1 //===- SimplifyLibCalls.cpp - Optimize specific well-known library calls --===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements a simple pass that applies a variety of small
11 // optimizations for calls to specific well-known function calls (e.g. runtime
12 // library functions). Any optimization that takes the very simple form
13 // "replace call to library function with simpler code that provides the same
14 // result" belongs in this file.
15 //
16 //===----------------------------------------------------------------------===//
17
18 #define DEBUG_TYPE "simplify-libcalls"
19 #include "llvm/Transforms/Scalar.h"
20 #include "llvm/Transforms/Utils/BuildLibCalls.h"
21 #include "llvm/IRBuilder.h"
22 #include "llvm/Intrinsics.h"
23 #include "llvm/LLVMContext.h"
24 #include "llvm/Module.h"
25 #include "llvm/Pass.h"
26 #include "llvm/ADT/STLExtras.h"
27 #include "llvm/ADT/SmallPtrSet.h"
28 #include "llvm/ADT/Statistic.h"
29 #include "llvm/ADT/StringMap.h"
30 #include "llvm/Analysis/ValueTracking.h"
31 #include "llvm/Support/CommandLine.h"
32 #include "llvm/Support/Debug.h"
33 #include "llvm/Support/raw_ostream.h"
34 #include "llvm/Target/TargetData.h"
35 #include "llvm/Target/TargetLibraryInfo.h"
36 #include "llvm/Config/config.h" // FIXME: Shouldn't depend on host!
37 using namespace llvm;
38
39 STATISTIC(NumSimplified, "Number of library calls simplified");
40 STATISTIC(NumAnnotated, "Number of attributes added to library functions");
41
42 static cl::opt<bool> UnsafeFPShrink("enable-double-float-shrink", cl::Hidden,
43 cl::init(false),
44 cl::desc("Enable unsafe double to float "
45 "shrinking for math lib calls"));
46 //===----------------------------------------------------------------------===//
47 // Optimizer Base Class
48 //===----------------------------------------------------------------------===//
49
50 /// This class is the abstract base class for the set of optimizations that
51 /// corresponds to one library call.
52 namespace {
53 class LibCallOptimization {
54 protected:
55 Function *Caller;
56 const TargetData *TD;
57 const TargetLibraryInfo *TLI;
58 LLVMContext* Context;
59 public:
LibCallOptimization()60 LibCallOptimization() { }
~LibCallOptimization()61 virtual ~LibCallOptimization() {}
62
63 /// CallOptimizer - This pure virtual method is implemented by base classes to
64 /// do various optimizations. If this returns null then no transformation was
65 /// performed. If it returns CI, then it transformed the call and CI is to be
66 /// deleted. If it returns something else, replace CI with the new value and
67 /// delete CI.
68 virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B)
69 =0;
70
OptimizeCall(CallInst * CI,const TargetData * TD,const TargetLibraryInfo * TLI,IRBuilder<> & B)71 Value *OptimizeCall(CallInst *CI, const TargetData *TD,
72 const TargetLibraryInfo *TLI, IRBuilder<> &B) {
73 Caller = CI->getParent()->getParent();
74 this->TD = TD;
75 this->TLI = TLI;
76 if (CI->getCalledFunction())
77 Context = &CI->getCalledFunction()->getContext();
78
79 // We never change the calling convention.
80 if (CI->getCallingConv() != llvm::CallingConv::C)
81 return NULL;
82
83 return CallOptimizer(CI->getCalledFunction(), CI, B);
84 }
85 };
86 } // End anonymous namespace.
87
88
89 //===----------------------------------------------------------------------===//
90 // Helper Functions
91 //===----------------------------------------------------------------------===//
92
93 /// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the
94 /// value is equal or not-equal to zero.
IsOnlyUsedInZeroEqualityComparison(Value * V)95 static bool IsOnlyUsedInZeroEqualityComparison(Value *V) {
96 for (Value::use_iterator UI = V->use_begin(), E = V->use_end();
97 UI != E; ++UI) {
98 if (ICmpInst *IC = dyn_cast<ICmpInst>(*UI))
99 if (IC->isEquality())
100 if (Constant *C = dyn_cast<Constant>(IC->getOperand(1)))
101 if (C->isNullValue())
102 continue;
103 // Unknown instruction.
104 return false;
105 }
106 return true;
107 }
108
CallHasFloatingPointArgument(const CallInst * CI)109 static bool CallHasFloatingPointArgument(const CallInst *CI) {
110 for (CallInst::const_op_iterator it = CI->op_begin(), e = CI->op_end();
111 it != e; ++it) {
112 if ((*it)->getType()->isFloatingPointTy())
113 return true;
114 }
115 return false;
116 }
117
118 /// IsOnlyUsedInEqualityComparison - Return true if it is only used in equality
119 /// comparisons with With.
IsOnlyUsedInEqualityComparison(Value * V,Value * With)120 static bool IsOnlyUsedInEqualityComparison(Value *V, Value *With) {
121 for (Value::use_iterator UI = V->use_begin(), E = V->use_end();
122 UI != E; ++UI) {
123 if (ICmpInst *IC = dyn_cast<ICmpInst>(*UI))
124 if (IC->isEquality() && IC->getOperand(1) == With)
125 continue;
126 // Unknown instruction.
127 return false;
128 }
129 return true;
130 }
131
132 //===----------------------------------------------------------------------===//
133 // String and Memory LibCall Optimizations
134 //===----------------------------------------------------------------------===//
135
136 //===---------------------------------------===//
137 // 'strcat' Optimizations
138 namespace {
139 struct StrCatOpt : public LibCallOptimization {
CallOptimizer__anone3bcf12e0211::StrCatOpt140 virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
141 // Verify the "strcat" function prototype.
142 FunctionType *FT = Callee->getFunctionType();
143 if (FT->getNumParams() != 2 ||
144 FT->getReturnType() != B.getInt8PtrTy() ||
145 FT->getParamType(0) != FT->getReturnType() ||
146 FT->getParamType(1) != FT->getReturnType())
147 return 0;
148
149 // Extract some information from the instruction
150 Value *Dst = CI->getArgOperand(0);
151 Value *Src = CI->getArgOperand(1);
152
153 // See if we can get the length of the input string.
154 uint64_t Len = GetStringLength(Src);
155 if (Len == 0) return 0;
156 --Len; // Unbias length.
157
158 // Handle the simple, do-nothing case: strcat(x, "") -> x
159 if (Len == 0)
160 return Dst;
161
162 // These optimizations require TargetData.
163 if (!TD) return 0;
164
165 return EmitStrLenMemCpy(Src, Dst, Len, B);
166 }
167
EmitStrLenMemCpy__anone3bcf12e0211::StrCatOpt168 Value *EmitStrLenMemCpy(Value *Src, Value *Dst, uint64_t Len, IRBuilder<> &B) {
169 // We need to find the end of the destination string. That's where the
170 // memory is to be moved to. We just generate a call to strlen.
171 Value *DstLen = EmitStrLen(Dst, B, TD, TLI);
172 if (!DstLen)
173 return 0;
174
175 // Now that we have the destination's length, we must index into the
176 // destination's pointer to get the actual memcpy destination (end of
177 // the string .. we're concatenating).
178 Value *CpyDst = B.CreateGEP(Dst, DstLen, "endptr");
179
180 // We have enough information to now generate the memcpy call to do the
181 // concatenation for us. Make a memcpy to copy the nul byte with align = 1.
182 B.CreateMemCpy(CpyDst, Src,
183 ConstantInt::get(TD->getIntPtrType(*Context), Len + 1), 1);
184 return Dst;
185 }
186 };
187
188 //===---------------------------------------===//
189 // 'strncat' Optimizations
190
191 struct StrNCatOpt : public StrCatOpt {
CallOptimizer__anone3bcf12e0211::StrNCatOpt192 virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
193 // Verify the "strncat" function prototype.
194 FunctionType *FT = Callee->getFunctionType();
195 if (FT->getNumParams() != 3 ||
196 FT->getReturnType() != B.getInt8PtrTy() ||
197 FT->getParamType(0) != FT->getReturnType() ||
198 FT->getParamType(1) != FT->getReturnType() ||
199 !FT->getParamType(2)->isIntegerTy())
200 return 0;
201
202 // Extract some information from the instruction
203 Value *Dst = CI->getArgOperand(0);
204 Value *Src = CI->getArgOperand(1);
205 uint64_t Len;
206
207 // We don't do anything if length is not constant
208 if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(CI->getArgOperand(2)))
209 Len = LengthArg->getZExtValue();
210 else
211 return 0;
212
213 // See if we can get the length of the input string.
214 uint64_t SrcLen = GetStringLength(Src);
215 if (SrcLen == 0) return 0;
216 --SrcLen; // Unbias length.
217
218 // Handle the simple, do-nothing cases:
219 // strncat(x, "", c) -> x
220 // strncat(x, c, 0) -> x
221 if (SrcLen == 0 || Len == 0) return Dst;
222
223 // These optimizations require TargetData.
224 if (!TD) return 0;
225
226 // We don't optimize this case
227 if (Len < SrcLen) return 0;
228
229 // strncat(x, s, c) -> strcat(x, s)
230 // s is constant so the strcat can be optimized further
231 return EmitStrLenMemCpy(Src, Dst, SrcLen, B);
232 }
233 };
234
235 //===---------------------------------------===//
236 // 'strchr' Optimizations
237
238 struct StrChrOpt : public LibCallOptimization {
CallOptimizer__anone3bcf12e0211::StrChrOpt239 virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
240 // Verify the "strchr" function prototype.
241 FunctionType *FT = Callee->getFunctionType();
242 if (FT->getNumParams() != 2 ||
243 FT->getReturnType() != B.getInt8PtrTy() ||
244 FT->getParamType(0) != FT->getReturnType() ||
245 !FT->getParamType(1)->isIntegerTy(32))
246 return 0;
247
248 Value *SrcStr = CI->getArgOperand(0);
249
250 // If the second operand is non-constant, see if we can compute the length
251 // of the input string and turn this into memchr.
252 ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
253 if (CharC == 0) {
254 // These optimizations require TargetData.
255 if (!TD) return 0;
256
257 uint64_t Len = GetStringLength(SrcStr);
258 if (Len == 0 || !FT->getParamType(1)->isIntegerTy(32))// memchr needs i32.
259 return 0;
260
261 return EmitMemChr(SrcStr, CI->getArgOperand(1), // include nul.
262 ConstantInt::get(TD->getIntPtrType(*Context), Len),
263 B, TD, TLI);
264 }
265
266 // Otherwise, the character is a constant, see if the first argument is
267 // a string literal. If so, we can constant fold.
268 StringRef Str;
269 if (!getConstantStringInfo(SrcStr, Str))
270 return 0;
271
272 // Compute the offset, make sure to handle the case when we're searching for
273 // zero (a weird way to spell strlen).
274 size_t I = CharC->getSExtValue() == 0 ?
275 Str.size() : Str.find(CharC->getSExtValue());
276 if (I == StringRef::npos) // Didn't find the char. strchr returns null.
277 return Constant::getNullValue(CI->getType());
278
279 // strchr(s+n,c) -> gep(s+n+i,c)
280 return B.CreateGEP(SrcStr, B.getInt64(I), "strchr");
281 }
282 };
283
284 //===---------------------------------------===//
285 // 'strrchr' Optimizations
286
287 struct StrRChrOpt : public LibCallOptimization {
CallOptimizer__anone3bcf12e0211::StrRChrOpt288 virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
289 // Verify the "strrchr" function prototype.
290 FunctionType *FT = Callee->getFunctionType();
291 if (FT->getNumParams() != 2 ||
292 FT->getReturnType() != B.getInt8PtrTy() ||
293 FT->getParamType(0) != FT->getReturnType() ||
294 !FT->getParamType(1)->isIntegerTy(32))
295 return 0;
296
297 Value *SrcStr = CI->getArgOperand(0);
298 ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
299
300 // Cannot fold anything if we're not looking for a constant.
301 if (!CharC)
302 return 0;
303
304 StringRef Str;
305 if (!getConstantStringInfo(SrcStr, Str)) {
306 // strrchr(s, 0) -> strchr(s, 0)
307 if (TD && CharC->isZero())
308 return EmitStrChr(SrcStr, '\0', B, TD, TLI);
309 return 0;
310 }
311
312 // Compute the offset.
313 size_t I = CharC->getSExtValue() == 0 ?
314 Str.size() : Str.rfind(CharC->getSExtValue());
315 if (I == StringRef::npos) // Didn't find the char. Return null.
316 return Constant::getNullValue(CI->getType());
317
318 // strrchr(s+n,c) -> gep(s+n+i,c)
319 return B.CreateGEP(SrcStr, B.getInt64(I), "strrchr");
320 }
321 };
322
323 //===---------------------------------------===//
324 // 'strcmp' Optimizations
325
326 struct StrCmpOpt : public LibCallOptimization {
CallOptimizer__anone3bcf12e0211::StrCmpOpt327 virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
328 // Verify the "strcmp" function prototype.
329 FunctionType *FT = Callee->getFunctionType();
330 if (FT->getNumParams() != 2 ||
331 !FT->getReturnType()->isIntegerTy(32) ||
332 FT->getParamType(0) != FT->getParamType(1) ||
333 FT->getParamType(0) != B.getInt8PtrTy())
334 return 0;
335
336 Value *Str1P = CI->getArgOperand(0), *Str2P = CI->getArgOperand(1);
337 if (Str1P == Str2P) // strcmp(x,x) -> 0
338 return ConstantInt::get(CI->getType(), 0);
339
340 StringRef Str1, Str2;
341 bool HasStr1 = getConstantStringInfo(Str1P, Str1);
342 bool HasStr2 = getConstantStringInfo(Str2P, Str2);
343
344 // strcmp(x, y) -> cnst (if both x and y are constant strings)
345 if (HasStr1 && HasStr2)
346 return ConstantInt::get(CI->getType(), Str1.compare(Str2));
347
348 if (HasStr1 && Str1.empty()) // strcmp("", x) -> -*x
349 return B.CreateNeg(B.CreateZExt(B.CreateLoad(Str2P, "strcmpload"),
350 CI->getType()));
351
352 if (HasStr2 && Str2.empty()) // strcmp(x,"") -> *x
353 return B.CreateZExt(B.CreateLoad(Str1P, "strcmpload"), CI->getType());
354
355 // strcmp(P, "x") -> memcmp(P, "x", 2)
356 uint64_t Len1 = GetStringLength(Str1P);
357 uint64_t Len2 = GetStringLength(Str2P);
358 if (Len1 && Len2) {
359 // These optimizations require TargetData.
