1 //===--------------------- SemaLookup.cpp - Name Lookup ------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements name lookup for C, C++, Objective-C, and
11 // Objective-C++.
12 //
13 //===----------------------------------------------------------------------===//
14 #include "clang/Sema/Sema.h"
15 #include "clang/Sema/SemaInternal.h"
16 #include "clang/Sema/Lookup.h"
17 #include "clang/Sema/Overload.h"
18 #include "clang/Sema/DeclSpec.h"
19 #include "clang/Sema/Scope.h"
20 #include "clang/Sema/ScopeInfo.h"
21 #include "clang/Sema/TemplateDeduction.h"
22 #include "clang/Sema/ExternalSemaSource.h"
23 #include "clang/Sema/TypoCorrection.h"
24 #include "clang/AST/ASTContext.h"
25 #include "clang/AST/CXXInheritance.h"
26 #include "clang/AST/Decl.h"
27 #include "clang/AST/DeclCXX.h"
28 #include "clang/AST/DeclLookups.h"
29 #include "clang/AST/DeclObjC.h"
30 #include "clang/AST/DeclTemplate.h"
31 #include "clang/AST/Expr.h"
32 #include "clang/AST/ExprCXX.h"
33 #include "clang/Basic/Builtins.h"
34 #include "clang/Basic/LangOptions.h"
35 #include "llvm/ADT/SetVector.h"
36 #include "llvm/ADT/STLExtras.h"
37 #include "llvm/ADT/SmallPtrSet.h"
38 #include "llvm/ADT/StringMap.h"
39 #include "llvm/ADT/TinyPtrVector.h"
40 #include "llvm/ADT/edit_distance.h"
41 #include "llvm/Support/ErrorHandling.h"
42 #include <algorithm>
43 #include <iterator>
44 #include <limits>
45 #include <list>
46 #include <map>
47 #include <set>
48 #include <utility>
49 #include <vector>
50
51 using namespace clang;
52 using namespace sema;
53
54 namespace {
55 class UnqualUsingEntry {
56 const DeclContext *Nominated;
57 const DeclContext *CommonAncestor;
58
59 public:
UnqualUsingEntry(const DeclContext * Nominated,const DeclContext * CommonAncestor)60 UnqualUsingEntry(const DeclContext *Nominated,
61 const DeclContext *CommonAncestor)
62 : Nominated(Nominated), CommonAncestor(CommonAncestor) {
63 }
64
getCommonAncestor() const65 const DeclContext *getCommonAncestor() const {
66 return CommonAncestor;
67 }
68
getNominatedNamespace() const69 const DeclContext *getNominatedNamespace() const {
70 return Nominated;
71 }
72
73 // Sort by the pointer value of the common ancestor.
74 struct Comparator {
operator ()__anonb72703d70111::UnqualUsingEntry::Comparator75 bool operator()(const UnqualUsingEntry &L, const UnqualUsingEntry &R) {
76 return L.getCommonAncestor() < R.getCommonAncestor();
77 }
78
operator ()__anonb72703d70111::UnqualUsingEntry::Comparator79 bool operator()(const UnqualUsingEntry &E, const DeclContext *DC) {
80 return E.getCommonAncestor() < DC;
81 }
82
operator ()__anonb72703d70111::UnqualUsingEntry::Comparator83 bool operator()(const DeclContext *DC, const UnqualUsingEntry &E) {
84 return DC < E.getCommonAncestor();
85 }
86 };
87 };
88
89 /// A collection of using directives, as used by C++ unqualified
90 /// lookup.
91 class UnqualUsingDirectiveSet {
92 typedef SmallVector<UnqualUsingEntry, 8> ListTy;
93
94 ListTy list;
95 llvm::SmallPtrSet<DeclContext*, 8> visited;
96
97 public:
UnqualUsingDirectiveSet()98 UnqualUsingDirectiveSet() {}
99
visitScopeChain(Scope * S,Scope * InnermostFileScope)100 void visitScopeChain(Scope *S, Scope *InnermostFileScope) {
101 // C++ [namespace.udir]p1:
102 // During unqualified name lookup, the names appear as if they
103 // were declared in the nearest enclosing namespace which contains
104 // both the using-directive and the nominated namespace.
105 DeclContext *InnermostFileDC
106 = static_cast<DeclContext*>(InnermostFileScope->getEntity());
107 assert(InnermostFileDC && InnermostFileDC->isFileContext());
108
109 for (; S; S = S->getParent()) {
110 // C++ [namespace.udir]p1:
111 // A using-directive shall not appear in class scope, but may
112 // appear in namespace scope or in block scope.
113 DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity());
114 if (Ctx && Ctx->isFileContext()) {
115 visit(Ctx, Ctx);
116 } else if (!Ctx || Ctx->isFunctionOrMethod()) {
117 Scope::udir_iterator I = S->using_directives_begin(),
118 End = S->using_directives_end();
119 for (; I != End; ++I)
120 visit(*I, InnermostFileDC);
121 }
122 }
123 }
124
125 // Visits a context and collect all of its using directives
126 // recursively. Treats all using directives as if they were
127 // declared in the context.
128 //
129 // A given context is only every visited once, so it is important
130 // that contexts be visited from the inside out in order to get
131 // the effective DCs right.
visit(DeclContext * DC,DeclContext * EffectiveDC)132 void visit(DeclContext *DC, DeclContext *EffectiveDC) {
133 if (!visited.insert(DC))
134 return;
135
136 addUsingDirectives(DC, EffectiveDC);
137 }
138
139 // Visits a using directive and collects all of its using
140 // directives recursively. Treats all using directives as if they
141 // were declared in the effective DC.
visit(UsingDirectiveDecl * UD,DeclContext * EffectiveDC)142 void visit(UsingDirectiveDecl *UD, DeclContext *EffectiveDC) {
143 DeclContext *NS = UD->getNominatedNamespace();
144 if (!visited.insert(NS))
145 return;
146
147 addUsingDirective(UD, EffectiveDC);
148 addUsingDirectives(NS, EffectiveDC);
149 }
150
151 // Adds all the using directives in a context (and those nominated
152 // by its using directives, transitively) as if they appeared in
153 // the given effective context.
addUsingDirectives(DeclContext * DC,DeclContext * EffectiveDC)154 void addUsingDirectives(DeclContext *DC, DeclContext *EffectiveDC) {
155 SmallVector<DeclContext*,4> queue;
156 while (true) {
157 DeclContext::udir_iterator I, End;
158 for (llvm::tie(I, End) = DC->getUsingDirectives(); I != End; ++I) {
159 UsingDirectiveDecl *UD = *I;
160 DeclContext *NS = UD->getNominatedNamespace();
161 if (visited.insert(NS)) {
162 addUsingDirective(UD, EffectiveDC);
163 queue.push_back(NS);
164 }
165 }
166
167 if (queue.empty())
168 return;
169
170 DC = queue.back();
171 queue.pop_back();
172 }
173 }
174
175 // Add a using directive as if it had been declared in the given
176 // context. This helps implement C++ [namespace.udir]p3:
177 // The using-directive is transitive: if a scope contains a
178 // using-directive that nominates a second namespace that itself
179 // contains using-directives, the effect is as if the
180 // using-directives from the second namespace also appeared in
181 // the first.
addUsingDirective(UsingDirectiveDecl * UD,DeclContext * EffectiveDC)182 void addUsingDirective(UsingDirectiveDecl *UD, DeclContext *EffectiveDC) {
183 // Find the common ancestor between the effective context and
184 // the nominated namespace.
185 DeclContext *Common = UD->getNominatedNamespace();
186 while (!Common->Encloses(EffectiveDC))
187 Common = Common->getParent();
188 Common = Common->getPrimaryContext();
189
190 list.push_back(UnqualUsingEntry(UD->getNominatedNamespace(), Common));
191 }
192
done()193 void done() {
194 std::sort(list.begin(), list.end(), UnqualUsingEntry::Comparator());
195 }
196
197 typedef ListTy::const_iterator const_iterator;
198
begin() const199 const_iterator begin() const { return list.begin(); }
end() const200 const_iterator end() const { return list.end(); }
201
202 std::pair<const_iterator,const_iterator>
getNamespacesFor(DeclContext * DC) const203 getNamespacesFor(DeclContext *DC) const {
204 return std::equal_range(begin(), end(), DC->getPrimaryContext(),
205 UnqualUsingEntry::Comparator());
206 }
207 };
208 }
209
210 // Retrieve the set of identifier namespaces that correspond to a
211 // specific kind of name lookup.
getIDNS(Sema::LookupNameKind NameKind,bool CPlusPlus,bool Redeclaration)212 static inline unsigned getIDNS(Sema::LookupNameKind NameKind,
213 bool CPlusPlus,
214 bool Redeclaration) {
215 unsigned IDNS = 0;
216 switch (NameKind) {
217 case Sema::LookupObjCImplicitSelfParam:
218 case Sema::LookupOrdinaryName:
219 case Sema::LookupRedeclarationWithLinkage:
220 IDNS = Decl::IDNS_Ordinary;
221 if (CPlusPlus) {
222 IDNS |= Decl::IDNS_Tag | Decl::IDNS_Member | Decl::IDNS_Namespace;
223 if (Redeclaration)
224 IDNS |= Decl::IDNS_TagFriend | Decl::IDNS_OrdinaryFriend;
225 }
226 break;
227
228 case Sema::LookupOperatorName:
229 // Operator lookup is its own crazy thing; it is not the same
230 // as (e.g.) looking up an operator name for redeclaration.
231 assert(!Redeclaration && "cannot do redeclaration operator lookup");
232 IDNS = Decl::IDNS_NonMemberOperator;
233 break;
234
235 case Sema::LookupTagName:
236 if (CPlusPlus) {
237 IDNS = Decl::IDNS_Type;
238
239 // When looking for a redeclaration of a tag name, we add:
240 // 1) TagFriend to find undeclared friend decls
241 // 2) Namespace because they can't "overload" with tag decls.
242 // 3) Tag because it includes class templates, which can't
243 // "overload" with tag decls.
244 if (Redeclaration)
245 IDNS |= Decl::IDNS_Tag | Decl::IDNS_TagFriend | Decl::IDNS_Namespace;
246 } else {
247 IDNS = Decl::IDNS_Tag;
248 }
249 break;
250 case Sema::LookupLabel:
251 IDNS = Decl::IDNS_Label;
252 break;
253
254 case Sema::LookupMemberName:
255 IDNS = Decl::IDNS_Member;
256 if (CPlusPlus)
257 IDNS |= Decl::IDNS_Tag | Decl::IDNS_Ordinary;
258 break;
259
260 case Sema::LookupNestedNameSpecifierName:
261 IDNS = Decl::IDNS_Type | Decl::IDNS_Namespace;
262 break;
263
264 case Sema::LookupNamespaceName:
265 IDNS = Decl::IDNS_Namespace;
266 break;
267
268 case Sema::LookupUsingDeclName:
269 IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Tag
270 | Decl::IDNS_Member | Decl::IDNS_Using;
271 break;
272
273 case Sema::LookupObjCProtocolName:
274 IDNS = Decl::IDNS_ObjCProtocol;
275 break;
276
277 case Sema::LookupAnyName:
278 IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Tag | Decl::IDNS_Member
279 | Decl::IDNS_Using | Decl::IDNS_Namespace | Decl::IDNS_ObjCProtocol
280 | Decl::IDNS_Type;
281 break;
282 }
283 return IDNS;
284 }
285
configure()286 void LookupResult::configure() {
287 IDNS = getIDNS(LookupKind, SemaRef.getLangOpts().CPlusPlus,
288 isForRedeclaration());
289
290 // If we're looking for one of the allocation or deallocation
291 // operators, make sure that the implicitly-declared new and delete
292 // operators can be found.
293 if (!isForRedeclaration()) {
294 switch (NameInfo.getName().getCXXOverloadedOperator()) {
295 case OO_New:
296 case OO_Delete:
297 case OO_Array_New:
298 case OO_Array_Delete:
299 SemaRef.DeclareGlobalNewDelete();
300 break;
301
302 default:
303 break;
304 }
305 }
306 }
307
sanityImpl() const308 void LookupResult::sanityImpl() const {
309 // Note that this function is never called by NDEBUG builds. See
310 // LookupResult::sanity().
311 assert(ResultKind != NotFound || Decls.size() == 0);
312 assert(ResultKind != Found || Decls.size() == 1);
313 assert(ResultKind != FoundOverloaded || Decls.size() > 1 ||
314 (Decls.size() == 1 &&
315 isa<FunctionTemplateDecl>((*begin())->getUnderlyingDecl())));
316 assert(ResultKind != FoundUnresolvedValue || sanityCheckUnresolved());
317 assert(ResultKind != Ambiguous || Decls.size() > 1 ||
318 (Decls.size() == 1 && (Ambiguity == AmbiguousBaseSubobjects ||
319 Ambiguity == AmbiguousBaseSubobjectTypes)));
320 assert((Paths != NULL) == (ResultKind == Ambiguous &&
321 (Ambiguity == AmbiguousBaseSubobjectTypes ||
322 Ambiguity == AmbiguousBaseSubobjects)));
323 }
324
325 // Necessary because CXXBasePaths is not complete in Sema.h
deletePaths(CXXBasePaths * Paths)326 void LookupResult::deletePaths(CXXBasePaths *Paths) {
327 delete Paths;
328 }
329
330 static NamedDecl *getVisibleDecl(NamedDecl *D);
331
getAcceptableDeclSlow(NamedDecl * D) const332 NamedDecl *LookupResult::getAcceptableDeclSlow(NamedDecl *D) const {
333 return getVisibleDecl(D);
334 }
335
336 /// Resolves the result kind of this lookup.
resolveKind()337 void LookupResult::resolveKind() {
338 unsigned N = Decls.size();
339
340 // Fast case: no possible ambiguity.
341 if (N == 0) {
342 assert(ResultKind == NotFound || ResultKind == NotFoundInCurrentInstantiation);
343 return;
344 }
345
346 // If there's a single decl, we need to examine it to decide what
347 // kind of lookup this is.
348 if (N == 1) {
349 NamedDecl *D = (*Decls.begin())->getUnderlyingDecl();
350 if (isa<FunctionTemplateDecl>(D))
351 ResultKind = FoundOverloaded;
352 else if (isa<UnresolvedUsingValueDecl>(D))
353 ResultKind = FoundUnresolvedValue;
354 return;
355 }
356
357 // Don't do any extra resolution if we've already resolved as ambiguous.
358 if (ResultKind == Ambiguous) return;
359
360 llvm::SmallPtrSet<NamedDecl*, 16> Unique;
361 llvm::SmallPtrSet<QualType, 16> UniqueTypes;
362
363 bool Ambiguous = false;
364 bool HasTag = false, HasFunction = false, HasNonFunction = false;
365 bool HasFunctionTemplate = false, HasUnresolved = false;
366
367 unsigned UniqueTagIndex = 0;
368
369 unsigned I = 0;
370 while (I < N) {
371 NamedDecl *D = Decls[I]->getUnderlyingDecl();
372 D = cast<NamedDecl>(D->getCanonicalDecl());
373
374 // Redeclarations of types via typedef can occur both within a scope
375 // and, through using declarations and directives, across scopes. There is
376 // no ambiguity if they all refer to the same type, so unique based on the
377 // canonical type.
378 if (TypeDecl *TD = dyn_cast<TypeDecl>(D)) {
379 if (!TD->getDeclContext()->isRecord()) {
380 QualType T = SemaRef.Context.getTypeDeclType(TD);
381 if (!UniqueTypes.insert(SemaRef.Context.getCanonicalType(T))) {
382 // The type is not unique; pull something off the back and continue
383 // at this index.
384 Decls[I] = Decls[--N];
385 continue;
386 }
387 }
388 }
389
390 if (!Unique.insert(D)) {
391 // If it's not unique, pull something off the back (and
392 // continue at this index).
393 Decls[I] = Decls[--N];
394 continue;
395 }
396
397 // Otherwise, do some decl type analysis and then continue.
398
399 if (isa<UnresolvedUsingValueDecl>(D)) {
400 HasUnresolved = true;
401 } else if (isa<TagDecl>(D)) {
402 if (HasTag)
403 Ambiguous = true;
404 UniqueTagIndex = I;
405 HasTag = true;
406 } else if (isa<FunctionTemplateDecl>(D)) {
407 HasFunction = true;
408 HasFunctionTemplate = true;
409 } else if (isa<FunctionDecl>(D)) {
410 HasFunction = true;
411 } else {
412 if (HasNonFunction)
413 Ambiguous = true;
414 HasNonFunction = true;
415 }
416 I++;
417 }
418
419 // C++ [basic.scope.hiding]p2:
420 // A class name or enumeration name can be hidden by the name of
421 // an object, function, or enumerator declared in the same
422 // scope. If a class or enumeration name and an object, function,
423 // or enumerator are declared in the same scope (in any order)
424 // with the same name, the class or enumeration name is hidden
425 // wherever the object, function, or enumerator name is visible.
426 // But it's still an error if there are distinct tag types found,
427 // even if they're not visible. (ref?)
428 if (HideTags && HasTag && !Ambiguous &&
429 (HasFunction || HasNonFunction || HasUnresolved)) {
430 if (Decls[UniqueTagIndex]->getDeclContext()->getRedeclContext()->Equals(
431 Decls[UniqueTagIndex? 0 : N-1]->getDeclContext()->getRedeclContext()))
432 Decls[UniqueTagIndex] = Decls[--N];
433 else
434 Ambiguous = true;
435 }
436
437 Decls.set_size(N);
438
439 if (HasNonFunction && (HasFunction || HasUnresolved))
440 Ambiguous = true;
441
442 if (Ambiguous)
443 setAmbiguous(LookupResult::AmbiguousReference);
444 else if (HasUnresolved)
445 ResultKind = LookupResult::FoundUnresolvedValue;
446 else if (N > 1 || HasFunctionTemplate)
447 ResultKind = LookupResult::FoundOverloaded;
448 else
449 ResultKind = LookupResult::Found;
450 }
451
addDeclsFromBasePaths(const CXXBasePaths & P)452 void LookupResult::addDeclsFromBasePaths(const CXXBasePaths &P) {
453 CXXBasePaths::const_paths_iterator I, E;
454 DeclContext::lookup_iterator DI, DE;
455 for (I = P.begin(), E = P.end(); I != E; ++I)
456 for (llvm::tie(DI,DE) = I->Decls; DI != DE; ++DI)
457 addDecl(*DI);
458 }
459
setAmbiguousBaseSubobjects(CXXBasePaths & P)460 void LookupResult::setAmbiguousBaseSubobjects(CXXBasePaths &P) {
461 Paths = new CXXBasePaths;
462 Paths->swap(P);
463 addDeclsFromBasePaths(*Paths);
464 resolveKind();
465 setAmbiguous(AmbiguousBaseSubobjects);
466 }
467
setAmbiguousBaseSubobjectTypes(CXXBasePaths & P)468 void LookupResult::setAmbiguousBaseSubobjectTypes(CXXBasePaths &P) {
469 Paths = new CXXBasePaths;
470 Paths->swap(P);
471 addDeclsFromBasePaths(*Paths);
472 resolveKind();
473 setAmbiguous(AmbiguousBaseSubobjectTypes);
474 }
475
print(raw_ostream & Out)476 void LookupResult::print(raw_ostream &Out) {
477 Out << Decls.size() << " result(s)";
478 if (isAmbiguous()) Out << ", ambiguous";
479 if (Paths) Out << ", base paths present";
480
481 for (iterator I = begin(), E = end(); I != E; ++I) {
482 Out << "\n";
483 (*I)->print(Out, 2);
484 }
485 }
486
487 /// \brief Lookup a builtin function, when name lookup would otherwise
488 /// fail.
LookupBuiltin(Sema & S,LookupResult & R)489 static bool LookupBuiltin(Sema &S, LookupResult &R) {
490 Sema::LookupNameKind NameKind = R.getLookupKind();
491
492 // If we didn't find a use of this identifier, and if the identifier
493 // corresponds to a compiler builtin, create the decl object for the builtin
494 // now, injecting it into translation unit scope, and return it.
495 if (NameKind == Sema::LookupOrdinaryName ||
496 NameKind == Sema::LookupRedeclarationWithLinkage) {
497 IdentifierInfo *II = R.getLookupName().getAsIdentifierInfo();
498 if (II) {
499 // If this is a builtin on this (or all) targets, create the decl.
500 if (unsigned BuiltinID = II->getBuiltinID()) {
501 // In C++, we don't have any predefined library functions like
502 // 'malloc'. Instead, we'll just error.
503 if (S.getLangOpts().CPlusPlus &&
504 S.Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))
505 return false;
506
507 if (NamedDecl *D = S.LazilyCreateBuiltin((IdentifierInfo *)II,
508 BuiltinID, S.TUScope,
509 R.isForRedeclaration(),
510 R.getNameLoc())) {
511 R.addDecl(D);
512 return true;
513 }
514
515 if (R.isForRedeclaration()) {
516 // If we're redeclaring this function anyway, forget that
517 // this was a builtin at all.
518 S.Context.BuiltinInfo.ForgetBuiltin(BuiltinID, S.Context.Idents);
519 }
520
521 return false;
522 }
523 }
524 }
525
526 return false;
527 }
528
529 /// \brief Determine whether we can declare a special member function within
530 /// the class at this point.
CanDeclareSpecialMemberFunction(ASTContext & Context,const CXXRecordDecl * Class)531 static bool CanDeclareSpecialMemberFunction(ASTContext &Context,
532 const CXXRecordDecl *Class) {
533 // We need to have a definition for the class.
534 if (!Class->getDefinition() || Class->isDependentContext())
535 return false;
536
537 // We can't be in the middle of defining the class.
538 if (const RecordType *RecordTy
539 = Context.getTypeDeclType(Class)->getAs<RecordType>())
540 return !RecordTy->isBeingDefined();
541
542 return false;
543 }
544
ForceDeclarationOfImplicitMembers(CXXRecordDecl * Class)545 void Sema::ForceDeclarationOfImplicitMembers(CXXRecordDecl *Class) {
546 if (!CanDeclareSpecialMemberFunction(Context, Class))
547 return;
548
549 // If the default constructor has not yet been declared, do so now.
550 if (Class->needsImplicitDefaultConstructor())
551 DeclareImplicitDefaultConstructor(Class);
552
553 // If the copy constructor has not yet been declared, do so now.
554 if (!Class->hasDeclaredCopyConstructor())
555 DeclareImplicitCopyConstructor(Class);
556
557 // If the copy assignment operator has not yet been declared, do so now.
