1 //===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Peephole optimize the CFG.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #define DEBUG_TYPE "simplifycfg"
15 #include "llvm/Transforms/Utils/Local.h"
16 #include "llvm/Constants.h"
17 #include "llvm/DerivedTypes.h"
18 #include "llvm/GlobalVariable.h"
19 #include "llvm/IRBuilder.h"
20 #include "llvm/Instructions.h"
21 #include "llvm/IntrinsicInst.h"
22 #include "llvm/LLVMContext.h"
23 #include "llvm/MDBuilder.h"
24 #include "llvm/Metadata.h"
25 #include "llvm/Module.h"
26 #include "llvm/Operator.h"
27 #include "llvm/Type.h"
28 #include "llvm/ADT/DenseMap.h"
29 #include "llvm/ADT/STLExtras.h"
30 #include "llvm/ADT/SetVector.h"
31 #include "llvm/ADT/SmallPtrSet.h"
32 #include "llvm/ADT/SmallVector.h"
33 #include "llvm/ADT/Statistic.h"
34 #include "llvm/Analysis/InstructionSimplify.h"
35 #include "llvm/Analysis/ValueTracking.h"
36 #include "llvm/Support/CFG.h"
37 #include "llvm/Support/CommandLine.h"
38 #include "llvm/Support/ConstantRange.h"
39 #include "llvm/Support/Debug.h"
40 #include "llvm/Support/NoFolder.h"
41 #include "llvm/Support/raw_ostream.h"
42 #include "llvm/Target/TargetData.h"
43 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
44 #include <algorithm>
45 #include <set>
46 #include <map>
47 using namespace llvm;
48
49 static cl::opt<unsigned>
50 PHINodeFoldingThreshold("phi-node-folding-threshold", cl::Hidden, cl::init(1),
51 cl::desc("Control the amount of phi node folding to perform (default = 1)"));
52
53 static cl::opt<bool>
54 DupRet("simplifycfg-dup-ret", cl::Hidden, cl::init(false),
55 cl::desc("Duplicate return instructions into unconditional branches"));
56
57 STATISTIC(NumSpeculations, "Number of speculative executed instructions");
58 STATISTIC(NumLookupTables, "Number of switch instructions turned into lookup tables");
59
60 namespace {
61 /// ValueEqualityComparisonCase - Represents a case of a switch.
62 struct ValueEqualityComparisonCase {
63 ConstantInt *Value;
64 BasicBlock *Dest;
65
ValueEqualityComparisonCase__anon08d918330111::ValueEqualityComparisonCase66 ValueEqualityComparisonCase(ConstantInt *Value, BasicBlock *Dest)
67 : Value(Value), Dest(Dest) {}
68
operator <__anon08d918330111::ValueEqualityComparisonCase69 bool operator<(ValueEqualityComparisonCase RHS) const {
70 // Comparing pointers is ok as we only rely on the order for uniquing.
71 return Value < RHS.Value;
72 }
73 };
74
75 class SimplifyCFGOpt {
76 const TargetData *const TD;
77
78 Value *isValueEqualityComparison(TerminatorInst *TI);
79 BasicBlock *GetValueEqualityComparisonCases(TerminatorInst *TI,
80 std::vector<ValueEqualityComparisonCase> &Cases);
81 bool SimplifyEqualityComparisonWithOnlyPredecessor(TerminatorInst *TI,
82 BasicBlock *Pred,
83 IRBuilder<> &Builder);
84 bool FoldValueComparisonIntoPredecessors(TerminatorInst *TI,
85 IRBuilder<> &Builder);
86
87 bool SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder);
88 bool SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder);
89 bool SimplifyUnreachable(UnreachableInst *UI);
90 bool SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder);
91 bool SimplifyIndirectBr(IndirectBrInst *IBI);
92 bool SimplifyUncondBranch(BranchInst *BI, IRBuilder <> &Builder);
93 bool SimplifyCondBranch(BranchInst *BI, IRBuilder <>&Builder);
94
95 public:
SimplifyCFGOpt(const TargetData * td)96 explicit SimplifyCFGOpt(const TargetData *td) : TD(td) {}
97 bool run(BasicBlock *BB);
98 };
99 }
100
101 /// SafeToMergeTerminators - Return true if it is safe to merge these two
102 /// terminator instructions together.
103 ///
SafeToMergeTerminators(TerminatorInst * SI1,TerminatorInst * SI2)104 static bool SafeToMergeTerminators(TerminatorInst *SI1, TerminatorInst *SI2) {
105 if (SI1 == SI2) return false; // Can't merge with self!
106
107 // It is not safe to merge these two switch instructions if they have a common
108 // successor, and if that successor has a PHI node, and if *that* PHI node has
109 // conflicting incoming values from the two switch blocks.
110 BasicBlock *SI1BB = SI1->getParent();
111 BasicBlock *SI2BB = SI2->getParent();
112 SmallPtrSet<BasicBlock*, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB));
113
114 for (succ_iterator I = succ_begin(SI2BB), E = succ_end(SI2BB); I != E; ++I)
115 if (SI1Succs.count(*I))
116 for (BasicBlock::iterator BBI = (*I)->begin();
117 isa<PHINode>(BBI); ++BBI) {
118 PHINode *PN = cast<PHINode>(BBI);
119 if (PN->getIncomingValueForBlock(SI1BB) !=
120 PN->getIncomingValueForBlock(SI2BB))
121 return false;
122 }
123
124 return true;
125 }
126
127 /// isProfitableToFoldUnconditional - Return true if it is safe and profitable
128 /// to merge these two terminator instructions together, where SI1 is an
129 /// unconditional branch. PhiNodes will store all PHI nodes in common
130 /// successors.
131 ///
isProfitableToFoldUnconditional(BranchInst * SI1,BranchInst * SI2,Instruction * Cond,SmallVectorImpl<PHINode * > & PhiNodes)132 static bool isProfitableToFoldUnconditional(BranchInst *SI1,
133 BranchInst *SI2,
134 Instruction *Cond,
135 SmallVectorImpl<PHINode*> &PhiNodes) {
136 if (SI1 == SI2) return false; // Can't merge with self!
137 assert(SI1->isUnconditional() && SI2->isConditional());
138
139 // We fold the unconditional branch if we can easily update all PHI nodes in
140 // common successors:
141 // 1> We have a constant incoming value for the conditional branch;
142 // 2> We have "Cond" as the incoming value for the unconditional branch;
143 // 3> SI2->getCondition() and Cond have same operands.
144 CmpInst *Ci2 = dyn_cast<CmpInst>(SI2->getCondition());
145 if (!Ci2) return false;
146 if (!(Cond->getOperand(0) == Ci2->getOperand(0) &&
147 Cond->getOperand(1) == Ci2->getOperand(1)) &&
148 !(Cond->getOperand(0) == Ci2->getOperand(1) &&
149 Cond->getOperand(1) == Ci2->getOperand(0)))
150 return false;
151
152 BasicBlock *SI1BB = SI1->getParent();
153 BasicBlock *SI2BB = SI2->getParent();
154 SmallPtrSet<BasicBlock*, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB));
155 for (succ_iterator I = succ_begin(SI2BB), E = succ_end(SI2BB); I != E; ++I)
156 if (SI1Succs.count(*I))
157 for (BasicBlock::iterator BBI = (*I)->begin();
158 isa<PHINode>(BBI); ++BBI) {
159 PHINode *PN = cast<PHINode>(BBI);
160 if (PN->getIncomingValueForBlock(SI1BB) != Cond ||
161 !isa<ConstantInt>(PN->getIncomingValueForBlock(SI2BB)))
162 return false;
163 PhiNodes.push_back(PN);
164 }
165 return true;
166 }
167
168 /// AddPredecessorToBlock - Update PHI nodes in Succ to indicate that there will
169 /// now be entries in it from the 'NewPred' block. The values that will be
170 /// flowing into the PHI nodes will be the same as those coming in from
171 /// ExistPred, an existing predecessor of Succ.
AddPredecessorToBlock(BasicBlock * Succ,BasicBlock * NewPred,BasicBlock * ExistPred)172 static void AddPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred,
173 BasicBlock *ExistPred) {
174 if (!isa<PHINode>(Succ->begin())) return; // Quick exit if nothing to do
175
176 PHINode *PN;
177 for (BasicBlock::iterator I = Succ->begin();
178 (PN = dyn_cast<PHINode>(I)); ++I)
179 PN->addIncoming(PN->getIncomingValueForBlock(ExistPred), NewPred);
180 }
181
182
183 /// GetIfCondition - Given a basic block (BB) with two predecessors (and at
184 /// least one PHI node in it), check to see if the merge at this block is due
185 /// to an "if condition". If so, return the boolean condition that determines
186 /// which entry into BB will be taken. Also, return by references the block
187 /// that will be entered from if the condition is true, and the block that will
188 /// be entered if the condition is false.
189 ///
190 /// This does no checking to see if the true/false blocks have large or unsavory
191 /// instructions in them.
GetIfCondition(BasicBlock * BB,BasicBlock * & IfTrue,BasicBlock * & IfFalse)192 static Value *GetIfCondition(BasicBlock *BB, BasicBlock *&IfTrue,
193 BasicBlock *&IfFalse) {
194 PHINode *SomePHI = cast<PHINode>(BB->begin());
195 assert(SomePHI->getNumIncomingValues() == 2 &&
196 "Function can only handle blocks with 2 predecessors!");
197 BasicBlock *Pred1 = SomePHI->getIncomingBlock(0);
198 BasicBlock *Pred2 = SomePHI->getIncomingBlock(1);
199
200 // We can only handle branches. Other control flow will be lowered to
201 // branches if possible anyway.
202 BranchInst *Pred1Br = dyn_cast<BranchInst>(Pred1->getTerminator());
203 BranchInst *Pred2Br = dyn_cast<BranchInst>(Pred2->getTerminator());
204 if (Pred1Br == 0 || Pred2Br == 0)
205 return 0;
206
207 // Eliminate code duplication by ensuring that Pred1Br is conditional if
208 // either are.
209 if (Pred2Br->isConditional()) {
210 // If both branches are conditional, we don't have an "if statement". In
211 // reality, we could transform this case, but since the condition will be
212 // required anyway, we stand no chance of eliminating it, so the xform is
213 // probably not profitable.
214 if (Pred1Br->isConditional())
215 return 0;
216
217 std::swap(Pred1, Pred2);
218 std::swap(Pred1Br, Pred2Br);
219 }
220
221 if (Pred1Br->isConditional()) {
222 // The only thing we have to watch out for here is to make sure that Pred2
223 // doesn't have incoming edges from other blocks. If it does, the condition
224 // doesn't dominate BB.
225 if (Pred2->getSinglePredecessor() == 0)
226 return 0;
227
228 // If we found a conditional branch predecessor, make sure that it branches
229 // to BB and Pred2Br. If it doesn't, this isn't an "if statement".
230 if (Pred1Br->getSuccessor(0) == BB &&
231 Pred1Br->getSuccessor(1) == Pred2) {
232 IfTrue = Pred1;
233 IfFalse = Pred2;
234 } else if (Pred1Br->getSuccessor(0) == Pred2 &&
235 Pred1Br->getSuccessor(1) == BB) {
236 IfTrue = Pred2;
237 IfFalse = Pred1;
238 } else {
239 // We know that one arm of the conditional goes to BB, so the other must
240 // go somewhere unrelated, and this must not be an "if statement".
241 return 0;
242 }
243
244 return Pred1Br->getCondition();
245 }
246
247 // Ok, if we got here, both predecessors end with an unconditional branch to
248 // BB. Don't panic! If both blocks only have a single (identical)
249 // predecessor, and THAT is a conditional branch, then we're all ok!
250 BasicBlock *CommonPred = Pred1->getSinglePredecessor();
251 if (CommonPred == 0 || CommonPred != Pred2->getSinglePredecessor())
252 return 0;
253
254 // Otherwise, if this is a conditional branch, then we can use it!
255 BranchInst *BI = dyn_cast<BranchInst>(CommonPred->getTerminator());
256 if (BI == 0) return 0;
257
258 assert(BI->isConditional() && "Two successors but not conditional?");
259 if (BI->getSuccessor(0) == Pred1) {
260 IfTrue = Pred1;
261 IfFalse = Pred2;
262 } else {
263 IfTrue = Pred2;
264 IfFalse = Pred1;
265 }
266 return BI->getCondition();
267 }
268
269 /// ComputeSpeculuationCost - Compute an abstract "cost" of speculating the
270 /// given instruction, which is assumed to be safe to speculate. 1 means
271 /// cheap, 2 means less cheap, and UINT_MAX means prohibitively expensive.
ComputeSpeculationCost(const User * I)272 static unsigned ComputeSpeculationCost(const User *I) {
273 assert(isSafeToSpeculativelyExecute(I) &&
274 "Instruction is not safe to speculatively execute!");
275 switch (Operator::getOpcode(I)) {
276 default:
277 // In doubt, be conservative.
278 return UINT_MAX;
279 case Instruction::GetElementPtr:
280 // GEPs are cheap if all indices are constant.
281 if (!cast<GEPOperator>(I)->hasAllConstantIndices())
282 return UINT_MAX;
283 return 1;
284 case Instruction::Load:
285 case Instruction::Add:
286 case Instruction::Sub:
287 case Instruction::And:
288 case Instruction::Or:
289 case Instruction::Xor:
290 case Instruction::Shl:
291 case Instruction::LShr:
292 case Instruction::AShr:
293 case Instruction::ICmp:
294 case Instruction::Trunc:
295 case Instruction::ZExt:
296 case Instruction::SExt:
297 return 1; // These are all cheap.
298
299 case Instruction::Call:
300 case Instruction::Select:
301 return 2;
302 }
303 }
304
305 /// DominatesMergePoint - If we have a merge point of an "if condition" as
306 /// accepted above, return true if the specified value dominates the block. We
307 /// don't handle the true generality of domination here, just a special case
308 /// which works well enough for us.
309 ///
310 /// If AggressiveInsts is non-null, and if V does not dominate BB, we check to
311 /// see if V (which must be an instruction) and its recursive operands
312 /// that do not dominate BB have a combined cost lower than CostRemaining and
313 /// are non-trapping. If both are true, the instruction is inserted into the
314 /// set and true is returned.
315 ///
316 /// The cost for most non-trapping instructions is defined as 1 except for
317 /// Select whose cost is 2.
318 ///
319 /// After this function returns, CostRemaining is decreased by the cost of
320 /// V plus its non-dominating operands. If that cost is greater than
321 /// CostRemaining, false is returned and CostRemaining is undefined.
DominatesMergePoint(Value * V,BasicBlock * BB,SmallPtrSet<Instruction *,4> * AggressiveInsts,unsigned & CostRemaining)322 static bool DominatesMergePoint(Value *V, BasicBlock *BB,
323 SmallPtrSet<Instruction*, 4> *AggressiveInsts,
324 unsigned &CostRemaining) {
325 Instruction *I = dyn_cast<Instruction>(V);
326 if (!I) {
327 // Non-instructions all dominate instructions, but not all constantexprs
328 // can be executed unconditionally.
329 if (ConstantExpr *C = dyn_cast<ConstantExpr>(V))
330 if (C->canTrap())
331 return false;
332 return true;
333 }
334 BasicBlock *PBB = I->getParent();
335
336 // We don't want to allow weird loops that might have the "if condition" in
337 // the bottom of this block.
338 if (PBB == BB) return false;
339
340 // If this instruction is defined in a block that contains an unconditional
341 // branch to BB, then it must be in the 'conditional' part of the "if
342 // statement". If not, it definitely dominates the region.
343 BranchInst *BI = dyn_cast<BranchInst>(PBB->getTerminator());
344 if (BI == 0 || BI->isConditional() || BI->getSuccessor(0) != BB)
345 return true;
346
347 // If we aren't allowing aggressive promotion anymore, then don't consider
348 // instructions in the 'if region'.
349 if (AggressiveInsts == 0) return false;
350
351 // If we have seen this instruction before, don't count it again.
352 if (AggressiveInsts->count(I)) return true;
353
354 // Okay, it looks like the instruction IS in the "condition". Check to
355 // see if it's a cheap instruction to unconditionally compute, and if it
356 // only uses stuff defined outside of the condition. If so, hoist it out.
357 if (!isSafeToSpeculativelyExecute(I))
358 return false;
359
360 unsigned Cost = ComputeSpeculationCost(I);
361
362 if (Cost > CostRemaining)
363 return false;
364
365 CostRemaining -= Cost;
366
367 // Okay, we can only really hoist these out if their operands do
368 // not take us over the cost threshold.
369 for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i)
370 if (!DominatesMergePoint(*i, BB, AggressiveInsts, CostRemaining))
371 return false;
372 // Okay, it's safe to do this! Remember this instruction.
373 AggressiveInsts->insert(I);
374 return true;
375 }
376
377 /// GetConstantInt - Extract ConstantInt from value, looking through IntToPtr
378 /// and PointerNullValue. Return NULL if value is not a constant int.
GetConstantInt(Value * V,const TargetData * TD)379 static ConstantInt *GetConstantInt(Value *V, const TargetData *TD) {
380 // Normal constant int.
381 ConstantInt *CI = dyn_cast<ConstantInt>(V);
382 if (CI || !TD || !isa<Constant>(V) || !V->getType()->isPointerTy())
383 return CI;
384
385 // This is some kind of pointer constant. Turn it into a pointer-sized
386 // ConstantInt if possible.
387 IntegerType *PtrTy = TD->getIntPtrType(V->getContext());
388
389 // Null pointer means 0, see SelectionDAGBuilder::getValue(const Value*).
390 if (isa<ConstantPointerNull>(V))
391 return ConstantInt::get(PtrTy, 0);
392
393 // IntToPtr const int.
394 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
395 if (CE->getOpcode() == Instruction::IntToPtr)
396 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(0))) {
397 // The constant is very likely to have the right type already.
398 if (CI->getType() == PtrTy)
399 return CI;
400 else
401 return cast<ConstantInt>
402 (ConstantExpr::getIntegerCast(CI, PtrTy, /*isSigned=*/false));
403 }
404 return 0;
405 }
406
407 /// GatherConstantCompares - Given a potentially 'or'd or 'and'd together
408 /// collection of icmp eq/ne instructions that compare a value against a
409 /// constant, return the value being compared, and stick the constant into the
410 /// Values vector.
411 static Value *
GatherConstantCompares(Value * V,std::vector<ConstantInt * > & Vals,Value * & Extra,const TargetData * TD,bool isEQ,unsigned & UsedICmps)412 GatherConstantCompares(Value *V, std::vector<ConstantInt*> &Vals, Value *&Extra,
413 const TargetData *TD, bool isEQ, unsigned &UsedICmps) {
414 Instruction *I = dyn_cast<Instruction>(V);
415 if (I == 0) return 0;
416
417 // If this is an icmp against a constant, handle this as one of the cases.