360 if (!TD) return 0;
361
362 return EmitMemCmp(Str1P, Str2P,
363 ConstantInt::get(TD->getIntPtrType(*Context),
364 std::min(Len1, Len2)), B, TD, TLI);
365 }
366
367 return 0;
368 }
369 };
370
371 //===---------------------------------------===//
372 // 'strncmp' Optimizations
373
374 struct StrNCmpOpt : public LibCallOptimization {
CallOptimizer__anone3bcf12e0211::StrNCmpOpt375 virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
376 // Verify the "strncmp" function prototype.
377 FunctionType *FT = Callee->getFunctionType();
378 if (FT->getNumParams() != 3 ||
379 !FT->getReturnType()->isIntegerTy(32) ||
380 FT->getParamType(0) != FT->getParamType(1) ||
381 FT->getParamType(0) != B.getInt8PtrTy() ||
382 !FT->getParamType(2)->isIntegerTy())
383 return 0;
384
385 Value *Str1P = CI->getArgOperand(0), *Str2P = CI->getArgOperand(1);
386 if (Str1P == Str2P) // strncmp(x,x,n) -> 0
387 return ConstantInt::get(CI->getType(), 0);
388
389 // Get the length argument if it is constant.
390 uint64_t Length;
391 if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(CI->getArgOperand(2)))
392 Length = LengthArg->getZExtValue();
393 else
394 return 0;
395
396 if (Length == 0) // strncmp(x,y,0) -> 0
397 return ConstantInt::get(CI->getType(), 0);
398
399 if (TD && Length == 1) // strncmp(x,y,1) -> memcmp(x,y,1)
400 return EmitMemCmp(Str1P, Str2P, CI->getArgOperand(2), B, TD, TLI);
401
402 StringRef Str1, Str2;
403 bool HasStr1 = getConstantStringInfo(Str1P, Str1);
404 bool HasStr2 = getConstantStringInfo(Str2P, Str2);
405
406 // strncmp(x, y) -> cnst (if both x and y are constant strings)
407 if (HasStr1 && HasStr2) {
408 StringRef SubStr1 = Str1.substr(0, Length);
409 StringRef SubStr2 = Str2.substr(0, Length);
410 return ConstantInt::get(CI->getType(), SubStr1.compare(SubStr2));
411 }
412
413 if (HasStr1 && Str1.empty()) // strncmp("", x, n) -> -*x
414 return B.CreateNeg(B.CreateZExt(B.CreateLoad(Str2P, "strcmpload"),
415 CI->getType()));
416
417 if (HasStr2 && Str2.empty()) // strncmp(x, "", n) -> *x
418 return B.CreateZExt(B.CreateLoad(Str1P, "strcmpload"), CI->getType());
419
420 return 0;
421 }
422 };
423
424
425 //===---------------------------------------===//
426 // 'strcpy' Optimizations
427
428 struct StrCpyOpt : public LibCallOptimization {
429 bool OptChkCall; // True if it's optimizing a __strcpy_chk libcall.
430
StrCpyOpt__anone3bcf12e0211::StrCpyOpt431 StrCpyOpt(bool c) : OptChkCall(c) {}
432
CallOptimizer__anone3bcf12e0211::StrCpyOpt433 virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
434 // Verify the "strcpy" function prototype.
435 unsigned NumParams = OptChkCall ? 3 : 2;
436 FunctionType *FT = Callee->getFunctionType();
437 if (FT->getNumParams() != NumParams ||
438 FT->getReturnType() != FT->getParamType(0) ||
439 FT->getParamType(0) != FT->getParamType(1) ||
440 FT->getParamType(0) != B.getInt8PtrTy())
441 return 0;
442
443 Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1);
444 if (Dst == Src) // strcpy(x,x) -> x
445 return Src;
446
447 // These optimizations require TargetData.
448 if (!TD) return 0;
449
450 // See if we can get the length of the input string.
451 uint64_t Len = GetStringLength(Src);
452 if (Len == 0) return 0;
453
454 // We have enough information to now generate the memcpy call to do the
455 // concatenation for us. Make a memcpy to copy the nul byte with align = 1.
456 if (!OptChkCall ||
457 !EmitMemCpyChk(Dst, Src,
458 ConstantInt::get(TD->getIntPtrType(*Context), Len),
459 CI->getArgOperand(2), B, TD, TLI))
460 B.CreateMemCpy(Dst, Src,
461 ConstantInt::get(TD->getIntPtrType(*Context), Len), 1);
462 return Dst;
463 }
464 };
465
466 //===---------------------------------------===//
467 // 'stpcpy' Optimizations
468
469 struct StpCpyOpt: public LibCallOptimization {
470 bool OptChkCall; // True if it's optimizing a __stpcpy_chk libcall.
471
StpCpyOpt__anone3bcf12e0211::StpCpyOpt472 StpCpyOpt(bool c) : OptChkCall(c) {}
473
CallOptimizer__anone3bcf12e0211::StpCpyOpt474 virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
475 // Verify the "stpcpy" function prototype.
476 unsigned NumParams = OptChkCall ? 3 : 2;
477 FunctionType *FT = Callee->getFunctionType();
478 if (FT->getNumParams() != NumParams ||
479 FT->getReturnType() != FT->getParamType(0) ||
480 FT->getParamType(0) != FT->getParamType(1) ||
481 FT->getParamType(0) != B.getInt8PtrTy())
482 return 0;
483
484 // These optimizations require TargetData.
485 if (!TD) return 0;
486
487 Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1);
488 if (Dst == Src) { // stpcpy(x,x) -> x+strlen(x)
489 Value *StrLen = EmitStrLen(Src, B, TD, TLI);
490 return StrLen ? B.CreateInBoundsGEP(Dst, StrLen) : 0;
491 }
492
493 // See if we can get the length of the input string.
494 uint64_t Len = GetStringLength(Src);
495 if (Len == 0) return 0;
496
497 Value *LenV = ConstantInt::get(TD->getIntPtrType(*Context), Len);
498 Value *DstEnd = B.CreateGEP(Dst,
499 ConstantInt::get(TD->getIntPtrType(*Context),
500 Len - 1));
501
502 // We have enough information to now generate the memcpy call to do the
503 // copy for us. Make a memcpy to copy the nul byte with align = 1.
504 if (!OptChkCall || !EmitMemCpyChk(Dst, Src, LenV, CI->getArgOperand(2), B,
505 TD, TLI))
506 B.CreateMemCpy(Dst, Src, LenV, 1);
507 return DstEnd;
508 }
509 };
510
511 //===---------------------------------------===//
512 // 'strncpy' Optimizations
513
514 struct StrNCpyOpt : public LibCallOptimization {
CallOptimizer__anone3bcf12e0211::StrNCpyOpt515 virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
516 FunctionType *FT = Callee->getFunctionType();
517 if (FT->getNumParams() != 3 || FT->getReturnType() != FT->getParamType(0) ||
518 FT->getParamType(0) != FT->getParamType(1) ||
519 FT->getParamType(0) != B.getInt8PtrTy() ||
520 !FT->getParamType(2)->isIntegerTy())
521 return 0;
522
523 Value *Dst = CI->getArgOperand(0);
524 Value *Src = CI->getArgOperand(1);
525 Value *LenOp = CI->getArgOperand(2);
526
527 // See if we can get the length of the input string.
528 uint64_t SrcLen = GetStringLength(Src);
529 if (SrcLen == 0) return 0;
530 --SrcLen;
531
532 if (SrcLen == 0) {
533 // strncpy(x, "", y) -> memset(x, '\0', y, 1)
534 B.CreateMemSet(Dst, B.getInt8('\0'), LenOp, 1);
535 return Dst;
536 }
537
538 uint64_t Len;
539 if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(LenOp))
540 Len = LengthArg->getZExtValue();
541 else
542 return 0;
543
544 if (Len == 0) return Dst; // strncpy(x, y, 0) -> x
545
546 // These optimizations require TargetData.
547 if (!TD) return 0;
548
549 // Let strncpy handle the zero padding
550 if (Len > SrcLen+1) return 0;
551
552 // strncpy(x, s, c) -> memcpy(x, s, c, 1) [s and c are constant]
553 B.CreateMemCpy(Dst, Src,
554 ConstantInt::get(TD->getIntPtrType(*Context), Len), 1);
555
556 return Dst;
557 }
558 };
559
560 //===---------------------------------------===//
561 // 'strlen' Optimizations
562
563 struct StrLenOpt : public LibCallOptimization {
CallOptimizer__anone3bcf12e0211::StrLenOpt564 virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
565 FunctionType *FT = Callee->getFunctionType();
566 if (FT->getNumParams() != 1 ||
567 FT->getParamType(0) != B.getInt8PtrTy() ||
568 !FT->getReturnType()->isIntegerTy())
569 return 0;
570
571 Value *Src = CI->getArgOperand(0);
572
573 // Constant folding: strlen("xyz") -> 3
574 if (uint64_t Len = GetStringLength(Src))
575 return ConstantInt::get(CI->getType(), Len-1);
576
577 // strlen(x) != 0 --> *x != 0
578 // strlen(x) == 0 --> *x == 0
579 if (IsOnlyUsedInZeroEqualityComparison(CI))
580 return B.CreateZExt(B.CreateLoad(Src, "strlenfirst"), CI->getType());
581 return 0;
582 }
583 };
584
585
586 //===---------------------------------------===//
587 // 'strpbrk' Optimizations
588
589 struct StrPBrkOpt : public LibCallOptimization {
CallOptimizer__anone3bcf12e0211::StrPBrkOpt590 virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
591 FunctionType *FT = Callee->getFunctionType();
592 if (FT->getNumParams() != 2 ||
593 FT->getParamType(0) != B.getInt8PtrTy() ||
594 FT->getParamType(1) != FT->getParamType(0) ||
595 FT->getReturnType() != FT->getParamType(0))
596 return 0;
597
598 StringRef S1, S2;
599 bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1);
600 bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2);
601
602 // strpbrk(s, "") -> NULL
603 // strpbrk("", s) -> NULL
604 if ((HasS1 && S1.empty()) || (HasS2 && S2.empty()))
605 return Constant::getNullValue(CI->getType());
606
607 // Constant folding.
608 if (HasS1 && HasS2) {
609 size_t I = S1.find_first_of(S2);
610 if (I == std::string::npos) // No match.
611 return Constant::getNullValue(CI->getType());
612
613 return B.CreateGEP(CI->getArgOperand(0), B.getInt64(I), "strpbrk");
614 }
615
616 // strpbrk(s, "a") -> strchr(s, 'a')
617 if (TD && HasS2 && S2.size() == 1)
618 return EmitStrChr(CI->getArgOperand(0), S2[0], B, TD, TLI);
619
620 return 0;
621 }
622 };
623
624 //===---------------------------------------===//
625 // 'strto*' Optimizations. This handles strtol, strtod, strtof, strtoul, etc.
626
627 struct StrToOpt : public LibCallOptimization {
CallOptimizer__anone3bcf12e0211::StrToOpt628 virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
629 FunctionType *FT = Callee->getFunctionType();
630 if ((FT->getNumParams() != 2 && FT->getNumParams() != 3) ||
631 !FT->getParamType(0)->isPointerTy() ||
632 !FT->getParamType(1)->isPointerTy())
633 return 0;
634
635 Value *EndPtr = CI->getArgOperand(1);
636 if (isa<ConstantPointerNull>(EndPtr)) {
637 // With a null EndPtr, this function won't capture the main argument.
638 // It would be readonly too, except that it still may write to errno.
639 CI->addAttribute(1, Attribute::NoCapture);
640 }
641
642 return 0;
643 }
644 };
645
646 //===---------------------------------------===//
647 // 'strspn' Optimizations
648
649 struct StrSpnOpt : public LibCallOptimization {
CallOptimizer__anone3bcf12e0211::StrSpnOpt650 virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
651 FunctionType *FT = Callee->getFunctionType();
652 if (FT->getNumParams() != 2 ||
653 FT->getParamType(0) != B.getInt8PtrTy() ||
654 FT->getParamType(1) != FT->getParamType(0) ||
655 !FT->getReturnType()->isIntegerTy())
656 return 0;
657
658 StringRef S1, S2;
659 bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1);
660 bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2);
661
662 // strspn(s, "") -> 0
663 // strspn("", s) -> 0
664 if ((HasS1 && S1.empty()) || (HasS2 && S2.empty()))
665 return Constant::getNullValue(CI->getType());
666
667 // Constant folding.
668 if (HasS1 && HasS2) {
669 size_t Pos = S1.find_first_not_of(S2);
670 if (Pos == StringRef::npos) Pos = S1.size();
671 return ConstantInt::get(CI->getType(), Pos);
672 }
673
674 return 0;
675 }
676 };
677
678 //===---------------------------------------===//
679 // 'strcspn' Optimizations
680
681 struct StrCSpnOpt : public LibCallOptimization {
CallOptimizer__anone3bcf12e0211::StrCSpnOpt682 virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
683 FunctionType *FT = Callee->getFunctionType();
684 if (FT->getNumParams() != 2 ||
685 FT->getParamType(0) != B.getInt8PtrTy() ||
686 FT->getParamType(1) != FT->getParamType(0) ||
687 !FT->getReturnType()->isIntegerTy())
688 return 0;
689
690 StringRef S1, S2;
691 bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1);
692 bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2);
693
694 // strcspn("", s) -> 0
695 if (HasS1 && S1.empty())
696 return Constant::getNullValue(CI->getType());
697
698 // Constant folding.