558 if (!Class->hasDeclaredCopyAssignment())
559 DeclareImplicitCopyAssignment(Class);
560
561 if (getLangOpts().CPlusPlus0x) {
562 // If the move constructor has not yet been declared, do so now.
563 if (Class->needsImplicitMoveConstructor())
564 DeclareImplicitMoveConstructor(Class); // might not actually do it
565
566 // If the move assignment operator has not yet been declared, do so now.
567 if (Class->needsImplicitMoveAssignment())
568 DeclareImplicitMoveAssignment(Class); // might not actually do it
569 }
570
571 // If the destructor has not yet been declared, do so now.
572 if (!Class->hasDeclaredDestructor())
573 DeclareImplicitDestructor(Class);
574 }
575
576 /// \brief Determine whether this is the name of an implicitly-declared
577 /// special member function.
isImplicitlyDeclaredMemberFunctionName(DeclarationName Name)578 static bool isImplicitlyDeclaredMemberFunctionName(DeclarationName Name) {
579 switch (Name.getNameKind()) {
580 case DeclarationName::CXXConstructorName:
581 case DeclarationName::CXXDestructorName:
582 return true;
583
584 case DeclarationName::CXXOperatorName:
585 return Name.getCXXOverloadedOperator() == OO_Equal;
586
587 default:
588 break;
589 }
590
591 return false;
592 }
593
594 /// \brief If there are any implicit member functions with the given name
595 /// that need to be declared in the given declaration context, do so.
DeclareImplicitMemberFunctionsWithName(Sema & S,DeclarationName Name,const DeclContext * DC)596 static void DeclareImplicitMemberFunctionsWithName(Sema &S,
597 DeclarationName Name,
598 const DeclContext *DC) {
599 if (!DC)
600 return;
601
602 switch (Name.getNameKind()) {
603 case DeclarationName::CXXConstructorName:
604 if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC))
605 if (Record->getDefinition() &&
606 CanDeclareSpecialMemberFunction(S.Context, Record)) {
607 CXXRecordDecl *Class = const_cast<CXXRecordDecl *>(Record);
608 if (Record->needsImplicitDefaultConstructor())
609 S.DeclareImplicitDefaultConstructor(Class);
610 if (!Record->hasDeclaredCopyConstructor())
611 S.DeclareImplicitCopyConstructor(Class);
612 if (S.getLangOpts().CPlusPlus0x &&
613 Record->needsImplicitMoveConstructor())
614 S.DeclareImplicitMoveConstructor(Class);
615 }
616 break;
617
618 case DeclarationName::CXXDestructorName:
619 if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC))
620 if (Record->getDefinition() && !Record->hasDeclaredDestructor() &&
621 CanDeclareSpecialMemberFunction(S.Context, Record))
622 S.DeclareImplicitDestructor(const_cast<CXXRecordDecl *>(Record));
623 break;
624
625 case DeclarationName::CXXOperatorName:
626 if (Name.getCXXOverloadedOperator() != OO_Equal)
627 break;
628
629 if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC)) {
630 if (Record->getDefinition() &&
631 CanDeclareSpecialMemberFunction(S.Context, Record)) {
632 CXXRecordDecl *Class = const_cast<CXXRecordDecl *>(Record);
633 if (!Record->hasDeclaredCopyAssignment())
634 S.DeclareImplicitCopyAssignment(Class);
635 if (S.getLangOpts().CPlusPlus0x &&
636 Record->needsImplicitMoveAssignment())
637 S.DeclareImplicitMoveAssignment(Class);
638 }
639 }
640 break;
641
642 default:
643 break;
644 }
645 }
646
647 // Adds all qualifying matches for a name within a decl context to the
648 // given lookup result. Returns true if any matches were found.
LookupDirect(Sema & S,LookupResult & R,const DeclContext * DC)649 static bool LookupDirect(Sema &S, LookupResult &R, const DeclContext *DC) {
650 bool Found = false;
651
652 // Lazily declare C++ special member functions.
653 if (S.getLangOpts().CPlusPlus)
654 DeclareImplicitMemberFunctionsWithName(S, R.getLookupName(), DC);
655
656 // Perform lookup into this declaration context.
657 DeclContext::lookup_const_iterator I, E;
658 for (llvm::tie(I, E) = DC->lookup(R.getLookupName()); I != E; ++I) {
659 NamedDecl *D = *I;
660 if ((D = R.getAcceptableDecl(D))) {
661 R.addDecl(D);
662 Found = true;
663 }
664 }
665
666 if (!Found && DC->isTranslationUnit() && LookupBuiltin(S, R))
667 return true;
668
669 if (R.getLookupName().getNameKind()
670 != DeclarationName::CXXConversionFunctionName ||
671 R.getLookupName().getCXXNameType()->isDependentType() ||
672 !isa<CXXRecordDecl>(DC))
673 return Found;
674
675 // C++ [temp.mem]p6:
676 // A specialization of a conversion function template is not found by
677 // name lookup. Instead, any conversion function templates visible in the
678 // context of the use are considered. [...]
679 const CXXRecordDecl *Record = cast<CXXRecordDecl>(DC);
680 if (!Record->isCompleteDefinition())
681 return Found;
682
683 const UnresolvedSetImpl *Unresolved = Record->getConversionFunctions();
684 for (UnresolvedSetImpl::iterator U = Unresolved->begin(),
685 UEnd = Unresolved->end(); U != UEnd; ++U) {
686 FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(*U);
687 if (!ConvTemplate)
688 continue;
689
690 // When we're performing lookup for the purposes of redeclaration, just
691 // add the conversion function template. When we deduce template
692 // arguments for specializations, we'll end up unifying the return
693 // type of the new declaration with the type of the function template.
694 if (R.isForRedeclaration()) {
695 R.addDecl(ConvTemplate);
696 Found = true;
697 continue;
698 }
699
700 // C++ [temp.mem]p6:
701 // [...] For each such operator, if argument deduction succeeds
702 // (14.9.2.3), the resulting specialization is used as if found by
703 // name lookup.
704 //
705 // When referencing a conversion function for any purpose other than
706 // a redeclaration (such that we'll be building an expression with the
707 // result), perform template argument deduction and place the
708 // specialization into the result set. We do this to avoid forcing all
709 // callers to perform special deduction for conversion functions.
710 TemplateDeductionInfo Info(R.getSema().Context, R.getNameLoc());
711 FunctionDecl *Specialization = 0;
712
713 const FunctionProtoType *ConvProto
714 = ConvTemplate->getTemplatedDecl()->getType()->getAs<FunctionProtoType>();
715 assert(ConvProto && "Nonsensical conversion function template type");
716
717 // Compute the type of the function that we would expect the conversion
718 // function to have, if it were to match the name given.
719 // FIXME: Calling convention!
720 FunctionProtoType::ExtProtoInfo EPI = ConvProto->getExtProtoInfo();
721 EPI.ExtInfo = EPI.ExtInfo.withCallingConv(CC_Default);
722 EPI.ExceptionSpecType = EST_None;
723 EPI.NumExceptions = 0;
724 QualType ExpectedType
725 = R.getSema().Context.getFunctionType(R.getLookupName().getCXXNameType(),
726 0, 0, EPI);
727
728 // Perform template argument deduction against the type that we would
729 // expect the function to have.
730 if (R.getSema().DeduceTemplateArguments(ConvTemplate, 0, ExpectedType,
731 Specialization, Info)
732 == Sema::TDK_Success) {
733 R.addDecl(Specialization);
734 Found = true;
735 }
736 }
737
738 return Found;
739 }
740
741 // Performs C++ unqualified lookup into the given file context.
742 static bool
CppNamespaceLookup(Sema & S,LookupResult & R,ASTContext & Context,DeclContext * NS,UnqualUsingDirectiveSet & UDirs)743 CppNamespaceLookup(Sema &S, LookupResult &R, ASTContext &Context,
744 DeclContext *NS, UnqualUsingDirectiveSet &UDirs) {
745
746 assert(NS && NS->isFileContext() && "CppNamespaceLookup() requires namespace!");
747
748 // Perform direct name lookup into the LookupCtx.
749 bool Found = LookupDirect(S, R, NS);
750
751 // Perform direct name lookup into the namespaces nominated by the
752 // using directives whose common ancestor is this namespace.
753 UnqualUsingDirectiveSet::const_iterator UI, UEnd;
754 llvm::tie(UI, UEnd) = UDirs.getNamespacesFor(NS);
755
756 for (; UI != UEnd; ++UI)
757 if (LookupDirect(S, R, UI->getNominatedNamespace()))
758 Found = true;
759
760 R.resolveKind();
761
762 return Found;
763 }
764
isNamespaceOrTranslationUnitScope(Scope * S)765 static bool isNamespaceOrTranslationUnitScope(Scope *S) {
766 if (DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity()))
767 return Ctx->isFileContext();
768 return false;
769 }
770
771 // Find the next outer declaration context from this scope. This
772 // routine actually returns the semantic outer context, which may
773 // differ from the lexical context (encoded directly in the Scope
774 // stack) when we are parsing a member of a class template. In this
775 // case, the second element of the pair will be true, to indicate that
776 // name lookup should continue searching in this semantic context when
777 // it leaves the current template parameter scope.
findOuterContext(Scope * S)778 static std::pair<DeclContext *, bool> findOuterContext(Scope *S) {
779 DeclContext *DC = static_cast<DeclContext *>(S->getEntity());
780 DeclContext *Lexical = 0;
781 for (Scope *OuterS = S->getParent(); OuterS;
782 OuterS = OuterS->getParent()) {
783 if (OuterS->getEntity()) {
784 Lexical = static_cast<DeclContext *>(OuterS->getEntity());
785 break;
786 }
787 }
788
789 // C++ [temp.local]p8:
790 // In the definition of a member of a class template that appears
791 // outside of the namespace containing the class template
792 // definition, the name of a template-parameter hides the name of
793 // a member of this namespace.
794 //
795 // Example:
796 //
797 // namespace N {
798 // class C { };
799 //
800 // template<class T> class B {
801 // void f(T);
802 // };
803 // }
804 //
805 // template<class C> void N::B<C>::f(C) {
806 // C b; // C is the template parameter, not N::C
807 // }
808 //
809 // In this example, the lexical context we return is the
810 // TranslationUnit, while the semantic context is the namespace N.
811 if (!Lexical || !DC || !S->getParent() ||
812 !S->getParent()->isTemplateParamScope())
813 return std::make_pair(Lexical, false);
814
815 // Find the outermost template parameter scope.
816 // For the example, this is the scope for the template parameters of
817 // template<class C>.
818 Scope *OutermostTemplateScope = S->getParent();
819 while (OutermostTemplateScope->getParent() &&
820 OutermostTemplateScope->getParent()->isTemplateParamScope())
821 OutermostTemplateScope = OutermostTemplateScope->getParent();
822
823 // Find the namespace context in which the original scope occurs. In
824 // the example, this is namespace N.
825 DeclContext *Semantic = DC;
826 while (!Semantic->isFileContext())
827 Semantic = Semantic->getParent();
828
829 // Find the declaration context just outside of the template
830 // parameter scope. This is the context in which the template is
831 // being lexically declaration (a namespace context). In the
832 // example, this is the global scope.
833 if (Lexical->isFileContext() && !Lexical->Equals(Semantic) &&
834 Lexical->Encloses(Semantic))
835 return std::make_pair(Semantic, true);
836
837 return std::make_pair(Lexical, false);
838 }
839
CppLookupName(LookupResult & R,Scope * S)840 bool Sema::CppLookupName(LookupResult &R, Scope *S) {
841 assert(getLangOpts().CPlusPlus && "Can perform only C++ lookup");
842
843 DeclarationName Name = R.getLookupName();
844
845 // If this is the name of an implicitly-declared special member function,
846 // go through the scope stack to implicitly declare
847 if (isImplicitlyDeclaredMemberFunctionName(Name)) {
848 for (Scope *PreS = S; PreS; PreS = PreS->getParent())
849 if (DeclContext *DC = static_cast<DeclContext *>(PreS->getEntity()))
850 DeclareImplicitMemberFunctionsWithName(*this, Name, DC);
851 }
852
853 // Implicitly declare member functions with the name we're looking for, if in
854 // fact we are in a scope where it matters.
855
856 Scope *Initial = S;
857 IdentifierResolver::iterator
858 I = IdResolver.begin(Name),
859 IEnd = IdResolver.end();
860
861 // First we lookup local scope.
862 // We don't consider using-directives, as per 7.3.4.p1 [namespace.udir]
863 // ...During unqualified name lookup (3.4.1), the names appear as if
864 // they were declared in the nearest enclosing namespace which contains
865 // both the using-directive and the nominated namespace.
866 // [Note: in this context, "contains" means "contains directly or
867 // indirectly".
868 //
869 // For example:
870 // namespace A { int i; }
871 // void foo() {
872 // int i;
873 // {
874 // using namespace A;
875 // ++i; // finds local 'i', A::i appears at global scope
876 // }
877 // }
878 //
879 DeclContext *OutsideOfTemplateParamDC = 0;
880 for (; S && !isNamespaceOrTranslationUnitScope(S); S = S->getParent()) {
881 DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity());
882
883 // Check whether the IdResolver has anything in this scope.
884 bool Found = false;
885 for (; I != IEnd && S->isDeclScope(*I); ++I) {
886 if (NamedDecl *ND = R.getAcceptableDecl(*I)) {
887 Found = true;
888 R.addDecl(ND);
889 }
890 }
891 if (Found) {
892 R.resolveKind();
893 if (S->isClassScope())
894 if (CXXRecordDecl *Record = dyn_cast_or_null<CXXRecordDecl>(Ctx))
895 R.setNamingClass(Record);
896 return true;
897 }
898
899 if (!Ctx && S->isTemplateParamScope() && OutsideOfTemplateParamDC &&
900 S->getParent() && !S->getParent()->isTemplateParamScope()) {
901 // We've just searched the last template parameter scope and
902 // found nothing, so look into the contexts between the
903 // lexical and semantic declaration contexts returned by
904 // findOuterContext(). This implements the name lookup behavior
905 // of C++ [temp.local]p8.
906 Ctx = OutsideOfTemplateParamDC;
907 OutsideOfTemplateParamDC = 0;
908 }
909
910 if (Ctx) {
911 DeclContext *OuterCtx;
912 bool SearchAfterTemplateScope;
913 llvm::tie(OuterCtx, SearchAfterTemplateScope) = findOuterContext(S);
914 if (SearchAfterTemplateScope)
915 OutsideOfTemplateParamDC = OuterCtx;
916
917 for (; Ctx && !Ctx->Equals(OuterCtx); Ctx = Ctx->getLookupParent()) {
918 // We do not directly look into transparent contexts, since
919 // those entities will be found in the nearest enclosing
920 // non-transparent context.
921 if (Ctx->isTransparentContext())
922 continue;
923
924 // We do not look directly into function or method contexts,
925 // since all of the local variables and parameters of the
926 // function/method are present within the Scope.
927 if (Ctx->isFunctionOrMethod()) {
928 // If we have an Objective-C instance method, look for ivars
929 // in the corresponding interface.
930 if (ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(Ctx)) {
931 if (Method->isInstanceMethod() && Name.getAsIdentifierInfo())
932 if (ObjCInterfaceDecl *Class = Method->getClassInterface()) {
933 ObjCInterfaceDecl *ClassDeclared;
934 if (ObjCIvarDecl *Ivar = Class->lookupInstanceVariable(
935 Name.getAsIdentifierInfo(),
936 ClassDeclared)) {
937 if (NamedDecl *ND = R.getAcceptableDecl(Ivar)) {
938 R.addDecl(ND);
939 R.resolveKind();
940 return true;
941 }
942 }
943 }
944 }
945
946 continue;
947 }
948
949 // Perform qualified name lookup into this context.
950 // FIXME: In some cases, we know that every name that could be found by
951 // this qualified name lookup will also be on the identifier chain. For
952 // example, inside a class without any base classes, we never need to
953 // perform qualified lookup because all of the members are on top of the
954 // identifier chain.
955 if (LookupQualifiedName(R, Ctx, /*InUnqualifiedLookup=*/true))
956 return true;
957 }
958 }
959 }
960
961 // Stop if we ran out of scopes.
962 // FIXME: This really, really shouldn't be happening.
963 if (!S) return false;
964
965 // If we are looking for members, no need to look into global/namespace scope.
966 if (R.getLookupKind() == LookupMemberName)
967 return false;
968
969 // Collect UsingDirectiveDecls in all scopes, and recursively all
970 // nominated namespaces by those using-directives.
971 //
972 // FIXME: Cache this sorted list in Scope structure, and DeclContext, so we
973 // don't build it for each lookup!
974
975 UnqualUsingDirectiveSet UDirs;
976 UDirs.visitScopeChain(Initial, S);
977 UDirs.done();
978
979 // Lookup namespace scope, and global scope.
980 // Unqualified name lookup in C++ requires looking into scopes
981 // that aren't strictly lexical, and therefore we walk through the
982 // context as well as walking through the scopes.
983
984 for (; S; S = S->getParent()) {
985 // Check whether the IdResolver has anything in this scope.
986 bool Found = false;
987 for (; I != IEnd && S->isDeclScope(*I); ++I) {
988 if (NamedDecl *ND = R.getAcceptableDecl(*I)) {
989 // We found something. Look for anything else in our scope
990 // with this same name and in an acceptable identifier
991 // namespace, so that we can construct an overload set if we
992 // need to.
993 Found = true;
994 R.addDecl(ND);
995 }
996 }
997
998 if (Found && S->isTemplateParamScope()) {
999 R.resolveKind();
1000 return true;
1001 }
1002
1003 DeclContext *Ctx = static_cast<DeclContext *>(S->getEntity());
1004 if (!Ctx && S->isTemplateParamScope() && OutsideOfTemplateParamDC &&
1005 S->getParent() && !S->getParent()->isTemplateParamScope()) {
1006 // We've just searched the last template parameter scope and
1007 // found nothing, so look into the contexts between the
1008 // lexical and semantic declaration contexts returned by
1009 // findOuterContext(). This implements the name lookup behavior
1010 // of C++ [temp.local]p8.
1011 Ctx = OutsideOfTemplateParamDC;
1012 OutsideOfTemplateParamDC = 0;
1013 }
1014
1015 if (Ctx) {
1016 DeclContext *OuterCtx;
1017 bool SearchAfterTemplateScope;
1018 llvm::tie(OuterCtx, SearchAfterTemplateScope) = findOuterContext(S);
1019 if (SearchAfterTemplateScope)
1020 OutsideOfTemplateParamDC = OuterCtx;
1021
1022 for (; Ctx && !Ctx->Equals(OuterCtx); Ctx = Ctx->getLookupParent()) {
1023 // We do not directly look into transparent contexts, since
1024 // those entities will be found in the nearest enclosing
1025 // non-transparent context.
1026 if (Ctx->isTransparentContext())
1027 continue;
1028
1029 // If we have a context, and it's not a context stashed in the
1030 // template parameter scope for an out-of-line definition, also
1031 // look into that context.
1032 if (!(Found && S && S->isTemplateParamScope())) {
1033 assert(Ctx->isFileContext() &&
1034 "We should have been looking only at file context here already.");
1035
1036 // Look into context considering using-directives.
1037 if (CppNamespaceLookup(*this, R, Context, Ctx, UDirs))
1038 Found = true;
1039 }
1040
1041 if (Found) {
1042 R.resolveKind();
1043 return true;
1044 }
1045
1046 if (R.isForRedeclaration() && !Ctx->isTransparentContext())
1047 return false;
1048 }
1049 }
1050
1051 if (R.isForRedeclaration() && Ctx && !Ctx->isTransparentContext())
1052 return false;
1053 }
1054
1055 return !R.empty();
1056 }
1057
1058 /// \brief Retrieve the visible declaration corresponding to D, if any.
1059 ///
1060 /// This routine determines whether the declaration D is visible in the current
1061 /// module, with the current imports. If not, it checks whether any
1062 /// redeclaration of D is visible, and if so, returns that declaration.
1063 ///
1064 /// \returns D, or a visible previous declaration of D, whichever is more recent
1065 /// and visible. If no declaration of D is visible, returns null.
getVisibleDecl(NamedDecl * D)1066 static NamedDecl *getVisibleDecl(NamedDecl *D) {
1067 if (LookupResult::isVisible(D))
1068 return D;
1069
1070 for (Decl::redecl_iterator RD = D->redecls_begin(), RDEnd = D->redecls_end();
1071 RD != RDEnd; ++RD) {
1072 if (NamedDecl *ND = dyn_cast<NamedDecl>(*RD)) {
1073 if (LookupResult::isVisible(ND))
1074 return ND;
1075 }
1076 }
1077
1078 return 0;
1079 }
1080
1081 /// @brief Perform unqualified name lookup starting from a given
1082 /// scope.
1083 ///
1084 /// Unqualified name lookup (C++ [basic.lookup.unqual], C99 6.2.1) is
1085 /// used to find names within the current scope. For example, 'x' in
1086 /// @code
1087 /// int x;
1088 /// int f() {
1089 /// return x; // unqualified name look finds 'x' in the global scope
1090 /// }
1091 /// @endcode
1092 ///
1093 /// Different lookup criteria can find different names. For example, a
1094 /// particular scope can have both a struct and a function of the same
1095 /// name, and each can be found by certain lookup criteria. For more
1096 /// information about lookup criteria, see the documentation for the
1097 /// class LookupCriteria.
1098 ///
1099 /// @param S The scope from which unqualified name lookup will
1100 /// begin. If the lookup criteria permits, name lookup may also search
1101 /// in the parent scopes.
1102 ///
1103 /// @param [in,out] R Specifies the lookup to perform (e.g., the name to
1104 /// look up and the lookup kind), and is updated with the results of lookup
1105 /// including zero or more declarations and possibly additional information
1106 /// used to diagnose ambiguities.
1107 ///
1108 /// @returns \c true if lookup succeeded and false otherwise.
LookupName(LookupResult & R,Scope * S,bool AllowBuiltinCreation)1109 bool Sema::LookupName(LookupResult &R, Scope *S, bool AllowBuiltinCreation) {
1110 DeclarationName Name = R.getLookupName();
1111 if (!Name) return false;
1112
1113 LookupNameKind NameKind = R.getLookupKind();
1114
1115 if (!getLangOpts().CPlusPlus) {
1116 // Unqualified name lookup in C/Objective-C is purely lexical, so
1117 // search in the declarations attached to the name.