418 if (ICmpInst *ICI = dyn_cast<ICmpInst>(I)) {
419 if (ConstantInt *C = GetConstantInt(I->getOperand(1), TD)) {
420 if (ICI->getPredicate() == (isEQ ? ICmpInst::ICMP_EQ:ICmpInst::ICMP_NE)) {
421 UsedICmps++;
422 Vals.push_back(C);
423 return I->getOperand(0);
424 }
425
426 // If we have "x ult 3" comparison, for example, then we can add 0,1,2 to
427 // the set.
428 ConstantRange Span =
429 ConstantRange::makeICmpRegion(ICI->getPredicate(), C->getValue());
430
431 // If this is an and/!= check then we want to optimize "x ugt 2" into
432 // x != 0 && x != 1.
433 if (!isEQ)
434 Span = Span.inverse();
435
436 // If there are a ton of values, we don't want to make a ginormous switch.
437 if (Span.getSetSize().ugt(8) || Span.isEmptySet())
438 return 0;
439
440 for (APInt Tmp = Span.getLower(); Tmp != Span.getUpper(); ++Tmp)
441 Vals.push_back(ConstantInt::get(V->getContext(), Tmp));
442 UsedICmps++;
443 return I->getOperand(0);
444 }
445 return 0;
446 }
447
448 // Otherwise, we can only handle an | or &, depending on isEQ.
449 if (I->getOpcode() != (isEQ ? Instruction::Or : Instruction::And))
450 return 0;
451
452 unsigned NumValsBeforeLHS = Vals.size();
453 unsigned UsedICmpsBeforeLHS = UsedICmps;
454 if (Value *LHS = GatherConstantCompares(I->getOperand(0), Vals, Extra, TD,
455 isEQ, UsedICmps)) {
456 unsigned NumVals = Vals.size();
457 unsigned UsedICmpsBeforeRHS = UsedICmps;
458 if (Value *RHS = GatherConstantCompares(I->getOperand(1), Vals, Extra, TD,
459 isEQ, UsedICmps)) {
460 if (LHS == RHS)
461 return LHS;
462 Vals.resize(NumVals);
463 UsedICmps = UsedICmpsBeforeRHS;
464 }
465
466 // The RHS of the or/and can't be folded in and we haven't used "Extra" yet,
467 // set it and return success.
468 if (Extra == 0 || Extra == I->getOperand(1)) {
469 Extra = I->getOperand(1);
470 return LHS;
471 }
472
473 Vals.resize(NumValsBeforeLHS);
474 UsedICmps = UsedICmpsBeforeLHS;
475 return 0;
476 }
477
478 // If the LHS can't be folded in, but Extra is available and RHS can, try to
479 // use LHS as Extra.
480 if (Extra == 0 || Extra == I->getOperand(0)) {
481 Value *OldExtra = Extra;
482 Extra = I->getOperand(0);
483 if (Value *RHS = GatherConstantCompares(I->getOperand(1), Vals, Extra, TD,
484 isEQ, UsedICmps))
485 return RHS;
486 assert(Vals.size() == NumValsBeforeLHS);
487 Extra = OldExtra;
488 }
489
490 return 0;
491 }
492
EraseTerminatorInstAndDCECond(TerminatorInst * TI)493 static void EraseTerminatorInstAndDCECond(TerminatorInst *TI) {
494 Instruction *Cond = 0;
495 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
496 Cond = dyn_cast<Instruction>(SI->getCondition());
497 } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
498 if (BI->isConditional())
499 Cond = dyn_cast<Instruction>(BI->getCondition());
500 } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(TI)) {
501 Cond = dyn_cast<Instruction>(IBI->getAddress());
502 }
503
504 TI->eraseFromParent();
505 if (Cond) RecursivelyDeleteTriviallyDeadInstructions(Cond);
506 }
507
508 /// isValueEqualityComparison - Return true if the specified terminator checks
509 /// to see if a value is equal to constant integer value.
isValueEqualityComparison(TerminatorInst * TI)510 Value *SimplifyCFGOpt::isValueEqualityComparison(TerminatorInst *TI) {
511 Value *CV = 0;
512 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
513 // Do not permit merging of large switch instructions into their
514 // predecessors unless there is only one predecessor.
515 if (SI->getNumSuccessors()*std::distance(pred_begin(SI->getParent()),
516 pred_end(SI->getParent())) <= 128)
517 CV = SI->getCondition();
518 } else if (BranchInst *BI = dyn_cast<BranchInst>(TI))
519 if (BI->isConditional() && BI->getCondition()->hasOneUse())
520 if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition()))
521 if ((ICI->getPredicate() == ICmpInst::ICMP_EQ ||
522 ICI->getPredicate() == ICmpInst::ICMP_NE) &&
523 GetConstantInt(ICI->getOperand(1), TD))
524 CV = ICI->getOperand(0);
525
526 // Unwrap any lossless ptrtoint cast.
527 if (TD && CV && CV->getType() == TD->getIntPtrType(CV->getContext()))
528 if (PtrToIntInst *PTII = dyn_cast<PtrToIntInst>(CV))
529 CV = PTII->getOperand(0);
530 return CV;
531 }
532
533 /// GetValueEqualityComparisonCases - Given a value comparison instruction,
534 /// decode all of the 'cases' that it represents and return the 'default' block.
535 BasicBlock *SimplifyCFGOpt::
GetValueEqualityComparisonCases(TerminatorInst * TI,std::vector<ValueEqualityComparisonCase> & Cases)536 GetValueEqualityComparisonCases(TerminatorInst *TI,
537 std::vector<ValueEqualityComparisonCase>
538 &Cases) {
539 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
540 Cases.reserve(SI->getNumCases());
541 for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end(); i != e; ++i)
542 Cases.push_back(ValueEqualityComparisonCase(i.getCaseValue(),
543 i.getCaseSuccessor()));
544 return SI->getDefaultDest();
545 }
546
547 BranchInst *BI = cast<BranchInst>(TI);
548 ICmpInst *ICI = cast<ICmpInst>(BI->getCondition());
549 BasicBlock *Succ = BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_NE);
550 Cases.push_back(ValueEqualityComparisonCase(GetConstantInt(ICI->getOperand(1),
551 TD),
552 Succ));
553 return BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_EQ);
554 }
555
556
557 /// EliminateBlockCases - Given a vector of bb/value pairs, remove any entries
558 /// in the list that match the specified block.
EliminateBlockCases(BasicBlock * BB,std::vector<ValueEqualityComparisonCase> & Cases)559 static void EliminateBlockCases(BasicBlock *BB,
560 std::vector<ValueEqualityComparisonCase> &Cases) {
561 for (unsigned i = 0, e = Cases.size(); i != e; ++i)
562 if (Cases[i].Dest == BB) {
563 Cases.erase(Cases.begin()+i);
564 --i; --e;
565 }
566 }
567
568 /// ValuesOverlap - Return true if there are any keys in C1 that exist in C2 as
569 /// well.
570 static bool
ValuesOverlap(std::vector<ValueEqualityComparisonCase> & C1,std::vector<ValueEqualityComparisonCase> & C2)571 ValuesOverlap(std::vector<ValueEqualityComparisonCase> &C1,
572 std::vector<ValueEqualityComparisonCase > &C2) {
573 std::vector<ValueEqualityComparisonCase> *V1 = &C1, *V2 = &C2;
574
575 // Make V1 be smaller than V2.
576 if (V1->size() > V2->size())
577 std::swap(V1, V2);
578
579 if (V1->size() == 0) return false;
580 if (V1->size() == 1) {
581 // Just scan V2.
582 ConstantInt *TheVal = (*V1)[0].Value;
583 for (unsigned i = 0, e = V2->size(); i != e; ++i)
584 if (TheVal == (*V2)[i].Value)
585 return true;
586 }
587
588 // Otherwise, just sort both lists and compare element by element.
589 array_pod_sort(V1->begin(), V1->end());
590 array_pod_sort(V2->begin(), V2->end());
591 unsigned i1 = 0, i2 = 0, e1 = V1->size(), e2 = V2->size();
592 while (i1 != e1 && i2 != e2) {
593 if ((*V1)[i1].Value == (*V2)[i2].Value)
594 return true;
595 if ((*V1)[i1].Value < (*V2)[i2].Value)
596 ++i1;
597 else
598 ++i2;
599 }
600 return false;
601 }
602
603 /// SimplifyEqualityComparisonWithOnlyPredecessor - If TI is known to be a
604 /// terminator instruction and its block is known to only have a single
605 /// predecessor block, check to see if that predecessor is also a value
606 /// comparison with the same value, and if that comparison determines the
607 /// outcome of this comparison. If so, simplify TI. This does a very limited
608 /// form of jump threading.
609 bool SimplifyCFGOpt::
SimplifyEqualityComparisonWithOnlyPredecessor(TerminatorInst * TI,BasicBlock * Pred,IRBuilder<> & Builder)610 SimplifyEqualityComparisonWithOnlyPredecessor(TerminatorInst *TI,
611 BasicBlock *Pred,
612 IRBuilder<> &Builder) {
613 Value *PredVal = isValueEqualityComparison(Pred->getTerminator());
614 if (!PredVal) return false; // Not a value comparison in predecessor.
615
616 Value *ThisVal = isValueEqualityComparison(TI);
617 assert(ThisVal && "This isn't a value comparison!!");
618 if (ThisVal != PredVal) return false; // Different predicates.
619
620 // TODO: Preserve branch weight metadata, similarly to how
621 // FoldValueComparisonIntoPredecessors preserves it.
622
623 // Find out information about when control will move from Pred to TI's block.
624 std::vector<ValueEqualityComparisonCase> PredCases;
625 BasicBlock *PredDef = GetValueEqualityComparisonCases(Pred->getTerminator(),
626 PredCases);
627 EliminateBlockCases(PredDef, PredCases); // Remove default from cases.
628
629 // Find information about how control leaves this block.
630 std::vector<ValueEqualityComparisonCase> ThisCases;
631 BasicBlock *ThisDef = GetValueEqualityComparisonCases(TI, ThisCases);
632 EliminateBlockCases(ThisDef, ThisCases); // Remove default from cases.
633
634 // If TI's block is the default block from Pred's comparison, potentially
635 // simplify TI based on this knowledge.
636 if (PredDef == TI->getParent()) {
637 // If we are here, we know that the value is none of those cases listed in
638 // PredCases. If there are any cases in ThisCases that are in PredCases, we
639 // can simplify TI.
640 if (!ValuesOverlap(PredCases, ThisCases))
641 return false;
642
643 if (isa<BranchInst>(TI)) {
644 // Okay, one of the successors of this condbr is dead. Convert it to a
645 // uncond br.
646 assert(ThisCases.size() == 1 && "Branch can only have one case!");
647 // Insert the new branch.
648 Instruction *NI = Builder.CreateBr(ThisDef);
649 (void) NI;
650
651 // Remove PHI node entries for the dead edge.
652 ThisCases[0].Dest->removePredecessor(TI->getParent());
653
654 DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
655 << "Through successor TI: " << *TI << "Leaving: " << *NI << "\n");
656
657 EraseTerminatorInstAndDCECond(TI);
658 return true;
659 }
660
661 SwitchInst *SI = cast<SwitchInst>(TI);
662 // Okay, TI has cases that are statically dead, prune them away.
663 SmallPtrSet<Constant*, 16> DeadCases;
664 for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
665 DeadCases.insert(PredCases[i].Value);
666
667 DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
668 << "Through successor TI: " << *TI);
669
670 for (SwitchInst::CaseIt i = SI->case_end(), e = SI->case_begin(); i != e;) {
671 --i;
672 if (DeadCases.count(i.getCaseValue())) {
673 i.getCaseSuccessor()->removePredecessor(TI->getParent());
674 SI->removeCase(i);
675 }
676 }
677
678 DEBUG(dbgs() << "Leaving: " << *TI << "\n");
679 return true;
680 }
681
682 // Otherwise, TI's block must correspond to some matched value. Find out
683 // which value (or set of values) this is.
684 ConstantInt *TIV = 0;
685 BasicBlock *TIBB = TI->getParent();
686 for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
687 if (PredCases[i].Dest == TIBB) {
688 if (TIV != 0)
689 return false; // Cannot handle multiple values coming to this block.
690 TIV = PredCases[i].Value;
691 }
692 assert(TIV && "No edge from pred to succ?");
693
694 // Okay, we found the one constant that our value can be if we get into TI's
695 // BB. Find out which successor will unconditionally be branched to.
696 BasicBlock *TheRealDest = 0;
697 for (unsigned i = 0, e = ThisCases.size(); i != e; ++i)
698 if (ThisCases[i].Value == TIV) {
699 TheRealDest = ThisCases[i].Dest;
700 break;
701 }
702
703 // If not handled by any explicit cases, it is handled by the default case.
704 if (TheRealDest == 0) TheRealDest = ThisDef;
705
706 // Remove PHI node entries for dead edges.
707 BasicBlock *CheckEdge = TheRealDest;
708 for (succ_iterator SI = succ_begin(TIBB), e = succ_end(TIBB); SI != e; ++SI)
709 if (*SI != CheckEdge)
710 (*SI)->removePredecessor(TIBB);
711 else
712 CheckEdge = 0;
713
714 // Insert the new branch.
715 Instruction *NI = Builder.CreateBr(TheRealDest);
716 (void) NI;
717
718 DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
719 << "Through successor TI: " << *TI << "Leaving: " << *NI << "\n");
720
721 EraseTerminatorInstAndDCECond(TI);
722 return true;
723 }
724
725 namespace {
726 /// ConstantIntOrdering - This class implements a stable ordering of constant
727 /// integers that does not depend on their address. This is important for
728 /// applications that sort ConstantInt's to ensure uniqueness.
729 struct ConstantIntOrdering {
operator ()__anon08d918330211::ConstantIntOrdering730 bool operator()(const ConstantInt *LHS, const ConstantInt *RHS) const {
731 return LHS->getValue().ult(RHS->getValue());
732 }
733 };
734 }
735
ConstantIntSortPredicate(const void * P1,const void * P2)736 static int ConstantIntSortPredicate(const void *P1, const void *P2) {
737 const ConstantInt *LHS = *(const ConstantInt*const*)P1;
738 const ConstantInt *RHS = *(const ConstantInt*const*)P2;
739 if (LHS->getValue().ult(RHS->getValue()))
740 return 1;
741 if (LHS->getValue() == RHS->getValue())
742 return 0;
743 return -1;
744 }
745
HasBranchWeights(const Instruction * I)746 static inline bool HasBranchWeights(const Instruction* I) {
747 MDNode* ProfMD = I->getMetadata(LLVMContext::MD_prof);
748 if (ProfMD && ProfMD->getOperand(0))
749 if (MDString* MDS = dyn_cast<MDString>(ProfMD->getOperand(0)))
750 return MDS->getString().equals("branch_weights");
751
752 return false;
753 }
754
755 /// Tries to get a branch weight for the given instruction, returns NULL if it
756 /// can't. Pos starts at 0.
GetWeight(Instruction * I,int Pos)757 static ConstantInt* GetWeight(Instruction* I, int Pos) {
758 MDNode* ProfMD = I->getMetadata(LLVMContext::MD_prof);
759 if (ProfMD && ProfMD->getOperand(0)) {
760 if (MDString* MDS = dyn_cast<MDString>(ProfMD->getOperand(0))) {
761 if (MDS->getString().equals("branch_weights")) {
762 assert(ProfMD->getNumOperands() >= 3);
763 return dyn_cast<ConstantInt>(ProfMD->getOperand(1 + Pos));
764 }
765 }
766 }
767
768 return 0;
769 }
770
771 /// Scale the given weights based on the successor TI's metadata. Scaling is
772 /// done by multiplying every weight by the sum of the successor's weights.
ScaleWeights(Instruction * STI,MutableArrayRef<uint64_t> Weights)773 static void ScaleWeights(Instruction* STI, MutableArrayRef<uint64_t> Weights) {
774 // Sum the successor's weights
775 assert(HasBranchWeights(STI));
776 unsigned Scale = 0;
777 MDNode* ProfMD = STI->getMetadata(LLVMContext::MD_prof);
778 for (unsigned i = 1; i < ProfMD->getNumOperands(); ++i) {
779 ConstantInt* CI = dyn_cast<ConstantInt>(ProfMD->getOperand(i));
780 assert(CI);
781 Scale += CI->getValue().getZExtValue();
782 }
783
784 // Skip default, as it's replaced during the folding
785 for (unsigned i = 1; i < Weights.size(); ++i) {
786 Weights[i] *= Scale;
787 }
788 }
789
790 /// Sees if any of the weights are too big for a uint32_t, and halves all the
791 /// weights if any are.
FitWeights(MutableArrayRef<uint64_t> Weights)792 static void FitWeights(MutableArrayRef<uint64_t> Weights) {
793 bool Halve = false;
794 for (unsigned i = 0; i < Weights.size(); ++i)
795 if (Weights[i] > UINT_MAX) {
796 Halve = true;
797 break;
798 }
799
800 if (! Halve)
801 return;
802
803 for (unsigned i = 0; i < Weights.size(); ++i)
804 Weights[i] /= 2;
805 }
806
807 /// FoldValueComparisonIntoPredecessors - The specified terminator is a value
808 /// equality comparison instruction (either a switch or a branch on "X == c").
809 /// See if any of the predecessors of the terminator block are value comparisons
810 /// on the same value. If so, and if safe to do so, fold them together.
FoldValueComparisonIntoPredecessors(TerminatorInst * TI,IRBuilder<> & Builder)811 bool SimplifyCFGOpt::FoldValueComparisonIntoPredecessors(TerminatorInst *TI,
812 IRBuilder<> &Builder) {
813 BasicBlock *BB = TI->getParent();
814 Value *CV = isValueEqualityComparison(TI); // CondVal
815 assert(CV && "Not a comparison?");
816 bool Changed = false;
817
818 SmallVector<BasicBlock*, 16> Preds(pred_begin(BB), pred_end(BB));
819 while (!Preds.empty()) {
820 BasicBlock *Pred = Preds.pop_back_val();
821
822 // See if the predecessor is a comparison with the same value.
823 TerminatorInst *PTI = Pred->getTerminator();
824 Value *PCV = isValueEqualityComparison(PTI); // PredCondVal
825
826 if (PCV == CV && SafeToMergeTerminators(TI, PTI)) {
827 // Figure out which 'cases' to copy from SI to PSI.
828 std::vector<ValueEqualityComparisonCase> BBCases;
829 BasicBlock *BBDefault = GetValueEqualityComparisonCases(TI, BBCases);
830
831 std::vector<ValueEqualityComparisonCase> PredCases;
832 BasicBlock *PredDefault = GetValueEqualityComparisonCases(PTI, PredCases);
833
834 // Based on whether the default edge from PTI goes to BB or not, fill in
835 // PredCases and PredDefault with the new switch cases we would like to
836 // build.