699 if (HasS1 && HasS2) {
700 size_t Pos = S1.find_first_of(S2);
701 if (Pos == StringRef::npos) Pos = S1.size();
702 return ConstantInt::get(CI->getType(), Pos);
703 }
704
705 // strcspn(s, "") -> strlen(s)
706 if (TD && HasS2 && S2.empty())
707 return EmitStrLen(CI->getArgOperand(0), B, TD, TLI);
708
709 return 0;
710 }
711 };
712
713 //===---------------------------------------===//
714 // 'strstr' Optimizations
715
716 struct StrStrOpt : public LibCallOptimization {
CallOptimizer__anone3bcf12e0211::StrStrOpt717 virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
718 FunctionType *FT = Callee->getFunctionType();
719 if (FT->getNumParams() != 2 ||
720 !FT->getParamType(0)->isPointerTy() ||
721 !FT->getParamType(1)->isPointerTy() ||
722 !FT->getReturnType()->isPointerTy())
723 return 0;
724
725 // fold strstr(x, x) -> x.
726 if (CI->getArgOperand(0) == CI->getArgOperand(1))
727 return B.CreateBitCast(CI->getArgOperand(0), CI->getType());
728
729 // fold strstr(a, b) == a -> strncmp(a, b, strlen(b)) == 0
730 if (TD && IsOnlyUsedInEqualityComparison(CI, CI->getArgOperand(0))) {
731 Value *StrLen = EmitStrLen(CI->getArgOperand(1), B, TD, TLI);
732 if (!StrLen)
733 return 0;
734 Value *StrNCmp = EmitStrNCmp(CI->getArgOperand(0), CI->getArgOperand(1),
735 StrLen, B, TD, TLI);
736 if (!StrNCmp)
737 return 0;
738 for (Value::use_iterator UI = CI->use_begin(), UE = CI->use_end();
739 UI != UE; ) {
740 ICmpInst *Old = cast<ICmpInst>(*UI++);
741 Value *Cmp = B.CreateICmp(Old->getPredicate(), StrNCmp,
742 ConstantInt::getNullValue(StrNCmp->getType()),
743 "cmp");
744 Old->replaceAllUsesWith(Cmp);
745 Old->eraseFromParent();
746 }
747 return CI;
748 }
749
750 // See if either input string is a constant string.
751 StringRef SearchStr, ToFindStr;
752 bool HasStr1 = getConstantStringInfo(CI->getArgOperand(0), SearchStr);
753 bool HasStr2 = getConstantStringInfo(CI->getArgOperand(1), ToFindStr);
754
755 // fold strstr(x, "") -> x.
756 if (HasStr2 && ToFindStr.empty())
757 return B.CreateBitCast(CI->getArgOperand(0), CI->getType());
758
759 // If both strings are known, constant fold it.
760 if (HasStr1 && HasStr2) {
761 std::string::size_type Offset = SearchStr.find(ToFindStr);
762
763 if (Offset == StringRef::npos) // strstr("foo", "bar") -> null
764 return Constant::getNullValue(CI->getType());
765
766 // strstr("abcd", "bc") -> gep((char*)"abcd", 1)
767 Value *Result = CastToCStr(CI->getArgOperand(0), B);
768 Result = B.CreateConstInBoundsGEP1_64(Result, Offset, "strstr");
769 return B.CreateBitCast(Result, CI->getType());
770 }
771
772 // fold strstr(x, "y") -> strchr(x, 'y').
773 if (HasStr2 && ToFindStr.size() == 1) {
774 Value *StrChr= EmitStrChr(CI->getArgOperand(0), ToFindStr[0], B, TD, TLI);
775 return StrChr ? B.CreateBitCast(StrChr, CI->getType()) : 0;
776 }
777 return 0;
778 }
779 };
780
781
782 //===---------------------------------------===//
783 // 'memcmp' Optimizations
784
785 struct MemCmpOpt : public LibCallOptimization {
CallOptimizer__anone3bcf12e0211::MemCmpOpt786 virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
787 FunctionType *FT = Callee->getFunctionType();
788 if (FT->getNumParams() != 3 || !FT->getParamType(0)->isPointerTy() ||
789 !FT->getParamType(1)->isPointerTy() ||
790 !FT->getReturnType()->isIntegerTy(32))
791 return 0;
792
793 Value *LHS = CI->getArgOperand(0), *RHS = CI->getArgOperand(1);
794
795 if (LHS == RHS) // memcmp(s,s,x) -> 0
796 return Constant::getNullValue(CI->getType());
797
798 // Make sure we have a constant length.
799 ConstantInt *LenC = dyn_cast<ConstantInt>(CI->getArgOperand(2));
800 if (!LenC) return 0;
801 uint64_t Len = LenC->getZExtValue();
802
803 if (Len == 0) // memcmp(s1,s2,0) -> 0
804 return Constant::getNullValue(CI->getType());
805
806 // memcmp(S1,S2,1) -> *(unsigned char*)LHS - *(unsigned char*)RHS
807 if (Len == 1) {
808 Value *LHSV = B.CreateZExt(B.CreateLoad(CastToCStr(LHS, B), "lhsc"),
809 CI->getType(), "lhsv");
810 Value *RHSV = B.CreateZExt(B.CreateLoad(CastToCStr(RHS, B), "rhsc"),
811 CI->getType(), "rhsv");
812 return B.CreateSub(LHSV, RHSV, "chardiff");
813 }
814
815 // Constant folding: memcmp(x, y, l) -> cnst (all arguments are constant)
816 StringRef LHSStr, RHSStr;
817 if (getConstantStringInfo(LHS, LHSStr) &&
818 getConstantStringInfo(RHS, RHSStr)) {
819 // Make sure we're not reading out-of-bounds memory.
820 if (Len > LHSStr.size() || Len > RHSStr.size())
821 return 0;
822 uint64_t Ret = memcmp(LHSStr.data(), RHSStr.data(), Len);
823 return ConstantInt::get(CI->getType(), Ret);
824 }
825
826 return 0;
827 }
828 };
829
830 //===---------------------------------------===//
831 // 'memcpy' Optimizations
832
833 struct MemCpyOpt : public LibCallOptimization {
CallOptimizer__anone3bcf12e0211::MemCpyOpt834 virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
835 // These optimizations require TargetData.
836 if (!TD) return 0;
837
838 FunctionType *FT = Callee->getFunctionType();
839 if (FT->getNumParams() != 3 || FT->getReturnType() != FT->getParamType(0) ||
840 !FT->getParamType(0)->isPointerTy() ||
841 !FT->getParamType(1)->isPointerTy() ||
842 FT->getParamType(2) != TD->getIntPtrType(*Context))
843 return 0;
844
845 // memcpy(x, y, n) -> llvm.memcpy(x, y, n, 1)
846 B.CreateMemCpy(CI->getArgOperand(0), CI->getArgOperand(1),
847 CI->getArgOperand(2), 1);
848 return CI->getArgOperand(0);
849 }
850 };
851
852 //===---------------------------------------===//
853 // 'memmove' Optimizations
854
855 struct MemMoveOpt : public LibCallOptimization {
CallOptimizer__anone3bcf12e0211::MemMoveOpt856 virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
857 // These optimizations require TargetData.
858 if (!TD) return 0;
859
860 FunctionType *FT = Callee->getFunctionType();
861 if (FT->getNumParams() != 3 || FT->getReturnType() != FT->getParamType(0) ||
862 !FT->getParamType(0)->isPointerTy() ||
863 !FT->getParamType(1)->isPointerTy() ||
864 FT->getParamType(2) != TD->getIntPtrType(*Context))
865 return 0;
866
867 // memmove(x, y, n) -> llvm.memmove(x, y, n, 1)
868 B.CreateMemMove(CI->getArgOperand(0), CI->getArgOperand(1),
869 CI->getArgOperand(2), 1);
870 return CI->getArgOperand(0);
871 }
872 };
873
874 //===---------------------------------------===//
875 // 'memset' Optimizations
876
877 struct MemSetOpt : public LibCallOptimization {
CallOptimizer__anone3bcf12e0211::MemSetOpt878 virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
879 // These optimizations require TargetData.
880 if (!TD) return 0;
881
882 FunctionType *FT = Callee->getFunctionType();
883 if (FT->getNumParams() != 3 || FT->getReturnType() != FT->getParamType(0) ||
884 !FT->getParamType(0)->isPointerTy() ||
885 !FT->getParamType(1)->isIntegerTy() ||
886 FT->getParamType(2) != TD->getIntPtrType(*Context))
887 return 0;
888
889 // memset(p, v, n) -> llvm.memset(p, v, n, 1)
890 Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false);
891 B.CreateMemSet(CI->getArgOperand(0), Val, CI->getArgOperand(2), 1);
892 return CI->getArgOperand(0);
893 }
894 };
895
896 //===----------------------------------------------------------------------===//
897 // Math Library Optimizations
898 //===----------------------------------------------------------------------===//
899
900 //===---------------------------------------===//
901 // Double -> Float Shrinking Optimizations for Unary Functions like 'floor'
902
903 struct UnaryDoubleFPOpt : public LibCallOptimization {
904 bool CheckRetType;
UnaryDoubleFPOpt__anone3bcf12e0211::UnaryDoubleFPOpt905 UnaryDoubleFPOpt(bool CheckReturnType): CheckRetType(CheckReturnType) {}
CallOptimizer__anone3bcf12e0211::UnaryDoubleFPOpt906 virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
907 FunctionType *FT = Callee->getFunctionType();
908 if (FT->getNumParams() != 1 || !FT->getReturnType()->isDoubleTy() ||
909 !FT->getParamType(0)->isDoubleTy())
910 return 0;
911
912 if (CheckRetType) {
913 // Check if all the uses for function like 'sin' are converted to float.
914 for (Value::use_iterator UseI = CI->use_begin(); UseI != CI->use_end();
915 ++UseI) {
916 FPTruncInst *Cast = dyn_cast<FPTruncInst>(*UseI);
917 if (Cast == 0 || !Cast->getType()->isFloatTy())
918 return 0;
919 }
920 }
921
922 // If this is something like 'floor((double)floatval)', convert to floorf.
923 FPExtInst *Cast = dyn_cast<FPExtInst>(CI->getArgOperand(0));
924 if (Cast == 0 || !Cast->getOperand(0)->getType()->isFloatTy())
925 return 0;
926
927 // floor((double)floatval) -> (double)floorf(floatval)
928 Value *V = Cast->getOperand(0);
929 V = EmitUnaryFloatFnCall(V, Callee->getName(), B, Callee->getAttributes());
930 return B.CreateFPExt(V, B.getDoubleTy());
931 }
932 };
933
934 //===---------------------------------------===//
935 // 'cos*' Optimizations
936 struct CosOpt : public LibCallOptimization {
CallOptimizer__anone3bcf12e0211::CosOpt937 virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
938 Value *Ret = NULL;
939 if (UnsafeFPShrink && Callee->getName() == "cos" &&
940 TLI->has(LibFunc::cosf)) {
941 UnaryDoubleFPOpt UnsafeUnaryDoubleFP(true);
942 Ret = UnsafeUnaryDoubleFP.CallOptimizer(Callee, CI, B);
943 }
944
945 FunctionType *FT = Callee->getFunctionType();
946 // Just make sure this has 1 argument of FP type, which matches the
947 // result type.
948 if (FT->getNumParams() != 1 || FT->getReturnType() != FT->getParamType(0) ||
949 !FT->getParamType(0)->isFloatingPointTy())
950 return Ret;
951
952 // cos(-x) -> cos(x)
953 Value *Op1 = CI->getArgOperand(0);
954 if (BinaryOperator::isFNeg(Op1)) {
955 BinaryOperator *BinExpr = cast<BinaryOperator>(Op1);
956 return B.CreateCall(Callee, BinExpr->getOperand(1), "cos");
957 }
958 return Ret;
959 }
960 };
961
962 //===---------------------------------------===//
963 // 'pow*' Optimizations
964
965 struct PowOpt : public LibCallOptimization {
CallOptimizer__anone3bcf12e0211::PowOpt966 virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
967 Value *Ret = NULL;
968 if (UnsafeFPShrink && Callee->getName() == "pow" &&
969 TLI->has(LibFunc::powf)) {
970 UnaryDoubleFPOpt UnsafeUnaryDoubleFP(true);
971 Ret = UnsafeUnaryDoubleFP.CallOptimizer(Callee, CI, B);
972 }
973
974 FunctionType *FT = Callee->getFunctionType();
975 // Just make sure this has 2 arguments of the same FP type, which match the
976 // result type.
977 if (FT->getNumParams() != 2 || FT->getReturnType() != FT->getParamType(0) ||
978 FT->getParamType(0) != FT->getParamType(1) ||
979 !FT->getParamType(0)->isFloatingPointTy())
980 return Ret;
981
982 Value *Op1 = CI->getArgOperand(0), *Op2 = CI->getArgOperand(1);
983 if (ConstantFP *Op1C = dyn_cast<ConstantFP>(Op1)) {
984 if (Op1C->isExactlyValue(1.0)) // pow(1.0, x) -> 1.0
985 return Op1C;
986 if (Op1C->isExactlyValue(2.0)) // pow(2.0, x) -> exp2(x)
987 return EmitUnaryFloatFnCall(Op2, "exp2", B, Callee->getAttributes());
988 }
989
990 ConstantFP *Op2C = dyn_cast<ConstantFP>(Op2);
991 if (Op2C == 0) return Ret;
992
993 if (Op2C->getValueAPF().isZero()) // pow(x, 0.0) -> 1.0
994 return ConstantFP::get(CI->getType(), 1.0);
995
996 if (Op2C->isExactlyValue(0.5)) {
997 // Expand pow(x, 0.5) to (x == -infinity ? +infinity : fabs(sqrt(x))).
998 // This is faster than calling pow, and still handles negative zero
999 // and negative infinity correctly.
1000 // TODO: In fast-math mode, this could be just sqrt(x).
1001 // TODO: In finite-only mode, this could be just fabs(sqrt(x)).