1118 if (NameKind == Sema::LookupRedeclarationWithLinkage) {
1119 // Find the nearest non-transparent declaration scope.
1120 while (!(S->getFlags() & Scope::DeclScope) ||
1121 (S->getEntity() &&
1122 static_cast<DeclContext *>(S->getEntity())
1123 ->isTransparentContext()))
1124 S = S->getParent();
1125 }
1126
1127 unsigned IDNS = R.getIdentifierNamespace();
1128
1129 // Scan up the scope chain looking for a decl that matches this
1130 // identifier that is in the appropriate namespace. This search
1131 // should not take long, as shadowing of names is uncommon, and
1132 // deep shadowing is extremely uncommon.
1133 bool LeftStartingScope = false;
1134
1135 for (IdentifierResolver::iterator I = IdResolver.begin(Name),
1136 IEnd = IdResolver.end();
1137 I != IEnd; ++I)
1138 if ((*I)->isInIdentifierNamespace(IDNS)) {
1139 if (NameKind == LookupRedeclarationWithLinkage) {
1140 // Determine whether this (or a previous) declaration is
1141 // out-of-scope.
1142 if (!LeftStartingScope && !S->isDeclScope(*I))
1143 LeftStartingScope = true;
1144
1145 // If we found something outside of our starting scope that
1146 // does not have linkage, skip it.
1147 if (LeftStartingScope && !((*I)->hasLinkage()))
1148 continue;
1149 }
1150 else if (NameKind == LookupObjCImplicitSelfParam &&
1151 !isa<ImplicitParamDecl>(*I))
1152 continue;
1153
1154 // If this declaration is module-private and it came from an AST
1155 // file, we can't see it.
1156 NamedDecl *D = R.isHiddenDeclarationVisible()? *I : getVisibleDecl(*I);
1157 if (!D)
1158 continue;
1159
1160 R.addDecl(D);
1161
1162 // Check whether there are any other declarations with the same name
1163 // and in the same scope.
1164 if (I != IEnd) {
1165 // Find the scope in which this declaration was declared (if it
1166 // actually exists in a Scope).
1167 while (S && !S->isDeclScope(D))
1168 S = S->getParent();
1169
1170 // If the scope containing the declaration is the translation unit,
1171 // then we'll need to perform our checks based on the matching
1172 // DeclContexts rather than matching scopes.
1173 if (S && isNamespaceOrTranslationUnitScope(S))
1174 S = 0;
1175
1176 // Compute the DeclContext, if we need it.
1177 DeclContext *DC = 0;
1178 if (!S)
1179 DC = (*I)->getDeclContext()->getRedeclContext();
1180
1181 IdentifierResolver::iterator LastI = I;
1182 for (++LastI; LastI != IEnd; ++LastI) {
1183 if (S) {
1184 // Match based on scope.
1185 if (!S->isDeclScope(*LastI))
1186 break;
1187 } else {
1188 // Match based on DeclContext.
1189 DeclContext *LastDC
1190 = (*LastI)->getDeclContext()->getRedeclContext();
1191 if (!LastDC->Equals(DC))
1192 break;
1193 }
1194
1195 // If the declaration isn't in the right namespace, skip it.
1196 if (!(*LastI)->isInIdentifierNamespace(IDNS))
1197 continue;
1198
1199 D = R.isHiddenDeclarationVisible()? *LastI : getVisibleDecl(*LastI);
1200 if (D)
1201 R.addDecl(D);
1202 }
1203
1204 R.resolveKind();
1205 }
1206 return true;
1207 }
1208 } else {
1209 // Perform C++ unqualified name lookup.
1210 if (CppLookupName(R, S))
1211 return true;
1212 }
1213
1214 // If we didn't find a use of this identifier, and if the identifier
1215 // corresponds to a compiler builtin, create the decl object for the builtin
1216 // now, injecting it into translation unit scope, and return it.
1217 if (AllowBuiltinCreation && LookupBuiltin(*this, R))
1218 return true;
1219
1220 // If we didn't find a use of this identifier, the ExternalSource
1221 // may be able to handle the situation.
1222 // Note: some lookup failures are expected!
1223 // See e.g. R.isForRedeclaration().
1224 return (ExternalSource && ExternalSource->LookupUnqualified(R, S));
1225 }
1226
1227 /// @brief Perform qualified name lookup in the namespaces nominated by
1228 /// using directives by the given context.
1229 ///
1230 /// C++98 [namespace.qual]p2:
1231 /// Given X::m (where X is a user-declared namespace), or given \::m
1232 /// (where X is the global namespace), let S be the set of all
1233 /// declarations of m in X and in the transitive closure of all
1234 /// namespaces nominated by using-directives in X and its used
1235 /// namespaces, except that using-directives are ignored in any
1236 /// namespace, including X, directly containing one or more
1237 /// declarations of m. No namespace is searched more than once in
1238 /// the lookup of a name. If S is the empty set, the program is
1239 /// ill-formed. Otherwise, if S has exactly one member, or if the
1240 /// context of the reference is a using-declaration
1241 /// (namespace.udecl), S is the required set of declarations of
1242 /// m. Otherwise if the use of m is not one that allows a unique
1243 /// declaration to be chosen from S, the program is ill-formed.
1244 ///
1245 /// C++98 [namespace.qual]p5:
1246 /// During the lookup of a qualified namespace member name, if the
1247 /// lookup finds more than one declaration of the member, and if one
1248 /// declaration introduces a class name or enumeration name and the
1249 /// other declarations either introduce the same object, the same
1250 /// enumerator or a set of functions, the non-type name hides the
1251 /// class or enumeration name if and only if the declarations are
1252 /// from the same namespace; otherwise (the declarations are from
1253 /// different namespaces), the program is ill-formed.
LookupQualifiedNameInUsingDirectives(Sema & S,LookupResult & R,DeclContext * StartDC)1254 static bool LookupQualifiedNameInUsingDirectives(Sema &S, LookupResult &R,
1255 DeclContext *StartDC) {
1256 assert(StartDC->isFileContext() && "start context is not a file context");
1257
1258 DeclContext::udir_iterator I = StartDC->using_directives_begin();
1259 DeclContext::udir_iterator E = StartDC->using_directives_end();
1260
1261 if (I == E) return false;
1262
1263 // We have at least added all these contexts to the queue.
1264 llvm::SmallPtrSet<DeclContext*, 8> Visited;
1265 Visited.insert(StartDC);
1266
1267 // We have not yet looked into these namespaces, much less added
1268 // their "using-children" to the queue.
1269 SmallVector<NamespaceDecl*, 8> Queue;
1270
1271 // We have already looked into the initial namespace; seed the queue
1272 // with its using-children.
1273 for (; I != E; ++I) {
1274 NamespaceDecl *ND = (*I)->getNominatedNamespace()->getOriginalNamespace();
1275 if (Visited.insert(ND))
1276 Queue.push_back(ND);
1277 }
1278
1279 // The easiest way to implement the restriction in [namespace.qual]p5
1280 // is to check whether any of the individual results found a tag
1281 // and, if so, to declare an ambiguity if the final result is not
1282 // a tag.
1283 bool FoundTag = false;
1284 bool FoundNonTag = false;
1285
1286 LookupResult LocalR(LookupResult::Temporary, R);
1287
1288 bool Found = false;
1289 while (!Queue.empty()) {
1290 NamespaceDecl *ND = Queue.back();
1291 Queue.pop_back();
1292
1293 // We go through some convolutions here to avoid copying results
1294 // between LookupResults.
1295 bool UseLocal = !R.empty();
1296 LookupResult &DirectR = UseLocal ? LocalR : R;
1297 bool FoundDirect = LookupDirect(S, DirectR, ND);
1298
1299 if (FoundDirect) {
1300 // First do any local hiding.
1301 DirectR.resolveKind();
1302
1303 // If the local result is a tag, remember that.
1304 if (DirectR.isSingleTagDecl())
1305 FoundTag = true;
1306 else
1307 FoundNonTag = true;
1308
1309 // Append the local results to the total results if necessary.
1310 if (UseLocal) {
1311 R.addAllDecls(LocalR);
1312 LocalR.clear();
1313 }
1314 }
1315
1316 // If we find names in this namespace, ignore its using directives.
1317 if (FoundDirect) {
1318 Found = true;
1319 continue;
1320 }
1321
1322 for (llvm::tie(I,E) = ND->getUsingDirectives(); I != E; ++I) {
1323 NamespaceDecl *Nom = (*I)->getNominatedNamespace();
1324 if (Visited.insert(Nom))
1325 Queue.push_back(Nom);
1326 }
1327 }
1328
1329 if (Found) {
1330 if (FoundTag && FoundNonTag)
1331 R.setAmbiguousQualifiedTagHiding();
1332 else
1333 R.resolveKind();
1334 }
1335
1336 return Found;
1337 }
1338
1339 /// \brief Callback that looks for any member of a class with the given name.
LookupAnyMember(const CXXBaseSpecifier * Specifier,CXXBasePath & Path,void * Name)1340 static bool LookupAnyMember(const CXXBaseSpecifier *Specifier,
1341 CXXBasePath &Path,
1342 void *Name) {
1343 RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
1344
1345 DeclarationName N = DeclarationName::getFromOpaquePtr(Name);
1346 Path.Decls = BaseRecord->lookup(N);
1347 return Path.Decls.first != Path.Decls.second;
1348 }
1349
1350 /// \brief Determine whether the given set of member declarations contains only
1351 /// static members, nested types, and enumerators.
1352 template<typename InputIterator>
HasOnlyStaticMembers(InputIterator First,InputIterator Last)1353 static bool HasOnlyStaticMembers(InputIterator First, InputIterator Last) {
1354 Decl *D = (*First)->getUnderlyingDecl();
1355 if (isa<VarDecl>(D) || isa<TypeDecl>(D) || isa<EnumConstantDecl>(D))
1356 return true;
1357
1358 if (isa<CXXMethodDecl>(D)) {
1359 // Determine whether all of the methods are static.
1360 bool AllMethodsAreStatic = true;
1361 for(; First != Last; ++First) {
1362 D = (*First)->getUnderlyingDecl();
1363
1364 if (!isa<CXXMethodDecl>(D)) {
1365 assert(isa<TagDecl>(D) && "Non-function must be a tag decl");
1366 break;
1367 }
1368
1369 if (!cast<CXXMethodDecl>(D)->isStatic()) {
1370 AllMethodsAreStatic = false;
1371 break;
1372 }
1373 }
1374
1375 if (AllMethodsAreStatic)
1376 return true;
1377 }
1378
1379 return false;
1380 }
1381
1382 /// \brief Perform qualified name lookup into a given context.
1383 ///
1384 /// Qualified name lookup (C++ [basic.lookup.qual]) is used to find
1385 /// names when the context of those names is explicit specified, e.g.,
1386 /// "std::vector" or "x->member", or as part of unqualified name lookup.
1387 ///
1388 /// Different lookup criteria can find different names. For example, a
1389 /// particular scope can have both a struct and a function of the same
1390 /// name, and each can be found by certain lookup criteria. For more
1391 /// information about lookup criteria, see the documentation for the
1392 /// class LookupCriteria.
1393 ///
1394 /// \param R captures both the lookup criteria and any lookup results found.
1395 ///
1396 /// \param LookupCtx The context in which qualified name lookup will
1397 /// search. If the lookup criteria permits, name lookup may also search
1398 /// in the parent contexts or (for C++ classes) base classes.
1399 ///
1400 /// \param InUnqualifiedLookup true if this is qualified name lookup that
1401 /// occurs as part of unqualified name lookup.
1402 ///
1403 /// \returns true if lookup succeeded, false if it failed.
LookupQualifiedName(LookupResult & R,DeclContext * LookupCtx,bool InUnqualifiedLookup)1404 bool Sema::LookupQualifiedName(LookupResult &R, DeclContext *LookupCtx,
1405 bool InUnqualifiedLookup) {
1406 assert(LookupCtx && "Sema::LookupQualifiedName requires a lookup context");
1407
1408 if (!R.getLookupName())
1409 return false;
1410
1411 // Make sure that the declaration context is complete.
1412 assert((!isa<TagDecl>(LookupCtx) ||
1413 LookupCtx->isDependentContext() ||
1414 cast<TagDecl>(LookupCtx)->isCompleteDefinition() ||
1415 cast<TagDecl>(LookupCtx)->isBeingDefined()) &&
1416 "Declaration context must already be complete!");
1417
1418 // Perform qualified name lookup into the LookupCtx.
1419 if (LookupDirect(*this, R, LookupCtx)) {
1420 R.resolveKind();
1421 if (isa<CXXRecordDecl>(LookupCtx))
1422 R.setNamingClass(cast<CXXRecordDecl>(LookupCtx));
1423 return true;
1424 }
1425
1426 // Don't descend into implied contexts for redeclarations.
1427 // C++98 [namespace.qual]p6:
1428 // In a declaration for a namespace member in which the
1429 // declarator-id is a qualified-id, given that the qualified-id
1430 // for the namespace member has the form
1431 // nested-name-specifier unqualified-id
1432 // the unqualified-id shall name a member of the namespace
1433 // designated by the nested-name-specifier.
1434 // See also [class.mfct]p5 and [class.static.data]p2.
1435 if (R.isForRedeclaration())
1436 return false;
1437
1438 // If this is a namespace, look it up in the implied namespaces.
1439 if (LookupCtx->isFileContext())
1440 return LookupQualifiedNameInUsingDirectives(*this, R, LookupCtx);
1441
1442 // If this isn't a C++ class, we aren't allowed to look into base
1443 // classes, we're done.
1444 CXXRecordDecl *LookupRec = dyn_cast<CXXRecordDecl>(LookupCtx);
1445 if (!LookupRec || !LookupRec->getDefinition())
1446 return false;
1447
1448 // If we're performing qualified name lookup into a dependent class,
1449 // then we are actually looking into a current instantiation. If we have any
1450 // dependent base classes, then we either have to delay lookup until
1451 // template instantiation time (at which point all bases will be available)
1452 // or we have to fail.
1453 if (!InUnqualifiedLookup && LookupRec->isDependentContext() &&
1454 LookupRec->hasAnyDependentBases()) {
1455 R.setNotFoundInCurrentInstantiation();
1456 return false;
1457 }
1458
1459 // Perform lookup into our base classes.
1460 CXXBasePaths Paths;
1461 Paths.setOrigin(LookupRec);
1462
1463 // Look for this member in our base classes
1464 CXXRecordDecl::BaseMatchesCallback *BaseCallback = 0;
1465 switch (R.getLookupKind()) {
1466 case LookupObjCImplicitSelfParam:
1467 case LookupOrdinaryName:
1468 case LookupMemberName:
1469 case LookupRedeclarationWithLinkage:
1470 BaseCallback = &CXXRecordDecl::FindOrdinaryMember;
1471 break;
1472
1473 case LookupTagName:
1474 BaseCallback = &CXXRecordDecl::FindTagMember;
1475 break;
1476
1477 case LookupAnyName:
1478 BaseCallback = &LookupAnyMember;
1479 break;
1480
1481 case LookupUsingDeclName:
1482 // This lookup is for redeclarations only.
1483
1484 case LookupOperatorName:
1485 case LookupNamespaceName:
1486 case LookupObjCProtocolName:
1487 case LookupLabel:
1488 // These lookups will never find a member in a C++ class (or base class).
1489 return false;
1490
1491 case LookupNestedNameSpecifierName:
1492 BaseCallback = &CXXRecordDecl::FindNestedNameSpecifierMember;
1493 break;
1494 }
1495
1496 if (!LookupRec->lookupInBases(BaseCallback,
1497 R.getLookupName().getAsOpaquePtr(), Paths))
1498 return false;
1499
1500 R.setNamingClass(LookupRec);
1501
1502 // C++ [class.member.lookup]p2:
1503 // [...] If the resulting set of declarations are not all from
1504 // sub-objects of the same type, or the set has a nonstatic member
1505 // and includes members from distinct sub-objects, there is an
1506 // ambiguity and the program is ill-formed. Otherwise that set is
1507 // the result of the lookup.
1508 QualType SubobjectType;
1509 int SubobjectNumber = 0;
1510 AccessSpecifier SubobjectAccess = AS_none;
1511
1512 for (CXXBasePaths::paths_iterator Path = Paths.begin(), PathEnd = Paths.end();
1513 Path != PathEnd; ++Path) {
1514 const CXXBasePathElement &PathElement = Path->back();
1515
1516 // Pick the best (i.e. most permissive i.e. numerically lowest) access
1517 // across all paths.
1518 SubobjectAccess = std::min(SubobjectAccess, Path->Access);
1519
1520 // Determine whether we're looking at a distinct sub-object or not.
1521 if (SubobjectType.isNull()) {
1522 // This is the first subobject we've looked at. Record its type.
1523 SubobjectType = Context.getCanonicalType(PathElement.Base->getType());
1524 SubobjectNumber = PathElement.SubobjectNumber;
1525 continue;
1526 }
1527
1528 if (SubobjectType
1529 != Context.getCanonicalType(PathElement.Base->getType())) {
1530 // We found members of the given name in two subobjects of
1531 // different types. If the declaration sets aren't the same, this
1532 // this lookup is ambiguous.
1533 if (HasOnlyStaticMembers(Path->Decls.first, Path->Decls.second)) {
1534 CXXBasePaths::paths_iterator FirstPath = Paths.begin();
1535 DeclContext::lookup_iterator FirstD = FirstPath->Decls.first;
1536 DeclContext::lookup_iterator CurrentD = Path->Decls.first;
1537
1538 while (FirstD != FirstPath->Decls.second &&
1539 CurrentD != Path->Decls.second) {
1540 if ((*FirstD)->getUnderlyingDecl()->getCanonicalDecl() !=
1541 (*CurrentD)->getUnderlyingDecl()->getCanonicalDecl())
1542 break;
1543
1544 ++FirstD;
1545 ++CurrentD;
1546 }
1547
1548 if (FirstD == FirstPath->Decls.second &&
1549 CurrentD == Path->Decls.second)
1550 continue;
1551 }
1552
1553 R.setAmbiguousBaseSubobjectTypes(Paths);
1554 return true;
1555 }
1556
1557 if (SubobjectNumber != PathElement.SubobjectNumber) {
1558 // We have a different subobject of the same type.
1559
1560 // C++ [class.member.lookup]p5:
1561 // A static member, a nested type or an enumerator defined in
1562 // a base class T can unambiguously be found even if an object
1563 // has more than one base class subobject of type T.
1564 if (HasOnlyStaticMembers(Path->Decls.first, Path->Decls.second))
1565 continue;
1566
1567 // We have found a nonstatic member name in multiple, distinct
1568 // subobjects. Name lookup is ambiguous.
1569 R.setAmbiguousBaseSubobjects(Paths);
1570 return true;
1571 }
1572 }
1573
1574 // Lookup in a base class succeeded; return these results.
1575
1576 DeclContext::lookup_iterator I, E;
1577 for (llvm::tie(I,E) = Paths.front().Decls; I != E; ++I) {
1578 NamedDecl *D = *I;
1579 AccessSpecifier AS = CXXRecordDecl::MergeAccess(SubobjectAccess,
1580 D->getAccess());
1581 R.addDecl(D, AS);
1582 }
1583 R.resolveKind();
1584 return true;
1585 }
1586
1587 /// @brief Performs name lookup for a name that was parsed in the
1588 /// source code, and may contain a C++ scope specifier.
1589 ///
1590 /// This routine is a convenience routine meant to be called from
1591 /// contexts that receive a name and an optional C++ scope specifier
1592 /// (e.g., "N::M::x"). It will then perform either qualified or
1593 /// unqualified name lookup (with LookupQualifiedName or LookupName,
1594 /// respectively) on the given name and return those results.
1595 ///
1596 /// @param S The scope from which unqualified name lookup will
1597 /// begin.
1598 ///
1599 /// @param SS An optional C++ scope-specifier, e.g., "::N::M".
1600 ///
1601 /// @param EnteringContext Indicates whether we are going to enter the
1602 /// context of the scope-specifier SS (if present).
1603 ///
1604 /// @returns True if any decls were found (but possibly ambiguous)
LookupParsedName(LookupResult & R,Scope * S,CXXScopeSpec * SS,bool AllowBuiltinCreation,bool EnteringContext)1605 bool Sema::LookupParsedName(LookupResult &R, Scope *S, CXXScopeSpec *SS,
1606 bool AllowBuiltinCreation, bool EnteringContext) {
1607 if (SS && SS->isInvalid()) {
1608 // When the scope specifier is invalid, don't even look for
1609 // anything.
1610 return false;
1611 }
1612
1613 if (SS && SS->isSet()) {
1614 if (DeclContext *DC = computeDeclContext(*SS, EnteringContext)) {
1615 // We have resolved the scope specifier to a particular declaration
1616 // contex, and will perform name lookup in that context.
1617 if (!DC->isDependentContext() && RequireCompleteDeclContext(*SS, DC))
1618 return false;
1619
1620 R.setContextRange(SS->getRange());
1621 return LookupQualifiedName(R, DC);
1622 }
1623
1624 // We could not resolve the scope specified to a specific declaration
1625 // context, which means that SS refers to an unknown specialization.
1626 // Name lookup can't find anything in this case.
1627 R.setNotFoundInCurrentInstantiation();
1628 R.setContextRange(SS->getRange());
1629 return false;
1630 }
1631
1632 // Perform unqualified name lookup starting in the given scope.
1633 return LookupName(R, S, AllowBuiltinCreation);
1634 }
1635
1636
1637 /// \brief Produce a diagnostic describing the ambiguity that resulted
1638 /// from name lookup.
1639 ///
1640 /// \param Result The result of the ambiguous lookup to be diagnosed.