837 SmallVector<BasicBlock*, 8> NewSuccessors;
838
839 // Update the branch weight metadata along the way
840 SmallVector<uint64_t, 8> Weights;
841 uint64_t PredDefaultWeight = 0;
842 bool PredHasWeights = HasBranchWeights(PTI);
843 bool SuccHasWeights = HasBranchWeights(TI);
844
845 if (PredHasWeights) {
846 MDNode* MD = PTI->getMetadata(LLVMContext::MD_prof);
847 assert(MD);
848 for (unsigned i = 1, e = MD->getNumOperands(); i < e; ++i) {
849 ConstantInt* CI = dyn_cast<ConstantInt>(MD->getOperand(i));
850 assert(CI);
851 Weights.push_back(CI->getValue().getZExtValue());
852 }
853
854 // If the predecessor is a conditional eq, then swap the default weight
855 // to be the first entry.
856 if (BranchInst* BI = dyn_cast<BranchInst>(PTI)) {
857 assert(Weights.size() == 2);
858 ICmpInst *ICI = cast<ICmpInst>(BI->getCondition());
859
860 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) {
861 std::swap(Weights.front(), Weights.back());
862 }
863 }
864
865 PredDefaultWeight = Weights.front();
866 } else if (SuccHasWeights) {
867 // If there are no predecessor weights but there are successor weights,
868 // populate Weights with 1, which will later be scaled to the sum of
869 // successor's weights
870 Weights.assign(1 + PredCases.size(), 1);
871 PredDefaultWeight = 1;
872 }
873
874 uint64_t SuccDefaultWeight = 0;
875 if (SuccHasWeights) {
876 int Index = 0;
877 if (BranchInst* BI = dyn_cast<BranchInst>(TI)) {
878 ICmpInst* ICI = dyn_cast<ICmpInst>(BI->getCondition());
879 assert(ICI);
880
881 if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
882 Index = 1;
883 }
884
885 SuccDefaultWeight = GetWeight(TI, Index)->getValue().getZExtValue();
886 }
887
888 if (PredDefault == BB) {
889 // If this is the default destination from PTI, only the edges in TI
890 // that don't occur in PTI, or that branch to BB will be activated.
891 std::set<ConstantInt*, ConstantIntOrdering> PTIHandled;
892 for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
893 if (PredCases[i].Dest != BB)
894 PTIHandled.insert(PredCases[i].Value);
895 else {
896 // The default destination is BB, we don't need explicit targets.
897 std::swap(PredCases[i], PredCases.back());
898
899 if (PredHasWeights) {
900 std::swap(Weights[i+1], Weights.back());
901 Weights.pop_back();
902 }
903
904 PredCases.pop_back();
905 --i; --e;
906 }
907
908 // Reconstruct the new switch statement we will be building.
909 if (PredDefault != BBDefault) {
910 PredDefault->removePredecessor(Pred);
911 PredDefault = BBDefault;
912 NewSuccessors.push_back(BBDefault);
913 }
914
915 if (SuccHasWeights) {
916 ScaleWeights(TI, Weights);
917 Weights.front() *= SuccDefaultWeight;
918 } else if (PredHasWeights) {
919 Weights.front() /= (1 + BBCases.size());
920 }
921
922 for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
923 if (!PTIHandled.count(BBCases[i].Value) &&
924 BBCases[i].Dest != BBDefault) {
925 PredCases.push_back(BBCases[i]);
926 NewSuccessors.push_back(BBCases[i].Dest);
927 if (SuccHasWeights) {
928 Weights.push_back(PredDefaultWeight *
929 GetWeight(TI, i)->getValue().getZExtValue());
930 } else if (PredHasWeights) {
931 // Split the old default's weight amongst the children
932 Weights.push_back(PredDefaultWeight / (1 + BBCases.size()));
933 }
934 }
935
936 } else {
937 // FIXME: preserve branch weight metadata, similarly to the 'then'
938 // above. For now, drop it.
939 PredHasWeights = false;
940 SuccHasWeights = false;
941
942 // If this is not the default destination from PSI, only the edges
943 // in SI that occur in PSI with a destination of BB will be
944 // activated.
945 std::set<ConstantInt*, ConstantIntOrdering> PTIHandled;
946 for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
947 if (PredCases[i].Dest == BB) {
948 PTIHandled.insert(PredCases[i].Value);
949 std::swap(PredCases[i], PredCases.back());
950 PredCases.pop_back();
951 --i; --e;
952 }
953
954 // Okay, now we know which constants were sent to BB from the
955 // predecessor. Figure out where they will all go now.
956 for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
957 if (PTIHandled.count(BBCases[i].Value)) {
958 // If this is one we are capable of getting...
959 PredCases.push_back(BBCases[i]);
960 NewSuccessors.push_back(BBCases[i].Dest);
961 PTIHandled.erase(BBCases[i].Value);// This constant is taken care of
962 }
963
964 // If there are any constants vectored to BB that TI doesn't handle,
965 // they must go to the default destination of TI.
966 for (std::set<ConstantInt*, ConstantIntOrdering>::iterator I =
967 PTIHandled.begin(),
968 E = PTIHandled.end(); I != E; ++I) {
969 PredCases.push_back(ValueEqualityComparisonCase(*I, BBDefault));
970 NewSuccessors.push_back(BBDefault);
971 }
972 }
973
974 // Okay, at this point, we know which new successor Pred will get. Make
975 // sure we update the number of entries in the PHI nodes for these
976 // successors.
977 for (unsigned i = 0, e = NewSuccessors.size(); i != e; ++i)
978 AddPredecessorToBlock(NewSuccessors[i], Pred, BB);
979
980 Builder.SetInsertPoint(PTI);
981 // Convert pointer to int before we switch.
982 if (CV->getType()->isPointerTy()) {
983 assert(TD && "Cannot switch on pointer without TargetData");
984 CV = Builder.CreatePtrToInt(CV, TD->getIntPtrType(CV->getContext()),
985 "magicptr");
986 }
987
988 // Now that the successors are updated, create the new Switch instruction.
989 SwitchInst *NewSI = Builder.CreateSwitch(CV, PredDefault,
990 PredCases.size());
991 NewSI->setDebugLoc(PTI->getDebugLoc());
992 for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
993 NewSI->addCase(PredCases[i].Value, PredCases[i].Dest);
994
995 if (PredHasWeights || SuccHasWeights) {
996 // Halve the weights if any of them cannot fit in an uint32_t
997 FitWeights(Weights);
998
999 SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end());
1000
1001 NewSI->setMetadata(LLVMContext::MD_prof,
1002 MDBuilder(BB->getContext()).
1003 createBranchWeights(MDWeights));
1004 }
1005
1006 EraseTerminatorInstAndDCECond(PTI);
1007
1008 // Okay, last check. If BB is still a successor of PSI, then we must
1009 // have an infinite loop case. If so, add an infinitely looping block
1010 // to handle the case to preserve the behavior of the code.
1011 BasicBlock *InfLoopBlock = 0;
1012 for (unsigned i = 0, e = NewSI->getNumSuccessors(); i != e; ++i)
1013 if (NewSI->getSuccessor(i) == BB) {
1014 if (InfLoopBlock == 0) {
1015 // Insert it at the end of the function, because it's either code,
1016 // or it won't matter if it's hot. :)
1017 InfLoopBlock = BasicBlock::Create(BB->getContext(),
1018 "infloop", BB->getParent());
1019 BranchInst::Create(InfLoopBlock, InfLoopBlock);
1020 }
1021 NewSI->setSuccessor(i, InfLoopBlock);
1022 }
1023
1024 Changed = true;
1025 }
1026 }
1027 return Changed;
1028 }
1029
1030 // isSafeToHoistInvoke - If we would need to insert a select that uses the
1031 // value of this invoke (comments in HoistThenElseCodeToIf explain why we
1032 // would need to do this), we can't hoist the invoke, as there is nowhere
1033 // to put the select in this case.
isSafeToHoistInvoke(BasicBlock * BB1,BasicBlock * BB2,Instruction * I1,Instruction * I2)1034 static bool isSafeToHoistInvoke(BasicBlock *BB1, BasicBlock *BB2,
1035 Instruction *I1, Instruction *I2) {
1036 for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI) {
1037 PHINode *PN;
1038 for (BasicBlock::iterator BBI = SI->begin();
1039 (PN = dyn_cast<PHINode>(BBI)); ++BBI) {
1040 Value *BB1V = PN->getIncomingValueForBlock(BB1);
1041 Value *BB2V = PN->getIncomingValueForBlock(BB2);
1042 if (BB1V != BB2V && (BB1V==I1 || BB2V==I2)) {
1043 return false;
1044 }
1045 }
1046 }
1047 return true;
1048 }
1049
1050 /// HoistThenElseCodeToIf - Given a conditional branch that goes to BB1 and
1051 /// BB2, hoist any common code in the two blocks up into the branch block. The
1052 /// caller of this function guarantees that BI's block dominates BB1 and BB2.
HoistThenElseCodeToIf(BranchInst * BI)1053 static bool HoistThenElseCodeToIf(BranchInst *BI) {
1054 // This does very trivial matching, with limited scanning, to find identical
1055 // instructions in the two blocks. In particular, we don't want to get into
1056 // O(M*N) situations here where M and N are the sizes of BB1 and BB2. As
1057 // such, we currently just scan for obviously identical instructions in an
1058 // identical order.
1059 BasicBlock *BB1 = BI->getSuccessor(0); // The true destination.
1060 BasicBlock *BB2 = BI->getSuccessor(1); // The false destination
1061
1062 BasicBlock::iterator BB1_Itr = BB1->begin();
1063 BasicBlock::iterator BB2_Itr = BB2->begin();
1064
1065 Instruction *I1 = BB1_Itr++, *I2 = BB2_Itr++;
1066 // Skip debug info if it is not identical.
1067 DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1);
1068 DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2);
1069 if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) {
1070 while (isa<DbgInfoIntrinsic>(I1))
1071 I1 = BB1_Itr++;
1072 while (isa<DbgInfoIntrinsic>(I2))
1073 I2 = BB2_Itr++;
1074 }
1075 if (isa<PHINode>(I1) || !I1->isIdenticalToWhenDefined(I2) ||
1076 (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2)))
1077 return false;
1078
1079 // If we get here, we can hoist at least one instruction.
1080 BasicBlock *BIParent = BI->getParent();
1081
1082 do {
1083 // If we are hoisting the terminator instruction, don't move one (making a
1084 // broken BB), instead clone it, and remove BI.
1085 if (isa<TerminatorInst>(I1))
1086 goto HoistTerminator;
1087
1088 // For a normal instruction, we just move one to right before the branch,
1089 // then replace all uses of the other with the first. Finally, we remove
1090 // the now redundant second instruction.
1091 BIParent->getInstList().splice(BI, BB1->getInstList(), I1);
1092 if (!I2->use_empty())
1093 I2->replaceAllUsesWith(I1);
1094 I1->intersectOptionalDataWith(I2);
1095 I2->eraseFromParent();
1096
1097 I1 = BB1_Itr++;
1098 I2 = BB2_Itr++;
1099 // Skip debug info if it is not identical.
1100 DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1);
1101 DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2);
1102 if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) {
1103 while (isa<DbgInfoIntrinsic>(I1))
1104 I1 = BB1_Itr++;
1105 while (isa<DbgInfoIntrinsic>(I2))
1106 I2 = BB2_Itr++;
1107 }
1108 } while (I1->isIdenticalToWhenDefined(I2));
1109
1110 return true;
1111
1112 HoistTerminator:
1113 // It may not be possible to hoist an invoke.
1114 if (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2))
1115 return true;
1116
1117 // Okay, it is safe to hoist the terminator.
1118 Instruction *NT = I1->clone();
1119 BIParent->getInstList().insert(BI, NT);
1120 if (!NT->getType()->isVoidTy()) {
1121 I1->replaceAllUsesWith(NT);
1122 I2->replaceAllUsesWith(NT);
1123 NT->takeName(I1);
1124 }
1125
1126 IRBuilder<true, NoFolder> Builder(NT);
1127 // Hoisting one of the terminators from our successor is a great thing.
1128 // Unfortunately, the successors of the if/else blocks may have PHI nodes in
1129 // them. If they do, all PHI entries for BB1/BB2 must agree for all PHI
1130 // nodes, so we insert select instruction to compute the final result.
1131 std::map<std::pair<Value*,Value*>, SelectInst*> InsertedSelects;
1132 for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI) {
1133 PHINode *PN;
1134 for (BasicBlock::iterator BBI = SI->begin();
1135 (PN = dyn_cast<PHINode>(BBI)); ++BBI) {
1136 Value *BB1V = PN->getIncomingValueForBlock(BB1);
1137 Value *BB2V = PN->getIncomingValueForBlock(BB2);
1138 if (BB1V == BB2V) continue;
1139
1140 // These values do not agree. Insert a select instruction before NT
1141 // that determines the right value.
1142 SelectInst *&SI = InsertedSelects[std::make_pair(BB1V, BB2V)];
1143 if (SI == 0)
1144 SI = cast<SelectInst>
1145 (Builder.CreateSelect(BI->getCondition(), BB1V, BB2V,
1146 BB1V->getName()+"."+BB2V->getName()));
1147
1148 // Make the PHI node use the select for all incoming values for BB1/BB2
1149 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
1150 if (PN->getIncomingBlock(i) == BB1 || PN->getIncomingBlock(i) == BB2)
1151 PN->setIncomingValue(i, SI);
1152 }
1153 }
1154
1155 // Update any PHI nodes in our new successors.
1156 for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI)
1157 AddPredecessorToBlock(*SI, BIParent, BB1);
1158
1159 EraseTerminatorInstAndDCECond(BI);
1160 return true;
1161 }
1162
1163 /// SpeculativelyExecuteBB - Given a conditional branch that goes to BB1
1164 /// and an BB2 and the only successor of BB1 is BB2, hoist simple code
1165 /// (for now, restricted to a single instruction that's side effect free) from
1166 /// the BB1 into the branch block to speculatively execute it.
1167 ///
1168 /// Turn
1169 /// BB:
1170 /// %t1 = icmp
1171 /// br i1 %t1, label %BB1, label %BB2
1172 /// BB1:
1173 /// %t3 = add %t2, c
1174 /// br label BB2
1175 /// BB2:
1176 /// =>
1177 /// BB:
1178 /// %t1 = icmp
1179 /// %t4 = add %t2, c
1180 /// %t3 = select i1 %t1, %t2, %t3
SpeculativelyExecuteBB(BranchInst * BI,BasicBlock * BB1)1181 static bool SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *BB1) {
1182 // Only speculatively execution a single instruction (not counting the
1183 // terminator) for now.
1184 Instruction *HInst = NULL;
1185 Instruction *Term = BB1->getTerminator();
1186 for (BasicBlock::iterator BBI = BB1->begin(), BBE = BB1->end();
1187 BBI != BBE; ++BBI) {
1188 Instruction *I = BBI;
1189 // Skip debug info.
1190 if (isa<DbgInfoIntrinsic>(I)) continue;
1191 if (I == Term) break;
1192
1193 if (HInst)
1194 return false;
1195 HInst = I;
1196 }
1197
1198 BasicBlock *BIParent = BI->getParent();
1199
1200 // Check the instruction to be hoisted, if there is one.
1201 if (HInst) {
1202 // Don't hoist the instruction if it's unsafe or expensive.
1203 if (!isSafeToSpeculativelyExecute(HInst))
1204 return false;
1205 if (ComputeSpeculationCost(HInst) > PHINodeFoldingThreshold)
1206 return false;
1207
1208 // Do not hoist the instruction if any of its operands are defined but not
1209 // used in this BB. The transformation will prevent the operand from
1210 // being sunk into the use block.
1211 for (User::op_iterator i = HInst->op_begin(), e = HInst->op_end();
1212 i != e; ++i) {
1213 Instruction *OpI = dyn_cast<Instruction>(*i);
1214 if (OpI && OpI->getParent() == BIParent &&
1215 !OpI->mayHaveSideEffects() &&
1216 !OpI->isUsedInBasicBlock(BIParent))
1217 return false;
1218 }
1219 }
1220
1221 // Be conservative for now. FP select instruction can often be expensive.
1222 Value *BrCond = BI->getCondition();
1223 if (isa<FCmpInst>(BrCond))
1224 return false;
1225
1226 // If BB1 is actually on the false edge of the conditional branch, remember
1227 // to swap the select operands later.
1228 bool Invert = false;
1229 if (BB1 != BI->getSuccessor(0)) {
1230 assert(BB1 == BI->getSuccessor(1) && "No edge from 'if' block?");
1231 Invert = true;
1232 }
1233
1234 // Collect interesting PHIs, and scan for hazards.
1235 SmallSetVector<std::pair<Value *, Value *>, 4> PHIs;
1236 BasicBlock *BB2 = BB1->getTerminator()->getSuccessor(0);
1237 for (BasicBlock::iterator I = BB2->begin();
1238 PHINode *PN = dyn_cast<PHINode>(I); ++I) {
1239 Value *BB1V = PN->getIncomingValueForBlock(BB1);
1240 Value *BIParentV = PN->getIncomingValueForBlock(BIParent);
1241
1242 // Skip PHIs which are trivial.
1243 if (BB1V == BIParentV)
1244 continue;
1245
1246 // Check for saftey.
1247 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(BB1V)) {
1248 // An unfolded ConstantExpr could end up getting expanded into
1249 // Instructions. Don't speculate this and another instruction at
1250 // the same time.
1251 if (HInst)
1252 return false;
1253 if (!isSafeToSpeculativelyExecute(CE))
1254 return false;
1255 if (ComputeSpeculationCost(CE) > PHINodeFoldingThreshold)
1256 return false;
1257 }
1258
1259 // Ok, we may insert a select for this PHI.
1260 PHIs.insert(std::make_pair(BB1V, BIParentV));
1261 }
1262
1263 // If there are no PHIs to process, bail early. This helps ensure idempotence
1264 // as well.
1265 if (PHIs.empty())
1266 return false;
1267
1268 // If we get here, we can hoist the instruction and if-convert.
1269 DEBUG(dbgs() << "SPECULATIVELY EXECUTING BB" << *BB1 << "\n";);
1270
1271 // Hoist the instruction.
1272 if (HInst)
1273 BIParent->getInstList().splice(BI, BB1->getInstList(), HInst);
1274
1275 // Insert selects and rewrite the PHI operands.
1276 IRBuilder<true, NoFolder> Builder(BI);
1277 for (unsigned i = 0, e = PHIs.size(); i != e; ++i) {
1278 Value *TrueV = PHIs[i].first;
1279 Value *FalseV = PHIs[i].second;
1280
1281 // Create a select whose true value is the speculatively executed value and
1282 // false value is the previously determined FalseV.