1002 Value *Inf = ConstantFP::getInfinity(CI->getType());
1003 Value *NegInf = ConstantFP::getInfinity(CI->getType(), true);
1004 Value *Sqrt = EmitUnaryFloatFnCall(Op1, "sqrt", B,
1005 Callee->getAttributes());
1006 Value *FAbs = EmitUnaryFloatFnCall(Sqrt, "fabs", B,
1007 Callee->getAttributes());
1008 Value *FCmp = B.CreateFCmpOEQ(Op1, NegInf);
1009 Value *Sel = B.CreateSelect(FCmp, Inf, FAbs);
1010 return Sel;
1011 }
1012
1013 if (Op2C->isExactlyValue(1.0)) // pow(x, 1.0) -> x
1014 return Op1;
1015 if (Op2C->isExactlyValue(2.0)) // pow(x, 2.0) -> x*x
1016 return B.CreateFMul(Op1, Op1, "pow2");
1017 if (Op2C->isExactlyValue(-1.0)) // pow(x, -1.0) -> 1.0/x
1018 return B.CreateFDiv(ConstantFP::get(CI->getType(), 1.0),
1019 Op1, "powrecip");
1020 return 0;
1021 }
1022 };
1023
1024 //===---------------------------------------===//
1025 // 'exp2' Optimizations
1026
1027 struct Exp2Opt : public LibCallOptimization {
CallOptimizer__anone3bcf12e0211::Exp2Opt1028 virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
1029 Value *Ret = NULL;
1030 if (UnsafeFPShrink && Callee->getName() == "exp2" &&
1031 TLI->has(LibFunc::exp2)) {
1032 UnaryDoubleFPOpt UnsafeUnaryDoubleFP(true);
1033 Ret = UnsafeUnaryDoubleFP.CallOptimizer(Callee, CI, B);
1034 }
1035
1036 FunctionType *FT = Callee->getFunctionType();
1037 // Just make sure this has 1 argument of FP type, which matches the
1038 // result type.
1039 if (FT->getNumParams() != 1 || FT->getReturnType() != FT->getParamType(0) ||
1040 !FT->getParamType(0)->isFloatingPointTy())
1041 return Ret;
1042
1043 Value *Op = CI->getArgOperand(0);
1044 // Turn exp2(sitofp(x)) -> ldexp(1.0, sext(x)) if sizeof(x) <= 32
1045 // Turn exp2(uitofp(x)) -> ldexp(1.0, zext(x)) if sizeof(x) < 32
1046 Value *LdExpArg = 0;
1047 if (SIToFPInst *OpC = dyn_cast<SIToFPInst>(Op)) {
1048 if (OpC->getOperand(0)->getType()->getPrimitiveSizeInBits() <= 32)
1049 LdExpArg = B.CreateSExt(OpC->getOperand(0), B.getInt32Ty());
1050 } else if (UIToFPInst *OpC = dyn_cast<UIToFPInst>(Op)) {
1051 if (OpC->getOperand(0)->getType()->getPrimitiveSizeInBits() < 32)
1052 LdExpArg = B.CreateZExt(OpC->getOperand(0), B.getInt32Ty());
1053 }
1054
1055 if (LdExpArg) {
1056 const char *Name;
1057 if (Op->getType()->isFloatTy())
1058 Name = "ldexpf";
1059 else if (Op->getType()->isDoubleTy())
1060 Name = "ldexp";
1061 else
1062 Name = "ldexpl";
1063
1064 Constant *One = ConstantFP::get(*Context, APFloat(1.0f));
1065 if (!Op->getType()->isFloatTy())
1066 One = ConstantExpr::getFPExtend(One, Op->getType());
1067
1068 Module *M = Caller->getParent();
1069 Value *Callee = M->getOrInsertFunction(Name, Op->getType(),
1070 Op->getType(),
1071 B.getInt32Ty(), NULL);
1072 CallInst *CI = B.CreateCall2(Callee, One, LdExpArg);
1073 if (const Function *F = dyn_cast<Function>(Callee->stripPointerCasts()))
1074 CI->setCallingConv(F->getCallingConv());
1075
1076 return CI;
1077 }
1078 return Ret;
1079 }
1080 };
1081
1082 //===----------------------------------------------------------------------===//
1083 // Integer Optimizations
1084 //===----------------------------------------------------------------------===//
1085
1086 //===---------------------------------------===//
1087 // 'ffs*' Optimizations
1088
1089 struct FFSOpt : public LibCallOptimization {
CallOptimizer__anone3bcf12e0211::FFSOpt1090 virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
1091 FunctionType *FT = Callee->getFunctionType();
1092 // Just make sure this has 2 arguments of the same FP type, which match the
1093 // result type.
1094 if (FT->getNumParams() != 1 ||
1095 !FT->getReturnType()->isIntegerTy(32) ||
1096 !FT->getParamType(0)->isIntegerTy())
1097 return 0;
1098
1099 Value *Op = CI->getArgOperand(0);
1100
1101 // Constant fold.
1102 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
1103 if (CI->getValue() == 0) // ffs(0) -> 0.
1104 return Constant::getNullValue(CI->getType());
1105 // ffs(c) -> cttz(c)+1
1106 return B.getInt32(CI->getValue().countTrailingZeros() + 1);
1107 }
1108
1109 // ffs(x) -> x != 0 ? (i32)llvm.cttz(x)+1 : 0
1110 Type *ArgType = Op->getType();
1111 Value *F = Intrinsic::getDeclaration(Callee->getParent(),
1112 Intrinsic::cttz, ArgType);
1113 Value *V = B.CreateCall2(F, Op, B.getFalse(), "cttz");
1114 V = B.CreateAdd(V, ConstantInt::get(V->getType(), 1));
1115 V = B.CreateIntCast(V, B.getInt32Ty(), false);
1116
1117 Value *Cond = B.CreateICmpNE(Op, Constant::getNullValue(ArgType));
1118 return B.CreateSelect(Cond, V, B.getInt32(0));
1119 }
1120 };
1121
1122 //===---------------------------------------===//
1123 // 'isdigit' Optimizations
1124
1125 struct IsDigitOpt : public LibCallOptimization {
CallOptimizer__anone3bcf12e0211::IsDigitOpt1126 virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
1127 FunctionType *FT = Callee->getFunctionType();
1128 // We require integer(i32)
1129 if (FT->getNumParams() != 1 || !FT->getReturnType()->isIntegerTy() ||
1130 !FT->getParamType(0)->isIntegerTy(32))
1131 return 0;
1132
1133 // isdigit(c) -> (c-'0') <u 10
1134 Value *Op = CI->getArgOperand(0);
1135 Op = B.CreateSub(Op, B.getInt32('0'), "isdigittmp");
1136 Op = B.CreateICmpULT(Op, B.getInt32(10), "isdigit");
1137 return B.CreateZExt(Op, CI->getType());
1138 }
1139 };
1140
1141 //===---------------------------------------===//
1142 // 'isascii' Optimizations
1143
1144 struct IsAsciiOpt : public LibCallOptimization {
CallOptimizer__anone3bcf12e0211::IsAsciiOpt1145 virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
1146 FunctionType *FT = Callee->getFunctionType();
1147 // We require integer(i32)
1148 if (FT->getNumParams() != 1 || !FT->getReturnType()->isIntegerTy() ||
1149 !FT->getParamType(0)->isIntegerTy(32))
1150 return 0;
1151
1152 // isascii(c) -> c <u 128
1153 Value *Op = CI->getArgOperand(0);
1154 Op = B.CreateICmpULT(Op, B.getInt32(128), "isascii");
1155 return B.CreateZExt(Op, CI->getType());
1156 }
1157 };
1158
1159 //===---------------------------------------===//
1160 // 'abs', 'labs', 'llabs' Optimizations
1161
1162 struct AbsOpt : public LibCallOptimization {
CallOptimizer__anone3bcf12e0211::AbsOpt1163 virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
1164 FunctionType *FT = Callee->getFunctionType();
1165 // We require integer(integer) where the types agree.
1166 if (FT->getNumParams() != 1 || !FT->getReturnType()->isIntegerTy() ||
1167 FT->getParamType(0) != FT->getReturnType())
1168 return 0;
1169
1170 // abs(x) -> x >s -1 ? x : -x
1171 Value *Op = CI->getArgOperand(0);
1172 Value *Pos = B.CreateICmpSGT(Op, Constant::getAllOnesValue(Op->getType()),
1173 "ispos");
1174 Value *Neg = B.CreateNeg(Op, "neg");
1175 return B.CreateSelect(Pos, Op, Neg);
1176 }
1177 };
1178
1179
1180 //===---------------------------------------===//
1181 // 'toascii' Optimizations
1182
1183 struct ToAsciiOpt : public LibCallOptimization {
CallOptimizer__anone3bcf12e0211::ToAsciiOpt1184 virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
1185 FunctionType *FT = Callee->getFunctionType();
1186 // We require i32(i32)
1187 if (FT->getNumParams() != 1 || FT->getReturnType() != FT->getParamType(0) ||
1188 !FT->getParamType(0)->isIntegerTy(32))
1189 return 0;
1190
1191 // isascii(c) -> c & 0x7f
1192 return B.CreateAnd(CI->getArgOperand(0),
1193 ConstantInt::get(CI->getType(),0x7F));
1194 }
1195 };
1196
1197 //===----------------------------------------------------------------------===//
1198 // Formatting and IO Optimizations
1199 //===----------------------------------------------------------------------===//
1200
1201 //===---------------------------------------===//
1202 // 'printf' Optimizations
1203
1204 struct PrintFOpt : public LibCallOptimization {
OptimizeFixedFormatString__anone3bcf12e0211::PrintFOpt1205 Value *OptimizeFixedFormatString(Function *Callee, CallInst *CI,
1206 IRBuilder<> &B) {
1207 // Check for a fixed format string.
1208 StringRef FormatStr;
1209 if (!getConstantStringInfo(CI->getArgOperand(0), FormatStr))
1210 return 0;
1211
1212 // Empty format string -> noop.
1213 if (FormatStr.empty()) // Tolerate printf's declared void.
1214 return CI->use_empty() ? (Value*)CI :
1215 ConstantInt::get(CI->getType(), 0);
1216
1217 // Do not do any of the following transformations if the printf return value
1218 // is used, in general the printf return value is not compatible with either
1219 // putchar() or puts().
1220 if (!CI->use_empty())
1221 return 0;
1222
1223 // printf("x") -> putchar('x'), even for '%'.
1224 if (FormatStr.size() == 1) {
1225 Value *Res = EmitPutChar(B.getInt32(FormatStr[0]), B, TD, TLI);
1226 if (CI->use_empty() || !Res) return Res;
1227 return B.CreateIntCast(Res, CI->getType(), true);
1228 }
1229
1230 // printf("foo\n") --> puts("foo")
1231 if (FormatStr[FormatStr.size()-1] == '\n' &&
1232 FormatStr.find('%') == std::string::npos) { // no format characters.
1233 // Create a string literal with no \n on it. We expect the constant merge
1234 // pass to be run after this pass, to merge duplicate strings.
1235 FormatStr = FormatStr.drop_back();
1236 Value *GV = B.CreateGlobalString(FormatStr, "str");
1237 Value *NewCI = EmitPutS(GV, B, TD, TLI);
1238 return (CI->use_empty() || !NewCI) ?
1239 NewCI :
1240 ConstantInt::get(CI->getType(), FormatStr.size()+1);
1241 }
1242
1243 // Optimize specific format strings.
1244 // printf("%c", chr) --> putchar(chr)
1245 if (FormatStr == "%c" && CI->getNumArgOperands() > 1 &&
1246 CI->getArgOperand(1)->getType()->isIntegerTy()) {
1247 Value *Res = EmitPutChar(CI->getArgOperand(1), B, TD, TLI);
1248
1249 if (CI->use_empty() || !Res) return Res;
1250 return B.CreateIntCast(Res, CI->getType(), true);
1251 }
1252
1253 // printf("%s\n", str) --> puts(str)
1254 if (FormatStr == "%s\n" && CI->getNumArgOperands() > 1 &&
1255 CI->getArgOperand(1)->getType()->isPointerTy()) {
1256 return EmitPutS(CI->getArgOperand(1), B, TD, TLI);
1257 }
1258 return 0;
1259 }
1260
CallOptimizer__anone3bcf12e0211::PrintFOpt1261 virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
1262 // Require one fixed pointer argument and an integer/void result.
1263 FunctionType *FT = Callee->getFunctionType();
1264 if (FT->getNumParams() < 1 || !FT->getParamType(0)->isPointerTy() ||
1265 !(FT->getReturnType()->isIntegerTy() ||
1266 FT->getReturnType()->isVoidTy()))
1267 return 0;
1268
1269 if (Value *V = OptimizeFixedFormatString(Callee, CI, B)) {
1270 return V;
1271 }
1272
1273 // printf(format, ...) -> iprintf(format, ...) if no floating point
1274 // arguments.
1275 if (TLI->has(LibFunc::iprintf) && !CallHasFloatingPointArgument(CI)) {
1276 Module *M = B.GetInsertBlock()->getParent()->getParent();
1277 Constant *IPrintFFn =
1278 M->getOrInsertFunction("iprintf", FT, Callee->getAttributes());
1279 CallInst *New = cast<CallInst>(CI->clone());
1280 New->setCalledFunction(IPrintFFn);
1281 B.Insert(New);
1282 return New;
1283 }
1284 return 0;
1285 }
1286 };
1287
1288 //===---------------------------------------===//
1289 // 'sprintf' Optimizations
1290
1291 struct SPrintFOpt : public LibCallOptimization {
OptimizeFixedFormatString__anone3bcf12e0211::SPrintFOpt1292 Value *OptimizeFixedFormatString(Function *Callee, CallInst *CI,
1293 IRBuilder<> &B) {
1294 // Check for a fixed format string.
1295 StringRef FormatStr;
1296 if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr))
1297 return 0;
1298
1299 // If we just have a format string (nothing else crazy) transform it.
1300 if (CI->getNumArgOperands() == 2) {
1301 // Make sure there's no % in the constant array. We could try to handle
1302 // %% -> % in the future if we cared.
1303 for (unsigned i = 0, e = FormatStr.size(); i != e; ++i)
1304 if (FormatStr[i] == '%')
1305 return 0; // we found a format specifier, bail out.
1306
1307 // These optimizations require TargetData.