1641 ///
1642 /// \returns true
DiagnoseAmbiguousLookup(LookupResult & Result)1643 bool Sema::DiagnoseAmbiguousLookup(LookupResult &Result) {
1644 assert(Result.isAmbiguous() && "Lookup result must be ambiguous");
1645
1646 DeclarationName Name = Result.getLookupName();
1647 SourceLocation NameLoc = Result.getNameLoc();
1648 SourceRange LookupRange = Result.getContextRange();
1649
1650 switch (Result.getAmbiguityKind()) {
1651 case LookupResult::AmbiguousBaseSubobjects: {
1652 CXXBasePaths *Paths = Result.getBasePaths();
1653 QualType SubobjectType = Paths->front().back().Base->getType();
1654 Diag(NameLoc, diag::err_ambiguous_member_multiple_subobjects)
1655 << Name << SubobjectType << getAmbiguousPathsDisplayString(*Paths)
1656 << LookupRange;
1657
1658 DeclContext::lookup_iterator Found = Paths->front().Decls.first;
1659 while (isa<CXXMethodDecl>(*Found) &&
1660 cast<CXXMethodDecl>(*Found)->isStatic())
1661 ++Found;
1662
1663 Diag((*Found)->getLocation(), diag::note_ambiguous_member_found);
1664
1665 return true;
1666 }
1667
1668 case LookupResult::AmbiguousBaseSubobjectTypes: {
1669 Diag(NameLoc, diag::err_ambiguous_member_multiple_subobject_types)
1670 << Name << LookupRange;
1671
1672 CXXBasePaths *Paths = Result.getBasePaths();
1673 std::set<Decl *> DeclsPrinted;
1674 for (CXXBasePaths::paths_iterator Path = Paths->begin(),
1675 PathEnd = Paths->end();
1676 Path != PathEnd; ++Path) {
1677 Decl *D = *Path->Decls.first;
1678 if (DeclsPrinted.insert(D).second)
1679 Diag(D->getLocation(), diag::note_ambiguous_member_found);
1680 }
1681
1682 return true;
1683 }
1684
1685 case LookupResult::AmbiguousTagHiding: {
1686 Diag(NameLoc, diag::err_ambiguous_tag_hiding) << Name << LookupRange;
1687
1688 llvm::SmallPtrSet<NamedDecl*,8> TagDecls;
1689
1690 LookupResult::iterator DI, DE = Result.end();
1691 for (DI = Result.begin(); DI != DE; ++DI)
1692 if (TagDecl *TD = dyn_cast<TagDecl>(*DI)) {
1693 TagDecls.insert(TD);
1694 Diag(TD->getLocation(), diag::note_hidden_tag);
1695 }
1696
1697 for (DI = Result.begin(); DI != DE; ++DI)
1698 if (!isa<TagDecl>(*DI))
1699 Diag((*DI)->getLocation(), diag::note_hiding_object);
1700
1701 // For recovery purposes, go ahead and implement the hiding.
1702 LookupResult::Filter F = Result.makeFilter();
1703 while (F.hasNext()) {
1704 if (TagDecls.count(F.next()))
1705 F.erase();
1706 }
1707 F.done();
1708
1709 return true;
1710 }
1711
1712 case LookupResult::AmbiguousReference: {
1713 Diag(NameLoc, diag::err_ambiguous_reference) << Name << LookupRange;
1714
1715 LookupResult::iterator DI = Result.begin(), DE = Result.end();
1716 for (; DI != DE; ++DI)
1717 Diag((*DI)->getLocation(), diag::note_ambiguous_candidate) << *DI;
1718
1719 return true;
1720 }
1721 }
1722
1723 llvm_unreachable("unknown ambiguity kind");
1724 }
1725
1726 namespace {
1727 struct AssociatedLookup {
AssociatedLookup__anonb72703d70211::AssociatedLookup1728 AssociatedLookup(Sema &S, SourceLocation InstantiationLoc,
1729 Sema::AssociatedNamespaceSet &Namespaces,
1730 Sema::AssociatedClassSet &Classes)
1731 : S(S), Namespaces(Namespaces), Classes(Classes),
1732 InstantiationLoc(InstantiationLoc) {
1733 }
1734
1735 Sema &S;
1736 Sema::AssociatedNamespaceSet &Namespaces;
1737 Sema::AssociatedClassSet &Classes;
1738 SourceLocation InstantiationLoc;
1739 };
1740 }
1741
1742 static void
1743 addAssociatedClassesAndNamespaces(AssociatedLookup &Result, QualType T);
1744
CollectEnclosingNamespace(Sema::AssociatedNamespaceSet & Namespaces,DeclContext * Ctx)1745 static void CollectEnclosingNamespace(Sema::AssociatedNamespaceSet &Namespaces,
1746 DeclContext *Ctx) {
1747 // Add the associated namespace for this class.
1748
1749 // We don't use DeclContext::getEnclosingNamespaceContext() as this may
1750 // be a locally scoped record.
1751
1752 // We skip out of inline namespaces. The innermost non-inline namespace
1753 // contains all names of all its nested inline namespaces anyway, so we can
1754 // replace the entire inline namespace tree with its root.
1755 while (Ctx->isRecord() || Ctx->isTransparentContext() ||
1756 Ctx->isInlineNamespace())
1757 Ctx = Ctx->getParent();
1758
1759 if (Ctx->isFileContext())
1760 Namespaces.insert(Ctx->getPrimaryContext());
1761 }
1762
1763 // \brief Add the associated classes and namespaces for argument-dependent
1764 // lookup that involves a template argument (C++ [basic.lookup.koenig]p2).
1765 static void
addAssociatedClassesAndNamespaces(AssociatedLookup & Result,const TemplateArgument & Arg)1766 addAssociatedClassesAndNamespaces(AssociatedLookup &Result,
1767 const TemplateArgument &Arg) {
1768 // C++ [basic.lookup.koenig]p2, last bullet:
1769 // -- [...] ;
1770 switch (Arg.getKind()) {
1771 case TemplateArgument::Null:
1772 break;
1773
1774 case TemplateArgument::Type:
1775 // [...] the namespaces and classes associated with the types of the
1776 // template arguments provided for template type parameters (excluding
1777 // template template parameters)
1778 addAssociatedClassesAndNamespaces(Result, Arg.getAsType());
1779 break;
1780
1781 case TemplateArgument::Template:
1782 case TemplateArgument::TemplateExpansion: {
1783 // [...] the namespaces in which any template template arguments are
1784 // defined; and the classes in which any member templates used as
1785 // template template arguments are defined.
1786 TemplateName Template = Arg.getAsTemplateOrTemplatePattern();
1787 if (ClassTemplateDecl *ClassTemplate
1788 = dyn_cast<ClassTemplateDecl>(Template.getAsTemplateDecl())) {
1789 DeclContext *Ctx = ClassTemplate->getDeclContext();
1790 if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
1791 Result.Classes.insert(EnclosingClass);
1792 // Add the associated namespace for this class.
1793 CollectEnclosingNamespace(Result.Namespaces, Ctx);
1794 }
1795 break;
1796 }
1797
1798 case TemplateArgument::Declaration:
1799 case TemplateArgument::Integral:
1800 case TemplateArgument::Expression:
1801 // [Note: non-type template arguments do not contribute to the set of
1802 // associated namespaces. ]
1803 break;
1804
1805 case TemplateArgument::Pack:
1806 for (TemplateArgument::pack_iterator P = Arg.pack_begin(),
1807 PEnd = Arg.pack_end();
1808 P != PEnd; ++P)
1809 addAssociatedClassesAndNamespaces(Result, *P);
1810 break;
1811 }
1812 }
1813
1814 // \brief Add the associated classes and namespaces for
1815 // argument-dependent lookup with an argument of class type
1816 // (C++ [basic.lookup.koenig]p2).
1817 static void
addAssociatedClassesAndNamespaces(AssociatedLookup & Result,CXXRecordDecl * Class)1818 addAssociatedClassesAndNamespaces(AssociatedLookup &Result,
1819 CXXRecordDecl *Class) {
1820
1821 // Just silently ignore anything whose name is __va_list_tag.
1822 if (Class->getDeclName() == Result.S.VAListTagName)
1823 return;
1824
1825 // C++ [basic.lookup.koenig]p2:
1826 // [...]
1827 // -- If T is a class type (including unions), its associated
1828 // classes are: the class itself; the class of which it is a
1829 // member, if any; and its direct and indirect base
1830 // classes. Its associated namespaces are the namespaces in
1831 // which its associated classes are defined.
1832
1833 // Add the class of which it is a member, if any.
1834 DeclContext *Ctx = Class->getDeclContext();
1835 if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
1836 Result.Classes.insert(EnclosingClass);
1837 // Add the associated namespace for this class.
1838 CollectEnclosingNamespace(Result.Namespaces, Ctx);
1839
1840 // Add the class itself. If we've already seen this class, we don't
1841 // need to visit base classes.
1842 if (!Result.Classes.insert(Class))
1843 return;
1844
1845 // -- If T is a template-id, its associated namespaces and classes are
1846 // the namespace in which the template is defined; for member
1847 // templates, the member template's class; the namespaces and classes
1848 // associated with the types of the template arguments provided for
1849 // template type parameters (excluding template template parameters); the
1850 // namespaces in which any template template arguments are defined; and
1851 // the classes in which any member templates used as template template
1852 // arguments are defined. [Note: non-type template arguments do not
1853 // contribute to the set of associated namespaces. ]
1854 if (ClassTemplateSpecializationDecl *Spec
1855 = dyn_cast<ClassTemplateSpecializationDecl>(Class)) {
1856 DeclContext *Ctx = Spec->getSpecializedTemplate()->getDeclContext();
1857 if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
1858 Result.Classes.insert(EnclosingClass);
1859 // Add the associated namespace for this class.
1860 CollectEnclosingNamespace(Result.Namespaces, Ctx);
1861
1862 const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs();
1863 for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
1864 addAssociatedClassesAndNamespaces(Result, TemplateArgs[I]);
1865 }
1866
1867 // Only recurse into base classes for complete types.
1868 if (!Class->hasDefinition()) {
1869 QualType type = Result.S.Context.getTypeDeclType(Class);
1870 if (Result.S.RequireCompleteType(Result.InstantiationLoc, type,
1871 /*no diagnostic*/ 0))
1872 return;
1873 }
1874
1875 // Add direct and indirect base classes along with their associated
1876 // namespaces.
1877 SmallVector<CXXRecordDecl *, 32> Bases;
1878 Bases.push_back(Class);
1879 while (!Bases.empty()) {
1880 // Pop this class off the stack.
1881 Class = Bases.back();
1882 Bases.pop_back();
1883
1884 // Visit the base classes.
1885 for (CXXRecordDecl::base_class_iterator Base = Class->bases_begin(),
1886 BaseEnd = Class->bases_end();
1887 Base != BaseEnd; ++Base) {
1888 const RecordType *BaseType = Base->getType()->getAs<RecordType>();
1889 // In dependent contexts, we do ADL twice, and the first time around,
1890 // the base type might be a dependent TemplateSpecializationType, or a
1891 // TemplateTypeParmType. If that happens, simply ignore it.
1892 // FIXME: If we want to support export, we probably need to add the
1893 // namespace of the template in a TemplateSpecializationType, or even
1894 // the classes and namespaces of known non-dependent arguments.
1895 if (!BaseType)
1896 continue;
1897 CXXRecordDecl *BaseDecl = cast<CXXRecordDecl>(BaseType->getDecl());
1898 if (Result.Classes.insert(BaseDecl)) {
1899 // Find the associated namespace for this base class.
1900 DeclContext *BaseCtx = BaseDecl->getDeclContext();
1901 CollectEnclosingNamespace(Result.Namespaces, BaseCtx);
1902
1903 // Make sure we visit the bases of this base class.
1904 if (BaseDecl->bases_begin() != BaseDecl->bases_end())
1905 Bases.push_back(BaseDecl);
1906 }
1907 }
1908 }
1909 }
1910
1911 // \brief Add the associated classes and namespaces for
1912 // argument-dependent lookup with an argument of type T
1913 // (C++ [basic.lookup.koenig]p2).
1914 static void
addAssociatedClassesAndNamespaces(AssociatedLookup & Result,QualType Ty)1915 addAssociatedClassesAndNamespaces(AssociatedLookup &Result, QualType Ty) {
1916 // C++ [basic.lookup.koenig]p2:
1917 //
1918 // For each argument type T in the function call, there is a set
1919 // of zero or more associated namespaces and a set of zero or more
1920 // associated classes to be considered. The sets of namespaces and
1921 // classes is determined entirely by the types of the function
1922 // arguments (and the namespace of any template template
1923 // argument). Typedef names and using-declarations used to specify
1924 // the types do not contribute to this set. The sets of namespaces
1925 // and classes are determined in the following way:
1926
1927 SmallVector<const Type *, 16> Queue;
1928 const Type *T = Ty->getCanonicalTypeInternal().getTypePtr();
1929
1930 while (true) {
1931 switch (T->getTypeClass()) {
1932
1933 #define TYPE(Class, Base)
1934 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
1935 #define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
1936 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class:
1937 #define ABSTRACT_TYPE(Class, Base)
1938 #include "clang/AST/TypeNodes.def"
1939 // T is canonical. We can also ignore dependent types because
1940 // we don't need to do ADL at the definition point, but if we
1941 // wanted to implement template export (or if we find some other
1942 // use for associated classes and namespaces...) this would be
1943 // wrong.
1944 break;
1945
1946 // -- If T is a pointer to U or an array of U, its associated
1947 // namespaces and classes are those associated with U.
1948 case Type::Pointer:
1949 T = cast<PointerType>(T)->getPointeeType().getTypePtr();
1950 continue;
1951 case Type::ConstantArray:
1952 case Type::IncompleteArray:
1953 case Type::VariableArray:
1954 T = cast<ArrayType>(T)->getElementType().getTypePtr();
1955 continue;
1956
1957 // -- If T is a fundamental type, its associated sets of
1958 // namespaces and classes are both empty.
1959 case Type::Builtin:
1960 break;
1961
1962 // -- If T is a class type (including unions), its associated
1963 // classes are: the class itself; the class of which it is a
1964 // member, if any; and its direct and indirect base
1965 // classes. Its associated namespaces are the namespaces in
1966 // which its associated classes are defined.
1967 case Type::Record: {
1968 CXXRecordDecl *Class
1969 = cast<CXXRecordDecl>(cast<RecordType>(T)->getDecl());
1970 addAssociatedClassesAndNamespaces(Result, Class);
1971 break;
1972 }
1973
1974 // -- If T is an enumeration type, its associated namespace is
1975 // the namespace in which it is defined. If it is class
1976 // member, its associated class is the member's class; else
1977 // it has no associated class.
1978 case Type::Enum: {
1979 EnumDecl *Enum = cast<EnumType>(T)->getDecl();
1980
1981 DeclContext *Ctx = Enum->getDeclContext();
1982 if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
1983 Result.Classes.insert(EnclosingClass);
1984
1985 // Add the associated namespace for this class.
1986 CollectEnclosingNamespace(Result.Namespaces, Ctx);
1987
1988 break;
1989 }
1990
1991 // -- If T is a function type, its associated namespaces and
1992 // classes are those associated with the function parameter
1993 // types and those associated with the return type.
1994 case Type::FunctionProto: {
1995 const FunctionProtoType *Proto = cast<FunctionProtoType>(T);
1996 for (FunctionProtoType::arg_type_iterator Arg = Proto->arg_type_begin(),
1997 ArgEnd = Proto->arg_type_end();
1998 Arg != ArgEnd; ++Arg)
1999 Queue.push_back(Arg->getTypePtr());
2000 // fallthrough
2001 }
2002 case Type::FunctionNoProto: {
2003 const FunctionType *FnType = cast<FunctionType>(T);
2004 T = FnType->getResultType().getTypePtr();
2005 continue;
2006 }
2007
2008 // -- If T is a pointer to a member function of a class X, its
2009 // associated namespaces and classes are those associated
2010 // with the function parameter types and return type,
2011 // together with those associated with X.
2012 //
2013 // -- If T is a pointer to a data member of class X, its
2014 // associated namespaces and classes are those associated
2015 // with the member type together with those associated with
2016 // X.
2017 case Type::MemberPointer: {
2018 const MemberPointerType *MemberPtr = cast<MemberPointerType>(T);
2019
2020 // Queue up the class type into which this points.
2021 Queue.push_back(MemberPtr->getClass());
2022
2023 // And directly continue with the pointee type.
2024 T = MemberPtr->getPointeeType().getTypePtr();
2025 continue;
2026 }
2027
2028 // As an extension, treat this like a normal pointer.
2029 case Type::BlockPointer:
2030 T = cast<BlockPointerType>(T)->getPointeeType().getTypePtr();
2031 continue;
2032
2033 // References aren't covered by the standard, but that's such an
2034 // obvious defect that we cover them anyway.
2035 case Type::LValueReference:
2036 case Type::RValueReference:
2037 T = cast<ReferenceType>(T)->getPointeeType().getTypePtr();
2038 continue;
2039
2040 // These are fundamental types.
2041 case Type::Vector:
2042 case Type::ExtVector:
2043 case Type::Complex:
2044 break;
2045
2046 // If T is an Objective-C object or interface type, or a pointer to an
2047 // object or interface type, the associated namespace is the global
2048 // namespace.
2049 case Type::ObjCObject:
2050 case Type::ObjCInterface:
2051 case Type::ObjCObjectPointer:
2052 Result.Namespaces.insert(Result.S.Context.getTranslationUnitDecl());
2053 break;
2054
2055 // Atomic types are just wrappers; use the associations of the
2056 // contained type.
2057 case Type::Atomic:
2058 T = cast<AtomicType>(T)->getValueType().getTypePtr();
2059 continue;
2060 }
2061
2062 if (Queue.empty()) break;
2063 T = Queue.back();
2064 Queue.pop_back();
2065 }
2066 }
2067
2068 /// \brief Find the associated classes and namespaces for
2069 /// argument-dependent lookup for a call with the given set of
2070 /// arguments.
2071 ///
2072 /// This routine computes the sets of associated classes and associated
2073 /// namespaces searched by argument-dependent lookup
2074 /// (C++ [basic.lookup.argdep]) for a given set of arguments.
2075 void
FindAssociatedClassesAndNamespaces(SourceLocation InstantiationLoc,llvm::ArrayRef<Expr * > Args,AssociatedNamespaceSet & AssociatedNamespaces,AssociatedClassSet & AssociatedClasses)2076 Sema::FindAssociatedClassesAndNamespaces(SourceLocation InstantiationLoc,
2077 llvm::ArrayRef<Expr *> Args,
2078 AssociatedNamespaceSet &AssociatedNamespaces,
2079 AssociatedClassSet &AssociatedClasses) {
2080 AssociatedNamespaces.clear();
2081 AssociatedClasses.clear();
2082
2083 AssociatedLookup Result(*this, InstantiationLoc,
2084 AssociatedNamespaces, AssociatedClasses);
2085
2086 // C++ [basic.lookup.koenig]p2:
2087 // For each argument type T in the function call, there is a set
2088 // of zero or more associated namespaces and a set of zero or more
2089 // associated classes to be considered. The sets of namespaces and
2090 // classes is determined entirely by the types of the function
2091 // arguments (and the namespace of any template template
2092 // argument).
2093 for (unsigned ArgIdx = 0; ArgIdx != Args.size(); ++ArgIdx) {
2094 Expr *Arg = Args[ArgIdx];
2095
2096 if (Arg->getType() != Context.OverloadTy) {
2097 addAssociatedClassesAndNamespaces(Result, Arg->getType());
2098 continue;
2099 }
2100
2101 // [...] In addition, if the argument is the name or address of a
2102 // set of overloaded functions and/or function templates, its
2103 // associated classes and namespaces are the union of those
2104 // associated with each of the members of the set: the namespace
2105 // in which the function or function template is defined and the
2106 // classes and namespaces associated with its (non-dependent)
2107 // parameter types and return type.
2108 Arg = Arg->IgnoreParens();
2109 if (UnaryOperator *unaryOp = dyn_cast<UnaryOperator>(Arg))
2110 if (unaryOp->getOpcode() == UO_AddrOf)
2111 Arg = unaryOp->getSubExpr();
2112
2113 UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(Arg);
2114 if (!ULE) continue;
2115
2116 for (UnresolvedSetIterator I = ULE->decls_begin(), E = ULE->decls_end();
2117 I != E; ++I) {
2118 // Look through any using declarations to find the underlying function.
2119 NamedDecl *Fn = (*I)->getUnderlyingDecl();
2120
2121 FunctionDecl *FDecl = dyn_cast<FunctionDecl>(Fn);
2122 if (!FDecl)
2123 FDecl = cast<FunctionTemplateDecl>(Fn)->getTemplatedDecl();
2124
2125 // Add the classes and namespaces associated with the parameter
2126 // types and return type of this function.
2127 addAssociatedClassesAndNamespaces(Result, FDecl->getType());
2128 }
2129 }
2130 }
2131
2132 /// IsAcceptableNonMemberOperatorCandidate - Determine whether Fn is
2133 /// an acceptable non-member overloaded operator for a call whose
2134 /// arguments have types T1 (and, if non-empty, T2). This routine
2135 /// implements the check in C++ [over.match.oper]p3b2 concerning
2136 /// enumeration types.
2137 static bool
IsAcceptableNonMemberOperatorCandidate(FunctionDecl * Fn,QualType T1,QualType T2,ASTContext & Context)2138 IsAcceptableNonMemberOperatorCandidate(FunctionDecl *Fn,
2139 QualType T1, QualType T2,
2140 ASTContext &Context) {
2141 if (T1->isDependentType() || (!T2.isNull() && T2->isDependentType()))
2142 return true;
2143
2144 if (T1->isRecordType() || (!T2.isNull() && T2->isRecordType()))
2145 return true;
2146
2147 const FunctionProtoType *Proto = Fn->getType()->getAs<FunctionProtoType>();
2148 if (Proto->getNumArgs() < 1)
2149 return false;
2150
2151 if (T1->isEnumeralType()) {
2152 QualType ArgType = Proto->getArgType(0).getNonReferenceType();
2153 if (Context.hasSameUnqualifiedType(T1, ArgType))
2154 return true;
2155 }
2156
2157 if (Proto->getNumArgs() < 2)
2158 return false;
2159
2160 if (!T2.isNull() && T2->isEnumeralType()) {
2161 QualType ArgType = Proto->getArgType(1).getNonReferenceType();
2162 if (Context.hasSameUnqualifiedType(T2, ArgType))
2163 return true;
2164 }
2165
2166 return false;
2167 }
2168
LookupSingleName(Scope * S,DeclarationName Name,SourceLocation Loc,LookupNameKind NameKind,RedeclarationKind Redecl)2169 NamedDecl *Sema::LookupSingleName(Scope *S, DeclarationName Name,
2170 SourceLocation Loc,
2171 LookupNameKind NameKind,
2172 RedeclarationKind Redecl) {
2173 LookupResult R(*this, Name, Loc, NameKind, Redecl);
2174 LookupName(R, S);
2175 return R.getAsSingle<NamedDecl>();
2176 }
2177
2178 /// \brief Find the protocol with the given name, if any.