1283 SelectInst *SI;
1284 if (Invert)
1285 SI = cast<SelectInst>
1286 (Builder.CreateSelect(BrCond, FalseV, TrueV,
1287 FalseV->getName() + "." + TrueV->getName()));
1288 else
1289 SI = cast<SelectInst>
1290 (Builder.CreateSelect(BrCond, TrueV, FalseV,
1291 TrueV->getName() + "." + FalseV->getName()));
1292
1293 // Make the PHI node use the select for all incoming values for "then" and
1294 // "if" blocks.
1295 for (BasicBlock::iterator I = BB2->begin();
1296 PHINode *PN = dyn_cast<PHINode>(I); ++I) {
1297 unsigned BB1I = PN->getBasicBlockIndex(BB1);
1298 unsigned BIParentI = PN->getBasicBlockIndex(BIParent);
1299 Value *BB1V = PN->getIncomingValue(BB1I);
1300 Value *BIParentV = PN->getIncomingValue(BIParentI);
1301 if (TrueV == BB1V && FalseV == BIParentV) {
1302 PN->setIncomingValue(BB1I, SI);
1303 PN->setIncomingValue(BIParentI, SI);
1304 }
1305 }
1306 }
1307
1308 ++NumSpeculations;
1309 return true;
1310 }
1311
1312 /// BlockIsSimpleEnoughToThreadThrough - Return true if we can thread a branch
1313 /// across this block.
BlockIsSimpleEnoughToThreadThrough(BasicBlock * BB)1314 static bool BlockIsSimpleEnoughToThreadThrough(BasicBlock *BB) {
1315 BranchInst *BI = cast<BranchInst>(BB->getTerminator());
1316 unsigned Size = 0;
1317
1318 for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) {
1319 if (isa<DbgInfoIntrinsic>(BBI))
1320 continue;
1321 if (Size > 10) return false; // Don't clone large BB's.
1322 ++Size;
1323
1324 // We can only support instructions that do not define values that are
1325 // live outside of the current basic block.
1326 for (Value::use_iterator UI = BBI->use_begin(), E = BBI->use_end();
1327 UI != E; ++UI) {
1328 Instruction *U = cast<Instruction>(*UI);
1329 if (U->getParent() != BB || isa<PHINode>(U)) return false;
1330 }
1331
1332 // Looks ok, continue checking.
1333 }
1334
1335 return true;
1336 }
1337
1338 /// FoldCondBranchOnPHI - If we have a conditional branch on a PHI node value
1339 /// that is defined in the same block as the branch and if any PHI entries are
1340 /// constants, thread edges corresponding to that entry to be branches to their
1341 /// ultimate destination.
FoldCondBranchOnPHI(BranchInst * BI,const TargetData * TD)1342 static bool FoldCondBranchOnPHI(BranchInst *BI, const TargetData *TD) {
1343 BasicBlock *BB = BI->getParent();
1344 PHINode *PN = dyn_cast<PHINode>(BI->getCondition());
1345 // NOTE: we currently cannot transform this case if the PHI node is used
1346 // outside of the block.
1347 if (!PN || PN->getParent() != BB || !PN->hasOneUse())
1348 return false;
1349
1350 // Degenerate case of a single entry PHI.
1351 if (PN->getNumIncomingValues() == 1) {
1352 FoldSingleEntryPHINodes(PN->getParent());
1353 return true;
1354 }
1355
1356 // Now we know that this block has multiple preds and two succs.
1357 if (!BlockIsSimpleEnoughToThreadThrough(BB)) return false;
1358
1359 // Okay, this is a simple enough basic block. See if any phi values are
1360 // constants.
1361 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1362 ConstantInt *CB = dyn_cast<ConstantInt>(PN->getIncomingValue(i));
1363 if (CB == 0 || !CB->getType()->isIntegerTy(1)) continue;
1364
1365 // Okay, we now know that all edges from PredBB should be revectored to
1366 // branch to RealDest.
1367 BasicBlock *PredBB = PN->getIncomingBlock(i);
1368 BasicBlock *RealDest = BI->getSuccessor(!CB->getZExtValue());
1369
1370 if (RealDest == BB) continue; // Skip self loops.
1371 // Skip if the predecessor's terminator is an indirect branch.
1372 if (isa<IndirectBrInst>(PredBB->getTerminator())) continue;
1373
1374 // The dest block might have PHI nodes, other predecessors and other
1375 // difficult cases. Instead of being smart about this, just insert a new
1376 // block that jumps to the destination block, effectively splitting
1377 // the edge we are about to create.
1378 BasicBlock *EdgeBB = BasicBlock::Create(BB->getContext(),
1379 RealDest->getName()+".critedge",
1380 RealDest->getParent(), RealDest);
1381 BranchInst::Create(RealDest, EdgeBB);
1382
1383 // Update PHI nodes.
1384 AddPredecessorToBlock(RealDest, EdgeBB, BB);
1385
1386 // BB may have instructions that are being threaded over. Clone these
1387 // instructions into EdgeBB. We know that there will be no uses of the
1388 // cloned instructions outside of EdgeBB.
1389 BasicBlock::iterator InsertPt = EdgeBB->begin();
1390 DenseMap<Value*, Value*> TranslateMap; // Track translated values.
1391 for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) {
1392 if (PHINode *PN = dyn_cast<PHINode>(BBI)) {
1393 TranslateMap[PN] = PN->getIncomingValueForBlock(PredBB);
1394 continue;
1395 }
1396 // Clone the instruction.
1397 Instruction *N = BBI->clone();
1398 if (BBI->hasName()) N->setName(BBI->getName()+".c");
1399
1400 // Update operands due to translation.
1401 for (User::op_iterator i = N->op_begin(), e = N->op_end();
1402 i != e; ++i) {
1403 DenseMap<Value*, Value*>::iterator PI = TranslateMap.find(*i);
1404 if (PI != TranslateMap.end())
1405 *i = PI->second;
1406 }
1407
1408 // Check for trivial simplification.
1409 if (Value *V = SimplifyInstruction(N, TD)) {
1410 TranslateMap[BBI] = V;
1411 delete N; // Instruction folded away, don't need actual inst
1412 } else {
1413 // Insert the new instruction into its new home.
1414 EdgeBB->getInstList().insert(InsertPt, N);
1415 if (!BBI->use_empty())
1416 TranslateMap[BBI] = N;
1417 }
1418 }
1419
1420 // Loop over all of the edges from PredBB to BB, changing them to branch
1421 // to EdgeBB instead.
1422 TerminatorInst *PredBBTI = PredBB->getTerminator();
1423 for (unsigned i = 0, e = PredBBTI->getNumSuccessors(); i != e; ++i)
1424 if (PredBBTI->getSuccessor(i) == BB) {
1425 BB->removePredecessor(PredBB);
1426 PredBBTI->setSuccessor(i, EdgeBB);
1427 }
1428
1429 // Recurse, simplifying any other constants.
1430 return FoldCondBranchOnPHI(BI, TD) | true;
1431 }
1432
1433 return false;
1434 }
1435
1436 /// FoldTwoEntryPHINode - Given a BB that starts with the specified two-entry
1437 /// PHI node, see if we can eliminate it.
FoldTwoEntryPHINode(PHINode * PN,const TargetData * TD)1438 static bool FoldTwoEntryPHINode(PHINode *PN, const TargetData *TD) {
1439 // Ok, this is a two entry PHI node. Check to see if this is a simple "if
1440 // statement", which has a very simple dominance structure. Basically, we
1441 // are trying to find the condition that is being branched on, which
1442 // subsequently causes this merge to happen. We really want control
1443 // dependence information for this check, but simplifycfg can't keep it up
1444 // to date, and this catches most of the cases we care about anyway.
1445 BasicBlock *BB = PN->getParent();
1446 BasicBlock *IfTrue, *IfFalse;
1447 Value *IfCond = GetIfCondition(BB, IfTrue, IfFalse);
1448 if (!IfCond ||
1449 // Don't bother if the branch will be constant folded trivially.
1450 isa<ConstantInt>(IfCond))
1451 return false;
1452
1453 // Okay, we found that we can merge this two-entry phi node into a select.
1454 // Doing so would require us to fold *all* two entry phi nodes in this block.
1455 // At some point this becomes non-profitable (particularly if the target
1456 // doesn't support cmov's). Only do this transformation if there are two or
1457 // fewer PHI nodes in this block.
1458 unsigned NumPhis = 0;
1459 for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++NumPhis, ++I)
1460 if (NumPhis > 2)
1461 return false;
1462
1463 // Loop over the PHI's seeing if we can promote them all to select
1464 // instructions. While we are at it, keep track of the instructions
1465 // that need to be moved to the dominating block.
1466 SmallPtrSet<Instruction*, 4> AggressiveInsts;
1467 unsigned MaxCostVal0 = PHINodeFoldingThreshold,
1468 MaxCostVal1 = PHINodeFoldingThreshold;
1469
1470 for (BasicBlock::iterator II = BB->begin(); isa<PHINode>(II);) {
1471 PHINode *PN = cast<PHINode>(II++);
1472 if (Value *V = SimplifyInstruction(PN, TD)) {
1473 PN->replaceAllUsesWith(V);
1474 PN->eraseFromParent();
1475 continue;
1476 }
1477
1478 if (!DominatesMergePoint(PN->getIncomingValue(0), BB, &AggressiveInsts,
1479 MaxCostVal0) ||
1480 !DominatesMergePoint(PN->getIncomingValue(1), BB, &AggressiveInsts,
1481 MaxCostVal1))
1482 return false;
1483 }
1484
1485 // If we folded the first phi, PN dangles at this point. Refresh it. If
1486 // we ran out of PHIs then we simplified them all.
1487 PN = dyn_cast<PHINode>(BB->begin());
1488 if (PN == 0) return true;
1489
1490 // Don't fold i1 branches on PHIs which contain binary operators. These can
1491 // often be turned into switches and other things.
1492 if (PN->getType()->isIntegerTy(1) &&
1493 (isa<BinaryOperator>(PN->getIncomingValue(0)) ||
1494 isa<BinaryOperator>(PN->getIncomingValue(1)) ||
1495 isa<BinaryOperator>(IfCond)))
1496 return false;
1497
1498 // If we all PHI nodes are promotable, check to make sure that all
1499 // instructions in the predecessor blocks can be promoted as well. If
1500 // not, we won't be able to get rid of the control flow, so it's not
1501 // worth promoting to select instructions.
1502 BasicBlock *DomBlock = 0;
1503 BasicBlock *IfBlock1 = PN->getIncomingBlock(0);
1504 BasicBlock *IfBlock2 = PN->getIncomingBlock(1);
1505 if (cast<BranchInst>(IfBlock1->getTerminator())->isConditional()) {
1506 IfBlock1 = 0;
1507 } else {
1508 DomBlock = *pred_begin(IfBlock1);
1509 for (BasicBlock::iterator I = IfBlock1->begin();!isa<TerminatorInst>(I);++I)
1510 if (!AggressiveInsts.count(I) && !isa<DbgInfoIntrinsic>(I)) {
1511 // This is not an aggressive instruction that we can promote.
1512 // Because of this, we won't be able to get rid of the control
1513 // flow, so the xform is not worth it.
1514 return false;
1515 }
1516 }
1517
1518 if (cast<BranchInst>(IfBlock2->getTerminator())->isConditional()) {
1519 IfBlock2 = 0;
1520 } else {
1521 DomBlock = *pred_begin(IfBlock2);
1522 for (BasicBlock::iterator I = IfBlock2->begin();!isa<TerminatorInst>(I);++I)
1523 if (!AggressiveInsts.count(I) && !isa<DbgInfoIntrinsic>(I)) {
1524 // This is not an aggressive instruction that we can promote.
1525 // Because of this, we won't be able to get rid of the control
1526 // flow, so the xform is not worth it.
1527 return false;
1528 }
1529 }
1530
1531 DEBUG(dbgs() << "FOUND IF CONDITION! " << *IfCond << " T: "
1532 << IfTrue->getName() << " F: " << IfFalse->getName() << "\n");
1533
1534 // If we can still promote the PHI nodes after this gauntlet of tests,
1535 // do all of the PHI's now.
1536 Instruction *InsertPt = DomBlock->getTerminator();
1537 IRBuilder<true, NoFolder> Builder(InsertPt);
1538
1539 // Move all 'aggressive' instructions, which are defined in the
1540 // conditional parts of the if's up to the dominating block.
1541 if (IfBlock1)
1542 DomBlock->getInstList().splice(InsertPt,
1543 IfBlock1->getInstList(), IfBlock1->begin(),
1544 IfBlock1->getTerminator());
1545 if (IfBlock2)
1546 DomBlock->getInstList().splice(InsertPt,
1547 IfBlock2->getInstList(), IfBlock2->begin(),
1548 IfBlock2->getTerminator());
1549
1550 while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) {
1551 // Change the PHI node into a select instruction.
1552 Value *TrueVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfFalse);
1553 Value *FalseVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfTrue);
1554
1555 SelectInst *NV =
1556 cast<SelectInst>(Builder.CreateSelect(IfCond, TrueVal, FalseVal, ""));
1557 PN->replaceAllUsesWith(NV);
1558 NV->takeName(PN);
1559 PN->eraseFromParent();
1560 }
1561
1562 // At this point, IfBlock1 and IfBlock2 are both empty, so our if statement
1563 // has been flattened. Change DomBlock to jump directly to our new block to
1564 // avoid other simplifycfg's kicking in on the diamond.
1565 TerminatorInst *OldTI = DomBlock->getTerminator();
1566 Builder.SetInsertPoint(OldTI);
1567 Builder.CreateBr(BB);
1568 OldTI->eraseFromParent();
1569 return true;
1570 }
1571
1572 /// SimplifyCondBranchToTwoReturns - If we found a conditional branch that goes
1573 /// to two returning blocks, try to merge them together into one return,
1574 /// introducing a select if the return values disagree.
SimplifyCondBranchToTwoReturns(BranchInst * BI,IRBuilder<> & Builder)1575 static bool SimplifyCondBranchToTwoReturns(BranchInst *BI,
1576 IRBuilder<> &Builder) {
1577 assert(BI->isConditional() && "Must be a conditional branch");
1578 BasicBlock *TrueSucc = BI->getSuccessor(0);
1579 BasicBlock *FalseSucc = BI->getSuccessor(1);
1580 ReturnInst *TrueRet = cast<ReturnInst>(TrueSucc->getTerminator());
1581 ReturnInst *FalseRet = cast<ReturnInst>(FalseSucc->getTerminator());
1582
1583 // Check to ensure both blocks are empty (just a return) or optionally empty
1584 // with PHI nodes. If there are other instructions, merging would cause extra
1585 // computation on one path or the other.
1586 if (!TrueSucc->getFirstNonPHIOrDbg()->isTerminator())
1587 return false;
1588 if (!FalseSucc->getFirstNonPHIOrDbg()->isTerminator())
1589 return false;
1590
1591 Builder.SetInsertPoint(BI);
1592 // Okay, we found a branch that is going to two return nodes. If
1593 // there is no return value for this function, just change the
1594 // branch into a return.
1595 if (FalseRet->getNumOperands() == 0) {
1596 TrueSucc->removePredecessor(BI->getParent());
1597 FalseSucc->removePredecessor(BI->getParent());
1598 Builder.CreateRetVoid();
1599 EraseTerminatorInstAndDCECond(BI);
1600 return true;
1601 }
1602
1603 // Otherwise, figure out what the true and false return values are
1604 // so we can insert a new select instruction.
1605 Value *TrueValue = TrueRet->getReturnValue();
1606 Value *FalseValue = FalseRet->getReturnValue();
1607
1608 // Unwrap any PHI nodes in the return blocks.
1609 if (PHINode *TVPN = dyn_cast_or_null<PHINode>(TrueValue))
1610 if (TVPN->getParent() == TrueSucc)
1611 TrueValue = TVPN->getIncomingValueForBlock(BI->getParent());
1612 if (PHINode *FVPN = dyn_cast_or_null<PHINode>(FalseValue))
1613 if (FVPN->getParent() == FalseSucc)
1614 FalseValue = FVPN->getIncomingValueForBlock(BI->getParent());
1615
1616 // In order for this transformation to be safe, we must be able to
1617 // unconditionally execute both operands to the return. This is
1618 // normally the case, but we could have a potentially-trapping
1619 // constant expression that prevents this transformation from being
1620 // safe.
1621 if (ConstantExpr *TCV = dyn_cast_or_null<ConstantExpr>(TrueValue))
1622 if (TCV->canTrap())
1623 return false;
1624 if (ConstantExpr *FCV = dyn_cast_or_null<ConstantExpr>(FalseValue))
1625 if (FCV->canTrap())
1626 return false;
1627
1628 // Okay, we collected all the mapped values and checked them for sanity, and
1629 // defined to really do this transformation. First, update the CFG.
1630 TrueSucc->removePredecessor(BI->getParent());
1631 FalseSucc->removePredecessor(BI->getParent());
1632
1633 // Insert select instructions where needed.
1634 Value *BrCond = BI->getCondition();
1635 if (TrueValue) {
1636 // Insert a select if the results differ.
1637 if (TrueValue == FalseValue || isa<UndefValue>(FalseValue)) {
1638 } else if (isa<UndefValue>(TrueValue)) {
1639 TrueValue = FalseValue;
1640 } else {
1641 TrueValue = Builder.CreateSelect(BrCond, TrueValue,
1642 FalseValue, "retval");
1643 }
1644 }
1645
1646 Value *RI = !TrueValue ?
1647 Builder.CreateRetVoid() : Builder.CreateRet(TrueValue);
1648
1649 (void) RI;
1650
1651 DEBUG(dbgs() << "\nCHANGING BRANCH TO TWO RETURNS INTO SELECT:"
1652 << "\n " << *BI << "NewRet = " << *RI
1653 << "TRUEBLOCK: " << *TrueSucc << "FALSEBLOCK: "<< *FalseSucc);
1654
1655 EraseTerminatorInstAndDCECond(BI);
1656
1657 return true;
1658 }
1659
1660 /// ExtractBranchMetadata - Given a conditional BranchInstruction, retrieve the
1661 /// probabilities of the branch taking each edge. Fills in the two APInt
1662 /// parameters and return true, or returns false if no or invalid metadata was
1663 /// found.
ExtractBranchMetadata(BranchInst * BI,APInt & ProbTrue,APInt & ProbFalse)1664 static bool ExtractBranchMetadata(BranchInst *BI,
1665 APInt &ProbTrue, APInt &ProbFalse) {
1666 assert(BI->isConditional() &&
1667 "Looking for probabilities on unconditional branch?");
1668 MDNode *ProfileData = BI->getMetadata(LLVMContext::MD_prof);
1669 if (!ProfileData || ProfileData->getNumOperands() != 3) return false;
1670 ConstantInt *CITrue = dyn_cast<ConstantInt>(ProfileData->getOperand(1));
1671 ConstantInt *CIFalse = dyn_cast<ConstantInt>(ProfileData->getOperand(2));
1672 if (!CITrue || !CIFalse) return false;
1673 ProbTrue = CITrue->getValue();
1674 ProbFalse = CIFalse->getValue();
1675 assert(ProbTrue.getBitWidth() == 32 && ProbFalse.getBitWidth() == 32 &&
1676 "Branch probability metadata must be 32-bit integers");
1677 return true;
1678 }
1679
1680 /// MultiplyAndLosePrecision - Multiplies A and B, then returns the result. In
1681 /// the event of overflow, logically-shifts all four inputs right until the
1682 /// multiply fits.