1308 if (!TD) return 0;
1309
1310 // sprintf(str, fmt) -> llvm.memcpy(str, fmt, strlen(fmt)+1, 1)
1311 B.CreateMemCpy(CI->getArgOperand(0), CI->getArgOperand(1),
1312 ConstantInt::get(TD->getIntPtrType(*Context), // Copy the
1313 FormatStr.size() + 1), 1); // nul byte.
1314 return ConstantInt::get(CI->getType(), FormatStr.size());
1315 }
1316
1317 // The remaining optimizations require the format string to be "%s" or "%c"
1318 // and have an extra operand.
1319 if (FormatStr.size() != 2 || FormatStr[0] != '%' ||
1320 CI->getNumArgOperands() < 3)
1321 return 0;
1322
1323 // Decode the second character of the format string.
1324 if (FormatStr[1] == 'c') {
1325 // sprintf(dst, "%c", chr) --> *(i8*)dst = chr; *((i8*)dst+1) = 0
1326 if (!CI->getArgOperand(2)->getType()->isIntegerTy()) return 0;
1327 Value *V = B.CreateTrunc(CI->getArgOperand(2), B.getInt8Ty(), "char");
1328 Value *Ptr = CastToCStr(CI->getArgOperand(0), B);
1329 B.CreateStore(V, Ptr);
1330 Ptr = B.CreateGEP(Ptr, B.getInt32(1), "nul");
1331 B.CreateStore(B.getInt8(0), Ptr);
1332
1333 return ConstantInt::get(CI->getType(), 1);
1334 }
1335
1336 if (FormatStr[1] == 's') {
1337 // These optimizations require TargetData.
1338 if (!TD) return 0;
1339
1340 // sprintf(dest, "%s", str) -> llvm.memcpy(dest, str, strlen(str)+1, 1)
1341 if (!CI->getArgOperand(2)->getType()->isPointerTy()) return 0;
1342
1343 Value *Len = EmitStrLen(CI->getArgOperand(2), B, TD, TLI);
1344 if (!Len)
1345 return 0;
1346 Value *IncLen = B.CreateAdd(Len,
1347 ConstantInt::get(Len->getType(), 1),
1348 "leninc");
1349 B.CreateMemCpy(CI->getArgOperand(0), CI->getArgOperand(2), IncLen, 1);
1350
1351 // The sprintf result is the unincremented number of bytes in the string.
1352 return B.CreateIntCast(Len, CI->getType(), false);
1353 }
1354 return 0;
1355 }
1356
CallOptimizer__anone3bcf12e0211::SPrintFOpt1357 virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
1358 // Require two fixed pointer arguments and an integer result.
1359 FunctionType *FT = Callee->getFunctionType();
1360 if (FT->getNumParams() != 2 || !FT->getParamType(0)->isPointerTy() ||
1361 !FT->getParamType(1)->isPointerTy() ||
1362 !FT->getReturnType()->isIntegerTy())
1363 return 0;
1364
1365 if (Value *V = OptimizeFixedFormatString(Callee, CI, B)) {
1366 return V;
1367 }
1368
1369 // sprintf(str, format, ...) -> siprintf(str, format, ...) if no floating
1370 // point arguments.
1371 if (TLI->has(LibFunc::siprintf) && !CallHasFloatingPointArgument(CI)) {
1372 Module *M = B.GetInsertBlock()->getParent()->getParent();
1373 Constant *SIPrintFFn =
1374 M->getOrInsertFunction("siprintf", FT, Callee->getAttributes());
1375 CallInst *New = cast<CallInst>(CI->clone());
1376 New->setCalledFunction(SIPrintFFn);
1377 B.Insert(New);
1378 return New;
1379 }
1380 return 0;
1381 }
1382 };
1383
1384 //===---------------------------------------===//
1385 // 'fwrite' Optimizations
1386
1387 struct FWriteOpt : public LibCallOptimization {
CallOptimizer__anone3bcf12e0211::FWriteOpt1388 virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
1389 // Require a pointer, an integer, an integer, a pointer, returning integer.
1390 FunctionType *FT = Callee->getFunctionType();
1391 if (FT->getNumParams() != 4 || !FT->getParamType(0)->isPointerTy() ||
1392 !FT->getParamType(1)->isIntegerTy() ||
1393 !FT->getParamType(2)->isIntegerTy() ||
1394 !FT->getParamType(3)->isPointerTy() ||
1395 !FT->getReturnType()->isIntegerTy())
1396 return 0;
1397
1398 // Get the element size and count.
1399 ConstantInt *SizeC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
1400 ConstantInt *CountC = dyn_cast<ConstantInt>(CI->getArgOperand(2));
1401 if (!SizeC || !CountC) return 0;
1402 uint64_t Bytes = SizeC->getZExtValue()*CountC->getZExtValue();
1403
1404 // If this is writing zero records, remove the call (it's a noop).
1405 if (Bytes == 0)
1406 return ConstantInt::get(CI->getType(), 0);
1407
1408 // If this is writing one byte, turn it into fputc.
1409 // This optimisation is only valid, if the return value is unused.
1410 if (Bytes == 1 && CI->use_empty()) { // fwrite(S,1,1,F) -> fputc(S[0],F)
1411 Value *Char = B.CreateLoad(CastToCStr(CI->getArgOperand(0), B), "char");
1412 Value *NewCI = EmitFPutC(Char, CI->getArgOperand(3), B, TD, TLI);
1413 return NewCI ? ConstantInt::get(CI->getType(), 1) : 0;
1414 }
1415
1416 return 0;
1417 }
1418 };
1419
1420 //===---------------------------------------===//
1421 // 'fputs' Optimizations
1422
1423 struct FPutsOpt : public LibCallOptimization {
CallOptimizer__anone3bcf12e0211::FPutsOpt1424 virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
1425 // These optimizations require TargetData.
1426 if (!TD) return 0;
1427
1428 // Require two pointers. Also, we can't optimize if return value is used.
1429 FunctionType *FT = Callee->getFunctionType();
1430 if (FT->getNumParams() != 2 || !FT->getParamType(0)->isPointerTy() ||
1431 !FT->getParamType(1)->isPointerTy() ||
1432 !CI->use_empty())
1433 return 0;
1434
1435 // fputs(s,F) --> fwrite(s,1,strlen(s),F)
1436 uint64_t Len = GetStringLength(CI->getArgOperand(0));
1437 if (!Len) return 0;
1438 // Known to have no uses (see above).
1439 return EmitFWrite(CI->getArgOperand(0),
1440 ConstantInt::get(TD->getIntPtrType(*Context), Len-1),
1441 CI->getArgOperand(1), B, TD, TLI);
1442 }
1443 };
1444
1445 //===---------------------------------------===//
1446 // 'fprintf' Optimizations
1447
1448 struct FPrintFOpt : public LibCallOptimization {
OptimizeFixedFormatString__anone3bcf12e0211::FPrintFOpt1449 Value *OptimizeFixedFormatString(Function *Callee, CallInst *CI,
1450 IRBuilder<> &B) {
1451 // All the optimizations depend on the format string.
1452 StringRef FormatStr;
1453 if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr))
1454 return 0;
1455
1456 // fprintf(F, "foo") --> fwrite("foo", 3, 1, F)
1457 if (CI->getNumArgOperands() == 2) {
1458 for (unsigned i = 0, e = FormatStr.size(); i != e; ++i)
1459 if (FormatStr[i] == '%') // Could handle %% -> % if we cared.
1460 return 0; // We found a format specifier.
1461
1462 // These optimizations require TargetData.
1463 if (!TD) return 0;
1464
1465 Value *NewCI = EmitFWrite(CI->getArgOperand(1),
1466 ConstantInt::get(TD->getIntPtrType(*Context),
1467 FormatStr.size()),
1468 CI->getArgOperand(0), B, TD, TLI);
1469 return NewCI ? ConstantInt::get(CI->getType(), FormatStr.size()) : 0;
1470 }
1471
1472 // The remaining optimizations require the format string to be "%s" or "%c"
1473 // and have an extra operand.
1474 if (FormatStr.size() != 2 || FormatStr[0] != '%' ||
1475 CI->getNumArgOperands() < 3)
1476 return 0;
1477
1478 // Decode the second character of the format string.
1479 if (FormatStr[1] == 'c') {
1480 // fprintf(F, "%c", chr) --> fputc(chr, F)
1481 if (!CI->getArgOperand(2)->getType()->isIntegerTy()) return 0;
1482 Value *NewCI = EmitFPutC(CI->getArgOperand(2), CI->getArgOperand(0), B,
1483 TD, TLI);
1484 return NewCI ? ConstantInt::get(CI->getType(), 1) : 0;
1485 }
1486
1487 if (FormatStr[1] == 's') {
1488 // fprintf(F, "%s", str) --> fputs(str, F)
1489 if (!CI->getArgOperand(2)->getType()->isPointerTy() || !CI->use_empty())
1490 return 0;
1491 return EmitFPutS(CI->getArgOperand(2), CI->getArgOperand(0), B, TD, TLI);
1492 }
1493 return 0;
1494 }
1495
CallOptimizer__anone3bcf12e0211::FPrintFOpt1496 virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
1497 // Require two fixed paramters as pointers and integer result.
1498 FunctionType *FT = Callee->getFunctionType();
1499 if (FT->getNumParams() != 2 || !FT->getParamType(0)->isPointerTy() ||
1500 !FT->getParamType(1)->isPointerTy() ||
1501 !FT->getReturnType()->isIntegerTy())
1502 return 0;
1503
1504 if (Value *V = OptimizeFixedFormatString(Callee, CI, B)) {
1505 return V;
1506 }
1507
1508 // fprintf(stream, format, ...) -> fiprintf(stream, format, ...) if no
1509 // floating point arguments.
1510 if (TLI->has(LibFunc::fiprintf) && !CallHasFloatingPointArgument(CI)) {
1511 Module *M = B.GetInsertBlock()->getParent()->getParent();
1512 Constant *FIPrintFFn =
1513 M->getOrInsertFunction("fiprintf", FT, Callee->getAttributes());
1514 CallInst *New = cast<CallInst>(CI->clone());
1515 New->setCalledFunction(FIPrintFFn);
1516 B.Insert(New);
1517 return New;
1518 }
1519 return 0;
1520 }
1521 };
1522
1523 //===---------------------------------------===//
1524 // 'puts' Optimizations
1525
1526 struct PutsOpt : public LibCallOptimization {
CallOptimizer__anone3bcf12e0211::PutsOpt1527 virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
1528 // Require one fixed pointer argument and an integer/void result.
1529 FunctionType *FT = Callee->getFunctionType();
1530 if (FT->getNumParams() < 1 || !FT->getParamType(0)->isPointerTy() ||
1531 !(FT->getReturnType()->isIntegerTy() ||
1532 FT->getReturnType()->isVoidTy()))
1533 return 0;
1534
1535 // Check for a constant string.
1536 StringRef Str;
1537 if (!getConstantStringInfo(CI->getArgOperand(0), Str))
1538 return 0;
1539
1540 if (Str.empty() && CI->use_empty()) {
1541 // puts("") -> putchar('\n')
1542 Value *Res = EmitPutChar(B.getInt32('\n'), B, TD, TLI);
1543 if (CI->use_empty() || !Res) return Res;
1544 return B.CreateIntCast(Res, CI->getType(), true);
1545 }
1546
1547 return 0;
1548 }
1549 };
1550
1551 } // end anonymous namespace.
1552
1553 //===----------------------------------------------------------------------===//
1554 // SimplifyLibCalls Pass Implementation
1555 //===----------------------------------------------------------------------===//
1556
1557 namespace {
1558 /// This pass optimizes well known library functions from libc and libm.
1559 ///
1560 class SimplifyLibCalls : public FunctionPass {
1561 TargetLibraryInfo *TLI;
1562
1563 StringMap<LibCallOptimization*> Optimizations;
1564 // String and Memory LibCall Optimizations
1565 StrCatOpt StrCat; StrNCatOpt StrNCat; StrChrOpt StrChr; StrRChrOpt StrRChr;
1566 StrCmpOpt StrCmp; StrNCmpOpt StrNCmp;
1567 StrCpyOpt StrCpy; StrCpyOpt StrCpyChk;
1568 StpCpyOpt StpCpy; StpCpyOpt StpCpyChk;
1569 StrNCpyOpt StrNCpy;
1570 StrLenOpt StrLen; StrPBrkOpt StrPBrk;
1571 StrToOpt StrTo; StrSpnOpt StrSpn; StrCSpnOpt StrCSpn; StrStrOpt StrStr;
1572 MemCmpOpt MemCmp; MemCpyOpt MemCpy; MemMoveOpt MemMove; MemSetOpt MemSet;
1573 // Math Library Optimizations
1574 CosOpt Cos; PowOpt Pow; Exp2Opt Exp2;
1575 UnaryDoubleFPOpt UnaryDoubleFP, UnsafeUnaryDoubleFP;
1576 // Integer Optimizations
1577 FFSOpt FFS; AbsOpt Abs; IsDigitOpt IsDigit; IsAsciiOpt IsAscii;
1578 ToAsciiOpt ToAscii;
1579 // Formatting and IO Optimizations
1580 SPrintFOpt SPrintF; PrintFOpt PrintF;
1581 FWriteOpt FWrite; FPutsOpt FPuts; FPrintFOpt FPrintF;
1582 PutsOpt Puts;
1583
1584 bool Modified; // This is only used by doInitialization.
1585 public:
1586 static char ID; // Pass identification
SimplifyLibCalls()1587 SimplifyLibCalls() : FunctionPass(ID), StrCpy(false), StrCpyChk(true),
1588 StpCpy(false), StpCpyChk(true),
1589 UnaryDoubleFP(false), UnsafeUnaryDoubleFP(true) {
1590 initializeSimplifyLibCallsPass(*PassRegistry::getPassRegistry());
1591 }
1592 void AddOpt(LibFunc::Func F, LibCallOptimization* Opt);
1593 void AddOpt(LibFunc::Func F1, LibFunc::Func F2, LibCallOptimization* Opt);
1594
1595 void InitOptimizations();
1596 bool runOnFunction(Function &F);
1597
1598 void setDoesNotAccessMemory(Function &F);
1599 void setOnlyReadsMemory(Function &F);
1600 void setDoesNotThrow(Function &F);
1601 void setDoesNotCapture(Function &F, unsigned n);
1602 void setDoesNotAlias(Function &F, unsigned n);
1603 bool doInitialization(Module &M);
1604
1605 void inferPrototypeAttributes(Function &F);
getAnalysisUsage(AnalysisUsage & AU) const1606 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
1607 AU.addRequired<TargetLibraryInfo>();
1608 }
1609 };
1610 } // end anonymous namespace.