LookupProtocol(IdentifierInfo * II,SourceLocation IdLoc,RedeclarationKind Redecl)2179 ObjCProtocolDecl *Sema::LookupProtocol(IdentifierInfo *II,
2180 SourceLocation IdLoc,
2181 RedeclarationKind Redecl) {
2182 Decl *D = LookupSingleName(TUScope, II, IdLoc,
2183 LookupObjCProtocolName, Redecl);
2184 return cast_or_null<ObjCProtocolDecl>(D);
2185 }
2186
LookupOverloadedOperatorName(OverloadedOperatorKind Op,Scope * S,QualType T1,QualType T2,UnresolvedSetImpl & Functions)2187 void Sema::LookupOverloadedOperatorName(OverloadedOperatorKind Op, Scope *S,
2188 QualType T1, QualType T2,
2189 UnresolvedSetImpl &Functions) {
2190 // C++ [over.match.oper]p3:
2191 // -- The set of non-member candidates is the result of the
2192 // unqualified lookup of operator@ in the context of the
2193 // expression according to the usual rules for name lookup in
2194 // unqualified function calls (3.4.2) except that all member
2195 // functions are ignored. However, if no operand has a class
2196 // type, only those non-member functions in the lookup set
2197 // that have a first parameter of type T1 or "reference to
2198 // (possibly cv-qualified) T1", when T1 is an enumeration
2199 // type, or (if there is a right operand) a second parameter
2200 // of type T2 or "reference to (possibly cv-qualified) T2",
2201 // when T2 is an enumeration type, are candidate functions.
2202 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
2203 LookupResult Operators(*this, OpName, SourceLocation(), LookupOperatorName);
2204 LookupName(Operators, S);
2205
2206 assert(!Operators.isAmbiguous() && "Operator lookup cannot be ambiguous");
2207
2208 if (Operators.empty())
2209 return;
2210
2211 for (LookupResult::iterator Op = Operators.begin(), OpEnd = Operators.end();
2212 Op != OpEnd; ++Op) {
2213 NamedDecl *Found = (*Op)->getUnderlyingDecl();
2214 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(Found)) {
2215 if (IsAcceptableNonMemberOperatorCandidate(FD, T1, T2, Context))
2216 Functions.addDecl(*Op, Op.getAccess()); // FIXME: canonical FD
2217 } else if (FunctionTemplateDecl *FunTmpl
2218 = dyn_cast<FunctionTemplateDecl>(Found)) {
2219 // FIXME: friend operators?
2220 // FIXME: do we need to check IsAcceptableNonMemberOperatorCandidate,
2221 // later?
2222 if (!FunTmpl->getDeclContext()->isRecord())
2223 Functions.addDecl(*Op, Op.getAccess());
2224 }
2225 }
2226 }
2227
LookupSpecialMember(CXXRecordDecl * RD,CXXSpecialMember SM,bool ConstArg,bool VolatileArg,bool RValueThis,bool ConstThis,bool VolatileThis)2228 Sema::SpecialMemberOverloadResult *Sema::LookupSpecialMember(CXXRecordDecl *RD,
2229 CXXSpecialMember SM,
2230 bool ConstArg,
2231 bool VolatileArg,
2232 bool RValueThis,
2233 bool ConstThis,
2234 bool VolatileThis) {
2235 RD = RD->getDefinition();
2236 assert((RD && !RD->isBeingDefined()) &&
2237 "doing special member lookup into record that isn't fully complete");
2238 if (RValueThis || ConstThis || VolatileThis)
2239 assert((SM == CXXCopyAssignment || SM == CXXMoveAssignment) &&
2240 "constructors and destructors always have unqualified lvalue this");
2241 if (ConstArg || VolatileArg)
2242 assert((SM != CXXDefaultConstructor && SM != CXXDestructor) &&
2243 "parameter-less special members can't have qualified arguments");
2244
2245 llvm::FoldingSetNodeID ID;
2246 ID.AddPointer(RD);
2247 ID.AddInteger(SM);
2248 ID.AddInteger(ConstArg);
2249 ID.AddInteger(VolatileArg);
2250 ID.AddInteger(RValueThis);
2251 ID.AddInteger(ConstThis);
2252 ID.AddInteger(VolatileThis);
2253
2254 void *InsertPoint;
2255 SpecialMemberOverloadResult *Result =
2256 SpecialMemberCache.FindNodeOrInsertPos(ID, InsertPoint);
2257
2258 // This was already cached
2259 if (Result)
2260 return Result;
2261
2262 Result = BumpAlloc.Allocate<SpecialMemberOverloadResult>();
2263 Result = new (Result) SpecialMemberOverloadResult(ID);
2264 SpecialMemberCache.InsertNode(Result, InsertPoint);
2265
2266 if (SM == CXXDestructor) {
2267 if (!RD->hasDeclaredDestructor())
2268 DeclareImplicitDestructor(RD);
2269 CXXDestructorDecl *DD = RD->getDestructor();
2270 assert(DD && "record without a destructor");
2271 Result->setMethod(DD);
2272 Result->setKind(DD->isDeleted() ?
2273 SpecialMemberOverloadResult::NoMemberOrDeleted :
2274 SpecialMemberOverloadResult::Success);
2275 return Result;
2276 }
2277
2278 // Prepare for overload resolution. Here we construct a synthetic argument
2279 // if necessary and make sure that implicit functions are declared.
2280 CanQualType CanTy = Context.getCanonicalType(Context.getTagDeclType(RD));
2281 DeclarationName Name;
2282 Expr *Arg = 0;
2283 unsigned NumArgs;
2284
2285 QualType ArgType = CanTy;
2286 ExprValueKind VK = VK_LValue;
2287
2288 if (SM == CXXDefaultConstructor) {
2289 Name = Context.DeclarationNames.getCXXConstructorName(CanTy);
2290 NumArgs = 0;
2291 if (RD->needsImplicitDefaultConstructor())
2292 DeclareImplicitDefaultConstructor(RD);
2293 } else {
2294 if (SM == CXXCopyConstructor || SM == CXXMoveConstructor) {
2295 Name = Context.DeclarationNames.getCXXConstructorName(CanTy);
2296 if (!RD->hasDeclaredCopyConstructor())
2297 DeclareImplicitCopyConstructor(RD);
2298 if (getLangOpts().CPlusPlus0x && RD->needsImplicitMoveConstructor())
2299 DeclareImplicitMoveConstructor(RD);
2300 } else {
2301 Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
2302 if (!RD->hasDeclaredCopyAssignment())
2303 DeclareImplicitCopyAssignment(RD);
2304 if (getLangOpts().CPlusPlus0x && RD->needsImplicitMoveAssignment())
2305 DeclareImplicitMoveAssignment(RD);
2306 }
2307
2308 if (ConstArg)
2309 ArgType.addConst();
2310 if (VolatileArg)
2311 ArgType.addVolatile();
2312
2313 // This isn't /really/ specified by the standard, but it's implied
2314 // we should be working from an RValue in the case of move to ensure
2315 // that we prefer to bind to rvalue references, and an LValue in the
2316 // case of copy to ensure we don't bind to rvalue references.
2317 // Possibly an XValue is actually correct in the case of move, but
2318 // there is no semantic difference for class types in this restricted
2319 // case.
2320 if (SM == CXXCopyConstructor || SM == CXXCopyAssignment)
2321 VK = VK_LValue;
2322 else
2323 VK = VK_RValue;
2324 }
2325
2326 OpaqueValueExpr FakeArg(SourceLocation(), ArgType, VK);
2327
2328 if (SM != CXXDefaultConstructor) {
2329 NumArgs = 1;
2330 Arg = &FakeArg;
2331 }
2332
2333 // Create the object argument
2334 QualType ThisTy = CanTy;
2335 if (ConstThis)
2336 ThisTy.addConst();
2337 if (VolatileThis)
2338 ThisTy.addVolatile();
2339 Expr::Classification Classification =
2340 OpaqueValueExpr(SourceLocation(), ThisTy,
2341 RValueThis ? VK_RValue : VK_LValue).Classify(Context);
2342
2343 // Now we perform lookup on the name we computed earlier and do overload
2344 // resolution. Lookup is only performed directly into the class since there
2345 // will always be a (possibly implicit) declaration to shadow any others.
2346 OverloadCandidateSet OCS((SourceLocation()));
2347 DeclContext::lookup_iterator I, E;
2348
2349 llvm::tie(I, E) = RD->lookup(Name);
2350 assert((I != E) &&
2351 "lookup for a constructor or assignment operator was empty");
2352 for ( ; I != E; ++I) {
2353 Decl *Cand = *I;
2354
2355 if (Cand->isInvalidDecl())
2356 continue;
2357
2358 if (UsingShadowDecl *U = dyn_cast<UsingShadowDecl>(Cand)) {
2359 // FIXME: [namespace.udecl]p15 says that we should only consider a
2360 // using declaration here if it does not match a declaration in the
2361 // derived class. We do not implement this correctly in other cases
2362 // either.
2363 Cand = U->getTargetDecl();
2364
2365 if (Cand->isInvalidDecl())
2366 continue;
2367 }
2368
2369 if (CXXMethodDecl *M = dyn_cast<CXXMethodDecl>(Cand)) {
2370 if (SM == CXXCopyAssignment || SM == CXXMoveAssignment)
2371 AddMethodCandidate(M, DeclAccessPair::make(M, AS_public), RD, ThisTy,
2372 Classification, llvm::makeArrayRef(&Arg, NumArgs),
2373 OCS, true);
2374 else
2375 AddOverloadCandidate(M, DeclAccessPair::make(M, AS_public),
2376 llvm::makeArrayRef(&Arg, NumArgs), OCS, true);
2377 } else if (FunctionTemplateDecl *Tmpl =
2378 dyn_cast<FunctionTemplateDecl>(Cand)) {
2379 if (SM == CXXCopyAssignment || SM == CXXMoveAssignment)
2380 AddMethodTemplateCandidate(Tmpl, DeclAccessPair::make(Tmpl, AS_public),
2381 RD, 0, ThisTy, Classification,
2382 llvm::makeArrayRef(&Arg, NumArgs),
2383 OCS, true);
2384 else
2385 AddTemplateOverloadCandidate(Tmpl, DeclAccessPair::make(Tmpl, AS_public),
2386 0, llvm::makeArrayRef(&Arg, NumArgs),
2387 OCS, true);
2388 } else {
2389 assert(isa<UsingDecl>(Cand) && "illegal Kind of operator = Decl");
2390 }
2391 }
2392
2393 OverloadCandidateSet::iterator Best;
2394 switch (OCS.BestViableFunction(*this, SourceLocation(), Best)) {
2395 case OR_Success:
2396 Result->setMethod(cast<CXXMethodDecl>(Best->Function));
2397 Result->setKind(SpecialMemberOverloadResult::Success);
2398 break;
2399
2400 case OR_Deleted:
2401 Result->setMethod(cast<CXXMethodDecl>(Best->Function));
2402 Result->setKind(SpecialMemberOverloadResult::NoMemberOrDeleted);
2403 break;
2404
2405 case OR_Ambiguous:
2406 Result->setMethod(0);
2407 Result->setKind(SpecialMemberOverloadResult::Ambiguous);
2408 break;
2409
2410 case OR_No_Viable_Function:
2411 Result->setMethod(0);
2412 Result->setKind(SpecialMemberOverloadResult::NoMemberOrDeleted);
2413 break;
2414 }
2415
2416 return Result;
2417 }
2418
2419 /// \brief Look up the default constructor for the given class.
LookupDefaultConstructor(CXXRecordDecl * Class)2420 CXXConstructorDecl *Sema::LookupDefaultConstructor(CXXRecordDecl *Class) {
2421 SpecialMemberOverloadResult *Result =
2422 LookupSpecialMember(Class, CXXDefaultConstructor, false, false, false,
2423 false, false);
2424
2425 return cast_or_null<CXXConstructorDecl>(Result->getMethod());
2426 }
2427
2428 /// \brief Look up the copying constructor for the given class.
LookupCopyingConstructor(CXXRecordDecl * Class,unsigned Quals)2429 CXXConstructorDecl *Sema::LookupCopyingConstructor(CXXRecordDecl *Class,
2430 unsigned Quals) {
2431 assert(!(Quals & ~(Qualifiers::Const | Qualifiers::Volatile)) &&
2432 "non-const, non-volatile qualifiers for copy ctor arg");
2433 SpecialMemberOverloadResult *Result =
2434 LookupSpecialMember(Class, CXXCopyConstructor, Quals & Qualifiers::Const,
2435 Quals & Qualifiers::Volatile, false, false, false);
2436
2437 return cast_or_null<CXXConstructorDecl>(Result->getMethod());
2438 }
2439
2440 /// \brief Look up the moving constructor for the given class.
LookupMovingConstructor(CXXRecordDecl * Class,unsigned Quals)2441 CXXConstructorDecl *Sema::LookupMovingConstructor(CXXRecordDecl *Class,
2442 unsigned Quals) {
2443 SpecialMemberOverloadResult *Result =
2444 LookupSpecialMember(Class, CXXMoveConstructor, Quals & Qualifiers::Const,
2445 Quals & Qualifiers::Volatile, false, false, false);
2446
2447 return cast_or_null<CXXConstructorDecl>(Result->getMethod());
2448 }
2449
2450 /// \brief Look up the constructors for the given class.
LookupConstructors(CXXRecordDecl * Class)2451 DeclContext::lookup_result Sema::LookupConstructors(CXXRecordDecl *Class) {
2452 // If the implicit constructors have not yet been declared, do so now.
2453 if (CanDeclareSpecialMemberFunction(Context, Class)) {
2454 if (Class->needsImplicitDefaultConstructor())
2455 DeclareImplicitDefaultConstructor(Class);
2456 if (!Class->hasDeclaredCopyConstructor())
2457 DeclareImplicitCopyConstructor(Class);
2458 if (getLangOpts().CPlusPlus0x && Class->needsImplicitMoveConstructor())
2459 DeclareImplicitMoveConstructor(Class);
2460 }
2461
2462 CanQualType T = Context.getCanonicalType(Context.getTypeDeclType(Class));
2463 DeclarationName Name = Context.DeclarationNames.getCXXConstructorName(T);
2464 return Class->lookup(Name);
2465 }
2466
2467 /// \brief Look up the copying assignment operator for the given class.
LookupCopyingAssignment(CXXRecordDecl * Class,unsigned Quals,bool RValueThis,unsigned ThisQuals)2468 CXXMethodDecl *Sema::LookupCopyingAssignment(CXXRecordDecl *Class,
2469 unsigned Quals, bool RValueThis,
2470 unsigned ThisQuals) {
2471 assert(!(Quals & ~(Qualifiers::Const | Qualifiers::Volatile)) &&
2472 "non-const, non-volatile qualifiers for copy assignment arg");
2473 assert(!(ThisQuals & ~(Qualifiers::Const | Qualifiers::Volatile)) &&
2474 "non-const, non-volatile qualifiers for copy assignment this");
2475 SpecialMemberOverloadResult *Result =
2476 LookupSpecialMember(Class, CXXCopyAssignment, Quals & Qualifiers::Const,
2477 Quals & Qualifiers::Volatile, RValueThis,
2478 ThisQuals & Qualifiers::Const,
2479 ThisQuals & Qualifiers::Volatile);
2480
2481 return Result->getMethod();
2482 }
2483
2484 /// \brief Look up the moving assignment operator for the given class.
LookupMovingAssignment(CXXRecordDecl * Class,unsigned Quals,bool RValueThis,unsigned ThisQuals)2485 CXXMethodDecl *Sema::LookupMovingAssignment(CXXRecordDecl *Class,
2486 unsigned Quals,
2487 bool RValueThis,
2488 unsigned ThisQuals) {
2489 assert(!(ThisQuals & ~(Qualifiers::Const | Qualifiers::Volatile)) &&
2490 "non-const, non-volatile qualifiers for copy assignment this");
2491 SpecialMemberOverloadResult *Result =
2492 LookupSpecialMember(Class, CXXMoveAssignment, Quals & Qualifiers::Const,
2493 Quals & Qualifiers::Volatile, RValueThis,
2494 ThisQuals & Qualifiers::Const,
2495 ThisQuals & Qualifiers::Volatile);
2496
2497 return Result->getMethod();
2498 }
2499
2500 /// \brief Look for the destructor of the given class.
2501 ///
2502 /// During semantic analysis, this routine should be used in lieu of
2503 /// CXXRecordDecl::getDestructor().
2504 ///
2505 /// \returns The destructor for this class.
LookupDestructor(CXXRecordDecl * Class)2506 CXXDestructorDecl *Sema::LookupDestructor(CXXRecordDecl *Class) {
2507 return cast<CXXDestructorDecl>(LookupSpecialMember(Class, CXXDestructor,
2508 false, false, false,
2509 false, false)->getMethod());
2510 }
2511
2512 /// LookupLiteralOperator - Determine which literal operator should be used for
2513 /// a user-defined literal, per C++11 [lex.ext].
2514 ///
2515 /// Normal overload resolution is not used to select which literal operator to
2516 /// call for a user-defined literal. Look up the provided literal operator name,
2517 /// and filter the results to the appropriate set for the given argument types.
2518 Sema::LiteralOperatorLookupResult
LookupLiteralOperator(Scope * S,LookupResult & R,ArrayRef<QualType> ArgTys,bool AllowRawAndTemplate)2519 Sema::LookupLiteralOperator(Scope *S, LookupResult &R,
2520 ArrayRef<QualType> ArgTys,
2521 bool AllowRawAndTemplate) {
2522 LookupName(R, S);
2523 assert(R.getResultKind() != LookupResult::Ambiguous &&
2524 "literal operator lookup can't be ambiguous");
2525
2526 // Filter the lookup results appropriately.
2527 LookupResult::Filter F = R.makeFilter();
2528
2529 bool FoundTemplate = false;
2530 bool FoundRaw = false;
2531 bool FoundExactMatch = false;
2532
2533 while (F.hasNext()) {
2534 Decl *D = F.next();
2535 if (UsingShadowDecl *USD = dyn_cast<UsingShadowDecl>(D))
2536 D = USD->getTargetDecl();
2537
2538 bool IsTemplate = isa<FunctionTemplateDecl>(D);
2539 bool IsRaw = false;
2540 bool IsExactMatch = false;
2541
2542 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
2543 if (FD->getNumParams() == 1 &&
2544 FD->getParamDecl(0)->getType()->getAs<PointerType>())
2545 IsRaw = true;
2546 else {
2547 IsExactMatch = true;
2548 for (unsigned ArgIdx = 0; ArgIdx != ArgTys.size(); ++ArgIdx) {
2549 QualType ParamTy = FD->getParamDecl(ArgIdx)->getType();
2550 if (!Context.hasSameUnqualifiedType(ArgTys[ArgIdx], ParamTy)) {
2551 IsExactMatch = false;
2552 break;
2553 }
2554 }
2555 }
2556 }
2557
2558 if (IsExactMatch) {
2559 FoundExactMatch = true;
2560 AllowRawAndTemplate = false;
2561 if (FoundRaw || FoundTemplate) {
2562 // Go through again and remove the raw and template decls we've
2563 // already found.
2564 F.restart();
2565 FoundRaw = FoundTemplate = false;
2566 }
2567 } else if (AllowRawAndTemplate && (IsTemplate || IsRaw)) {
2568 FoundTemplate |= IsTemplate;
2569 FoundRaw |= IsRaw;
2570 } else {
2571 F.erase();
2572 }
2573 }
2574
2575 F.done();
2576
2577 // C++11 [lex.ext]p3, p4: If S contains a literal operator with a matching
2578 // parameter type, that is used in preference to a raw literal operator
2579 // or literal operator template.
2580 if (FoundExactMatch)
2581 return LOLR_Cooked;
2582
2583 // C++11 [lex.ext]p3, p4: S shall contain a raw literal operator or a literal
2584 // operator template, but not both.
2585 if (FoundRaw && FoundTemplate) {
2586 Diag(R.getNameLoc(), diag::err_ovl_ambiguous_call) << R.getLookupName();
2587 for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
2588 Decl *D = *I;
2589 if (UsingShadowDecl *USD = dyn_cast<UsingShadowDecl>(D))
2590 D = USD->getTargetDecl();
2591 if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D))
2592 D = FunTmpl->getTemplatedDecl();
2593 NoteOverloadCandidate(cast<FunctionDecl>(D));
2594 }
2595 return LOLR_Error;
2596 }
2597
2598 if (FoundRaw)
2599 return LOLR_Raw;
2600
2601 if (FoundTemplate)
2602 return LOLR_Template;
2603
2604 // Didn't find anything we could use.
2605 Diag(R.getNameLoc(), diag::err_ovl_no_viable_literal_operator)
2606 << R.getLookupName() << (int)ArgTys.size() << ArgTys[0]
2607 << (ArgTys.size() == 2 ? ArgTys[1] : QualType()) << AllowRawAndTemplate;
2608 return LOLR_Error;
2609 }
2610
insert(NamedDecl * New)2611 void ADLResult::insert(NamedDecl *New) {
2612 NamedDecl *&Old = Decls[cast<NamedDecl>(New->getCanonicalDecl())];
2613
2614 // If we haven't yet seen a decl for this key, or the last decl
2615 // was exactly this one, we're done.
2616 if (Old == 0 || Old == New) {
2617 Old = New;
2618 return;
2619 }
2620
2621 // Otherwise, decide which is a more recent redeclaration.
2622 FunctionDecl *OldFD, *NewFD;
2623 if (isa<FunctionTemplateDecl>(New)) {
2624 OldFD = cast<FunctionTemplateDecl>(Old)->getTemplatedDecl();
2625 NewFD = cast<FunctionTemplateDecl>(New)->getTemplatedDecl();
2626 } else {
2627 OldFD = cast<FunctionDecl>(Old);
2628 NewFD = cast<FunctionDecl>(New);
2629 }
2630
2631 FunctionDecl *Cursor = NewFD;
2632 while (true) {
2633 Cursor = Cursor->getPreviousDecl();
2634
2635 // If we got to the end without finding OldFD, OldFD is the newer
2636 // declaration; leave things as they are.
2637 if (!Cursor) return;
2638
2639 // If we do find OldFD, then NewFD is newer.
2640 if (Cursor == OldFD) break;
2641
2642 // Otherwise, keep looking.
