over all the uses of the given register and
228 /// clear the kill flag from the MachineOperand. This function is used by
229 /// optimization passes which extend register lifetimes and need only
230 /// preserve conservative kill flag information.
clearKillFlags(unsigned Reg) const231 void MachineRegisterInfo::clearKillFlags(unsigned Reg) const {
232 for (use_iterator UI = use_begin(Reg), UE = use_end(); UI != UE; ++UI)
233 UI.getOperand().setIsKill(false);
234 }
235
isLiveIn(unsigned Reg) const236 bool MachineRegisterInfo::isLiveIn(unsigned Reg) const {
237 for (livein_iterator I = livein_begin(), E = livein_end(); I != E; ++I)
238 if (I->first == Reg || I->second == Reg)
239 return true;
240 return false;
241 }
242
isLiveOut(unsigned Reg) const243 bool MachineRegisterInfo::isLiveOut(unsigned Reg) const {
244 for (liveout_iterator I = liveout_begin(), E = liveout_end(); I != E; ++I)
245 if (*I == Reg)
246 return true;
247 return false;
248 }
249
250 /// getLiveInPhysReg - If VReg is a live-in virtual register, return the
251 /// corresponding live-in physical register.
getLiveInPhysReg(unsigned VReg) const252 unsigned MachineRegisterInfo::getLiveInPhysReg(unsigned VReg) const {
253 for (livein_iterator I = livein_begin(), E = livein_end(); I != E; ++I)
254 if (I->second == VReg)
255 return I->first;
256 return 0;
257 }
258
259 /// getLiveInVirtReg - If PReg is a live-in physical register, return the
260 /// corresponding live-in physical register.
getLiveInVirtReg(unsigned PReg) const261 unsigned MachineRegisterInfo::getLiveInVirtReg(unsigned PReg) const {
262 for (livein_iterator I = livein_begin(), E = livein_end(); I != E; ++I)
263 if (I->first == PReg)
264 return I->second;
265 return 0;
266 }
267
268 /// EmitLiveInCopies - Emit copies to initialize livein virtual registers
269 /// into the given entry block.
270 void
EmitLiveInCopies(MachineBasicBlock * EntryMBB,const TargetRegisterInfo & TRI,const TargetInstrInfo & TII)271 MachineRegisterInfo::EmitLiveInCopies(MachineBasicBlock *EntryMBB,
272 const TargetRegisterInfo &TRI,
273 const TargetInstrInfo &TII) {
274 // Emit the copies into the top of the block.
275 for (unsigned i = 0, e = LiveIns.size(); i != e; ++i)
276 if (LiveIns[i].second) {
277 if (use_empty(LiveIns[i].second)) {
278 // The livein has no uses. Drop it.
279 //
280 // It would be preferable to have isel avoid creating live-in
281 // records for unused arguments in the first place, but it's
282 // complicated by the debug info code for arguments.
283 LiveIns.erase(LiveIns.begin() + i);
284 --i; --e;
285 } else {
286 // Emit a copy.
287 BuildMI(*EntryMBB, EntryMBB->begin(), DebugLoc(),
288 TII.get(TargetOpcode::COPY), LiveIns[i].second)
289 .addReg(LiveIns[i].first);
290
291 // Add the register to the entry block live-in set.
292 EntryMBB->addLiveIn(LiveIns[i].first);
293 }
294 } else {
295 // Add the register to the entry block live-in set.
296 EntryMBB->addLiveIn(LiveIns[i].first);
297 }
298 }
299
300 #ifndef NDEBUG
dumpUses(unsigned Reg) const301 void MachineRegisterInfo::dumpUses(unsigned Reg) const {
302 for (use_iterator I = use_begin(Reg), E = use_end(); I != E; ++I)
303 I.getOperand().getParent()->dump();
304 }
305 #endif
306
freezeReservedRegs(const MachineFunction & MF)307 void MachineRegisterInfo::freezeReservedRegs(const MachineFunction &MF) {
308 ReservedRegs = TRI->getReservedRegs(MF);
309 }
310
isConstantPhysReg(unsigned PhysReg,const MachineFunction & MF) const311 bool MachineRegisterInfo::isConstantPhysReg(unsigned PhysReg,
312 const MachineFunction &MF) const {
313 assert(TargetRegisterInfo::isPhysicalRegister(PhysReg));
314
315 // Check if any overlapping register is modified.
316 for (MCRegAliasIterator AI(PhysReg, TRI, true); AI.isValid(); ++AI)
317 if (!def_empty(*AI))
318 return false;
319
320 // Check if any overlapping register is allocatable so it may be used later.
321 if (AllocatableRegs.empty())
322 AllocatableRegs = TRI->getAllocatableSet(MF);
323 for (MCRegAliasIterator AI(PhysReg, TRI, true); AI.isValid(); ++AI)
324 if (AllocatableRegs.test(*AI))
325 return false;
326 return true;
327 }
328