1611
1612 char SimplifyLibCalls::ID = 0;
1613
1614 INITIALIZE_PASS_BEGIN(SimplifyLibCalls, "simplify-libcalls",
1615 "Simplify well-known library calls", false, false)
INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo)1616 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo)
1617 INITIALIZE_PASS_END(SimplifyLibCalls, "simplify-libcalls",
1618 "Simplify well-known library calls", false, false)
1619
1620 // Public interface to the Simplify LibCalls pass.
1621 FunctionPass *llvm::createSimplifyLibCallsPass() {
1622 return new SimplifyLibCalls();
1623 }
1624
AddOpt(LibFunc::Func F,LibCallOptimization * Opt)1625 void SimplifyLibCalls::AddOpt(LibFunc::Func F, LibCallOptimization* Opt) {
1626 if (TLI->has(F))
1627 Optimizations[TLI->getName(F)] = Opt;
1628 }
1629
AddOpt(LibFunc::Func F1,LibFunc::Func F2,LibCallOptimization * Opt)1630 void SimplifyLibCalls::AddOpt(LibFunc::Func F1, LibFunc::Func F2,
1631 LibCallOptimization* Opt) {
1632 if (TLI->has(F1) && TLI->has(F2))
1633 Optimizations[TLI->getName(F1)] = Opt;
1634 }
1635
1636 /// Optimizations - Populate the Optimizations map with all the optimizations
1637 /// we know.
InitOptimizations()1638 void SimplifyLibCalls::InitOptimizations() {
1639 // String and Memory LibCall Optimizations
1640 Optimizations["strcat"] = &StrCat;
1641 Optimizations["strncat"] = &StrNCat;
1642 Optimizations["strchr"] = &StrChr;
1643 Optimizations["strrchr"] = &StrRChr;
1644 Optimizations["strcmp"] = &StrCmp;
1645 Optimizations["strncmp"] = &StrNCmp;
1646 Optimizations["strcpy"] = &StrCpy;
1647 Optimizations["strncpy"] = &StrNCpy;
1648 Optimizations["stpcpy"] = &StpCpy;
1649 Optimizations["strlen"] = &StrLen;
1650 Optimizations["strpbrk"] = &StrPBrk;
1651 Optimizations["strtol"] = &StrTo;
1652 Optimizations["strtod"] = &StrTo;
1653 Optimizations["strtof"] = &StrTo;
1654 Optimizations["strtoul"] = &StrTo;
1655 Optimizations["strtoll"] = &StrTo;
1656 Optimizations["strtold"] = &StrTo;
1657 Optimizations["strtoull"] = &StrTo;
1658 Optimizations["strspn"] = &StrSpn;
1659 Optimizations["strcspn"] = &StrCSpn;
1660 Optimizations["strstr"] = &StrStr;
1661 Optimizations["memcmp"] = &MemCmp;
1662 AddOpt(LibFunc::memcpy, &MemCpy);
1663 Optimizations["memmove"] = &MemMove;
1664 AddOpt(LibFunc::memset, &MemSet);
1665
1666 // _chk variants of String and Memory LibCall Optimizations.
1667 Optimizations["__strcpy_chk"] = &StrCpyChk;
1668 Optimizations["__stpcpy_chk"] = &StpCpyChk;
1669
1670 // Math Library Optimizations
1671 Optimizations["cosf"] = &Cos;
1672 Optimizations["cos"] = &Cos;
1673 Optimizations["cosl"] = &Cos;
1674 Optimizations["powf"] = &Pow;
1675 Optimizations["pow"] = &Pow;
1676 Optimizations["powl"] = &Pow;
1677 Optimizations["llvm.pow.f32"] = &Pow;
1678 Optimizations["llvm.pow.f64"] = &Pow;
1679 Optimizations["llvm.pow.f80"] = &Pow;
1680 Optimizations["llvm.pow.f128"] = &Pow;
1681 Optimizations["llvm.pow.ppcf128"] = &Pow;
1682 Optimizations["exp2l"] = &Exp2;
1683 Optimizations["exp2"] = &Exp2;
1684 Optimizations["exp2f"] = &Exp2;
1685 Optimizations["llvm.exp2.ppcf128"] = &Exp2;
1686 Optimizations["llvm.exp2.f128"] = &Exp2;
1687 Optimizations["llvm.exp2.f80"] = &Exp2;
1688 Optimizations["llvm.exp2.f64"] = &Exp2;
1689 Optimizations["llvm.exp2.f32"] = &Exp2;
1690
1691 AddOpt(LibFunc::ceil, LibFunc::ceilf, &UnaryDoubleFP);
1692 AddOpt(LibFunc::fabs, LibFunc::fabsf, &UnaryDoubleFP);
1693 AddOpt(LibFunc::floor, LibFunc::floorf, &UnaryDoubleFP);
1694 AddOpt(LibFunc::rint, LibFunc::rintf, &UnaryDoubleFP);
1695 AddOpt(LibFunc::round, LibFunc::roundf, &UnaryDoubleFP);
1696 AddOpt(LibFunc::nearbyint, LibFunc::nearbyintf, &UnaryDoubleFP);
1697 AddOpt(LibFunc::trunc, LibFunc::truncf, &UnaryDoubleFP);
1698
1699 if(UnsafeFPShrink) {
1700 AddOpt(LibFunc::acos, LibFunc::acosf, &UnsafeUnaryDoubleFP);
1701 AddOpt(LibFunc::acosh, LibFunc::acoshf, &UnsafeUnaryDoubleFP);
1702 AddOpt(LibFunc::asin, LibFunc::asinf, &UnsafeUnaryDoubleFP);
1703 AddOpt(LibFunc::asinh, LibFunc::asinhf, &UnsafeUnaryDoubleFP);
1704 AddOpt(LibFunc::atan, LibFunc::atanf, &UnsafeUnaryDoubleFP);
1705 AddOpt(LibFunc::atanh, LibFunc::atanhf, &UnsafeUnaryDoubleFP);
1706 AddOpt(LibFunc::cbrt, LibFunc::cbrtf, &UnsafeUnaryDoubleFP);
1707 AddOpt(LibFunc::cosh, LibFunc::coshf, &UnsafeUnaryDoubleFP);
1708 AddOpt(LibFunc::exp, LibFunc::expf, &UnsafeUnaryDoubleFP);
1709 AddOpt(LibFunc::exp10, LibFunc::exp10f, &UnsafeUnaryDoubleFP);
1710 AddOpt(LibFunc::expm1, LibFunc::expm1f, &UnsafeUnaryDoubleFP);
1711 AddOpt(LibFunc::log, LibFunc::logf, &UnsafeUnaryDoubleFP);
1712 AddOpt(LibFunc::log10, LibFunc::log10f, &UnsafeUnaryDoubleFP);
1713 AddOpt(LibFunc::log1p, LibFunc::log1pf, &UnsafeUnaryDoubleFP);
1714 AddOpt(LibFunc::log2, LibFunc::log2f, &UnsafeUnaryDoubleFP);
1715 AddOpt(LibFunc::logb, LibFunc::logbf, &UnsafeUnaryDoubleFP);
1716 AddOpt(LibFunc::sin, LibFunc::sinf, &UnsafeUnaryDoubleFP);
1717 AddOpt(LibFunc::sinh, LibFunc::sinhf, &UnsafeUnaryDoubleFP);
1718 AddOpt(LibFunc::sqrt, LibFunc::sqrtf, &UnsafeUnaryDoubleFP);
1719 AddOpt(LibFunc::tan, LibFunc::tanf, &UnsafeUnaryDoubleFP);
1720 AddOpt(LibFunc::tanh, LibFunc::tanhf, &UnsafeUnaryDoubleFP);
1721 }
1722
1723 // Integer Optimizations
1724 Optimizations["ffs"] = &FFS;
1725 Optimizations["ffsl"] = &FFS;
1726 Optimizations["ffsll"] = &FFS;
1727 Optimizations["abs"] = &Abs;
1728 Optimizations["labs"] = &Abs;
1729 Optimizations["llabs"] = &Abs;
1730 Optimizations["isdigit"] = &IsDigit;
1731 Optimizations["isascii"] = &IsAscii;
1732 Optimizations["toascii"] = &ToAscii;
1733
1734 // Formatting and IO Optimizations
1735 Optimizations["sprintf"] = &SPrintF;
1736 Optimizations["printf"] = &PrintF;
1737 AddOpt(LibFunc::fwrite, &FWrite);
1738 AddOpt(LibFunc::fputs, &FPuts);
1739 Optimizations["fprintf"] = &FPrintF;
1740 Optimizations["puts"] = &Puts;
1741 }
1742
1743
1744 /// runOnFunction - Top level algorithm.
1745 ///
runOnFunction(Function & F)1746 bool SimplifyLibCalls::runOnFunction(Function &F) {
1747 TLI = &getAnalysis<TargetLibraryInfo>();
1748
1749 if (Optimizations.empty())
1750 InitOptimizations();
1751
1752 const TargetData *TD = getAnalysisIfAvailable<TargetData>();
1753
1754 IRBuilder<> Builder(F.getContext());
1755
1756 bool Changed = false;
1757 for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
1758 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ) {
1759 // Ignore non-calls.
1760 CallInst *CI = dyn_cast<CallInst>(I++);
1761 if (!CI) continue;
1762
1763 // Ignore indirect calls and calls to non-external functions.
1764 Function *Callee = CI->getCalledFunction();
1765 if (Callee == 0 || !Callee->isDeclaration() ||
1766 !(Callee->hasExternalLinkage() || Callee->hasDLLImportLinkage()))
1767 continue;
1768
1769 // Ignore unknown calls.
1770 LibCallOptimization *LCO = Optimizations.lookup(Callee->getName());
1771 if (!LCO) continue;
1772
1773 // Set the builder to the instruction after the call.
1774 Builder.SetInsertPoint(BB, I);
1775
1776 // Use debug location of CI for all new instructions.
1777 Builder.SetCurrentDebugLocation(CI->getDebugLoc());
1778
1779 // Try to optimize this call.
1780 Value *Result = LCO->OptimizeCall(CI, TD, TLI, Builder);
1781 if (Result == 0) continue;
1782
1783 DEBUG(dbgs() << "SimplifyLibCalls simplified: " << *CI;
1784 dbgs() << " into: " << *Result << "\n");
1785
1786 // Something changed!
1787 Changed = true;
1788 ++NumSimplified;
1789
1790 // Inspect the instruction after the call (which was potentially just
1791 // added) next.
1792 I = CI; ++I;
1793
1794 if (CI != Result && !CI->use_empty()) {
1795 CI->replaceAllUsesWith(Result);
1796 if (!Result->hasName())
1797 Result->takeName(CI);
1798 }
1799 CI->eraseFromParent();
1800 }
1801 }
1802 return Changed;
1803 }
1804
1805 // Utility methods for doInitialization.