2643 }
2644
2645 Old = New;
2646 }
2647
ArgumentDependentLookup(DeclarationName Name,bool Operator,SourceLocation Loc,llvm::ArrayRef<Expr * > Args,ADLResult & Result,bool StdNamespaceIsAssociated)2648 void Sema::ArgumentDependentLookup(DeclarationName Name, bool Operator,
2649 SourceLocation Loc,
2650 llvm::ArrayRef<Expr *> Args,
2651 ADLResult &Result,
2652 bool StdNamespaceIsAssociated) {
2653 // Find all of the associated namespaces and classes based on the
2654 // arguments we have.
2655 AssociatedNamespaceSet AssociatedNamespaces;
2656 AssociatedClassSet AssociatedClasses;
2657 FindAssociatedClassesAndNamespaces(Loc, Args,
2658 AssociatedNamespaces,
2659 AssociatedClasses);
2660 if (StdNamespaceIsAssociated && StdNamespace)
2661 AssociatedNamespaces.insert(getStdNamespace());
2662
2663 QualType T1, T2;
2664 if (Operator) {
2665 T1 = Args[0]->getType();
2666 if (Args.size() >= 2)
2667 T2 = Args[1]->getType();
2668 }
2669
2670 // C++ [basic.lookup.argdep]p3:
2671 // Let X be the lookup set produced by unqualified lookup (3.4.1)
2672 // and let Y be the lookup set produced by argument dependent
2673 // lookup (defined as follows). If X contains [...] then Y is
2674 // empty. Otherwise Y is the set of declarations found in the
2675 // namespaces associated with the argument types as described
2676 // below. The set of declarations found by the lookup of the name
2677 // is the union of X and Y.
2678 //
2679 // Here, we compute Y and add its members to the overloaded
2680 // candidate set.
2681 for (AssociatedNamespaceSet::iterator NS = AssociatedNamespaces.begin(),
2682 NSEnd = AssociatedNamespaces.end();
2683 NS != NSEnd; ++NS) {
2684 // When considering an associated namespace, the lookup is the
2685 // same as the lookup performed when the associated namespace is
2686 // used as a qualifier (3.4.3.2) except that:
2687 //
2688 // -- Any using-directives in the associated namespace are
2689 // ignored.
2690 //
2691 // -- Any namespace-scope friend functions declared in
2692 // associated classes are visible within their respective
2693 // namespaces even if they are not visible during an ordinary
2694 // lookup (11.4).
2695 DeclContext::lookup_iterator I, E;
2696 for (llvm::tie(I, E) = (*NS)->lookup(Name); I != E; ++I) {
2697 NamedDecl *D = *I;
2698 // If the only declaration here is an ordinary friend, consider
2699 // it only if it was declared in an associated classes.
2700 if (D->getIdentifierNamespace() == Decl::IDNS_OrdinaryFriend) {
2701 DeclContext *LexDC = D->getLexicalDeclContext();
2702 if (!AssociatedClasses.count(cast<CXXRecordDecl>(LexDC)))
2703 continue;
2704 }
2705
2706 if (isa<UsingShadowDecl>(D))
2707 D = cast<UsingShadowDecl>(D)->getTargetDecl();
2708
2709 if (isa<FunctionDecl>(D)) {
2710 if (Operator &&
2711 !IsAcceptableNonMemberOperatorCandidate(cast<FunctionDecl>(D),
2712 T1, T2, Context))
2713 continue;
2714 } else if (!isa<FunctionTemplateDecl>(D))
2715 continue;
2716
2717 Result.insert(D);
2718 }
2719 }
2720 }
2721
2722 //----------------------------------------------------------------------------
2723 // Search for all visible declarations.
2724 //----------------------------------------------------------------------------
~VisibleDeclConsumer()2725 VisibleDeclConsumer::~VisibleDeclConsumer() { }
2726
2727 namespace {
2728
2729 class ShadowContextRAII;
2730
2731 class VisibleDeclsRecord {
2732 public:
2733 /// \brief An entry in the shadow map, which is optimized to store a
2734 /// single declaration (the common case) but can also store a list
2735 /// of declarations.
2736 typedef llvm::TinyPtrVector<NamedDecl*> ShadowMapEntry;
2737
2738 private:
2739 /// \brief A mapping from declaration names to the declarations that have
2740 /// this name within a particular scope.
2741 typedef llvm::DenseMap<DeclarationName, ShadowMapEntry> ShadowMap;
2742
2743 /// \brief A list of shadow maps, which is used to model name hiding.
2744 std::list<ShadowMap> ShadowMaps;
2745
2746 /// \brief The declaration contexts we have already visited.
2747 llvm::SmallPtrSet<DeclContext *, 8> VisitedContexts;
2748
2749 friend class ShadowContextRAII;
2750
2751 public:
2752 /// \brief Determine whether we have already visited this context
2753 /// (and, if not, note that we are going to visit that context now).
visitedContext(DeclContext * Ctx)2754 bool visitedContext(DeclContext *Ctx) {
2755 return !VisitedContexts.insert(Ctx);
2756 }
2757
alreadyVisitedContext(DeclContext * Ctx)2758 bool alreadyVisitedContext(DeclContext *Ctx) {
2759 return VisitedContexts.count(Ctx);
2760 }
2761
2762 /// \brief Determine whether the given declaration is hidden in the
2763 /// current scope.
2764 ///
2765 /// \returns the declaration that hides the given declaration, or
2766 /// NULL if no such declaration exists.
2767 NamedDecl *checkHidden(NamedDecl *ND);
2768
2769 /// \brief Add a declaration to the current shadow map.
add(NamedDecl * ND)2770 void add(NamedDecl *ND) {
2771 ShadowMaps.back()[ND->getDeclName()].push_back(ND);
2772 }
2773 };
2774
2775 /// \brief RAII object that records when we've entered a shadow context.
2776 class ShadowContextRAII {
2777 VisibleDeclsRecord &Visible;
2778
2779 typedef VisibleDeclsRecord::ShadowMap ShadowMap;
2780
2781 public:
ShadowContextRAII(VisibleDeclsRecord & Visible)2782 ShadowContextRAII(VisibleDeclsRecord &Visible) : Visible(Visible) {
2783 Visible.ShadowMaps.push_back(ShadowMap());
2784 }
2785
~ShadowContextRAII()2786 ~ShadowContextRAII() {
2787 Visible.ShadowMaps.pop_back();
2788 }
2789 };
2790
2791 } // end anonymous namespace
2792
checkHidden(NamedDecl * ND)2793 NamedDecl *VisibleDeclsRecord::checkHidden(NamedDecl *ND) {
2794 // Look through using declarations.
2795 ND = ND->getUnderlyingDecl();
2796
2797 unsigned IDNS = ND->getIdentifierNamespace();
2798 std::list<ShadowMap>::reverse_iterator SM = ShadowMaps.rbegin();
2799 for (std::list<ShadowMap>::reverse_iterator SMEnd = ShadowMaps.rend();
2800 SM != SMEnd; ++SM) {
2801 ShadowMap::iterator Pos = SM->find(ND->getDeclName());
2802 if (Pos == SM->end())
2803 continue;
2804
2805 for (ShadowMapEntry::iterator I = Pos->second.begin(),
2806 IEnd = Pos->second.end();
2807 I != IEnd; ++I) {
2808 // A tag declaration does not hide a non-tag declaration.
2809 if ((*I)->hasTagIdentifierNamespace() &&
2810 (IDNS & (Decl::IDNS_Member | Decl::IDNS_Ordinary |
2811 Decl::IDNS_ObjCProtocol)))
2812 continue;
2813
2814 // Protocols are in distinct namespaces from everything else.
2815 if ((((*I)->getIdentifierNamespace() & Decl::IDNS_ObjCProtocol)
2816 || (IDNS & Decl::IDNS_ObjCProtocol)) &&
2817 (*I)->getIdentifierNamespace() != IDNS)
2818 continue;
2819
2820 // Functions and function templates in the same scope overload
2821 // rather than hide. FIXME: Look for hiding based on function
2822 // signatures!
2823 if ((*I)->isFunctionOrFunctionTemplate() &&
2824 ND->isFunctionOrFunctionTemplate() &&
2825 SM == ShadowMaps.rbegin())
2826 continue;
2827
2828 // We've found a declaration that hides this one.
2829 return *I;
2830 }
2831 }
2832
2833 return 0;
2834 }
2835
LookupVisibleDecls(DeclContext * Ctx,LookupResult & Result,bool QualifiedNameLookup,bool InBaseClass,VisibleDeclConsumer & Consumer,VisibleDeclsRecord & Visited)2836 static void LookupVisibleDecls(DeclContext *Ctx, LookupResult &Result,
2837 bool QualifiedNameLookup,
2838 bool InBaseClass,
2839 VisibleDeclConsumer &Consumer,
2840 VisibleDeclsRecord &Visited) {
2841 if (!Ctx)
2842 return;
2843
2844 // Make sure we don't visit the same context twice.
2845 if (Visited.visitedContext(Ctx->getPrimaryContext()))
2846 return;
2847
2848 if (CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(Ctx))
2849 Result.getSema().ForceDeclarationOfImplicitMembers(Class);
2850
2851 // Enumerate all of the results in this context.
2852 for (DeclContext::all_lookups_iterator L = Ctx->lookups_begin(),
2853 LEnd = Ctx->lookups_end();
2854 L != LEnd; ++L) {
2855 for (DeclContext::lookup_result R = *L; R.first != R.second; ++R.first) {
2856 if (NamedDecl *ND = dyn_cast<NamedDecl>(*R.first)) {
2857 if ((ND = Result.getAcceptableDecl(ND))) {
2858 Consumer.FoundDecl(ND, Visited.checkHidden(ND), Ctx, InBaseClass);
2859 Visited.add(ND);
2860 }
2861 }
2862 }
2863 }
2864
2865 // Traverse using directives for qualified name lookup.
2866 if (QualifiedNameLookup) {
2867 ShadowContextRAII Shadow(Visited);
2868 DeclContext::udir_iterator I, E;
2869 for (llvm::tie(I, E) = Ctx->getUsingDirectives(); I != E; ++I) {
2870 LookupVisibleDecls((*I)->getNominatedNamespace(), Result,
2871 QualifiedNameLookup, InBaseClass, Consumer, Visited);
2872 }
2873 }
2874
2875 // Traverse the contexts of inherited C++ classes.
2876 if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx)) {
2877 if (!Record->hasDefinition())
2878 return;
2879
2880 for (CXXRecordDecl::base_class_iterator B = Record->bases_begin(),
2881 BEnd = Record->bases_end();
2882 B != BEnd; ++B) {
2883 QualType BaseType = B->getType();
2884
2885 // Don't look into dependent bases, because name lookup can't look
2886 // there anyway.
2887 if (BaseType->isDependentType())
2888 continue;
2889
2890 const RecordType *Record = BaseType->getAs<RecordType>();
2891 if (!Record)
2892 continue;
2893
2894 // FIXME: It would be nice to be able to determine whether referencing
2895 // a particular member would be ambiguous. For example, given
2896 //
2897 // struct A { int member; };
2898 // struct B { int member; };
2899 // struct C : A, B { };
2900 //
2901 // void f(C *c) { c->### }
2902 //
2903 // accessing 'member' would result in an ambiguity. However, we
2904 // could be smart enough to qualify the member with the base
2905 // class, e.g.,
2906 //
2907 // c->B::member
2908 //
2909 // or
2910 //
2911 // c->A::member
2912
2913 // Find results in this base class (and its bases).
2914 ShadowContextRAII Shadow(Visited);
2915 LookupVisibleDecls(Record->getDecl(), Result, QualifiedNameLookup,
2916 true, Consumer, Visited);
2917 }
2918 }
2919
2920 // Traverse the contexts of Objective-C classes.
2921 if (ObjCInterfaceDecl *IFace = dyn_cast<ObjCInterfaceDecl>(Ctx)) {
2922 // Traverse categories.
2923 for (ObjCCategoryDecl *Category = IFace->getCategoryList();
2924 Category; Category = Category->getNextClassCategory()) {
2925 ShadowContextRAII Shadow(Visited);
2926 LookupVisibleDecls(Category, Result, QualifiedNameLookup, false,
2927 Consumer, Visited);
2928 }
2929
2930 // Traverse protocols.
2931 for (ObjCInterfaceDecl::all_protocol_iterator
2932 I = IFace->all_referenced_protocol_begin(),
2933 E = IFace->all_referenced_protocol_end(); I != E; ++I) {
2934 ShadowContextRAII Shadow(Visited);
2935 LookupVisibleDecls(*I, Result, QualifiedNameLookup, false, Consumer,
2936 Visited);
2937 }
2938
2939 // Traverse the superclass.
2940 if (IFace->getSuperClass()) {
2941 ShadowContextRAII Shadow(Visited);
2942 LookupVisibleDecls(IFace->getSuperClass(), Result, QualifiedNameLookup,
2943 true, Consumer, Visited);
2944 }
2945
2946 // If there is an implementation, traverse it. We do this to find
2947 // synthesized ivars.
2948 if (IFace->getImplementation()) {
2949 ShadowContextRAII Shadow(Visited);
2950 LookupVisibleDecls(IFace->getImplementation(), Result,
2951 QualifiedNameLookup, InBaseClass, Consumer, Visited);
2952 }
2953 } else if (ObjCProtocolDecl *Protocol = dyn_cast<ObjCProtocolDecl>(Ctx)) {
2954 for (ObjCProtocolDecl::protocol_iterator I = Protocol->protocol_begin(),
2955 E = Protocol->protocol_end(); I != E; ++I) {
2956 ShadowContextRAII Shadow(Visited);
2957 LookupVisibleDecls(*I, Result, QualifiedNameLookup, false, Consumer,
2958 Visited);
2959 }
2960 } else if (ObjCCategoryDecl *Category = dyn_cast<ObjCCategoryDecl>(Ctx)) {
2961 for (ObjCCategoryDecl::protocol_iterator I = Category->protocol_begin(),
2962 E = Category->protocol_end(); I != E; ++I) {
2963 ShadowContextRAII Shadow(Visited);
2964 LookupVisibleDecls(*I, Result, QualifiedNameLookup, false, Consumer,
2965 Visited);
2966 }
2967
2968 // If there is an implementation, traverse it.
2969 if (Category->getImplementation()) {
2970 ShadowContextRAII Shadow(Visited);
2971 LookupVisibleDecls(Category->getImplementation(), Result,
2972 QualifiedNameLookup, true, Consumer, Visited);
2973 }
2974 }
2975 }
2976
LookupVisibleDecls(Scope * S,LookupResult & Result,UnqualUsingDirectiveSet & UDirs,VisibleDeclConsumer & Consumer,VisibleDeclsRecord & Visited)2977 static void LookupVisibleDecls(Scope *S, LookupResult &Result,
2978 UnqualUsingDirectiveSet &UDirs,
2979 VisibleDeclConsumer &Consumer,
2980 VisibleDeclsRecord &Visited) {
2981 if (!S)
2982 return;
2983
2984 if (!S->getEntity() ||
2985 (!S->getParent() &&
2986 !Visited.alreadyVisitedContext((DeclContext *)S->getEntity())) ||
2987 ((DeclContext *)S->getEntity())->isFunctionOrMethod()) {
2988 // Walk through the declarations in this Scope.
2989 for (Scope::decl_iterator D = S->decl_begin(), DEnd = S->decl_end();
2990 D != DEnd; ++D) {
2991 if (NamedDecl *ND = dyn_cast<NamedDecl>(*D))
2992 if ((ND = Result.getAcceptableDecl(ND))) {
2993 Consumer.FoundDecl(ND, Visited.checkHidden(ND), 0, false);
2994 Visited.add(ND);
2995 }
2996 }
2997 }
2998
2999 // FIXME: C++ [temp.local]p8
3000 DeclContext *Entity = 0;
3001 if (S->getEntity()) {
3002 // Look into this scope's declaration context, along with any of its
3003 // parent lookup contexts (e.g., enclosing classes), up to the point
3004 // where we hit the context stored in the next outer scope.
3005 Entity = (DeclContext *)S->getEntity();
3006 DeclContext *OuterCtx = findOuterContext(S).first; // FIXME
3007
3008 for (DeclContext *Ctx = Entity; Ctx && !Ctx->Equals(OuterCtx);
3009 Ctx = Ctx->getLookupParent()) {
3010 if (ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(Ctx)) {
3011 if (Method->isInstanceMethod()) {
3012 // For instance methods, look for ivars in the method's interface.
3013 LookupResult IvarResult(Result.getSema(), Result.getLookupName(),
3014 Result.getNameLoc(), Sema::LookupMemberName);
3015 if (ObjCInterfaceDecl *IFace = Method->getClassInterface()) {
3016 LookupVisibleDecls(IFace, IvarResult, /*QualifiedNameLookup=*/false,
3017 /*InBaseClass=*/false, Consumer, Visited);
3018 }
3019 }
3020
3021 // We've already performed all of the name lookup that we need
3022 // to for Objective-C methods; the next context will be the
3023 // outer scope.
3024 break;
3025 }
3026
3027 if (Ctx->isFunctionOrMethod())
3028 continue;
3029
3030 LookupVisibleDecls(Ctx, Result, /*QualifiedNameLookup=*/false,
3031 /*InBaseClass=*/false, Consumer, Visited);
3032 }
3033 } else if (!S->getParent()) {
3034 // Look into the translation unit scope. We walk through the translation
3035 // unit's declaration context, because the Scope itself won't have all of
3036 // the declarations if we loaded a precompiled header.
3037 // FIXME: We would like the translation unit's Scope object to point to the
3038 // translation unit, so we don't need this special "if" branch. However,
3039 // doing so would force the normal C++ name-lookup code to look into the
3040 // translation unit decl when the IdentifierInfo chains would suffice.
3041 // Once we fix that problem (which is part of a more general "don't look
3042 // in DeclContexts unless we have to" optimization), we can eliminate this.
3043 Entity = Result.getSema().Context.getTranslationUnitDecl();
3044 LookupVisibleDecls(Entity, Result, /*QualifiedNameLookup=*/false,
3045 /*InBaseClass=*/false, Consumer, Visited);
3046 }
3047
3048 if (Entity) {
3049 // Lookup visible declarations in any namespaces found by using
3050 // directives.
3051 UnqualUsingDirectiveSet::const_iterator UI, UEnd;
3052 llvm::tie(UI, UEnd) = UDirs.getNamespacesFor(Entity);
3053 for (; UI != UEnd; ++UI)
3054 LookupVisibleDecls(const_cast<DeclContext *>(UI->getNominatedNamespace()),
3055 Result, /*QualifiedNameLookup=*/false,
3056 /*InBaseClass=*/false, Consumer, Visited);
3057 }
3058
3059 // Lookup names in the parent scope.
3060 ShadowContextRAII Shadow(Visited);
3061 LookupVisibleDecls(S->getParent(), Result, UDirs, Consumer, Visited);
3062 }
3063
LookupVisibleDecls(Scope * S,LookupNameKind Kind,VisibleDeclConsumer & Consumer,bool IncludeGlobalScope)3064 void Sema::LookupVisibleDecls(Scope *S, LookupNameKind Kind,
3065 VisibleDeclConsumer &Consumer,
3066 bool IncludeGlobalScope) {
3067 // Determine the set of using directives available during
3068 // unqualified name lookup.
3069 Scope *Initial = S;
3070 UnqualUsingDirectiveSet UDirs;
3071 if (getLangOpts().CPlusPlus) {
3072 // Find the first namespace or translation-unit scope.
3073 while (S && !isNamespaceOrTranslationUnitScope(S))
3074 S = S->getParent();
3075
3076 UDirs.visitScopeChain(Initial, S);
3077 }
3078 UDirs.done();
3079
3080 // Look for visible declarations.
3081 LookupResult Result(*this, DeclarationName(), SourceLocation(), Kind);
3082 VisibleDeclsRecord Visited;
3083 if (!IncludeGlobalScope)
3084 Visited.visitedContext(Context.getTranslationUnitDecl());
3085 ShadowContextRAII Shadow(Visited);
3086 ::LookupVisibleDecls(Initial, Result, UDirs, Consumer, Visited);
3087 }
3088
LookupVisibleDecls(DeclContext * Ctx,LookupNameKind Kind,VisibleDeclConsumer & Consumer,bool IncludeGlobalScope)3089 void Sema::LookupVisibleDecls(DeclContext *Ctx, LookupNameKind Kind,
3090 VisibleDeclConsumer &Consumer,
3091 bool IncludeGlobalScope) {
3092 LookupResult Result(*this, DeclarationName(), SourceLocation(), Kind);
3093 VisibleDeclsRecord Visited;
3094 if (!IncludeGlobalScope)
3095 Visited.visitedContext(Context.getTranslationUnitDecl());
3096 ShadowContextRAII Shadow(Visited);
3097 ::LookupVisibleDecls(Ctx, Result, /*QualifiedNameLookup=*/true,
3098 /*InBaseClass=*/false, Consumer, Visited);
3099 }
3100
3101 /// LookupOrCreateLabel - Do a name lookup of a label with the specified name.
3102 /// If GnuLabelLoc is a valid source location, then this is a definition
3103 /// of an __label__ label name, otherwise it is a normal label definition
3104 /// or use.
LookupOrCreateLabel(IdentifierInfo * II,SourceLocation Loc,SourceLocation GnuLabelLoc)3105 LabelDecl *Sema::LookupOrCreateLabel(IdentifierInfo *II, SourceLocation Loc,
3106 SourceLocation GnuLabelLoc) {
3107 // Do a lookup to see if we have a label with this name already.
3108 NamedDecl *Res = 0;
3109
3110 if (GnuLabelLoc.isValid()) {
3111 // Local label definitions always shadow existing labels.
3112 Res = LabelDecl::Create(Context, CurContext, Loc, II, GnuLabelLoc);
3113 Scope *S = CurScope;
3114 PushOnScopeChains(Res, S, true);
3115 return cast<LabelDecl>(Res);
3116 }
3117
3118 // Not a GNU local label.
3119 Res = LookupSingleName(CurScope, II, Loc, LookupLabel, NotForRedeclaration);
3120 // If we found a label, check to see if it is in the same context as us.
3121 // When in a Block, we don't want to reuse a label in an enclosing function.
3122 if (Res && Res->getDeclContext() != CurContext)
3123 Res = 0;
3124 if (Res == 0) {
3125 // If not forward referenced or defined already, create the backing decl.