MultiplyAndLosePrecision(APInt & A,APInt & B,APInt & C,APInt & D,unsigned & BitsLost)1683 static APInt MultiplyAndLosePrecision(APInt &A, APInt &B, APInt &C, APInt &D,
1684 unsigned &BitsLost) {
1685 BitsLost = 0;
1686 bool Overflow = false;
1687 APInt Result = A.umul_ov(B, Overflow);
1688 if (Overflow) {
1689 APInt MaxB = APInt::getMaxValue(A.getBitWidth()).udiv(A);
1690 do {
1691 B = B.lshr(1);
1692 ++BitsLost;
1693 } while (B.ugt(MaxB));
1694 A = A.lshr(BitsLost);
1695 C = C.lshr(BitsLost);
1696 D = D.lshr(BitsLost);
1697 Result = A * B;
1698 }
1699 return Result;
1700 }
1701
1702 /// checkCSEInPredecessor - Return true if the given instruction is available
1703 /// in its predecessor block. If yes, the instruction will be removed.
1704 ///
checkCSEInPredecessor(Instruction * Inst,BasicBlock * PB)1705 static bool checkCSEInPredecessor(Instruction *Inst, BasicBlock *PB) {
1706 if (!isa<BinaryOperator>(Inst) && !isa<CmpInst>(Inst))
1707 return false;
1708 for (BasicBlock::iterator I = PB->begin(), E = PB->end(); I != E; I++) {
1709 Instruction *PBI = &*I;
1710 // Check whether Inst and PBI generate the same value.
1711 if (Inst->isIdenticalTo(PBI)) {
1712 Inst->replaceAllUsesWith(PBI);
1713 Inst->eraseFromParent();
1714 return true;
1715 }
1716 }
1717 return false;
1718 }
1719
1720 /// FoldBranchToCommonDest - If this basic block is simple enough, and if a
1721 /// predecessor branches to us and one of our successors, fold the block into
1722 /// the predecessor and use logical operations to pick the right destination.
FoldBranchToCommonDest(BranchInst * BI)1723 bool llvm::FoldBranchToCommonDest(BranchInst *BI) {
1724 BasicBlock *BB = BI->getParent();
1725
1726 Instruction *Cond = 0;
1727 if (BI->isConditional())
1728 Cond = dyn_cast<Instruction>(BI->getCondition());
1729 else {
1730 // For unconditional branch, check for a simple CFG pattern, where
1731 // BB has a single predecessor and BB's successor is also its predecessor's
1732 // successor. If such pattern exisits, check for CSE between BB and its
1733 // predecessor.
1734 if (BasicBlock *PB = BB->getSinglePredecessor())
1735 if (BranchInst *PBI = dyn_cast<BranchInst>(PB->getTerminator()))
1736 if (PBI->isConditional() &&
1737 (BI->getSuccessor(0) == PBI->getSuccessor(0) ||
1738 BI->getSuccessor(0) == PBI->getSuccessor(1))) {
1739 for (BasicBlock::iterator I = BB->begin(), E = BB->end();
1740 I != E; ) {
1741 Instruction *Curr = I++;
1742 if (isa<CmpInst>(Curr)) {
1743 Cond = Curr;
1744 break;
1745 }
1746 // Quit if we can't remove this instruction.
1747 if (!checkCSEInPredecessor(Curr, PB))
1748 return false;
1749 }
1750 }
1751
1752 if (Cond == 0)
1753 return false;
1754 }
1755
1756 if (Cond == 0 || (!isa<CmpInst>(Cond) && !isa<BinaryOperator>(Cond)) ||
1757 Cond->getParent() != BB || !Cond->hasOneUse())
1758 return false;
1759
1760 // Only allow this if the condition is a simple instruction that can be
1761 // executed unconditionally. It must be in the same block as the branch, and
1762 // must be at the front of the block.
1763 BasicBlock::iterator FrontIt = BB->front();
1764
1765 // Ignore dbg intrinsics.
1766 while (isa<DbgInfoIntrinsic>(FrontIt)) ++FrontIt;
1767
1768 // Allow a single instruction to be hoisted in addition to the compare
1769 // that feeds the branch. We later ensure that any values that _it_ uses
1770 // were also live in the predecessor, so that we don't unnecessarily create
1771 // register pressure or inhibit out-of-order execution.
1772 Instruction *BonusInst = 0;
1773 if (&*FrontIt != Cond &&
1774 FrontIt->hasOneUse() && *FrontIt->use_begin() == Cond &&
1775 isSafeToSpeculativelyExecute(FrontIt)) {
1776 BonusInst = &*FrontIt;
1777 ++FrontIt;
1778
1779 // Ignore dbg intrinsics.
1780 while (isa<DbgInfoIntrinsic>(FrontIt)) ++FrontIt;
1781 }
1782
1783 // Only a single bonus inst is allowed.
1784 if (&*FrontIt != Cond)
1785 return false;
1786
1787 // Make sure the instruction after the condition is the cond branch.
1788 BasicBlock::iterator CondIt = Cond; ++CondIt;
1789
1790 // Ingore dbg intrinsics.
1791 while (isa<DbgInfoIntrinsic>(CondIt)) ++CondIt;
1792
1793 if (&*CondIt != BI)
1794 return false;
1795
1796 // Cond is known to be a compare or binary operator. Check to make sure that
1797 // neither operand is a potentially-trapping constant expression.
1798 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(0)))
1799 if (CE->canTrap())
1800 return false;
1801 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(1)))
1802 if (CE->canTrap())
1803 return false;
1804
1805 // Finally, don't infinitely unroll conditional loops.
1806 BasicBlock *TrueDest = BI->getSuccessor(0);
1807 BasicBlock *FalseDest = (BI->isConditional()) ? BI->getSuccessor(1) : 0;
1808 if (TrueDest == BB || FalseDest == BB)
1809 return false;
1810
1811 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
1812 BasicBlock *PredBlock = *PI;
1813 BranchInst *PBI = dyn_cast<BranchInst>(PredBlock->getTerminator());
1814
1815 // Check that we have two conditional branches. If there is a PHI node in
1816 // the common successor, verify that the same value flows in from both
1817 // blocks.
1818 SmallVector<PHINode*, 4> PHIs;
1819 if (PBI == 0 || PBI->isUnconditional() ||
1820 (BI->isConditional() &&
1821 !SafeToMergeTerminators(BI, PBI)) ||
1822 (!BI->isConditional() &&
1823 !isProfitableToFoldUnconditional(BI, PBI, Cond, PHIs)))
1824 continue;
1825
1826 // Determine if the two branches share a common destination.
1827 Instruction::BinaryOps Opc;
1828 bool InvertPredCond = false;
1829
1830 if (BI->isConditional()) {
1831 if (PBI->getSuccessor(0) == TrueDest)
1832 Opc = Instruction::Or;
1833 else if (PBI->getSuccessor(1) == FalseDest)
1834 Opc = Instruction::And;
1835 else if (PBI->getSuccessor(0) == FalseDest)
1836 Opc = Instruction::And, InvertPredCond = true;
1837 else if (PBI->getSuccessor(1) == TrueDest)
1838 Opc = Instruction::Or, InvertPredCond = true;
1839 else
1840 continue;
1841 } else {
1842 if (PBI->getSuccessor(0) != TrueDest && PBI->getSuccessor(1) != TrueDest)
1843 continue;
1844 }
1845
1846 // Ensure that any values used in the bonus instruction are also used
1847 // by the terminator of the predecessor. This means that those values
1848 // must already have been resolved, so we won't be inhibiting the
1849 // out-of-order core by speculating them earlier.
1850 if (BonusInst) {
1851 // Collect the values used by the bonus inst
1852 SmallPtrSet<Value*, 4> UsedValues;
1853 for (Instruction::op_iterator OI = BonusInst->op_begin(),
1854 OE = BonusInst->op_end(); OI != OE; ++OI) {
1855 Value *V = *OI;
1856 if (!isa<Constant>(V))
1857 UsedValues.insert(V);
1858 }
1859
1860 SmallVector<std::pair<Value*, unsigned>, 4> Worklist;
1861 Worklist.push_back(std::make_pair(PBI->getOperand(0), 0));
1862
1863 // Walk up to four levels back up the use-def chain of the predecessor's
1864 // terminator to see if all those values were used. The choice of four
1865 // levels is arbitrary, to provide a compile-time-cost bound.
1866 while (!Worklist.empty()) {
1867 std::pair<Value*, unsigned> Pair = Worklist.back();
1868 Worklist.pop_back();
1869
1870 if (Pair.second >= 4) continue;
1871 UsedValues.erase(Pair.first);
1872 if (UsedValues.empty()) break;
1873
1874 if (Instruction *I = dyn_cast<Instruction>(Pair.first)) {
1875 for (Instruction::op_iterator OI = I->op_begin(), OE = I->op_end();
1876 OI != OE; ++OI)
1877 Worklist.push_back(std::make_pair(OI->get(), Pair.second+1));
1878 }
1879 }
1880
1881 if (!UsedValues.empty()) return false;
1882 }
1883
1884 DEBUG(dbgs() << "FOLDING BRANCH TO COMMON DEST:\n" << *PBI << *BB);
1885 IRBuilder<> Builder(PBI);
1886
1887 // If we need to invert the condition in the pred block to match, do so now.
1888 if (InvertPredCond) {
1889 Value *NewCond = PBI->getCondition();
1890
1891 if (NewCond->hasOneUse() && isa<CmpInst>(NewCond)) {
1892 CmpInst *CI = cast<CmpInst>(NewCond);
1893 CI->setPredicate(CI->getInversePredicate());
1894 } else {
1895 NewCond = Builder.CreateNot(NewCond,
1896 PBI->getCondition()->getName()+".not");
1897 }
1898
1899 PBI->setCondition(NewCond);
1900 PBI->swapSuccessors();
1901 }
1902
1903 // If we have a bonus inst, clone it into the predecessor block.
1904 Instruction *NewBonus = 0;
1905 if (BonusInst) {
1906 NewBonus = BonusInst->clone();
1907 PredBlock->getInstList().insert(PBI, NewBonus);
1908 NewBonus->takeName(BonusInst);
1909 BonusInst->setName(BonusInst->getName()+".old");
1910 }
1911
1912 // Clone Cond into the predecessor basic block, and or/and the
1913 // two conditions together.
1914 Instruction *New = Cond->clone();
1915 if (BonusInst) New->replaceUsesOfWith(BonusInst, NewBonus);
1916 PredBlock->getInstList().insert(PBI, New);
1917 New->takeName(Cond);
1918 Cond->setName(New->getName()+".old");
1919
1920 if (BI->isConditional()) {
1921 Instruction *NewCond =
1922 cast<Instruction>(Builder.CreateBinOp(Opc, PBI->getCondition(),
1923 New, "or.cond"));
1924 PBI->setCondition(NewCond);
1925
1926 if (PBI->getSuccessor(0) == BB) {
1927 AddPredecessorToBlock(TrueDest, PredBlock, BB);
1928 PBI->setSuccessor(0, TrueDest);
1929 }
1930 if (PBI->getSuccessor(1) == BB) {
1931 AddPredecessorToBlock(FalseDest, PredBlock, BB);
1932 PBI->setSuccessor(1, FalseDest);
1933 }
1934 } else {
1935 // Update PHI nodes in the common successors.
1936 for (unsigned i = 0, e = PHIs.size(); i != e; ++i) {
1937 ConstantInt *PBI_C = cast<ConstantInt>(
1938 PHIs[i]->getIncomingValueForBlock(PBI->getParent()));
1939 assert(PBI_C->getType()->isIntegerTy(1));
1940 Instruction *MergedCond = 0;
1941 if (PBI->getSuccessor(0) == TrueDest) {
1942 // Create (PBI_Cond and PBI_C) or (!PBI_Cond and BI_Value)
1943 // PBI_C is true: PBI_Cond or (!PBI_Cond and BI_Value)
1944 // is false: !PBI_Cond and BI_Value
1945 Instruction *NotCond =
1946 cast<Instruction>(Builder.CreateNot(PBI->getCondition(),
1947 "not.cond"));
1948 MergedCond =
1949 cast<Instruction>(Builder.CreateBinOp(Instruction::And,
1950 NotCond, New,
1951 "and.cond"));
1952 if (PBI_C->isOne())
1953 MergedCond =
1954 cast<Instruction>(Builder.CreateBinOp(Instruction::Or,
1955 PBI->getCondition(), MergedCond,
1956 "or.cond"));
1957 } else {
1958 // Create (PBI_Cond and BI_Value) or (!PBI_Cond and PBI_C)
1959 // PBI_C is true: (PBI_Cond and BI_Value) or (!PBI_Cond)
1960 // is false: PBI_Cond and BI_Value
1961 MergedCond =
1962 cast<Instruction>(Builder.CreateBinOp(Instruction::And,
1963 PBI->getCondition(), New,
1964 "and.cond"));
1965 if (PBI_C->isOne()) {
1966 Instruction *NotCond =
1967 cast<Instruction>(Builder.CreateNot(PBI->getCondition(),
1968 "not.cond"));
1969 MergedCond =
1970 cast<Instruction>(Builder.CreateBinOp(Instruction::Or,
1971 NotCond, MergedCond,
1972 "or.cond"));
1973 }
1974 }
1975 // Update PHI Node.
1976 PHIs[i]->setIncomingValue(PHIs[i]->getBasicBlockIndex(PBI->getParent()),
1977 MergedCond);
1978 }
1979 // Change PBI from Conditional to Unconditional.
1980 BranchInst *New_PBI = BranchInst::Create(TrueDest, PBI);
1981 EraseTerminatorInstAndDCECond(PBI);
1982 PBI = New_PBI;
1983 }
1984
1985 // TODO: If BB is reachable from all paths through PredBlock, then we
1986 // could replace PBI's branch probabilities with BI's.
1987
1988 // Merge probability data into PredBlock's branch.
1989 APInt A, B, C, D;
1990 if (PBI->isConditional() && BI->isConditional() &&
1991 ExtractBranchMetadata(PBI, C, D) && ExtractBranchMetadata(BI, A, B)) {
1992 // Given IR which does:
1993 // bbA:
1994 // br i1 %x, label %bbB, label %bbC
1995 // bbB:
1996 // br i1 %y, label %bbD, label %bbC
1997 // Let's call the probability that we take the edge from %bbA to %bbB
1998 // 'a', from %bbA to %bbC, 'b', from %bbB to %bbD 'c' and from %bbB to
1999 // %bbC probability 'd'.
2000 //
2001 // We transform the IR into:
2002 // bbA:
2003 // br i1 %z, label %bbD, label %bbC
2004 // where the probability of going to %bbD is (a*c) and going to bbC is
2005 // (b+a*d).
2006 //
2007 // Probabilities aren't stored as ratios directly. Using branch weights,
2008 // we get:
2009 // (a*c)% = A*C, (b+(a*d))% = A*D+B*C+B*D.
2010
2011 // In the event of overflow, we want to drop the LSB of the input
2012 // probabilities.
2013 unsigned BitsLost;
2014
2015 // Ignore overflow result on ProbTrue.
2016 APInt ProbTrue = MultiplyAndLosePrecision(A, C, B, D, BitsLost);
2017
2018 APInt Tmp1 = MultiplyAndLosePrecision(B, D, A, C, BitsLost);
2019 if (BitsLost) {
2020 ProbTrue = ProbTrue.lshr(BitsLost*2);
2021 }
2022
2023 APInt Tmp2 = MultiplyAndLosePrecision(A, D, C, B, BitsLost);
2024 if (BitsLost) {
2025 ProbTrue = ProbTrue.lshr(BitsLost*2);
2026 Tmp1 = Tmp1.lshr(BitsLost*2);
2027 }
2028
2029 APInt Tmp3 = MultiplyAndLosePrecision(B, C, A, D, BitsLost);
2030 if (BitsLost) {
2031 ProbTrue = ProbTrue.lshr(BitsLost*2);
2032 Tmp1 = Tmp1.lshr(BitsLost*2);
2033 Tmp2 = Tmp2.lshr(BitsLost*2);
2034 }
2035
2036 bool Overflow1 = false, Overflow2 = false;
2037 APInt Tmp4 = Tmp2.uadd_ov(Tmp3, Overflow1);
2038 APInt ProbFalse = Tmp4.uadd_ov(Tmp1, Overflow2);
2039
2040 if (Overflow1 || Overflow2) {
2041 ProbTrue = ProbTrue.lshr(1);
2042 Tmp1 = Tmp1.lshr(1);
2043 Tmp2 = Tmp2.lshr(1);
2044 Tmp3 = Tmp3.lshr(1);
2045 Tmp4 = Tmp2 + Tmp3;
2046 ProbFalse = Tmp4 + Tmp1;
2047 }
2048
2049 // The sum of branch weights must fit in 32-bits.
2050 if (ProbTrue.isNegative() && ProbFalse.isNegative()) {
2051 ProbTrue = ProbTrue.lshr(1);
2052 ProbFalse = ProbFalse.lshr(1);
2053 }
2054
2055 if (ProbTrue != ProbFalse) {
2056 // Normalize the result.
2057 APInt GCD = APIntOps::GreatestCommonDivisor(ProbTrue, ProbFalse);
2058 ProbTrue = ProbTrue.udiv(GCD);
2059 ProbFalse = ProbFalse.udiv(GCD);
2060
2061 MDBuilder MDB(BI->getContext());
2062 MDNode *N = MDB.createBranchWeights(ProbTrue.getZExtValue(),
2063 ProbFalse.getZExtValue());
2064 PBI->setMetadata(LLVMContext::MD_prof, N);
2065 } else {
2066 PBI->setMetadata(LLVMContext::MD_prof, NULL);
2067 }
2068 } else {
2069 PBI->setMetadata(LLVMContext::MD_prof, NULL);
2070 }
2071
2072 // Copy any debug value intrinsics into the end of PredBlock.
2073 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
2074 if (isa<DbgInfoIntrinsic>(*I))
2075 I->clone()->insertBefore(PBI);
2076
2077 return true;
2078 }
2079 return false;
2080 }
2081
2082 /// SimplifyCondBranchToCondBranch - If we have a conditional branch as a
2083 /// predecessor of another block, this function tries to simplify it. We know
2084 /// that PBI and BI are both conditional branches, and BI is in one of the
2085 /// successor blocks of PBI - PBI branches to BI.