1806
setDoesNotAccessMemory(Function & F)1807 void SimplifyLibCalls::setDoesNotAccessMemory(Function &F) {
1808 if (!F.doesNotAccessMemory()) {
1809 F.setDoesNotAccessMemory();
1810 ++NumAnnotated;
1811 Modified = true;
1812 }
1813 }
setOnlyReadsMemory(Function & F)1814 void SimplifyLibCalls::setOnlyReadsMemory(Function &F) {
1815 if (!F.onlyReadsMemory()) {
1816 F.setOnlyReadsMemory();
1817 ++NumAnnotated;
1818 Modified = true;
1819 }
1820 }
setDoesNotThrow(Function & F)1821 void SimplifyLibCalls::setDoesNotThrow(Function &F) {
1822 if (!F.doesNotThrow()) {
1823 F.setDoesNotThrow();
1824 ++NumAnnotated;
1825 Modified = true;
1826 }
1827 }
setDoesNotCapture(Function & F,unsigned n)1828 void SimplifyLibCalls::setDoesNotCapture(Function &F, unsigned n) {
1829 if (!F.doesNotCapture(n)) {
1830 F.setDoesNotCapture(n);
1831 ++NumAnnotated;
1832 Modified = true;
1833 }
1834 }
setDoesNotAlias(Function & F,unsigned n)1835 void SimplifyLibCalls::setDoesNotAlias(Function &F, unsigned n) {
1836 if (!F.doesNotAlias(n)) {
1837 F.setDoesNotAlias(n);
1838 ++NumAnnotated;
1839 Modified = true;
1840 }
1841 }
1842
1843
inferPrototypeAttributes(Function & F)1844 void SimplifyLibCalls::inferPrototypeAttributes(Function &F) {
1845 FunctionType *FTy = F.getFunctionType();
1846
1847 StringRef Name = F.getName();
1848 switch (Name[0]) {
1849 case 's':
1850 if (Name == "strlen") {
1851 if (FTy->getNumParams() != 1 || !FTy->getParamType(0)->isPointerTy())
1852 return;
1853 setOnlyReadsMemory(F);
1854 setDoesNotThrow(F);
1855 setDoesNotCapture(F, 1);
1856 } else if (Name == "strchr" ||
1857 Name == "strrchr") {
1858 if (FTy->getNumParams() != 2 ||
1859 !FTy->getParamType(0)->isPointerTy() ||
1860 !FTy->getParamType(1)->isIntegerTy())
1861 return;
1862 setOnlyReadsMemory(F);
1863 setDoesNotThrow(F);
1864 } else if (Name == "strcpy" ||
1865 Name == "stpcpy" ||
1866 Name == "strcat" ||
1867 Name == "strtol" ||
1868 Name == "strtod" ||
1869 Name == "strtof" ||
1870 Name == "strtoul" ||
1871 Name == "strtoll" ||
1872 Name == "strtold" ||
1873 Name == "strncat" ||
1874 Name == "strncpy" ||
1875 Name == "stpncpy" ||
1876 Name == "strtoull") {
1877 if (FTy->getNumParams() < 2 ||
1878 !FTy->getParamType(1)->isPointerTy())
1879 return;
1880 setDoesNotThrow(F);
1881 setDoesNotCapture(F, 2);
1882 } else if (Name == "strxfrm") {
1883 if (FTy->getNumParams() != 3 ||
1884 !FTy->getParamType(0)->isPointerTy() ||
1885 !FTy->getParamType(1)->isPointerTy())
1886 return;
1887 setDoesNotThrow(F);
1888 setDoesNotCapture(F, 1);
1889 setDoesNotCapture(F, 2);
1890 } else if (Name == "strcmp" ||
1891 Name == "strspn" ||
1892 Name == "strncmp" ||
1893 Name == "strcspn" ||
1894 Name == "strcoll" ||
1895 Name == "strcasecmp" ||
1896 Name == "strncasecmp") {
1897 if (FTy->getNumParams() < 2 ||
1898 !FTy->getParamType(0)->isPointerTy() ||
1899 !FTy->getParamType(1)->isPointerTy())
1900 return;
1901 setOnlyReadsMemory(F);
1902 setDoesNotThrow(F);
1903 setDoesNotCapture(F, 1);
1904 setDoesNotCapture(F, 2);
1905 } else if (Name == "strstr" ||
1906 Name == "strpbrk") {
1907 if (FTy->getNumParams() != 2 || !FTy->getParamType(1)->isPointerTy())
1908 return;
1909 setOnlyReadsMemory(F);
1910 setDoesNotThrow(F);
1911 setDoesNotCapture(F, 2);
1912 } else if (Name == "strtok" ||
1913 Name == "strtok_r") {
1914 if (FTy->getNumParams() < 2 || !FTy->getParamType(1)->isPointerTy())
1915 return;
1916 setDoesNotThrow(F);
1917 setDoesNotCapture(F, 2);
1918 } else if (Name == "scanf" ||
1919 Name == "setbuf" ||
1920 Name == "setvbuf") {
1921 if (FTy->getNumParams() < 1 || !FTy->getParamType(0)->isPointerTy())
1922 return;
1923 setDoesNotThrow(F);
1924 setDoesNotCapture(F, 1);
1925 } else if (Name == "strdup" ||
1926 Name == "strndup") {
1927 if (FTy->getNumParams() < 1 || !FTy->getReturnType()->isPointerTy() ||
1928 !FTy->getParamType(0)->isPointerTy())
1929 return;
1930 setDoesNotThrow(F);
1931 setDoesNotAlias(F, 0);
1932 setDoesNotCapture(F, 1);
1933 } else if (Name == "stat" ||
1934 Name == "sscanf" ||
1935 Name == "sprintf" ||
1936 Name == "statvfs") {
1937 if (FTy->getNumParams() < 2 ||
1938 !FTy->getParamType(0)->isPointerTy() ||
1939 !FTy->getParamType(1)->isPointerTy())
1940 return;
1941 setDoesNotThrow(F);
1942 setDoesNotCapture(F, 1);
1943 setDoesNotCapture(F, 2);
1944 } else if (Name == "snprintf") {
1945 if (FTy->getNumParams() != 3 ||
1946 !FTy->getParamType(0)->isPointerTy() ||
1947 !FTy->getParamType(2)->isPointerTy())
1948 return;
1949 setDoesNotThrow(F);
1950 setDoesNotCapture(F, 1);
1951 setDoesNotCapture(F, 3);
1952 } else if (Name == "setitimer") {
1953 if (FTy->getNumParams() != 3 ||
1954 !FTy->getParamType(1)->isPointerTy() ||
1955 !FTy->getParamType(2)->isPointerTy())
1956 return;
1957 setDoesNotThrow(F);
1958 setDoesNotCapture(F, 2);
1959 setDoesNotCapture(F, 3);
1960 } else if (Name == "system") {
1961 if (FTy->getNumParams() != 1 ||
1962 !FTy->getParamType(0)->isPointerTy())
1963 return;
1964 // May throw; "system" is a valid pthread cancellation point.
1965 setDoesNotCapture(F, 1);
1966 }
1967 break;
1968 case 'm':
1969 if (Name == "malloc") {
1970 if (FTy->getNumParams() != 1 ||
1971 !FTy->getReturnType()->isPointerTy())
1972 return;
1973 setDoesNotThrow(F);
1974 setDoesNotAlias(F, 0);
1975 } else if (Name == "memcmp") {
1976 if (FTy->getNumParams() != 3 ||
1977 !FTy->getParamType(0)->isPointerTy() ||
1978 !FTy->getParamType(1)->isPointerTy())
1979 return;
1980 setOnlyReadsMemory(F);
1981 setDoesNotThrow(F);
1982 setDoesNotCapture(F, 1);
1983 setDoesNotCapture(F, 2);
1984 } else if (Name == "memchr" ||
1985 Name == "memrchr") {
1986 if (FTy->getNumParams() != 3)
1987 return;
1988 setOnlyReadsMemory(F);
1989 setDoesNotThrow(F);
1990 } else if (Name == "modf" ||
1991 Name == "modff" ||
1992 Name == "modfl" ||
1993 Name == "memcpy" ||
1994 Name == "memccpy" ||
1995 Name == "memmove") {
1996 if (FTy->getNumParams() < 2 ||
1997 !FTy->getParamType(1)->isPointerTy())
1998 return;
1999 setDoesNotThrow(F);
2000 setDoesNotCapture(F, 2);
2001 } else if (Name == "memalign") {
2002 if (!FTy->getReturnType()->isPointerTy())
2003 return;
2004 setDoesNotAlias(F, 0);
2005 } else if (Name == "mkdir" ||
2006 Name == "mktime") {
2007 if (FTy->getNumParams() == 0 ||
2008 !FTy->getParamType(0)->isPointerTy())
2009 return;
2010 setDoesNotThrow(F);
2011 setDoesNotCapture(F, 1);
2012 }
2013 break;
2014 case 'r':
2015 if (Name == "realloc") {
2016 if (FTy->getNumParams() != 2 ||
2017 !FTy->getParamType(0)->isPointerTy() ||
2018 !FTy->getReturnType()->isPointerTy())
2019 return;
2020 setDoesNotThrow(F);
2021 setDoesNotAlias(F, 0);
2022 setDoesNotCapture(F, 1);
2023 } else if (Name == "read") {
2024 if (FTy->getNumParams() != 3 ||
2025 !FTy->getParamType(1)->isPointerTy())
2026 return;
2027 // May throw; "read" is a valid pthread cancellation point.
2028 setDoesNotCapture(F, 2);
2029 } else if (Name == "rmdir" ||
2030 Name == "rewind" ||
2031 Name == "remove" ||
2032 Name == "realpath") {
2033 if (FTy->getNumParams() < 1 ||
2034 !FTy->getParamType(0)->isPointerTy())
2035 return;
2036 setDoesNotThrow(F);
2037 setDoesNotCapture(F, 1);
2038 } else if (Name == "rename" ||
2039 Name == "readlink") {
2040 if (FTy->getNumParams() < 2 ||
2041 !FTy->getParamType(0)->isPointerTy() ||
2042 !FTy->getParamType(1)->isPointerTy())
2043 return;
2044 setDoesNotThrow(F);
2045 setDoesNotCapture(F, 1);
2046 setDoesNotCapture(F, 2);
2047 }
2048 break;
2049 case 'w':
2050 if (Name == "write") {
2051 if (FTy->getNumParams() != 3 || !FTy->getParamType(1)->isPointerTy())
2052 return;
2053 // May throw; "write" is a valid pthread cancellation point.
2054 setDoesNotCapture(F, 2);
2055 }
2056 break;
2057 case 'b':
2058 if (Name == "bcopy") {
2059 if (FTy->getNumParams() != 3 ||
2060 !FTy->getParamType(0)->isPointerTy() ||
2061 !FTy->getParamType(1)->isPointerTy())
2062 return;
2063 setDoesNotThrow(F);
2064 setDoesNotCapture(F, 1);
2065 setDoesNotCapture(F, 2);
2066 } else if (Name == "bcmp") {
2067 if (FTy->getNumParams() != 3 ||
2068 !FTy->getParamType(0)->isPointerTy() ||
2069 !FTy->getParamType(1)->isPointerTy())
2070 return;
2071 setDoesNotThrow(F);
2072 setOnlyReadsMemory(F);
2073 setDoesNotCapture(F, 1);
2074 setDoesNotCapture(F, 2);
2075 } else if (Name == "bzero") {
2076 if (FTy->getNumParams() != 2 || !FTy->getParamType(0)->isPointerTy())
2077 return;
2078 setDoesNotThrow(F);
2079 setDoesNotCapture(F, 1);
2080 }
2081 break;
2082 case 'c':
2083 if (Name == "calloc") {
2084 if (FTy->getNumParams() != 2 ||
2085 !FTy->getReturnType()->isPointerTy())
2086 return;
2087 setDoesNotThrow(F);
2088 setDoesNotAlias(F, 0);
2089 } else if (Name == "chmod" ||
2090 Name == "chown" ||
2091 Name == "ctermid" ||
2092 Name == "clearerr" ||
2093 Name == "closedir") {
2094 if (FTy->getNumParams() == 0 || !FTy->getParamType(0)->isPointerTy())
2095 return;
2096 setDoesNotThrow(F);
2097 setDoesNotCapture(F, 1);
2098 }
2099 break;
2100 case 'a':
2101 if (Name == "atoi" ||
2102 Name == "atol" ||
2103 Name == "atof" ||
2104 Name == "atoll") {
2105 if (FTy->getNumParams() != 1 || !FTy->getParamType(0)->isPointerTy())
2106 return;
2107 setDoesNotThrow(F);
2108 setOnlyReadsMemory(F);
2109 setDoesNotCapture(F, 1);
2110 } else if (Name == "access") {
2111 if (FTy->getNumParams() != 2 || !FTy->getParamType(0)->isPointerTy())
2112 return;
2113 setDoesNotThrow(F);
2114 setDoesNotCapture(F, 1);
2115 }
2116 break;
2117 case 'f':
2118 if (Name == "fopen") {
2119 if (FTy->getNumParams() != 2 ||
2120 !FTy->getReturnType()->isPointerTy() ||
2121 !FTy->getParamType(0)->isPointerTy() ||
2122 !FTy->getParamType(1)->isPointerTy())
2123 return;
2124 setDoesNotThrow(F);
2125 setDoesNotAlias(F, 0);
2126 setDoesNotCapture(F, 1);
2127 setDoesNotCapture(F, 2);
2128 } else if (Name == "fdopen") {
2129 if (FTy->getNumParams() != 2 ||
2130 !FTy->getReturnType()->isPointerTy() ||
2131 !FTy->getParamType(1)->isPointerTy())
2132 return;
2133 setDoesNotThrow(F);
2134 setDoesNotAlias(F, 0);
2135 setDoesNotCapture(F, 2);
2136 } else if (Name == "feof" ||
2137 Name == "free" ||
2138 Name == "fseek" ||
2139 Name == "ftell" ||
2140 Name == "fgetc" ||
2141 Name == "fseeko" ||
2142 Name == "ftello" ||
2143 Name == "fileno" ||
2144 Name == "fflush" ||
2145 Name == "fclose" ||
2146 Name == "fsetpos" ||
2147 Name == "flockfile" ||
2148 Name == "funlockfile" ||
2149 Name == "ftrylockfile") {
2150 if (FTy->getNumParams() == 0 || !FTy->getParamType(0)->isPointerTy())
2151 return;
2152 setDoesNotThrow(F);
2153 setDoesNotCapture(F, 1);
2154 } else if (Name == "ferror") {
2155 if (FTy->getNumParams() != 1 || !FTy->getParamType(0)->isPointerTy())
2156 return;
2157 setDoesNotThrow(F);
2158 setDoesNotCapture(F, 1);
2159 setOnlyReadsMemory(F);
2160 } else if (Name == "fputc" ||
2161 Name == "fstat" ||
2162 Name == "frexp" ||
2163 Name == "frexpf" ||
2164 Name == "frexpl" ||
2165 Name == "fstatvfs") {
2166 if (FTy->getNumParams() != 2 || !FTy->getParamType(1)->isPointerTy())
2167 return;
2168 setDoesNotThrow(F);
2169 setDoesNotCapture(F, 2);
2170 } else if (Name == "fgets") {
2171 if (FTy->getNumParams() != 3 ||
2172 !FTy->getParamType(0)->isPointerTy() ||
2173 !FTy->getParamType(2)->isPointerTy())
2174 return;
2175 setDoesNotThrow(F);
2176 setDoesNotCapture(F, 3);
2177 } else if (Name == "fread" ||
2178 Name == "fwrite") {
2179 if (FTy->getNumParams() != 4 ||
2180 !FTy->getParamType(0)->isPointerTy() ||
2181 !FTy->getParamType(3)->isPointerTy())
2182 return;
2183 setDoesNotThrow(F);
2184 setDoesNotCapture(F, 1);
2185 setDoesNotCapture(F, 4);
2186 } else if (Name == "fputs" ||
2187 Name == "fscanf" ||
2188 Name == "fprintf" ||
2189 Name == "fgetpos") {
2190 if (FTy->getNumParams() < 2 ||
2191 !FTy->getParamType(0)->isPointerTy() ||
2192 !FTy->getParamType(1)->isPointerTy())
2193 return;
2194 setDoesNotThrow(F);
2195 setDoesNotCapture(F, 1);
2196 setDoesNotCapture(F, 2);
2197 }
2198 break;
2199 case 'g':
2200 if (Name == "getc" ||
2201 Name == "getlogin_r" ||
2202 Name == "getc_unlocked") {
2203 if (FTy->getNumParams() == 0 || !FTy->getParamType(0)->isPointerTy())
2204 return;
2205 setDoesNotThrow(F);
2206 setDoesNotCapture(F, 1);
2207 } else if (Name == "getenv") {
2208 if (FTy->getNumParams() != 1 || !FTy->getParamType(0)->isPointerTy())
2209 return;
2210 setDoesNotThrow(F);
2211 setOnlyReadsMemory(F);
2212 setDoesNotCapture(F, 1);
2213 } else if (Name == "gets" ||
2214 Name == "getchar") {
2215 setDoesNotThrow(F);
2216 } else if (Name == "getitimer") {
2217 if (FTy->getNumParams() != 2 || !FTy->getParamType(1)->isPointerTy())
2218 return;
2219 setDoesNotThrow(F);
2220 setDoesNotCapture(F, 2);
2221 } else if (Name == "getpwnam") {
2222 if (FTy->getNumParams() != 1 || !FTy->getParamType(0)->isPointerTy())
2223 return;
2224 setDoesNotThrow(F);
2225 setDoesNotCapture(F, 1);
2226 }
2227 break;
2228 case 'u':
2229 if (Name == "ungetc") {
2230 if (FTy->getNumParams() != 2 || !FTy->getParamType(1)->isPointerTy())
2231 return;
2232 setDoesNotThrow(F);
2233 setDoesNotCapture(F, 2);
2234 } else if (Name == "uname" ||
2235 Name == "unlink" ||
2236 Name == "unsetenv") {
2237 if (FTy->getNumParams() != 1 || !FTy->getParamType(0)->isPointerTy())
2238 return;
2239 setDoesNotThrow(F);
2240 setDoesNotCapture(F, 1);
2241 } else if (Name == "utime" ||
2242 Name == "utimes") {
2243 if (FTy->getNumParams() != 2 ||
2244 !FTy->getParamType(0)->isPointerTy() ||
2245 !FTy->getParamType(1)->isPointerTy())
2246 return;
2247 setDoesNotThrow(F);
2248 setDoesNotCapture(F, 1);
2249 setDoesNotCapture(F, 2);
2250 }
2251 break;
2252 case 'p':
2253 if (Name == "putc") {
2254 if (FTy->getNumParams() != 2 || !FTy->getParamType(1)->isPointerTy())
2255 return;
2256 setDoesNotThrow(F);
2257 setDoesNotCapture(F, 2);
2258 } else if (Name == "puts" ||
2259 Name == "printf" ||
2260 Name == "perror") {
2261 if (FTy->getNumParams() != 1 || !FTy->getParamType(0)->isPointerTy())
2262 return;
2263 setDoesNotThrow(F);
2264 setDoesNotCapture(F, 1);
2265 } else if (Name == "pread" ||
2266 Name == "pwrite") {
2267 if (FTy->getNumParams() != 4 || !FTy->getParamType(1)->isPointerTy())
2268 return;
2269 // May throw; these are valid pthread cancellation points.