3126 Res = LabelDecl::Create(Context, CurContext, Loc, II);
3127 Scope *S = CurScope->getFnParent();
3128 assert(S && "Not in a function?");
3129 PushOnScopeChains(Res, S, true);
3130 }
3131 return cast<LabelDecl>(Res);
3132 }
3133
3134 //===----------------------------------------------------------------------===//
3135 // Typo correction
3136 //===----------------------------------------------------------------------===//
3137
3138 namespace {
3139
3140 typedef llvm::SmallVector<TypoCorrection, 1> TypoResultList;
3141 typedef llvm::StringMap<TypoResultList, llvm::BumpPtrAllocator> TypoResultsMap;
3142 typedef std::map<unsigned, TypoResultsMap> TypoEditDistanceMap;
3143
3144 static const unsigned MaxTypoDistanceResultSets = 5;
3145
3146 class TypoCorrectionConsumer : public VisibleDeclConsumer {
3147 /// \brief The name written that is a typo in the source.
3148 StringRef Typo;
3149
3150 /// \brief The results found that have the smallest edit distance
3151 /// found (so far) with the typo name.
3152 ///
3153 /// The pointer value being set to the current DeclContext indicates
3154 /// whether there is a keyword with this name.
3155 TypoEditDistanceMap CorrectionResults;
3156
3157 Sema &SemaRef;
3158
3159 public:
TypoCorrectionConsumer(Sema & SemaRef,IdentifierInfo * Typo)3160 explicit TypoCorrectionConsumer(Sema &SemaRef, IdentifierInfo *Typo)
3161 : Typo(Typo->getName()),
3162 SemaRef(SemaRef) { }
3163
3164 virtual void FoundDecl(NamedDecl *ND, NamedDecl *Hiding, DeclContext *Ctx,
3165 bool InBaseClass);
3166 void FoundName(StringRef Name);
3167 void addKeywordResult(StringRef Keyword);
3168 void addName(StringRef Name, NamedDecl *ND, unsigned Distance,
3169 NestedNameSpecifier *NNS=NULL, bool isKeyword=false);
3170 void addCorrection(TypoCorrection Correction);
3171
3172 typedef TypoResultsMap::iterator result_iterator;
3173 typedef TypoEditDistanceMap::iterator distance_iterator;
begin()3174 distance_iterator begin() { return CorrectionResults.begin(); }
end()3175 distance_iterator end() { return CorrectionResults.end(); }
erase(distance_iterator I)3176 void erase(distance_iterator I) { CorrectionResults.erase(I); }
size() const3177 unsigned size() const { return CorrectionResults.size(); }
empty() const3178 bool empty() const { return CorrectionResults.empty(); }
3179
operator [](StringRef Name)3180 TypoResultList &operator[](StringRef Name) {
3181 return CorrectionResults.begin()->second[Name];
3182 }
3183
getBestEditDistance(bool Normalized)3184 unsigned getBestEditDistance(bool Normalized) {
3185 if (CorrectionResults.empty())
3186 return (std::numeric_limits<unsigned>::max)();
3187
3188 unsigned BestED = CorrectionResults.begin()->first;
3189 return Normalized ? TypoCorrection::NormalizeEditDistance(BestED) : BestED;
3190 }
3191
getBestResults()3192 TypoResultsMap &getBestResults() {
3193 return CorrectionResults.begin()->second;
3194 }
3195
3196 };
3197
3198 }
3199
FoundDecl(NamedDecl * ND,NamedDecl * Hiding,DeclContext * Ctx,bool InBaseClass)3200 void TypoCorrectionConsumer::FoundDecl(NamedDecl *ND, NamedDecl *Hiding,
3201 DeclContext *Ctx, bool InBaseClass) {
3202 // Don't consider hidden names for typo correction.
3203 if (Hiding)
3204 return;
3205
3206 // Only consider entities with identifiers for names, ignoring
3207 // special names (constructors, overloaded operators, selectors,
3208 // etc.).
3209 IdentifierInfo *Name = ND->getIdentifier();
3210 if (!Name)
3211 return;
3212
3213 FoundName(Name->getName());
3214 }
3215
FoundName(StringRef Name)3216 void TypoCorrectionConsumer::FoundName(StringRef Name) {
3217 // Use a simple length-based heuristic to determine the minimum possible
3218 // edit distance. If the minimum isn't good enough, bail out early.
3219 unsigned MinED = abs((int)Name.size() - (int)Typo.size());
3220 if (MinED && Typo.size() / MinED < 3)
3221 return;
3222
3223 // Compute an upper bound on the allowable edit distance, so that the
3224 // edit-distance algorithm can short-circuit.
3225 unsigned UpperBound = (Typo.size() + 2) / 3;
3226
3227 // Compute the edit distance between the typo and the name of this
3228 // entity, and add the identifier to the list of results.
3229 addName(Name, NULL, Typo.edit_distance(Name, true, UpperBound));
3230 }
3231
addKeywordResult(StringRef Keyword)3232 void TypoCorrectionConsumer::addKeywordResult(StringRef Keyword) {
3233 // Compute the edit distance between the typo and this keyword,
3234 // and add the keyword to the list of results.
3235 addName(Keyword, NULL, Typo.edit_distance(Keyword), NULL, true);
3236 }
3237
addName(StringRef Name,NamedDecl * ND,unsigned Distance,NestedNameSpecifier * NNS,bool isKeyword)3238 void TypoCorrectionConsumer::addName(StringRef Name,
3239 NamedDecl *ND,
3240 unsigned Distance,
3241 NestedNameSpecifier *NNS,
3242 bool isKeyword) {
3243 TypoCorrection TC(&SemaRef.Context.Idents.get(Name), ND, NNS, Distance);
3244 if (isKeyword) TC.makeKeyword();
3245 addCorrection(TC);
3246 }
3247
addCorrection(TypoCorrection Correction)3248 void TypoCorrectionConsumer::addCorrection(TypoCorrection Correction) {
3249 StringRef Name = Correction.getCorrectionAsIdentifierInfo()->getName();
3250 TypoResultList &CList =
3251 CorrectionResults[Correction.getEditDistance(false)][Name];
3252
3253 if (!CList.empty() && !CList.back().isResolved())
3254 CList.pop_back();
3255 if (NamedDecl *NewND = Correction.getCorrectionDecl()) {
3256 std::string CorrectionStr = Correction.getAsString(SemaRef.getLangOpts());
3257 for (TypoResultList::iterator RI = CList.begin(), RIEnd = CList.end();
3258 RI != RIEnd; ++RI) {
3259 // If the Correction refers to a decl already in the result list,
3260 // replace the existing result if the string representation of Correction
3261 // comes before the current result alphabetically, then stop as there is
3262 // nothing more to be done to add Correction to the candidate set.
3263 if (RI->getCorrectionDecl() == NewND) {
3264 if (CorrectionStr < RI->getAsString(SemaRef.getLangOpts()))
3265 *RI = Correction;
3266 return;
3267 }
3268 }
3269 }
3270 if (CList.empty() || Correction.isResolved())
3271 CList.push_back(Correction);
3272
3273 while (CorrectionResults.size() > MaxTypoDistanceResultSets)
3274 erase(llvm::prior(CorrectionResults.end()));
3275 }
3276
3277 // Fill the supplied vector with the IdentifierInfo pointers for each piece of
3278 // the given NestedNameSpecifier (i.e. given a NestedNameSpecifier "foo::bar::",
3279 // fill the vector with the IdentifierInfo pointers for "foo" and "bar").
getNestedNameSpecifierIdentifiers(NestedNameSpecifier * NNS,SmallVectorImpl<const IdentifierInfo * > & Identifiers)3280 static void getNestedNameSpecifierIdentifiers(
3281 NestedNameSpecifier *NNS,
3282 SmallVectorImpl<const IdentifierInfo*> &Identifiers) {
3283 if (NestedNameSpecifier *Prefix = NNS->getPrefix())
3284 getNestedNameSpecifierIdentifiers(Prefix, Identifiers);
3285 else
3286 Identifiers.clear();
3287
3288 const IdentifierInfo *II = NULL;
3289
3290 switch (NNS->getKind()) {
3291 case NestedNameSpecifier::Identifier:
3292 II = NNS->getAsIdentifier();
3293 break;
3294
3295 case NestedNameSpecifier::Namespace:
3296 if (NNS->getAsNamespace()->isAnonymousNamespace())
3297 return;
3298 II = NNS->getAsNamespace()->getIdentifier();
3299 break;
3300
3301 case NestedNameSpecifier::NamespaceAlias:
3302 II = NNS->getAsNamespaceAlias()->getIdentifier();
3303 break;
3304
3305 case NestedNameSpecifier::TypeSpecWithTemplate:
3306 case NestedNameSpecifier::TypeSpec:
3307 II = QualType(NNS->getAsType(), 0).getBaseTypeIdentifier();
3308 break;
3309
3310 case NestedNameSpecifier::Global:
3311 return;
3312 }
3313
3314 if (II)
3315 Identifiers.push_back(II);
3316 }
3317
3318 namespace {
3319
3320 class SpecifierInfo {
3321 public:
3322 DeclContext* DeclCtx;
3323 NestedNameSpecifier* NameSpecifier;
3324 unsigned EditDistance;
3325
SpecifierInfo(DeclContext * Ctx,NestedNameSpecifier * NNS,unsigned ED)3326 SpecifierInfo(DeclContext *Ctx, NestedNameSpecifier *NNS, unsigned ED)
3327 : DeclCtx(Ctx), NameSpecifier(NNS), EditDistance(ED) {}
3328 };
3329
3330 typedef SmallVector<DeclContext*, 4> DeclContextList;
3331 typedef SmallVector<SpecifierInfo, 16> SpecifierInfoList;
3332
3333 class NamespaceSpecifierSet {
3334 ASTContext &Context;
3335 DeclContextList CurContextChain;
3336 SmallVector<const IdentifierInfo*, 4> CurContextIdentifiers;
3337 SmallVector<const IdentifierInfo*, 4> CurNameSpecifierIdentifiers;
3338 bool isSorted;
3339
3340 SpecifierInfoList Specifiers;
3341 llvm::SmallSetVector<unsigned, 4> Distances;
3342 llvm::DenseMap<unsigned, SpecifierInfoList> DistanceMap;
3343
3344 /// \brief Helper for building the list of DeclContexts between the current
3345 /// context and the top of the translation unit
3346 static DeclContextList BuildContextChain(DeclContext *Start);
3347
3348 void SortNamespaces();
3349
3350 public:
NamespaceSpecifierSet(ASTContext & Context,DeclContext * CurContext,CXXScopeSpec * CurScopeSpec)3351 NamespaceSpecifierSet(ASTContext &Context, DeclContext *CurContext,
3352 CXXScopeSpec *CurScopeSpec)
3353 : Context(Context), CurContextChain(BuildContextChain(CurContext)),
3354 isSorted(true) {
3355 if (CurScopeSpec && CurScopeSpec->getScopeRep())
3356 getNestedNameSpecifierIdentifiers(CurScopeSpec->getScopeRep(),
3357 CurNameSpecifierIdentifiers);
3358 // Build the list of identifiers that would be used for an absolute
3359 // (from the global context) NestedNameSpecifier referring to the current
3360 // context.
3361 for (DeclContextList::reverse_iterator C = CurContextChain.rbegin(),
3362 CEnd = CurContextChain.rend();
3363 C != CEnd; ++C) {
3364 if (NamespaceDecl *ND = dyn_cast_or_null<NamespaceDecl>(*C))
3365 CurContextIdentifiers.push_back(ND->getIdentifier());
3366 }
3367 }
3368
3369 /// \brief Add the namespace to the set, computing the corresponding
3370 /// NestedNameSpecifier and its distance in the process.
3371 void AddNamespace(NamespaceDecl *ND);
3372
3373 typedef SpecifierInfoList::iterator iterator;
begin()3374 iterator begin() {
3375 if (!isSorted) SortNamespaces();
3376 return Specifiers.begin();
3377 }
end()3378 iterator end() { return Specifiers.end(); }
3379 };
3380
3381 }
3382
BuildContextChain(DeclContext * Start)3383 DeclContextList NamespaceSpecifierSet::BuildContextChain(DeclContext *Start) {
3384 assert(Start && "Bulding a context chain from a null context");
3385 DeclContextList Chain;
3386 for (DeclContext *DC = Start->getPrimaryContext(); DC != NULL;
3387 DC = DC->getLookupParent()) {
3388 NamespaceDecl *ND = dyn_cast_or_null<NamespaceDecl>(DC);
3389 if (!DC->isInlineNamespace() && !DC->isTransparentContext() &&
3390 !(ND && ND->isAnonymousNamespace()))
3391 Chain.push_back(DC->getPrimaryContext());
3392 }
3393 return Chain;
3394 }
3395
SortNamespaces()3396 void NamespaceSpecifierSet::SortNamespaces() {
3397 SmallVector<unsigned, 4> sortedDistances;
3398 sortedDistances.append(Distances.begin(), Distances.end());
3399
3400 if (sortedDistances.size() > 1)
3401 std::sort(sortedDistances.begin(), sortedDistances.end());
3402
3403 Specifiers.clear();
3404 for (SmallVector<unsigned, 4>::iterator DI = sortedDistances.begin(),
3405 DIEnd = sortedDistances.end();
3406 DI != DIEnd; ++DI) {
3407 SpecifierInfoList &SpecList = DistanceMap[*DI];
3408 Specifiers.append(SpecList.begin(), SpecList.end());
3409 }
3410
3411 isSorted = true;
3412 }
3413
AddNamespace(NamespaceDecl * ND)3414 void NamespaceSpecifierSet::AddNamespace(NamespaceDecl *ND) {
3415 DeclContext *Ctx = cast<DeclContext>(ND);
3416 NestedNameSpecifier *NNS = NULL;
3417 unsigned NumSpecifiers = 0;
3418 DeclContextList NamespaceDeclChain(BuildContextChain(Ctx));
3419 DeclContextList FullNamespaceDeclChain(NamespaceDeclChain);
3420
3421 // Eliminate common elements from the two DeclContext chains.
3422 for (DeclContextList::reverse_iterator C = CurContextChain.rbegin(),
3423 CEnd = CurContextChain.rend();
3424 C != CEnd && !NamespaceDeclChain.empty() &&
3425 NamespaceDeclChain.back() == *C; ++C) {
3426 NamespaceDeclChain.pop_back();
3427 }
3428
3429 // Add an explicit leading '::' specifier if needed.
3430 if (NamespaceDecl *ND =
3431 NamespaceDeclChain.empty() ? NULL :
3432 dyn_cast_or_null<NamespaceDecl>(NamespaceDeclChain.back())) {
3433 IdentifierInfo *Name = ND->getIdentifier();
3434 if (std::find(CurContextIdentifiers.begin(), CurContextIdentifiers.end(),
3435 Name) != CurContextIdentifiers.end() ||
3436 std::find(CurNameSpecifierIdentifiers.begin(),
3437 CurNameSpecifierIdentifiers.end(),
3438 Name) != CurNameSpecifierIdentifiers.end()) {
3439 NamespaceDeclChain = FullNamespaceDeclChain;
3440 NNS = NestedNameSpecifier::GlobalSpecifier(Context);
3441 }
3442 }
3443
3444 // Build the NestedNameSpecifier from what is left of the NamespaceDeclChain
3445 for (DeclContextList::reverse_iterator C = NamespaceDeclChain.rbegin(),
3446 CEnd = NamespaceDeclChain.rend();
3447 C != CEnd; ++C) {
3448 NamespaceDecl *ND = dyn_cast_or_null<NamespaceDecl>(*C);
3449 if (ND) {
3450 NNS = NestedNameSpecifier::Create(Context, NNS, ND);
3451 ++NumSpecifiers;
3452 }
3453 }
3454
3455 // If the built NestedNameSpecifier would be replacing an existing
3456 // NestedNameSpecifier, use the number of component identifiers that
3457 // would need to be changed as the edit distance instead of the number
3458 // of components in the built NestedNameSpecifier.
3459 if (NNS && !CurNameSpecifierIdentifiers.empty()) {
3460 SmallVector<const IdentifierInfo*, 4> NewNameSpecifierIdentifiers;
3461 getNestedNameSpecifierIdentifiers(NNS, NewNameSpecifierIdentifiers);
3462 NumSpecifiers = llvm::ComputeEditDistance(
3463 llvm::ArrayRef<const IdentifierInfo*>(CurNameSpecifierIdentifiers),
3464 llvm::ArrayRef<const IdentifierInfo*>(NewNameSpecifierIdentifiers));
3465 }
3466
3467 isSorted = false;
3468 Distances.insert(NumSpecifiers);
3469 DistanceMap[NumSpecifiers].push_back(SpecifierInfo(Ctx, NNS, NumSpecifiers));
3470 }
3471
3472 /// \brief Perform name lookup for a possible result for typo correction.
LookupPotentialTypoResult(Sema & SemaRef,LookupResult & Res,IdentifierInfo * Name,Scope * S,CXXScopeSpec * SS,DeclContext * MemberContext,bool EnteringContext,bool isObjCIvarLookup)3473 static void LookupPotentialTypoResult(Sema &SemaRef,
3474 LookupResult &Res,
3475 IdentifierInfo *Name,
3476 Scope *S, CXXScopeSpec *SS,
3477 DeclContext *MemberContext,
3478 bool EnteringContext,
3479 bool isObjCIvarLookup) {
3480 Res.suppressDiagnostics();
3481 Res.clear();
3482 Res.setLookupName(Name);
3483 if (MemberContext) {
3484 if (ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(MemberContext)) {
3485 if (isObjCIvarLookup) {
3486 if (ObjCIvarDecl *Ivar = Class->lookupInstanceVariable(Name)) {
3487 Res.addDecl(Ivar);
3488 Res.resolveKind();
3489 return;
3490 }
3491 }
3492
3493 if (ObjCPropertyDecl *Prop = Class->FindPropertyDeclaration(Name)) {
3494 Res.addDecl(Prop);
3495 Res.resolveKind();
3496 return;
3497 }
3498 }
3499
3500 SemaRef.LookupQualifiedName(Res, MemberContext);
3501 return;
3502 }
3503
3504 SemaRef.LookupParsedName(Res, S, SS, /*AllowBuiltinCreation=*/false,
3505 EnteringContext);
3506
3507 // Fake ivar lookup; this should really be part of
3508 // LookupParsedName.
3509 if (ObjCMethodDecl *Method = SemaRef.getCurMethodDecl()) {
3510 if (Method->isInstanceMethod() && Method->getClassInterface() &&
3511 (Res.empty() ||
3512 (Res.isSingleResult() &&
3513 Res.getFoundDecl()->isDefinedOutsideFunctionOrMethod()))) {
3514 if (ObjCIvarDecl *IV
3515 = Method->getClassInterface()->lookupInstanceVariable(Name)) {
3516 Res.addDecl(IV);
3517 Res.resolveKind();
3518 }
3519 }
3520 }
3521 }
3522
3523 /// \brief Add keywords to the consumer as possible typo corrections.
AddKeywordsToConsumer(Sema & SemaRef,TypoCorrectionConsumer & Consumer,Scope * S,CorrectionCandidateCallback & CCC,bool AfterNestedNameSpecifier)3524 static void AddKeywordsToConsumer(Sema &SemaRef,
3525 TypoCorrectionConsumer &Consumer,
3526 Scope *S, CorrectionCandidateCallback &CCC,
3527 bool AfterNestedNameSpecifier) {
3528 if (AfterNestedNameSpecifier) {
3529 // For 'X::', we know exactly which keywords can appear next.
3530 Consumer.addKeywordResult("template");
3531 if (CCC.WantExpressionKeywords)
3532 Consumer.addKeywordResult("operator");
3533 return;
3534 }
3535
3536 if (CCC.WantObjCSuper)
3537 Consumer.addKeywordResult("super");
3538
3539 if (CCC.WantTypeSpecifiers) {
3540 // Add type-specifier keywords to the set of results.
3541 const char *CTypeSpecs[] = {
3542 "char", "const", "double", "enum", "float", "int", "long", "short",
3543 "signed", "struct", "union", "unsigned", "void", "volatile",
3544 "_Complex", "_Imaginary",
3545 // storage-specifiers as well
3546 "extern", "inline", "static", "typedef"
3547 };
3548
3549 const unsigned NumCTypeSpecs = sizeof(CTypeSpecs) / sizeof(CTypeSpecs[0]);
3550 for (unsigned I = 0; I != NumCTypeSpecs; ++I)
3551 Consumer.addKeywordResult(CTypeSpecs[I]);
3552
3553 if (SemaRef.getLangOpts().C99)
3554 Consumer.addKeywordResult("restrict");
3555 if (SemaRef.getLangOpts().Bool || SemaRef.getLangOpts().CPlusPlus)
3556 Consumer.addKeywordResult("bool");
3557 else if (SemaRef.getLangOpts().C99)
3558 Consumer.addKeywordResult("_Bool");
3559
3560 if (SemaRef.getLangOpts().CPlusPlus) {
3561 Consumer.addKeywordResult("class");
3562 Consumer.addKeywordResult("typename");
3563 Consumer.addKeywordResult("wchar_t");
3564
3565 if (SemaRef.getLangOpts().CPlusPlus0x) {
3566 Consumer.addKeywordResult("char16_t");
3567 Consumer.addKeywordResult("char32_t");
3568 Consumer.addKeywordResult("constexpr");
3569 Consumer.addKeywordResult("decltype");
3570 Consumer.addKeywordResult("thread_local");
3571 }
3572 }
3573
3574 if (SemaRef.getLangOpts().GNUMode)
3575 Consumer.addKeywordResult("typeof");
3576 }
3577
3578 if (CCC.WantCXXNamedCasts && SemaRef.getLangOpts().CPlusPlus) {
3579 Consumer.addKeywordResult("const_cast");
3580 Consumer.addKeywordResult("dynamic_cast");
3581 Consumer.addKeywordResult("reinterpret_cast");
3582 Consumer.addKeywordResult("static_cast");
3583 }
3584
3585 if (CCC.WantExpressionKeywords) {
3586 Consumer.addKeywordResult("sizeof");
3587 if (SemaRef.getLangOpts().Bool || SemaRef.getLangOpts().CPlusPlus) {
3588 Consumer.addKeywordResult("false");
3589 Consumer.addKeywordResult("true");
3590 }
3591
3592 if (SemaRef.getLangOpts().CPlusPlus) {
3593 const char *CXXExprs[] = {
3594 "delete", "new", "operator", "throw", "typeid"
3595 };
3596 const unsigned NumCXXExprs = sizeof(CXXExprs) / sizeof(CXXExprs[0]);
3597 for (unsigned I = 0; I != NumCXXExprs; ++I)
3598 Consumer.addKeywordResult(CXXExprs[I]);
3599
3600 if (isa<CXXMethodDecl>(SemaRef.CurContext) &&
3601 cast<CXXMethodDecl>(SemaRef.CurContext)->isInstance())
3602 Consumer.addKeywordResult("this");
3603
3604 if (SemaRef.getLangOpts().CPlusPlus0x) {
3605 Consumer.addKeywordResult("alignof");
3606 Consumer.addKeywordResult("nullptr");
3607 }
3608 }
3609
3610 if (SemaRef.getLangOpts().C11) {
3611 // FIXME: We should not suggest _Alignof if the alignof macro
3612 // is present.