SimplifyCondBranchToCondBranch(BranchInst * PBI,BranchInst * BI)2086 static bool SimplifyCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI) {
2087 assert(PBI->isConditional() && BI->isConditional());
2088 BasicBlock *BB = BI->getParent();
2089
2090 // If this block ends with a branch instruction, and if there is a
2091 // predecessor that ends on a branch of the same condition, make
2092 // this conditional branch redundant.
2093 if (PBI->getCondition() == BI->getCondition() &&
2094 PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
2095 // Okay, the outcome of this conditional branch is statically
2096 // knowable. If this block had a single pred, handle specially.
2097 if (BB->getSinglePredecessor()) {
2098 // Turn this into a branch on constant.
2099 bool CondIsTrue = PBI->getSuccessor(0) == BB;
2100 BI->setCondition(ConstantInt::get(Type::getInt1Ty(BB->getContext()),
2101 CondIsTrue));
2102 return true; // Nuke the branch on constant.
2103 }
2104
2105 // Otherwise, if there are multiple predecessors, insert a PHI that merges
2106 // in the constant and simplify the block result. Subsequent passes of
2107 // simplifycfg will thread the block.
2108 if (BlockIsSimpleEnoughToThreadThrough(BB)) {
2109 pred_iterator PB = pred_begin(BB), PE = pred_end(BB);
2110 PHINode *NewPN = PHINode::Create(Type::getInt1Ty(BB->getContext()),
2111 std::distance(PB, PE),
2112 BI->getCondition()->getName() + ".pr",
2113 BB->begin());
2114 // Okay, we're going to insert the PHI node. Since PBI is not the only
2115 // predecessor, compute the PHI'd conditional value for all of the preds.
2116 // Any predecessor where the condition is not computable we keep symbolic.
2117 for (pred_iterator PI = PB; PI != PE; ++PI) {
2118 BasicBlock *P = *PI;
2119 if ((PBI = dyn_cast<BranchInst>(P->getTerminator())) &&
2120 PBI != BI && PBI->isConditional() &&
2121 PBI->getCondition() == BI->getCondition() &&
2122 PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
2123 bool CondIsTrue = PBI->getSuccessor(0) == BB;
2124 NewPN->addIncoming(ConstantInt::get(Type::getInt1Ty(BB->getContext()),
2125 CondIsTrue), P);
2126 } else {
2127 NewPN->addIncoming(BI->getCondition(), P);
2128 }
2129 }
2130
2131 BI->setCondition(NewPN);
2132 return true;
2133 }
2134 }
2135
2136 // If this is a conditional branch in an empty block, and if any
2137 // predecessors is a conditional branch to one of our destinations,
2138 // fold the conditions into logical ops and one cond br.
2139 BasicBlock::iterator BBI = BB->begin();
2140 // Ignore dbg intrinsics.
2141 while (isa<DbgInfoIntrinsic>(BBI))
2142 ++BBI;
2143 if (&*BBI != BI)
2144 return false;
2145
2146
2147 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(BI->getCondition()))
2148 if (CE->canTrap())
2149 return false;
2150
2151 int PBIOp, BIOp;
2152 if (PBI->getSuccessor(0) == BI->getSuccessor(0))
2153 PBIOp = BIOp = 0;
2154 else if (PBI->getSuccessor(0) == BI->getSuccessor(1))
2155 PBIOp = 0, BIOp = 1;
2156 else if (PBI->getSuccessor(1) == BI->getSuccessor(0))
2157 PBIOp = 1, BIOp = 0;
2158 else if (PBI->getSuccessor(1) == BI->getSuccessor(1))
2159 PBIOp = BIOp = 1;
2160 else
2161 return false;
2162
2163 // Check to make sure that the other destination of this branch
2164 // isn't BB itself. If so, this is an infinite loop that will
2165 // keep getting unwound.
2166 if (PBI->getSuccessor(PBIOp) == BB)
2167 return false;
2168
2169 // Do not perform this transformation if it would require
2170 // insertion of a large number of select instructions. For targets
2171 // without predication/cmovs, this is a big pessimization.
2172 BasicBlock *CommonDest = PBI->getSuccessor(PBIOp);
2173
2174 unsigned NumPhis = 0;
2175 for (BasicBlock::iterator II = CommonDest->begin();
2176 isa<PHINode>(II); ++II, ++NumPhis)
2177 if (NumPhis > 2) // Disable this xform.
2178 return false;
2179
2180 // Finally, if everything is ok, fold the branches to logical ops.
2181 BasicBlock *OtherDest = BI->getSuccessor(BIOp ^ 1);
2182
2183 DEBUG(dbgs() << "FOLDING BRs:" << *PBI->getParent()
2184 << "AND: " << *BI->getParent());
2185
2186
2187 // If OtherDest *is* BB, then BB is a basic block with a single conditional
2188 // branch in it, where one edge (OtherDest) goes back to itself but the other
2189 // exits. We don't *know* that the program avoids the infinite loop
2190 // (even though that seems likely). If we do this xform naively, we'll end up
2191 // recursively unpeeling the loop. Since we know that (after the xform is
2192 // done) that the block *is* infinite if reached, we just make it an obviously
2193 // infinite loop with no cond branch.
2194 if (OtherDest == BB) {
2195 // Insert it at the end of the function, because it's either code,
2196 // or it won't matter if it's hot. :)
2197 BasicBlock *InfLoopBlock = BasicBlock::Create(BB->getContext(),
2198 "infloop", BB->getParent());
2199 BranchInst::Create(InfLoopBlock, InfLoopBlock);
2200 OtherDest = InfLoopBlock;
2201 }
2202
2203 DEBUG(dbgs() << *PBI->getParent()->getParent());
2204
2205 // BI may have other predecessors. Because of this, we leave
2206 // it alone, but modify PBI.
2207
2208 // Make sure we get to CommonDest on True&True directions.
2209 Value *PBICond = PBI->getCondition();
2210 IRBuilder<true, NoFolder> Builder(PBI);
2211 if (PBIOp)
2212 PBICond = Builder.CreateNot(PBICond, PBICond->getName()+".not");
2213
2214 Value *BICond = BI->getCondition();
2215 if (BIOp)
2216 BICond = Builder.CreateNot(BICond, BICond->getName()+".not");
2217
2218 // Merge the conditions.
2219 Value *Cond = Builder.CreateOr(PBICond, BICond, "brmerge");
2220
2221 // Modify PBI to branch on the new condition to the new dests.
2222 PBI->setCondition(Cond);
2223 PBI->setSuccessor(0, CommonDest);
2224 PBI->setSuccessor(1, OtherDest);
2225
2226 // OtherDest may have phi nodes. If so, add an entry from PBI's
2227 // block that are identical to the entries for BI's block.
2228 AddPredecessorToBlock(OtherDest, PBI->getParent(), BB);
2229
2230 // We know that the CommonDest already had an edge from PBI to
2231 // it. If it has PHIs though, the PHIs may have different
2232 // entries for BB and PBI's BB. If so, insert a select to make
2233 // them agree.
2234 PHINode *PN;
2235 for (BasicBlock::iterator II = CommonDest->begin();
2236 (PN = dyn_cast<PHINode>(II)); ++II) {
2237 Value *BIV = PN->getIncomingValueForBlock(BB);
2238 unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent());
2239 Value *PBIV = PN->getIncomingValue(PBBIdx);
2240 if (BIV != PBIV) {
2241 // Insert a select in PBI to pick the right value.
2242 Value *NV = cast<SelectInst>
2243 (Builder.CreateSelect(PBICond, PBIV, BIV, PBIV->getName()+".mux"));
2244 PN->setIncomingValue(PBBIdx, NV);
2245 }
2246 }
2247
2248 DEBUG(dbgs() << "INTO: " << *PBI->getParent());
2249 DEBUG(dbgs() << *PBI->getParent()->getParent());
2250
2251 // This basic block is probably dead. We know it has at least
2252 // one fewer predecessor.
2253 return true;
2254 }
2255
2256 // SimplifyTerminatorOnSelect - Simplifies a terminator by replacing it with a
2257 // branch to TrueBB if Cond is true or to FalseBB if Cond is false.
2258 // Takes care of updating the successors and removing the old terminator.
2259 // Also makes sure not to introduce new successors by assuming that edges to
2260 // non-successor TrueBBs and FalseBBs aren't reachable.
SimplifyTerminatorOnSelect(TerminatorInst * OldTerm,Value * Cond,BasicBlock * TrueBB,BasicBlock * FalseBB)2261 static bool SimplifyTerminatorOnSelect(TerminatorInst *OldTerm, Value *Cond,
2262 BasicBlock *TrueBB, BasicBlock *FalseBB){
2263 // Remove any superfluous successor edges from the CFG.
2264 // First, figure out which successors to preserve.
2265 // If TrueBB and FalseBB are equal, only try to preserve one copy of that
2266 // successor.
2267 BasicBlock *KeepEdge1 = TrueBB;
2268 BasicBlock *KeepEdge2 = TrueBB != FalseBB ? FalseBB : 0;
2269
2270 // Then remove the rest.
2271 for (unsigned I = 0, E = OldTerm->getNumSuccessors(); I != E; ++I) {
2272 BasicBlock *Succ = OldTerm->getSuccessor(I);
2273 // Make sure only to keep exactly one copy of each edge.
2274 if (Succ == KeepEdge1)
2275 KeepEdge1 = 0;
2276 else if (Succ == KeepEdge2)
2277 KeepEdge2 = 0;
2278 else
2279 Succ->removePredecessor(OldTerm->getParent());
2280 }
2281
2282 IRBuilder<> Builder(OldTerm);
2283 Builder.SetCurrentDebugLocation(OldTerm->getDebugLoc());
2284
2285 // Insert an appropriate new terminator.
2286 if ((KeepEdge1 == 0) && (KeepEdge2 == 0)) {
2287 if (TrueBB == FalseBB)
2288 // We were only looking for one successor, and it was present.
2289 // Create an unconditional branch to it.
2290 Builder.CreateBr(TrueBB);
2291 else
2292 // We found both of the successors we were looking for.
2293 // Create a conditional branch sharing the condition of the select.
2294 Builder.CreateCondBr(Cond, TrueBB, FalseBB);
2295 } else if (KeepEdge1 && (KeepEdge2 || TrueBB == FalseBB)) {
2296 // Neither of the selected blocks were successors, so this
2297 // terminator must be unreachable.
2298 new UnreachableInst(OldTerm->getContext(), OldTerm);
2299 } else {
2300 // One of the selected values was a successor, but the other wasn't.
2301 // Insert an unconditional branch to the one that was found;
2302 // the edge to the one that wasn't must be unreachable.
2303 if (KeepEdge1 == 0)
2304 // Only TrueBB was found.
2305 Builder.CreateBr(TrueBB);
2306 else
2307 // Only FalseBB was found.
2308 Builder.CreateBr(FalseBB);
2309 }
2310
2311 EraseTerminatorInstAndDCECond(OldTerm);
2312 return true;
2313 }
2314
2315 // SimplifySwitchOnSelect - Replaces
2316 // (switch (select cond, X, Y)) on constant X, Y
2317 // with a branch - conditional if X and Y lead to distinct BBs,
2318 // unconditional otherwise.
SimplifySwitchOnSelect(SwitchInst * SI,SelectInst * Select)2319 static bool SimplifySwitchOnSelect(SwitchInst *SI, SelectInst *Select) {
2320 // Check for constant integer values in the select.
2321 ConstantInt *TrueVal = dyn_cast<ConstantInt>(Select->getTrueValue());
2322 ConstantInt *FalseVal = dyn_cast<ConstantInt>(Select->getFalseValue());
2323 if (!TrueVal || !FalseVal)
2324 return false;
2325
2326 // Find the relevant condition and destinations.
2327 Value *Condition = Select->getCondition();
2328 BasicBlock *TrueBB = SI->findCaseValue(TrueVal).getCaseSuccessor();
2329 BasicBlock *FalseBB = SI->findCaseValue(FalseVal).getCaseSuccessor();
2330
2331 // Perform the actual simplification.
2332 return SimplifyTerminatorOnSelect(SI, Condition, TrueBB, FalseBB);
2333 }
2334
2335 // SimplifyIndirectBrOnSelect - Replaces
2336 // (indirectbr (select cond, blockaddress(@fn, BlockA),
2337 // blockaddress(@fn, BlockB)))
2338 // with
2339 // (br cond, BlockA, BlockB).
SimplifyIndirectBrOnSelect(IndirectBrInst * IBI,SelectInst * SI)2340 static bool SimplifyIndirectBrOnSelect(IndirectBrInst *IBI, SelectInst *SI) {
2341 // Check that both operands of the select are block addresses.
2342 BlockAddress *TBA = dyn_cast<BlockAddress>(SI->getTrueValue());
2343 BlockAddress *FBA = dyn_cast<BlockAddress>(SI->getFalseValue());
2344 if (!TBA || !FBA)
2345 return false;
2346
2347 // Extract the actual blocks.
2348 BasicBlock *TrueBB = TBA->getBasicBlock();
2349 BasicBlock *FalseBB = FBA->getBasicBlock();
2350
2351 // Perform the actual simplification.
2352 return SimplifyTerminatorOnSelect(IBI, SI->getCondition(), TrueBB, FalseBB);
2353 }
2354
2355 /// TryToSimplifyUncondBranchWithICmpInIt - This is called when we find an icmp
2356 /// instruction (a seteq/setne with a constant) as the only instruction in a
2357 /// block that ends with an uncond branch. We are looking for a very specific
2358 /// pattern that occurs when "A == 1 || A == 2 || A == 3" gets simplified. In
2359 /// this case, we merge the first two "or's of icmp" into a switch, but then the
2360 /// default value goes to an uncond block with a seteq in it, we get something
2361 /// like:
2362 ///
2363 /// switch i8 %A, label %DEFAULT [ i8 1, label %end i8 2, label %end ]
2364 /// DEFAULT:
2365 /// %tmp = icmp eq i8 %A, 92
2366 /// br label %end
2367 /// end:
2368 /// ... = phi i1 [ true, %entry ], [ %tmp, %DEFAULT ], [ true, %entry ]
2369 ///
2370 /// We prefer to split the edge to 'end' so that there is a true/false entry to
2371 /// the PHI, merging the third icmp into the switch.
TryToSimplifyUncondBranchWithICmpInIt(ICmpInst * ICI,const TargetData * TD,IRBuilder<> & Builder)2372 static bool TryToSimplifyUncondBranchWithICmpInIt(ICmpInst *ICI,
2373 const TargetData *TD,
2374 IRBuilder<> &Builder) {
2375 BasicBlock *BB = ICI->getParent();
2376
2377 // If the block has any PHIs in it or the icmp has multiple uses, it is too
2378 // complex.
2379 if (isa<PHINode>(BB->begin()) || !ICI->hasOneUse()) return false;
2380
2381 Value *V = ICI->getOperand(0);
2382 ConstantInt *Cst = cast<ConstantInt>(ICI->getOperand(1));
2383
2384 // The pattern we're looking for is where our only predecessor is a switch on
2385 // 'V' and this block is the default case for the switch. In this case we can
2386 // fold the compared value into the switch to simplify things.
2387 BasicBlock *Pred = BB->getSinglePredecessor();
2388 if (Pred == 0 || !isa<SwitchInst>(Pred->getTerminator())) return false;
2389
2390 SwitchInst *SI = cast<SwitchInst>(Pred->getTerminator());
2391 if (SI->getCondition() != V)
2392 return false;
2393
2394 // If BB is reachable on a non-default case, then we simply know the value of
2395 // V in this block. Substitute it and constant fold the icmp instruction
2396 // away.
2397 if (SI->getDefaultDest() != BB) {
2398 ConstantInt *VVal = SI->findCaseDest(BB);
2399 assert(VVal && "Should have a unique destination value");
2400 ICI->setOperand(0, VVal);
2401
2402 if (Value *V = SimplifyInstruction(ICI, TD)) {
2403 ICI->replaceAllUsesWith(V);
2404 ICI->eraseFromParent();
2405 }
2406 // BB is now empty, so it is likely to simplify away.
2407 return SimplifyCFG(BB) | true;
2408 }
2409
2410 // Ok, the block is reachable from the default dest. If the constant we're
2411 // comparing exists in one of the other edges, then we can constant fold ICI
2412 // and zap it.
2413 if (SI->findCaseValue(Cst) != SI->case_default()) {
2414 Value *V;
2415 if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
2416 V = ConstantInt::getFalse(BB->getContext());
2417 else
2418 V = ConstantInt::getTrue(BB->getContext());
2419
2420 ICI->replaceAllUsesWith(V);
2421 ICI->eraseFromParent();
2422 // BB is now empty, so it is likely to simplify away.
2423 return SimplifyCFG(BB) | true;
2424 }
2425
2426 // The use of the icmp has to be in the 'end' block, by the only PHI node in
2427 // the block.
2428 BasicBlock *SuccBlock = BB->getTerminator()->getSuccessor(0);
2429 PHINode *PHIUse = dyn_cast<PHINode>(ICI->use_back());
2430 if (PHIUse == 0 || PHIUse != &SuccBlock->front() ||
2431 isa<PHINode>(++BasicBlock::iterator(PHIUse)))
2432 return false;
2433
2434 // If the icmp is a SETEQ, then the default dest gets false, the new edge gets
2435 // true in the PHI.
2436 Constant *DefaultCst = ConstantInt::getTrue(BB->getContext());
2437 Constant *NewCst = ConstantInt::getFalse(BB->getContext());
2438
2439 if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
2440 std::swap(DefaultCst, NewCst);
2441
2442 // Replace ICI (which is used by the PHI for the default value) with true or
2443 // false depending on if it is EQ or NE.
2444 ICI->replaceAllUsesWith(DefaultCst);
2445 ICI->eraseFromParent();
2446
2447 // Okay, the switch goes to this block on a default value. Add an edge from
2448 // the switch to the merge point on the compared value.
2449 BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "switch.edge",
2450 BB->getParent(), BB);
2451 SI->addCase(Cst, NewBB);
2452
2453 // NewBB branches to the phi block, add the uncond branch and the phi entry.
2454 Builder.SetInsertPoint(NewBB);
2455 Builder.SetCurrentDebugLocation(SI->getDebugLoc());
2456 Builder.CreateBr(SuccBlock);
2457 PHIUse->addIncoming(NewCst, NewBB);
2458 return true;
2459 }
2460
2461 /// SimplifyBranchOnICmpChain - The specified branch is a conditional branch.
2462 /// Check to see if it is branching on an or/and chain of icmp instructions, and
2463 /// fold it into a switch instruction if so.