2270 setDoesNotCapture(F, 2);
2271 } else if (Name == "putchar") {
2272 setDoesNotThrow(F);
2273 } else if (Name == "popen") {
2274 if (FTy->getNumParams() != 2 ||
2275 !FTy->getReturnType()->isPointerTy() ||
2276 !FTy->getParamType(0)->isPointerTy() ||
2277 !FTy->getParamType(1)->isPointerTy())
2278 return;
2279 setDoesNotThrow(F);
2280 setDoesNotAlias(F, 0);
2281 setDoesNotCapture(F, 1);
2282 setDoesNotCapture(F, 2);
2283 } else if (Name == "pclose") {
2284 if (FTy->getNumParams() != 1 || !FTy->getParamType(0)->isPointerTy())
2285 return;
2286 setDoesNotThrow(F);
2287 setDoesNotCapture(F, 1);
2288 }
2289 break;
2290 case 'v':
2291 if (Name == "vscanf") {
2292 if (FTy->getNumParams() != 2 || !FTy->getParamType(1)->isPointerTy())
2293 return;
2294 setDoesNotThrow(F);
2295 setDoesNotCapture(F, 1);
2296 } else if (Name == "vsscanf" ||
2297 Name == "vfscanf") {
2298 if (FTy->getNumParams() != 3 ||
2299 !FTy->getParamType(1)->isPointerTy() ||
2300 !FTy->getParamType(2)->isPointerTy())
2301 return;
2302 setDoesNotThrow(F);
2303 setDoesNotCapture(F, 1);
2304 setDoesNotCapture(F, 2);
2305 } else if (Name == "valloc") {
2306 if (!FTy->getReturnType()->isPointerTy())
2307 return;
2308 setDoesNotThrow(F);
2309 setDoesNotAlias(F, 0);
2310 } else if (Name == "vprintf") {
2311 if (FTy->getNumParams() != 2 || !FTy->getParamType(0)->isPointerTy())
2312 return;
2313 setDoesNotThrow(F);
2314 setDoesNotCapture(F, 1);
2315 } else if (Name == "vfprintf" ||
2316 Name == "vsprintf") {
2317 if (FTy->getNumParams() != 3 ||
2318 !FTy->getParamType(0)->isPointerTy() ||
2319 !FTy->getParamType(1)->isPointerTy())
2320 return;
2321 setDoesNotThrow(F);
2322 setDoesNotCapture(F, 1);
2323 setDoesNotCapture(F, 2);
2324 } else if (Name == "vsnprintf") {
2325 if (FTy->getNumParams() != 4 ||
2326 !FTy->getParamType(0)->isPointerTy() ||
2327 !FTy->getParamType(2)->isPointerTy())
2328 return;
2329 setDoesNotThrow(F);
2330 setDoesNotCapture(F, 1);
2331 setDoesNotCapture(F, 3);
2332 }
2333 break;
2334 case 'o':
2335 if (Name == "open") {
2336 if (FTy->getNumParams() < 2 || !FTy->getParamType(0)->isPointerTy())
2337 return;
2338 // May throw; "open" is a valid pthread cancellation point.
2339 setDoesNotCapture(F, 1);
2340 } else if (Name == "opendir") {
2341 if (FTy->getNumParams() != 1 ||
2342 !FTy->getReturnType()->isPointerTy() ||
2343 !FTy->getParamType(0)->isPointerTy())
2344 return;
2345 setDoesNotThrow(F);
2346 setDoesNotAlias(F, 0);
2347 setDoesNotCapture(F, 1);
2348 }
2349 break;
2350 case 't':
2351 if (Name == "tmpfile") {
2352 if (!FTy->getReturnType()->isPointerTy())
2353 return;
2354 setDoesNotThrow(F);
2355 setDoesNotAlias(F, 0);
2356 } else if (Name == "times") {
2357 if (FTy->getNumParams() != 1 || !FTy->getParamType(0)->isPointerTy())
2358 return;
2359 setDoesNotThrow(F);
2360 setDoesNotCapture(F, 1);
2361 }
2362 break;
2363 case 'h':
2364 if (Name == "htonl" ||
2365 Name == "htons") {
2366 setDoesNotThrow(F);
2367 setDoesNotAccessMemory(F);
2368 }
2369 break;
2370 case 'n':
2371 if (Name == "ntohl" ||
2372 Name == "ntohs") {
2373 setDoesNotThrow(F);
2374 setDoesNotAccessMemory(F);
2375 }
2376 break;
2377 case 'l':
2378 if (Name == "lstat") {
2379 if (FTy->getNumParams() != 2 ||
2380 !FTy->getParamType(0)->isPointerTy() ||
2381 !FTy->getParamType(1)->isPointerTy())
2382 return;
2383 setDoesNotThrow(F);
2384 setDoesNotCapture(F, 1);
2385 setDoesNotCapture(F, 2);
2386 } else if (Name == "lchown") {
2387 if (FTy->getNumParams() != 3 || !FTy->getParamType(0)->isPointerTy())
2388 return;
2389 setDoesNotThrow(F);
2390 setDoesNotCapture(F, 1);
2391 }
2392 break;
2393 case 'q':
2394 if (Name == "qsort") {
2395 if (FTy->getNumParams() != 4 || !FTy->getParamType(3)->isPointerTy())
2396 return;
2397 // May throw; places call through function pointer.
2398 setDoesNotCapture(F, 4);
2399 }
2400 break;
2401 case '_':
2402 if (Name == "__strdup" ||
2403 Name == "__strndup") {
2404 if (FTy->getNumParams() < 1 ||
2405 !FTy->getReturnType()->isPointerTy() ||
2406 !FTy->getParamType(0)->isPointerTy())
2407 return;
2408 setDoesNotThrow(F);
2409 setDoesNotAlias(F, 0);
2410 setDoesNotCapture(F, 1);
2411 } else if (Name == "__strtok_r") {
2412 if (FTy->getNumParams() != 3 ||
2413 !FTy->getParamType(1)->isPointerTy())
2414 return;
2415 setDoesNotThrow(F);
2416 setDoesNotCapture(F, 2);
2417 } else if (Name == "_IO_getc") {
2418 if (FTy->getNumParams() != 1 || !FTy->getParamType(0)->isPointerTy())
2419 return;
2420 setDoesNotThrow(F);
2421 setDoesNotCapture(F, 1);
2422 } else if (Name == "_IO_putc") {
2423 if (FTy->getNumParams() != 2 || !FTy->getParamType(1)->isPointerTy())
2424 return;
2425 setDoesNotThrow(F);
2426 setDoesNotCapture(F, 2);
2427 }
2428 break;
2429 case 1:
2430 if (Name == "\1__isoc99_scanf") {
2431 if (FTy->getNumParams() < 1 ||
2432 !FTy->getParamType(0)->isPointerTy())
2433 return;
2434 setDoesNotThrow(F);
2435 setDoesNotCapture(F, 1);
2436 } else if (Name == "\1stat64" ||
2437 Name == "\1lstat64" ||
2438 Name == "\1statvfs64" ||
2439 Name == "\1__isoc99_sscanf") {
2440 if (FTy->getNumParams() < 1 ||
2441 !FTy->getParamType(0)->isPointerTy() ||
2442 !FTy->getParamType(1)->isPointerTy())
2443 return;
2444 setDoesNotThrow(F);
2445 setDoesNotCapture(F, 1);
2446 setDoesNotCapture(F, 2);
2447 } else if (Name == "\1fopen64") {
2448 if (FTy->getNumParams() != 2 ||
2449 !FTy->getReturnType()->isPointerTy() ||
2450 !FTy->getParamType(0)->isPointerTy() ||
2451 !FTy->getParamType(1)->isPointerTy())
2452 return;
2453 setDoesNotThrow(F);
2454 setDoesNotAlias(F, 0);
2455 setDoesNotCapture(F, 1);
2456 setDoesNotCapture(F, 2);
2457 } else if (Name == "\1fseeko64" ||
2458 Name == "\1ftello64") {
2459 if (FTy->getNumParams() == 0 || !FTy->getParamType(0)->isPointerTy())
2460 return;
2461 setDoesNotThrow(F);
2462 setDoesNotCapture(F, 1);
2463 } else if (Name == "\1tmpfile64") {
2464 if (!FTy->getReturnType()->isPointerTy())
2465 return;
2466 setDoesNotThrow(F);
2467 setDoesNotAlias(F, 0);
2468 } else if (Name == "\1fstat64" ||
2469 Name == "\1fstatvfs64") {
2470 if (FTy->getNumParams() != 2 || !FTy->getParamType(1)->isPointerTy())
2471 return;
2472 setDoesNotThrow(F);
2473 setDoesNotCapture(F, 2);
2474 } else if (Name == "\1open64") {
2475 if (FTy->getNumParams() < 2 || !FTy->getParamType(0)->isPointerTy())
2476 return;
2477 // May throw; "open" is a valid pthread cancellation point.
2478 setDoesNotCapture(F, 1);
2479 }
2480 break;
2481 }
2482 }
2483
2484 /// doInitialization - Add attributes to well-known functions.
2485 ///
doInitialization(Module & M)2486 bool SimplifyLibCalls::doInitialization(Module &M) {
2487 Modified = false;
2488 for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I) {
2489 Function &F = *I;
2490 if (F.isDeclaration() && F.hasName())
2491 inferPrototypeAttributes(F);
2492 }
2493 return Modified;
2494 }
2495
2496 // TODO:
2497 // Additional cases that we need to add to this file:
2498 //
2499 // cbrt:
2500 // * cbrt(expN(X)) -> expN(x/3)
2501 // * cbrt(sqrt(x)) -> pow(x,1/6)
2502 // * cbrt(sqrt(x)) -> pow(x,1/9)
2503 //
2504 // exp, expf, expl:
2505 // * exp(log(x)) -> x
2506 //
2507 // log, logf, logl:
2508 // * log(exp(x)) -> x
2509 // * log(x**y) -> y*log(x)
2510 // * log(exp(y)) -> y*log(e)
2511 // * log(exp2(y)) -> y*log(2)
2512 // * log(exp10(y)) -> y*log(10)
2513 // * log(sqrt(x)) -> 0.5*log(x)
2514 // * log(pow(x,y)) -> y*log(x)
2515 //
2516 // lround, lroundf, lroundl:
2517 // * lround(cnst) -> cnst'
2518 //
2519 // pow, powf, powl:
2520 // * pow(exp(x),y) -> exp(x*y)
2521 // * pow(sqrt(x),y) -> pow(x,y*0.5)
2522 // * pow(pow(x,y),z)-> pow(x,y*z)
2523 //
2524 // round, roundf, roundl:
2525 // * round(cnst) -> cnst'
2526 //
2527 // signbit:
2528 // * signbit(cnst) -> cnst'
2529 // * signbit(nncst) -> 0 (if pstv is a non-negative constant)
2530 //
2531 // sqrt, sqrtf, sqrtl:
2532 // * sqrt(expN(x)) -> expN(x*0.5)
2533 // * sqrt(Nroot(x)) -> pow(x,1/(2*N))
2534 // * sqrt(pow(x,y)) -> pow(|x|,y*0.5)
2535 //
2536 // strchr:
2537 // * strchr(p, 0) -> strlen(p)
2538 // tan, tanf, tanl:
2539 // * tan(atan(x)) -> x
2540 //
2541 // trunc, truncf, truncl:
2542 // * trunc(cnst) -> cnst'
2543 //
2544 //
2545