3613 Consumer.addKeywordResult("_Alignof");
3614 }
3615 }
3616
3617 if (CCC.WantRemainingKeywords) {
3618 if (SemaRef.getCurFunctionOrMethodDecl() || SemaRef.getCurBlock()) {
3619 // Statements.
3620 const char *CStmts[] = {
3621 "do", "else", "for", "goto", "if", "return", "switch", "while" };
3622 const unsigned NumCStmts = sizeof(CStmts) / sizeof(CStmts[0]);
3623 for (unsigned I = 0; I != NumCStmts; ++I)
3624 Consumer.addKeywordResult(CStmts[I]);
3625
3626 if (SemaRef.getLangOpts().CPlusPlus) {
3627 Consumer.addKeywordResult("catch");
3628 Consumer.addKeywordResult("try");
3629 }
3630
3631 if (S && S->getBreakParent())
3632 Consumer.addKeywordResult("break");
3633
3634 if (S && S->getContinueParent())
3635 Consumer.addKeywordResult("continue");
3636
3637 if (!SemaRef.getCurFunction()->SwitchStack.empty()) {
3638 Consumer.addKeywordResult("case");
3639 Consumer.addKeywordResult("default");
3640 }
3641 } else {
3642 if (SemaRef.getLangOpts().CPlusPlus) {
3643 Consumer.addKeywordResult("namespace");
3644 Consumer.addKeywordResult("template");
3645 }
3646
3647 if (S && S->isClassScope()) {
3648 Consumer.addKeywordResult("explicit");
3649 Consumer.addKeywordResult("friend");
3650 Consumer.addKeywordResult("mutable");
3651 Consumer.addKeywordResult("private");
3652 Consumer.addKeywordResult("protected");
3653 Consumer.addKeywordResult("public");
3654 Consumer.addKeywordResult("virtual");
3655 }
3656 }
3657
3658 if (SemaRef.getLangOpts().CPlusPlus) {
3659 Consumer.addKeywordResult("using");
3660
3661 if (SemaRef.getLangOpts().CPlusPlus0x)
3662 Consumer.addKeywordResult("static_assert");
3663 }
3664 }
3665 }
3666
isCandidateViable(CorrectionCandidateCallback & CCC,TypoCorrection & Candidate)3667 static bool isCandidateViable(CorrectionCandidateCallback &CCC,
3668 TypoCorrection &Candidate) {
3669 Candidate.setCallbackDistance(CCC.RankCandidate(Candidate));
3670 return Candidate.getEditDistance(false) != TypoCorrection::InvalidDistance;
3671 }
3672
3673 /// \brief Try to "correct" a typo in the source code by finding
3674 /// visible declarations whose names are similar to the name that was
3675 /// present in the source code.
3676 ///
3677 /// \param TypoName the \c DeclarationNameInfo structure that contains
3678 /// the name that was present in the source code along with its location.
3679 ///
3680 /// \param LookupKind the name-lookup criteria used to search for the name.
3681 ///
3682 /// \param S the scope in which name lookup occurs.
3683 ///
3684 /// \param SS the nested-name-specifier that precedes the name we're
3685 /// looking for, if present.
3686 ///
3687 /// \param CCC A CorrectionCandidateCallback object that provides further
3688 /// validation of typo correction candidates. It also provides flags for
3689 /// determining the set of keywords permitted.
3690 ///
3691 /// \param MemberContext if non-NULL, the context in which to look for
3692 /// a member access expression.
3693 ///
3694 /// \param EnteringContext whether we're entering the context described by
3695 /// the nested-name-specifier SS.
3696 ///
3697 /// \param OPT when non-NULL, the search for visible declarations will
3698 /// also walk the protocols in the qualified interfaces of \p OPT.
3699 ///
3700 /// \returns a \c TypoCorrection containing the corrected name if the typo
3701 /// along with information such as the \c NamedDecl where the corrected name
3702 /// was declared, and any additional \c NestedNameSpecifier needed to access
3703 /// it (C++ only). The \c TypoCorrection is empty if there is no correction.
CorrectTypo(const DeclarationNameInfo & TypoName,Sema::LookupNameKind LookupKind,Scope * S,CXXScopeSpec * SS,CorrectionCandidateCallback & CCC,DeclContext * MemberContext,bool EnteringContext,const ObjCObjectPointerType * OPT)3704 TypoCorrection Sema::CorrectTypo(const DeclarationNameInfo &TypoName,
3705 Sema::LookupNameKind LookupKind,
3706 Scope *S, CXXScopeSpec *SS,
3707 CorrectionCandidateCallback &CCC,
3708 DeclContext *MemberContext,
3709 bool EnteringContext,
3710 const ObjCObjectPointerType *OPT) {
3711 if (Diags.hasFatalErrorOccurred() || !getLangOpts().SpellChecking)
3712 return TypoCorrection();
3713
3714 // In Microsoft mode, don't perform typo correction in a template member
3715 // function dependent context because it interferes with the "lookup into
3716 // dependent bases of class templates" feature.
3717 if (getLangOpts().MicrosoftMode && CurContext->isDependentContext() &&
3718 isa<CXXMethodDecl>(CurContext))
3719 return TypoCorrection();
3720
3721 // We only attempt to correct typos for identifiers.
3722 IdentifierInfo *Typo = TypoName.getName().getAsIdentifierInfo();
3723 if (!Typo)
3724 return TypoCorrection();
3725
3726 // If the scope specifier itself was invalid, don't try to correct
3727 // typos.
3728 if (SS && SS->isInvalid())
3729 return TypoCorrection();
3730
3731 // Never try to correct typos during template deduction or
3732 // instantiation.
3733 if (!ActiveTemplateInstantiations.empty())
3734 return TypoCorrection();
3735
3736 NamespaceSpecifierSet Namespaces(Context, CurContext, SS);
3737
3738 TypoCorrectionConsumer Consumer(*this, Typo);
3739
3740 // If a callback object considers an empty typo correction candidate to be
3741 // viable, assume it does not do any actual validation of the candidates.
3742 TypoCorrection EmptyCorrection;
3743 bool ValidatingCallback = !isCandidateViable(CCC, EmptyCorrection);
3744
3745 // Perform name lookup to find visible, similarly-named entities.
3746 bool IsUnqualifiedLookup = false;
3747 DeclContext *QualifiedDC = MemberContext;
3748 if (MemberContext) {
3749 LookupVisibleDecls(MemberContext, LookupKind, Consumer);
3750
3751 // Look in qualified interfaces.
3752 if (OPT) {
3753 for (ObjCObjectPointerType::qual_iterator
3754 I = OPT->qual_begin(), E = OPT->qual_end();
3755 I != E; ++I)
3756 LookupVisibleDecls(*I, LookupKind, Consumer);
3757 }
3758 } else if (SS && SS->isSet()) {
3759 QualifiedDC = computeDeclContext(*SS, EnteringContext);
3760 if (!QualifiedDC)
3761 return TypoCorrection();
3762
3763 // Provide a stop gap for files that are just seriously broken. Trying
3764 // to correct all typos can turn into a HUGE performance penalty, causing
3765 // some files to take minutes to get rejected by the parser.
3766 if (TyposCorrected + UnqualifiedTyposCorrected.size() >= 20)
3767 return TypoCorrection();
3768 ++TyposCorrected;
3769
3770 LookupVisibleDecls(QualifiedDC, LookupKind, Consumer);
3771 } else {
3772 IsUnqualifiedLookup = true;
3773 UnqualifiedTyposCorrectedMap::iterator Cached
3774 = UnqualifiedTyposCorrected.find(Typo);
3775 if (Cached != UnqualifiedTyposCorrected.end()) {
3776 // Add the cached value, unless it's a keyword or fails validation. In the
3777 // keyword case, we'll end up adding the keyword below.
3778 if (Cached->second) {
3779 if (!Cached->second.isKeyword() &&
3780 isCandidateViable(CCC, Cached->second))
3781 Consumer.addCorrection(Cached->second);
3782 } else {
3783 // Only honor no-correction cache hits when a callback that will validate
3784 // correction candidates is not being used.
3785 if (!ValidatingCallback)
3786 return TypoCorrection();
3787 }
3788 }
3789 if (Cached == UnqualifiedTyposCorrected.end()) {
3790 // Provide a stop gap for files that are just seriously broken. Trying
3791 // to correct all typos can turn into a HUGE performance penalty, causing
3792 // some files to take minutes to get rejected by the parser.
3793 if (TyposCorrected + UnqualifiedTyposCorrected.size() >= 20)
3794 return TypoCorrection();
3795 }
3796 }
3797
3798 // Determine whether we are going to search in the various namespaces for
3799 // corrections.
3800 bool SearchNamespaces
3801 = getLangOpts().CPlusPlus &&
3802 (IsUnqualifiedLookup || (QualifiedDC && QualifiedDC->isNamespace()));
3803 // In a few cases we *only* want to search for corrections bases on just
3804 // adding or changing the nested name specifier.
3805 bool AllowOnlyNNSChanges = Typo->getName().size() < 3;
3806
3807 if (IsUnqualifiedLookup || SearchNamespaces) {
3808 // For unqualified lookup, look through all of the names that we have
3809 // seen in this translation unit.
3810 // FIXME: Re-add the ability to skip very unlikely potential corrections.
3811 for (IdentifierTable::iterator I = Context.Idents.begin(),
3812 IEnd = Context.Idents.end();
3813 I != IEnd; ++I)
3814 Consumer.FoundName(I->getKey());
3815
3816 // Walk through identifiers in external identifier sources.
3817 // FIXME: Re-add the ability to skip very unlikely potential corrections.
3818 if (IdentifierInfoLookup *External
3819 = Context.Idents.getExternalIdentifierLookup()) {
3820 OwningPtr<IdentifierIterator> Iter(External->getIdentifiers());
3821 do {
3822 StringRef Name = Iter->Next();
3823 if (Name.empty())
3824 break;
3825
3826 Consumer.FoundName(Name);
3827 } while (true);
3828 }
3829 }
3830
3831 AddKeywordsToConsumer(*this, Consumer, S, CCC, SS && SS->isNotEmpty());
3832
3833 // If we haven't found anything, we're done.
3834 if (Consumer.empty()) {
3835 // If this was an unqualified lookup, note that no correction was found.
3836 if (IsUnqualifiedLookup)
3837 (void)UnqualifiedTyposCorrected[Typo];
3838
3839 return TypoCorrection();
3840 }
3841
3842 // Make sure the best edit distance (prior to adding any namespace qualifiers)
3843 // is not more that about a third of the length of the typo's identifier.
3844 unsigned ED = Consumer.getBestEditDistance(true);
3845 if (ED > 0 && Typo->getName().size() / ED < 3) {
3846 // If this was an unqualified lookup, note that no correction was found.
3847 if (IsUnqualifiedLookup)
3848 (void)UnqualifiedTyposCorrected[Typo];
3849
3850 return TypoCorrection();
3851 }
3852
3853 // Build the NestedNameSpecifiers for the KnownNamespaces, if we're going
3854 // to search those namespaces.
3855 if (SearchNamespaces) {
3856 // Load any externally-known namespaces.
3857 if (ExternalSource && !LoadedExternalKnownNamespaces) {
3858 SmallVector<NamespaceDecl *, 4> ExternalKnownNamespaces;
3859 LoadedExternalKnownNamespaces = true;
3860 ExternalSource->ReadKnownNamespaces(ExternalKnownNamespaces);
3861 for (unsigned I = 0, N = ExternalKnownNamespaces.size(); I != N; ++I)
3862 KnownNamespaces[ExternalKnownNamespaces[I]] = true;
3863 }
3864
3865 for (llvm::DenseMap<NamespaceDecl*, bool>::iterator
3866 KNI = KnownNamespaces.begin(),
3867 KNIEnd = KnownNamespaces.end();
3868 KNI != KNIEnd; ++KNI)
3869 Namespaces.AddNamespace(KNI->first);
3870 }
3871
3872 // Weed out any names that could not be found by name lookup or, if a
3873 // CorrectionCandidateCallback object was provided, failed validation.
3874 llvm::SmallVector<TypoCorrection, 16> QualifiedResults;
3875 LookupResult TmpRes(*this, TypoName, LookupKind);
3876 TmpRes.suppressDiagnostics();
3877 while (!Consumer.empty()) {
3878 TypoCorrectionConsumer::distance_iterator DI = Consumer.begin();
3879 unsigned ED = DI->first;
3880 for (TypoCorrectionConsumer::result_iterator I = DI->second.begin(),
3881 IEnd = DI->second.end();
3882 I != IEnd; /* Increment in loop. */) {
3883 // If we only want nested name specifier corrections, ignore potential
3884 // corrections that have a different base identifier from the typo.
3885 if (AllowOnlyNNSChanges &&
3886 I->second.front().getCorrectionAsIdentifierInfo() != Typo) {
3887 TypoCorrectionConsumer::result_iterator Prev = I;
3888 ++I;
3889 DI->second.erase(Prev);
3890 continue;
3891 }
3892
3893 // If the item already has been looked up or is a keyword, keep it.
3894 // If a validator callback object was given, drop the correction
3895 // unless it passes validation.
3896 bool Viable = false;
3897 for (TypoResultList::iterator RI = I->second.begin();
3898 RI != I->second.end(); /* Increment in loop. */) {
3899 TypoResultList::iterator Prev = RI;
3900 ++RI;
3901 if (Prev->isResolved()) {
3902 if (!isCandidateViable(CCC, *Prev))
3903 RI = I->second.erase(Prev);
3904 else
3905 Viable = true;
3906 }
3907 }
3908 if (Viable || I->second.empty()) {
3909 TypoCorrectionConsumer::result_iterator Prev = I;
3910 ++I;
3911 if (!Viable)
3912 DI->second.erase(Prev);
3913 continue;
3914 }
3915 assert(I->second.size() == 1 && "Expected a single unresolved candidate");
3916
3917 // Perform name lookup on this name.
3918 TypoCorrection &Candidate = I->second.front();
3919 IdentifierInfo *Name = Candidate.getCorrectionAsIdentifierInfo();
3920 LookupPotentialTypoResult(*this, TmpRes, Name, S, SS, MemberContext,
3921 EnteringContext, CCC.IsObjCIvarLookup);
3922
3923 switch (TmpRes.getResultKind()) {
3924 case LookupResult::NotFound:
3925 case LookupResult::NotFoundInCurrentInstantiation:
3926 case LookupResult::FoundUnresolvedValue:
3927 QualifiedResults.push_back(Candidate);
3928 // We didn't find this name in our scope, or didn't like what we found;
3929 // ignore it.
3930 {
3931 TypoCorrectionConsumer::result_iterator Next = I;
3932 ++Next;
3933 DI->second.erase(I);
3934 I = Next;
3935 }
3936 break;
3937
3938 case LookupResult::Ambiguous:
3939 // We don't deal with ambiguities.
3940 return TypoCorrection();
3941
3942 case LookupResult::FoundOverloaded: {
3943 TypoCorrectionConsumer::result_iterator Prev = I;
3944 // Store all of the Decls for overloaded symbols
3945 for (LookupResult::iterator TRD = TmpRes.begin(),
3946 TRDEnd = TmpRes.end();
3947 TRD != TRDEnd; ++TRD)
3948 Candidate.addCorrectionDecl(*TRD);
3949 ++I;
3950 if (!isCandidateViable(CCC, Candidate))
3951 DI->second.erase(Prev);
3952 break;
3953 }
3954
3955 case LookupResult::Found: {
3956 TypoCorrectionConsumer::result_iterator Prev = I;
3957 Candidate.setCorrectionDecl(TmpRes.getAsSingle<NamedDecl>());
3958 ++I;
3959 if (!isCandidateViable(CCC, Candidate))
3960 DI->second.erase(Prev);
3961 break;
3962 }
3963
3964 }
3965 }
3966
3967 if (DI->second.empty())
3968 Consumer.erase(DI);
3969 else if (!getLangOpts().CPlusPlus || QualifiedResults.empty() || !ED)
3970 // If there are results in the closest possible bucket, stop
3971 break;
3972
3973 // Only perform the qualified lookups for C++
3974 if (SearchNamespaces) {
3975 TmpRes.suppressDiagnostics();
3976 for (llvm::SmallVector<TypoCorrection,
3977 16>::iterator QRI = QualifiedResults.begin(),
3978 QRIEnd = QualifiedResults.end();
3979 QRI != QRIEnd; ++QRI) {
3980 for (NamespaceSpecifierSet::iterator NI = Namespaces.begin(),
3981 NIEnd = Namespaces.end();
3982 NI != NIEnd; ++NI) {
3983 DeclContext *Ctx = NI->DeclCtx;
3984
3985 // FIXME: Stop searching once the namespaces are too far away to create
3986 // acceptable corrections for this identifier (since the namespaces
3987 // are sorted in ascending order by edit distance).
3988
3989 TmpRes.clear();
3990 TmpRes.setLookupName(QRI->getCorrectionAsIdentifierInfo());
3991 if (!LookupQualifiedName(TmpRes, Ctx)) continue;
3992
3993 // Any corrections added below will be validated in subsequent
3994 // iterations of the main while() loop over the Consumer's contents.
3995 switch (TmpRes.getResultKind()) {
3996 case LookupResult::Found: {
3997 TypoCorrection TC(*QRI);
3998 TC.setCorrectionDecl(TmpRes.getAsSingle<NamedDecl>());
3999 TC.setCorrectionSpecifier(NI->NameSpecifier);
4000 TC.setQualifierDistance(NI->EditDistance);
4001 Consumer.addCorrection(TC);
4002 break;
4003 }
4004 case LookupResult::FoundOverloaded: {
4005 TypoCorrection TC(*QRI);
4006 TC.setCorrectionSpecifier(NI->NameSpecifier);
4007 TC.setQualifierDistance(NI->EditDistance);
4008 for (LookupResult::iterator TRD = TmpRes.begin(),
4009 TRDEnd = TmpRes.end();
4010 TRD != TRDEnd; ++TRD)
4011 TC.addCorrectionDecl(*TRD);
4012 Consumer.addCorrection(TC);
4013 break;
4014 }
4015 case LookupResult::NotFound:
4016 case LookupResult::NotFoundInCurrentInstantiation:
4017 case LookupResult::Ambiguous:
4018 case LookupResult::FoundUnresolvedValue:
4019 break;
4020 }
4021 }
4022 }
4023 }
4024
4025 QualifiedResults.clear();
4026 }
4027
4028 // No corrections remain...
4029 if (Consumer.empty()) return TypoCorrection();
4030
4031 TypoResultsMap &BestResults = Consumer.getBestResults();
4032 ED = Consumer.getBestEditDistance(true);
4033
4034 if (!AllowOnlyNNSChanges && ED > 0 && Typo->getName().size() / ED < 3) {
4035 // If this was an unqualified lookup and we believe the callback
4036 // object wouldn't have filtered out possible corrections, note
4037 // that no correction was found.
4038 if (IsUnqualifiedLookup && !ValidatingCallback)
4039 (void)UnqualifiedTyposCorrected[Typo];
4040
4041 return TypoCorrection();
4042 }
4043
4044 // If only a single name remains, return that result.
4045 if (BestResults.size() == 1) {
4046 const TypoResultList &CorrectionList = BestResults.begin()->second;
4047 const TypoCorrection &Result = CorrectionList.front();
4048 if (CorrectionList.size() != 1) return TypoCorrection();
4049
4050 // Don't correct to a keyword that's the same as the typo; the keyword
4051 // wasn't actually in scope.
4052 if (ED == 0 && Result.isKeyword()) return TypoCorrection();
4053
4054 // Record the correction for unqualified lookup.
4055 if (IsUnqualifiedLookup)
4056 UnqualifiedTyposCorrected[Typo] = Result;
4057
4058 return Result;
4059 }
4060 else if (BestResults.size() > 1
4061 // Ugly hack equivalent to CTC == CTC_ObjCMessageReceiver;
4062 // WantObjCSuper is only true for CTC_ObjCMessageReceiver and for
4063 // some instances of CTC_Unknown, while WantRemainingKeywords is true
4064 // for CTC_Unknown but not for CTC_ObjCMessageReceiver.
4065 && CCC.WantObjCSuper && !CCC.WantRemainingKeywords
4066 && BestResults["super"].front().isKeyword()) {
4067 // Prefer 'super' when we're completing in a message-receiver
4068 // context.
4069
4070 // Don't correct to a keyword that's the same as the typo; the keyword
4071 // wasn't actually in scope.
4072 if (ED == 0) return TypoCorrection();
4073
4074 // Record the correction for unqualified lookup.
4075 if (IsUnqualifiedLookup)
4076 UnqualifiedTyposCorrected[Typo] = BestResults["super"].front();
4077
4078 return BestResults["super"].front();
4079 }
4080
4081 // If this was an unqualified lookup and we believe the callback object did
4082 // not filter out possible corrections, note that no correction was found.
4083 if (IsUnqualifiedLookup && !ValidatingCallback)
4084 (void)UnqualifiedTyposCorrected[Typo];
4085
4086 return TypoCorrection();
4087 }
4088
addCorrectionDecl(NamedDecl * CDecl)4089 void TypoCorrection::addCorrectionDecl(NamedDecl *CDecl) {
4090 if (!CDecl) return;
4091
4092 if (isKeyword())
4093 CorrectionDecls.clear();
4094
4095 CorrectionDecls.push_back(CDecl);
4096
4097 if (!CorrectionName)
4098 CorrectionName = CDecl->getDeclName();
4099 }
4100
getAsString(const LangOptions & LO) const4101 std::string TypoCorrection::getAsString(const LangOptions &LO) const {
4102 if (CorrectionNameSpec) {
4103 std::string tmpBuffer;
4104 llvm::raw_string_ostream PrefixOStream(tmpBuffer);
4105 CorrectionNameSpec->print(PrefixOStream, PrintingPolicy(LO));
4106 CorrectionName.printName(PrefixOStream);
4107 return PrefixOStream.str();
4108 }
4109
4110 return CorrectionName.getAsString();
4111 }
4112