SimplifyBranchOnICmpChain(BranchInst * BI,const TargetData * TD,IRBuilder<> & Builder)2464 static bool SimplifyBranchOnICmpChain(BranchInst *BI, const TargetData *TD,
2465 IRBuilder<> &Builder) {
2466 Instruction *Cond = dyn_cast<Instruction>(BI->getCondition());
2467 if (Cond == 0) return false;
2468
2469
2470 // Change br (X == 0 | X == 1), T, F into a switch instruction.
2471 // If this is a bunch of seteq's or'd together, or if it's a bunch of
2472 // 'setne's and'ed together, collect them.
2473 Value *CompVal = 0;
2474 std::vector<ConstantInt*> Values;
2475 bool TrueWhenEqual = true;
2476 Value *ExtraCase = 0;
2477 unsigned UsedICmps = 0;
2478
2479 if (Cond->getOpcode() == Instruction::Or) {
2480 CompVal = GatherConstantCompares(Cond, Values, ExtraCase, TD, true,
2481 UsedICmps);
2482 } else if (Cond->getOpcode() == Instruction::And) {
2483 CompVal = GatherConstantCompares(Cond, Values, ExtraCase, TD, false,
2484 UsedICmps);
2485 TrueWhenEqual = false;
2486 }
2487
2488 // If we didn't have a multiply compared value, fail.
2489 if (CompVal == 0) return false;
2490
2491 // Avoid turning single icmps into a switch.
2492 if (UsedICmps <= 1)
2493 return false;
2494
2495 // There might be duplicate constants in the list, which the switch
2496 // instruction can't handle, remove them now.
2497 array_pod_sort(Values.begin(), Values.end(), ConstantIntSortPredicate);
2498 Values.erase(std::unique(Values.begin(), Values.end()), Values.end());
2499
2500 // If Extra was used, we require at least two switch values to do the
2501 // transformation. A switch with one value is just an cond branch.
2502 if (ExtraCase && Values.size() < 2) return false;
2503
2504 // TODO: Preserve branch weight metadata, similarly to how
2505 // FoldValueComparisonIntoPredecessors preserves it.
2506
2507 // Figure out which block is which destination.
2508 BasicBlock *DefaultBB = BI->getSuccessor(1);
2509 BasicBlock *EdgeBB = BI->getSuccessor(0);
2510 if (!TrueWhenEqual) std::swap(DefaultBB, EdgeBB);
2511
2512 BasicBlock *BB = BI->getParent();
2513
2514 DEBUG(dbgs() << "Converting 'icmp' chain with " << Values.size()
2515 << " cases into SWITCH. BB is:\n" << *BB);
2516
2517 // If there are any extra values that couldn't be folded into the switch
2518 // then we evaluate them with an explicit branch first. Split the block
2519 // right before the condbr to handle it.
2520 if (ExtraCase) {
2521 BasicBlock *NewBB = BB->splitBasicBlock(BI, "switch.early.test");
2522 // Remove the uncond branch added to the old block.
2523 TerminatorInst *OldTI = BB->getTerminator();
2524 Builder.SetInsertPoint(OldTI);
2525
2526 if (TrueWhenEqual)
2527 Builder.CreateCondBr(ExtraCase, EdgeBB, NewBB);
2528 else
2529 Builder.CreateCondBr(ExtraCase, NewBB, EdgeBB);
2530
2531 OldTI->eraseFromParent();
2532
2533 // If there are PHI nodes in EdgeBB, then we need to add a new entry to them
2534 // for the edge we just added.
2535 AddPredecessorToBlock(EdgeBB, BB, NewBB);
2536
2537 DEBUG(dbgs() << " ** 'icmp' chain unhandled condition: " << *ExtraCase
2538 << "\nEXTRABB = " << *BB);
2539 BB = NewBB;
2540 }
2541
2542 Builder.SetInsertPoint(BI);
2543 // Convert pointer to int before we switch.
2544 if (CompVal->getType()->isPointerTy()) {
2545 assert(TD && "Cannot switch on pointer without TargetData");
2546 CompVal = Builder.CreatePtrToInt(CompVal,
2547 TD->getIntPtrType(CompVal->getContext()),
2548 "magicptr");
2549 }
2550
2551 // Create the new switch instruction now.
2552 SwitchInst *New = Builder.CreateSwitch(CompVal, DefaultBB, Values.size());
2553
2554 // Add all of the 'cases' to the switch instruction.
2555 for (unsigned i = 0, e = Values.size(); i != e; ++i)
2556 New->addCase(Values[i], EdgeBB);
2557
2558 // We added edges from PI to the EdgeBB. As such, if there were any
2559 // PHI nodes in EdgeBB, they need entries to be added corresponding to
2560 // the number of edges added.
2561 for (BasicBlock::iterator BBI = EdgeBB->begin();
2562 isa<PHINode>(BBI); ++BBI) {
2563 PHINode *PN = cast<PHINode>(BBI);
2564 Value *InVal = PN->getIncomingValueForBlock(BB);
2565 for (unsigned i = 0, e = Values.size()-1; i != e; ++i)
2566 PN->addIncoming(InVal, BB);
2567 }
2568
2569 // Erase the old branch instruction.
2570 EraseTerminatorInstAndDCECond(BI);
2571
2572 DEBUG(dbgs() << " ** 'icmp' chain result is:\n" << *BB << '\n');
2573 return true;
2574 }
2575
SimplifyResume(ResumeInst * RI,IRBuilder<> & Builder)2576 bool SimplifyCFGOpt::SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder) {
2577 // If this is a trivial landing pad that just continues unwinding the caught
2578 // exception then zap the landing pad, turning its invokes into calls.
2579 BasicBlock *BB = RI->getParent();
2580 LandingPadInst *LPInst = dyn_cast<LandingPadInst>(BB->getFirstNonPHI());
2581 if (RI->getValue() != LPInst)
2582 // Not a landing pad, or the resume is not unwinding the exception that
2583 // caused control to branch here.
2584 return false;
2585
2586 // Check that there are no other instructions except for debug intrinsics.
2587 BasicBlock::iterator I = LPInst, E = RI;
2588 while (++I != E)
2589 if (!isa<DbgInfoIntrinsic>(I))
2590 return false;
2591
2592 // Turn all invokes that unwind here into calls and delete the basic block.
2593 for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) {
2594 InvokeInst *II = cast<InvokeInst>((*PI++)->getTerminator());
2595 SmallVector<Value*, 8> Args(II->op_begin(), II->op_end() - 3);
2596 // Insert a call instruction before the invoke.
2597 CallInst *Call = CallInst::Create(II->getCalledValue(), Args, "", II);
2598 Call->takeName(II);
2599 Call->setCallingConv(II->getCallingConv());
2600 Call->setAttributes(II->getAttributes());
2601 Call->setDebugLoc(II->getDebugLoc());
2602
2603 // Anything that used the value produced by the invoke instruction now uses
2604 // the value produced by the call instruction. Note that we do this even
2605 // for void functions and calls with no uses so that the callgraph edge is
2606 // updated.
2607 II->replaceAllUsesWith(Call);
2608 BB->removePredecessor(II->getParent());
2609
2610 // Insert a branch to the normal destination right before the invoke.
2611 BranchInst::Create(II->getNormalDest(), II);
2612
2613 // Finally, delete the invoke instruction!
2614 II->eraseFromParent();
2615 }
2616
2617 // The landingpad is now unreachable. Zap it.
2618 BB->eraseFromParent();
2619 return true;
2620 }
2621
SimplifyReturn(ReturnInst * RI,IRBuilder<> & Builder)2622 bool SimplifyCFGOpt::SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder) {
2623 BasicBlock *BB = RI->getParent();
2624 if (!BB->getFirstNonPHIOrDbg()->isTerminator()) return false;
2625
2626 // Find predecessors that end with branches.
2627 SmallVector<BasicBlock*, 8> UncondBranchPreds;
2628 SmallVector<BranchInst*, 8> CondBranchPreds;
2629 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
2630 BasicBlock *P = *PI;
2631 TerminatorInst *PTI = P->getTerminator();
2632 if (BranchInst *BI = dyn_cast<BranchInst>(PTI)) {
2633 if (BI->isUnconditional())
2634 UncondBranchPreds.push_back(P);
2635 else
2636 CondBranchPreds.push_back(BI);
2637 }
2638 }
2639
2640 // If we found some, do the transformation!
2641 if (!UncondBranchPreds.empty() && DupRet) {
2642 while (!UncondBranchPreds.empty()) {
2643 BasicBlock *Pred = UncondBranchPreds.pop_back_val();
2644 DEBUG(dbgs() << "FOLDING: " << *BB
2645 << "INTO UNCOND BRANCH PRED: " << *Pred);
2646 (void)FoldReturnIntoUncondBranch(RI, BB, Pred);
2647 }
2648
2649 // If we eliminated all predecessors of the block, delete the block now.
2650 if (pred_begin(BB) == pred_end(BB))
2651 // We know there are no successors, so just nuke the block.
2652 BB->eraseFromParent();
2653
2654 return true;
2655 }
2656
2657 // Check out all of the conditional branches going to this return
2658 // instruction. If any of them just select between returns, change the
2659 // branch itself into a select/return pair.
2660 while (!CondBranchPreds.empty()) {
2661 BranchInst *BI = CondBranchPreds.pop_back_val();
2662
2663 // Check to see if the non-BB successor is also a return block.
2664 if (isa<ReturnInst>(BI->getSuccessor(0)->getTerminator()) &&
2665 isa<ReturnInst>(BI->getSuccessor(1)->getTerminator()) &&
2666 SimplifyCondBranchToTwoReturns(BI, Builder))
2667 return true;
2668 }
2669 return false;
2670 }
2671
SimplifyUnreachable(UnreachableInst * UI)2672 bool SimplifyCFGOpt::SimplifyUnreachable(UnreachableInst *UI) {
2673 BasicBlock *BB = UI->getParent();
2674
2675 bool Changed = false;
2676
2677 // If there are any instructions immediately before the unreachable that can
2678 // be removed, do so.
2679 while (UI != BB->begin()) {
2680 BasicBlock::iterator BBI = UI;
2681 --BBI;
2682 // Do not delete instructions that can have side effects which might cause
2683 // the unreachable to not be reachable; specifically, calls and volatile
2684 // operations may have this effect.
2685 if (isa<CallInst>(BBI) && !isa<DbgInfoIntrinsic>(BBI)) break;
2686
2687 if (BBI->mayHaveSideEffects()) {
2688 if (StoreInst *SI = dyn_cast<StoreInst>(BBI)) {
2689 if (SI->isVolatile())
2690 break;
2691 } else if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) {
2692 if (LI->isVolatile())
2693 break;
2694 } else if (AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(BBI)) {
2695 if (RMWI->isVolatile())
2696 break;
2697 } else if (AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(BBI)) {
2698 if (CXI->isVolatile())
2699 break;
2700 } else if (!isa<FenceInst>(BBI) && !isa<VAArgInst>(BBI) &&
2701 !isa<LandingPadInst>(BBI)) {
2702 break;
2703 }
2704 // Note that deleting LandingPad's here is in fact okay, although it
2705 // involves a bit of subtle reasoning. If this inst is a LandingPad,
2706 // all the predecessors of this block will be the unwind edges of Invokes,
2707 // and we can therefore guarantee this block will be erased.
2708 }
2709
2710 // Delete this instruction (any uses are guaranteed to be dead)
2711 if (!BBI->use_empty())
2712 BBI->replaceAllUsesWith(UndefValue::get(BBI->getType()));
2713 BBI->eraseFromParent();
2714 Changed = true;
2715 }
2716
2717 // If the unreachable instruction is the first in the block, take a gander
2718 // at all of the predecessors of this instruction, and simplify them.
2719 if (&BB->front() != UI) return Changed;
2720
2721 SmallVector<BasicBlock*, 8> Preds(pred_begin(BB), pred_end(BB));
2722 for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
2723 TerminatorInst *TI = Preds[i]->getTerminator();
2724 IRBuilder<> Builder(TI);
2725 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
2726 if (BI->isUnconditional()) {
2727 if (BI->getSuccessor(0) == BB) {
2728 new UnreachableInst(TI->getContext(), TI);
2729 TI->eraseFromParent();
2730 Changed = true;
2731 }
2732 } else {
2733 if (BI->getSuccessor(0) == BB) {
2734 Builder.CreateBr(BI->getSuccessor(1));
2735 EraseTerminatorInstAndDCECond(BI);
2736 } else if (BI->getSuccessor(1) == BB) {
2737 Builder.CreateBr(BI->getSuccessor(0));
2738 EraseTerminatorInstAndDCECond(BI);
2739 Changed = true;
2740 }
2741 }
2742 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
2743 for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end();
2744 i != e; ++i)
2745 if (i.getCaseSuccessor() == BB) {
2746 BB->removePredecessor(SI->getParent());
2747 SI->removeCase(i);
2748 --i; --e;
2749 Changed = true;
2750 }
2751 // If the default value is unreachable, figure out the most popular
2752 // destination and make it the default.
2753 if (SI->getDefaultDest() == BB) {
2754 std::map<BasicBlock*, std::pair<unsigned, unsigned> > Popularity;
2755 for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end();
2756 i != e; ++i) {
2757 std::pair<unsigned, unsigned> &entry =
2758 Popularity[i.getCaseSuccessor()];
2759 if (entry.first == 0) {
2760 entry.first = 1;
2761 entry.second = i.getCaseIndex();
2762 } else {
2763 entry.first++;
2764 }
2765 }
2766
2767 // Find the most popular block.
2768 unsigned MaxPop = 0;
2769 unsigned MaxIndex = 0;
2770 BasicBlock *MaxBlock = 0;
2771 for (std::map<BasicBlock*, std::pair<unsigned, unsigned> >::iterator
2772 I = Popularity.begin(), E = Popularity.end(); I != E; ++I) {
2773 if (I->second.first > MaxPop ||
2774 (I->second.first == MaxPop && MaxIndex > I->second.second)) {
2775 MaxPop = I->second.first;
2776 MaxIndex = I->second.second;
2777 MaxBlock = I->first;
2778 }
2779 }
2780 if (MaxBlock) {
2781 // Make this the new default, allowing us to delete any explicit
2782 // edges to it.
2783 SI->setDefaultDest(MaxBlock);
2784 Changed = true;
2785
2786 // If MaxBlock has phinodes in it, remove MaxPop-1 entries from
2787 // it.
2788 if (isa<PHINode>(MaxBlock->begin()))
2789 for (unsigned i = 0; i != MaxPop-1; ++i)
2790 MaxBlock->removePredecessor(SI->getParent());
2791
2792 for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end();
2793 i != e; ++i)
2794 if (i.getCaseSuccessor() == MaxBlock) {
2795 SI->removeCase(i);
2796 --i; --e;
2797 }
2798 }
2799 }
2800 } else if (InvokeInst *II = dyn_cast<InvokeInst>(TI)) {
2801 if (II->getUnwindDest() == BB) {
2802 // Convert the invoke to a call instruction. This would be a good
2803 // place to note that the call does not throw though.
2804 BranchInst *BI = Builder.CreateBr(II->getNormalDest());
2805 II->removeFromParent(); // Take out of symbol table
2806
2807 // Insert the call now...
2808 SmallVector<Value*, 8> Args(II->op_begin(), II->op_end()-3);
2809 Builder.SetInsertPoint(BI);
2810 CallInst *CI = Builder.CreateCall(II->getCalledValue(),
2811 Args, II->getName());
2812 CI->setCallingConv(II->getCallingConv());
2813 CI->setAttributes(II->getAttributes());
2814 // If the invoke produced a value, the call does now instead.
2815 II->replaceAllUsesWith(CI);
2816 delete II;
2817 Changed = true;
2818 }
2819 }
2820 }
2821
2822 // If this block is now dead, remove it.
2823 if (pred_begin(BB) == pred_end(BB) &&
2824 BB != &BB->getParent()->getEntryBlock()) {
2825 // We know there are no successors, so just nuke the block.
2826 BB->eraseFromParent();
2827 return true;
2828 }
2829
2830 return Changed;
2831 }
2832
2833 /// TurnSwitchRangeIntoICmp - Turns a switch with that contains only a
2834 /// integer range comparison into a sub, an icmp and a branch.
TurnSwitchRangeIntoICmp(SwitchInst * SI,IRBuilder<> & Builder)2835 static bool TurnSwitchRangeIntoICmp(SwitchInst *SI, IRBuilder<> &Builder) {
2836 assert(SI->getNumCases() > 1 && "Degenerate switch?");
2837
2838 // Make sure all cases point to the same destination and gather the values.
2839 SmallVector<ConstantInt *, 16> Cases;
2840 SwitchInst::CaseIt I = SI->case_begin();
2841 Cases.push_back(I.getCaseValue());
2842 SwitchInst::CaseIt PrevI = I++;
2843 for (SwitchInst::CaseIt E = SI->case_end(); I != E; PrevI = I++) {
2844 if (PrevI.getCaseSuccessor() != I.getCaseSuccessor())
2845 return false;
2846 Cases.push_back(I.getCaseValue());
2847 }
2848 assert(Cases.size() == SI->getNumCases() && "Not all cases gathered");
2849
2850 // Sort the case values, then check if they form a range we can transform.
2851 array_pod_sort(Cases.begin(), Cases.end(), ConstantIntSortPredicate);
2852 for (unsigned I = 1, E = Cases.size(); I != E; ++I) {
2853 if (Cases[I-1]->getValue() != Cases[I]->getValue()+1)
2854 return false;
2855 }
2856
2857 Constant *Offset = ConstantExpr::getNeg(Cases.back());
2858 Constant *NumCases = ConstantInt::get(Offset->getType(), SI->getNumCases());
2859
2860 Value *Sub = SI->getCondition();
2861 if (!Offset->isNullValue())
2862 Sub = Builder.CreateAdd(Sub, Offset, Sub->getName()+".off");
2863 Value *Cmp = Builder.CreateICmpULT(Sub, NumCases, "switch");
2864 Builder.CreateCondBr(
2865 Cmp, SI->case_begin().getCaseSuccessor(), SI->getDefaultDest());
2866
2867 // Prune obsolete incoming values off the successor's PHI nodes.
2868 for (BasicBlock::iterator BBI = SI->case_begin().getCaseSuccessor()->begin();
2869 isa<PHINode>(BBI); ++BBI) {
2870 for (unsigned I = 0, E = SI->getNumCases()-1; I != E; ++I)
2871 cast<PHINode>(BBI)->removeIncomingValue(SI->getParent());
2872 }
2873 SI->eraseFromParent();
2874
2875 return true;
2876 }
2877
2878 /// EliminateDeadSwitchCases - Compute masked bits for the condition of a switch
2879 /// and use it to remove dead cases.
EliminateDeadSwitchCases(SwitchInst * SI)2880 static bool EliminateDeadSwitchCases(SwitchInst *SI) {
2881 Value *Cond = SI->getCondition();
2882 unsigned Bits = cast<IntegerType>(Cond->getType())->getBitWidth();
2883 APInt KnownZero(Bits, 0), KnownOne(Bits, 0);
2884 ComputeMaskedBits(Cond, KnownZero, KnownOne);
2885
2886 // Gather dead cases.
2887 SmallVector<ConstantInt*, 8> DeadCases;
2888 for (SwitchInst::CaseIt I = SI->case_begin(), E = SI->case_end(); I != E; ++I) {
2889 if ((I.getCaseValue()->getValue() & KnownZero) != 0 ||
2890 (I.getCaseValue()->getValue() & KnownOne) != KnownOne) {
2891 DeadCases.push_back(I.getCaseValue());
2892 DEBUG(dbgs() << "SimplifyCFG: switch case '"
2893 << I.getCaseValue() << "' is dead.\n");
2894 }
2895 }
2896
2897 // Remove dead cases from the switch.
2898 for (unsigned I = 0, E = DeadCases.size(); I != E; ++I) {
2899 SwitchInst::CaseIt Case = SI->findCaseValue(DeadCases[I]);
2900 assert(Case != SI->case_default() &&
2901 "Case was not found. Probably mistake in DeadCases forming.");
2902 // Prune unused values from PHI nodes.
2903 Case.getCaseSuccessor()->removePredecessor(SI->getParent());
2904 SI->removeCase(Case);
2905 }
2906
2907 return !DeadCases.empty();
2908 }
2909
2910 /// FindPHIForConditionForwarding - If BB would be eligible for simplification
2911 /// by TryToSimplifyUncondBranchFromEmptyBlock (i.e. it is empty and terminated
2912 /// by an unconditional branch), look at the phi node for BB in the successor
2913 /// block and see if the incoming value is equal to CaseValue. If so, return
2914 /// the phi node, and set PhiIndex to BB's index in the phi node.
FindPHIForConditionForwarding(ConstantInt * CaseValue,BasicBlock * BB,int * PhiIndex)2915 static PHINode *FindPHIForConditionForwarding(ConstantInt *CaseValue,
2916 BasicBlock *BB,
2917 int *PhiIndex) {
2918 if (BB->getFirstNonPHIOrDbg() != BB->getTerminator())
2919 return NULL; // BB must be empty to be a candidate for simplification.
2920 if (!BB->getSinglePredecessor())
2921 return NULL; // BB must be dominated by the switch.
2922
2923 BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator());
2924 if (!Branch || !Branch->isUnconditional())
2925 return NULL; // Terminator must be unconditional branch.
2926
2927 BasicBlock *Succ = Branch->getSuccessor(0);
2928
2929 BasicBlock::iterator I = Succ->begin();
2930 while (PHINode *PHI = dyn_cast<PHINode>(I++)) {
2931 int Idx = PHI->getBasicBlockIndex(BB);
2932 assert(Idx >= 0 && "PHI has no entry for predecessor?");
2933
2934 Value *InValue = PHI->getIncomingValue(Idx);
2935 if (InValue != CaseValue) continue;
2936
2937 *PhiIndex = Idx;
2938 return PHI;
2939 }
2940
2941 return NULL;
2942 }
2943
2944 /// ForwardSwitchConditionToPHI - Try to forward the condition of a switch
2945 /// instruction to a phi node dominated by the switch, if that would mean that
2946 /// some of the destination blocks of the switch can be folded away.
2947 /// Returns true if a change is made.
ForwardSwitchConditionToPHI(SwitchInst * SI)2948 static bool ForwardSwitchConditionToPHI(SwitchInst *SI) {
2949 typedef DenseMap<PHINode*, SmallVector<int,4> > ForwardingNodesMap;
2950 ForwardingNodesMap ForwardingNodes;
2951
2952 for (SwitchInst::CaseIt I = SI->case_begin(), E = SI->case_end(); I != E; ++I) {
2953 ConstantInt *CaseValue = I.getCaseValue();
2954 BasicBlock *CaseDest = I.getCaseSuccessor();
2955
2956 int PhiIndex;
2957 PHINode *PHI = FindPHIForConditionForwarding(CaseValue, CaseDest,
2958 &PhiIndex);
2959 if (!PHI) continue;
2960
2961 ForwardingNodes[PHI].push_back(PhiIndex);
2962 }
2963
2964 bool Changed = false;
2965
2966 for (ForwardingNodesMap::iterator I = ForwardingNodes.begin(),
2967 E = ForwardingNodes.end(); I != E; ++I) {
2968 PHINode *Phi = I->first;
2969 SmallVector<int,4> &Indexes = I->second;
2970
2971 if (Indexes.size() < 2) continue;
2972
2973 for (size_t I = 0, E = Indexes.size(); I != E; ++I)
2974 Phi->setIncomingValue(Indexes[I], SI->getCondition());
2975 Changed = true;
2976 }
2977
2978 return Changed;
2979 }
2980
2981 /// ValidLookupTableConstant - Return true if the backend will be able to handle
2982 /// initializing an array of constants like C.
ValidLookupTableConstant(Constant * C)2983 static bool ValidLookupTableConstant(Constant *C) {
2984 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
2985 return CE->isGEPWithNoNotionalOverIndexing();
2986
2987 return isa<ConstantFP>(C) ||
2988 isa<ConstantInt>(C) ||
2989 isa<ConstantPointerNull>(C) ||
2990 isa<GlobalValue>(C) ||
2991 isa<UndefValue>(C);
2992 }
2993
2994 /// GetCaseResulsts - Try to determine the resulting constant values in phi
2995 /// nodes at the common destination basic block for one of the case
2996 /// destinations of a switch instruction.
GetCaseResults(SwitchInst * SI,BasicBlock * CaseDest,BasicBlock ** CommonDest,SmallVector<std::pair<PHINode *,Constant * >,4> & Res)2997 static bool GetCaseResults(SwitchInst *SI,
2998 BasicBlock *CaseDest,
2999 BasicBlock **CommonDest,
3000 SmallVector<std::pair<PHINode*,Constant*>, 4> &Res) {
3001 // The block from which we enter the common destination.
3002 BasicBlock *Pred = SI->getParent();
3003
3004 // If CaseDest is empty, continue to its successor.
3005 if (CaseDest->getFirstNonPHIOrDbg() == CaseDest->getTerminator() &&
3006 !isa<PHINode>(CaseDest->begin())) {
3007
3008 TerminatorInst *Terminator = CaseDest->getTerminator();
3009 if (Terminator->getNumSuccessors() != 1)
3010 return false;
3011
3012 Pred = CaseDest;
3013 CaseDest = Terminator->getSuccessor(0);
3014 }
3015
3016 // If we did not have a CommonDest before, use the current one.
3017 if (!*CommonDest)
3018 *CommonDest = CaseDest;
3019 // If the destination isn't the common one, abort.
3020 if (CaseDest != *CommonDest)
3021 return false;
3022
3023 // Get the values for this case from phi nodes in the destination block.
3024 BasicBlock::iterator I = (*CommonDest)->begin();
3025 while (PHINode *PHI = dyn_cast<PHINode>(I++)) {
3026 int Idx = PHI->getBasicBlockIndex(Pred);
3027 if (Idx == -1)
3028 continue;
3029
3030 Constant *ConstVal = dyn_cast<Constant>(PHI->getIncomingValue(Idx));
3031 if (!ConstVal)
3032 return false;
3033
3034 // Be conservative about which kinds of constants we support.
3035 if (!ValidLookupTableConstant(ConstVal))
3036 return false;
3037
3038 Res.push_back(std::make_pair(PHI, ConstVal));
3039 }
3040
3041 return true;
3042 }
3043
3044 /// BuildLookupTable - Build a lookup table with the contents of Results, using
3045 /// DefaultResult to fill the holes in the table. If the table ends up
3046 /// containing the same result in each element, set *SingleResult to that value
3047 /// and return NULL.
BuildLookupTable(Module & M,uint64_t TableSize,ConstantInt * Offset,const SmallVector<std::pair<ConstantInt *,Constant * >,4> & Results,Constant * DefaultResult,Constant ** SingleResult)3048 static GlobalVariable *BuildLookupTable(Module &M,
3049 uint64_t TableSize,
3050 ConstantInt *Offset,
3051 const SmallVector<std::pair<ConstantInt*, Constant*>, 4>& Results,
3052 Constant *DefaultResult,
3053 Constant **SingleResult) {
3054 assert(Results.size() && "Need values to build lookup table");
3055 assert(TableSize >= Results.size() && "Table needs to hold all values");
3056
3057 // If all values in the table are equal, this is that value.
3058 Constant *SameResult = Results.begin()->second;
3059
3060 // Build up the table contents.
3061 std::vector<Constant*> TableContents(TableSize);
3062 for (size_t I = 0, E = Results.size(); I != E; ++I) {
3063 ConstantInt *CaseVal = Results[I].first;
3064 Constant *CaseRes = Results[I].second;
3065
3066 uint64_t Idx = (CaseVal->getValue() - Offset->getValue()).getLimitedValue();
3067 TableContents[Idx] = CaseRes;
3068
3069 if (CaseRes != SameResult)
3070 SameResult = NULL;
3071 }
3072
3073 // Fill in any holes in the table with the default result.
3074 if (Results.size() < TableSize) {
3075 for (unsigned i = 0; i < TableSize; ++i) {
3076 if (!TableContents[i])
3077 TableContents[i] = DefaultResult;
3078 }
3079
3080 if (DefaultResult != SameResult)
3081 SameResult = NULL;
3082 }
3083
3084 // Same result was used in the entire table; just return that.
3085 if (SameResult) {
3086 *SingleResult = SameResult;
3087 return NULL;
3088 }
3089
3090 ArrayType *ArrayTy = ArrayType::get(DefaultResult->getType(), TableSize);
3091 Constant *Initializer = ConstantArray::get(ArrayTy, TableContents);
3092
3093 GlobalVariable *GV = new GlobalVariable(M, ArrayTy, /*constant=*/ true,
3094 GlobalVariable::PrivateLinkage,
3095 Initializer,
3096 "switch.table");
3097 GV->setUnnamedAddr(true);
3098 return GV;
3099 }
3100
3101 /// SwitchToLookupTable - If the switch is only used to initialize one or more
3102 /// phi nodes in a common successor block with different constant values,
3103 /// replace the switch with lookup tables.
SwitchToLookupTable(SwitchInst * SI,IRBuilder<> & Builder)3104 static bool SwitchToLookupTable(SwitchInst *SI,
3105 IRBuilder<> &Builder) {
3106 assert(SI->getNumCases() > 1 && "Degenerate switch?");
3107 // FIXME: Handle unreachable cases.
3108
3109 // FIXME: If the switch is too sparse for a lookup table, perhaps we could
3110 // split off a dense part and build a lookup table for that.
3111
3112 // FIXME: If the results are all integers and the lookup table would fit in a
3113 // target-legal register, we should store them as a bitmap and use shift/mask
3114 // to look up the result.
3115
3116 // FIXME: This creates arrays of GEPs to constant strings, which means each
3117 // GEP needs a runtime relocation in PIC code. We should just build one big
3118 // string and lookup indices into that.
3119
3120 // Ignore the switch if the number of cases are too small.
3121 // This is similar to the check when building jump tables in
3122 // SelectionDAGBuilder::handleJTSwitchCase.
3123 // FIXME: Determine the best cut-off.
3124 if (SI->getNumCases() < 4)
3125 return false;
3126
3127 // Figure out the corresponding result for each case value and phi node in the
3128 // common destination, as well as the the min and max case values.
3129 assert(SI->case_begin() != SI->case_end());
3130 SwitchInst::CaseIt CI = SI->case_begin();
3131 ConstantInt *MinCaseVal = CI.getCaseValue();
3132 ConstantInt *MaxCaseVal = CI.getCaseValue();
3133
3134 BasicBlock *CommonDest = NULL;
3135 typedef SmallVector<std::pair<ConstantInt*, Constant*>, 4> ResultListTy;
3136 SmallDenseMap<PHINode*, ResultListTy> ResultLists;
3137 SmallDenseMap<PHINode*, Constant*> DefaultResults;
3138 SmallDenseMap<PHINode*, Type*> ResultTypes;
3139 SmallVector<PHINode*, 4> PHIs;
3140
3141 for (SwitchInst::CaseIt E = SI->case_end(); CI != E; ++CI) {
3142 ConstantInt *CaseVal = CI.getCaseValue();
3143 if (CaseVal->getValue().slt(MinCaseVal->getValue()))
3144 MinCaseVal = CaseVal;
3145 if (CaseVal->getValue().sgt(MaxCaseVal->getValue()))
3146 MaxCaseVal = CaseVal;
3147
3148 // Resulting value at phi nodes for this case value.
3149 typedef SmallVector<std::pair<PHINode*, Constant*>, 4> ResultsTy;
3150 ResultsTy Results;
3151 if (!GetCaseResults(SI, CI.getCaseSuccessor(), &CommonDest, Results))
3152 return false;
3153
3154 // Append the result from this case to the list for each phi.
3155 for (ResultsTy::iterator I = Results.begin(), E = Results.end(); I!=E; ++I) {
3156 if (!ResultLists.count(I->first))
3157 PHIs.push_back(I->first);
3158 ResultLists[I->first].push_back(std::make_pair(CaseVal, I->second));
3159 }
3160 }
3161
3162 // Get the resulting values for the default case.
3163 SmallVector<std::pair<PHINode*, Constant*>, 4> DefaultResultsList;
3164 if (!GetCaseResults(SI, SI->getDefaultDest(), &CommonDest, DefaultResultsList))
3165 return false;
3166 for (size_t I = 0, E = DefaultResultsList.size(); I != E; ++I) {
3167 PHINode *PHI = DefaultResultsList[I].first;
3168 Constant *Result = DefaultResultsList[I].second;
3169 DefaultResults[PHI] = Result;
3170 ResultTypes[PHI] = Result->getType();
3171 }
3172
3173 APInt RangeSpread = MaxCaseVal->getValue() - MinCaseVal->getValue();
3174 // The table density should be at lest 40%. This is the same criterion as for
3175 // jump tables, see SelectionDAGBuilder::handleJTSwitchCase.
3176 // FIXME: Find the best cut-off.
3177 // Be careful to avoid overlow in the density computation.
3178 if (RangeSpread.zextOrSelf(64).ugt(UINT64_MAX / 4 - 1))
3179 return false;
3180 uint64_t TableSize = RangeSpread.getLimitedValue() + 1;
3181 if (SI->getNumCases() * 10 < TableSize * 4)
3182 return false;
3183
3184 // Build the lookup tables.
3185 SmallDenseMap<PHINode*, GlobalVariable*> LookupTables;
3186 SmallDenseMap<PHINode*, Constant*> SingleResults;
3187
3188 Module &Mod = *CommonDest->getParent()->getParent();
3189 for (SmallVector<PHINode*, 4>::iterator I = PHIs.begin(), E = PHIs.end();
3190 I != E; ++I) {
3191 PHINode *PHI = *I;
3192
3193 Constant *SingleResult = NULL;
3194 LookupTables[PHI] = BuildLookupTable(Mod, TableSize, MinCaseVal,
3195 ResultLists[PHI], DefaultResults[PHI],
3196 &SingleResult);
3197 SingleResults[PHI] = SingleResult;
3198 }
3199
3200 // Create the BB that does the lookups.
3201 BasicBlock *LookupBB = BasicBlock::Create(Mod.getContext(),
3202 "switch.lookup",
3203 CommonDest->getParent(),
3204 CommonDest);
3205
3206 // Check whether the condition value is within the case range, and branch to
3207 // the new BB.
3208 Builder.SetInsertPoint(SI);
3209 Value *TableIndex = Builder.CreateSub(SI->getCondition(), MinCaseVal,
3210 "switch.tableidx");
3211 Value *Cmp = Builder.CreateICmpULT(TableIndex, ConstantInt::get(
3212 MinCaseVal->getType(), TableSize));
3213 Builder.CreateCondBr(Cmp, LookupBB, SI->getDefaultDest());
3214
3215 // Populate the BB that does the lookups.
3216 Builder.SetInsertPoint(LookupBB);
3217 bool ReturnedEarly = false;
3218 for (SmallVector<PHINode*, 4>::iterator I = PHIs.begin(), E = PHIs.end();
3219 I != E; ++I) {
3220 PHINode *PHI = *I;
3221 // There was a single result for this phi; just use that.
3222 if (Constant *SingleResult = SingleResults[PHI]) {
3223 PHI->addIncoming(SingleResult, LookupBB);
3224 continue;
3225 }
3226
3227 Value *GEPIndices[] = { Builder.getInt32(0), TableIndex };
3228 Value *GEP = Builder.CreateInBoundsGEP(LookupTables[PHI], GEPIndices,
3229 "switch.gep");
3230 Value *Result = Builder.CreateLoad(GEP, "switch.load");
3231
3232 // If the result is only going to be used to return from the function,
3233 // we want to do that right here.
3234 if (PHI->hasOneUse() && isa<ReturnInst>(*PHI->use_begin())) {
3235 if (CommonDest->getFirstNonPHIOrDbg() == CommonDest->getTerminator()) {
3236 Builder.CreateRet(Result);
3237 ReturnedEarly = true;
3238 }
3239 }
3240
3241 if (!ReturnedEarly)
3242 PHI->addIncoming(Result, LookupBB);
3243 }
3244
3245 if (!ReturnedEarly)
3246 Builder.CreateBr(CommonDest);
3247
3248 // Remove the switch.
3249 for (unsigned i = 0; i < SI->getNumSuccessors(); ++i) {
3250 BasicBlock *Succ = SI->getSuccessor(i);
3251 if (Succ == SI->getDefaultDest()) continue;
3252 Succ->removePredecessor(SI->getParent());
3253 }
3254 SI->eraseFromParent();
3255
3256 ++NumLookupTables;
3257 return true;
3258 }
3259
SimplifySwitch(SwitchInst * SI,IRBuilder<> & Builder)3260 bool SimplifyCFGOpt::SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder) {
3261 // If this switch is too complex to want to look at, ignore it.
3262 if (!isValueEqualityComparison(SI))
3263 return false;
3264
3265 BasicBlock *BB = SI->getParent();
3266
3267 // If we only have one predecessor, and if it is a branch on this value,
3268 // see if that predecessor totally determines the outcome of this switch.
3269 if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
3270 if (SimplifyEqualityComparisonWithOnlyPredecessor(SI, OnlyPred, Builder))
3271 return SimplifyCFG(BB) | true;
3272
3273 Value *Cond = SI->getCondition();
3274 if (SelectInst *Select = dyn_cast<SelectInst>(Cond))
3275 if (SimplifySwitchOnSelect(SI, Select))
3276 return SimplifyCFG(BB) | true;
3277
3278 // If the block only contains the switch, see if we can fold the block
3279 // away into any preds.
3280 BasicBlock::iterator BBI = BB->begin();
3281 // Ignore dbg intrinsics.
3282 while (isa<DbgInfoIntrinsic>(BBI))
3283 ++BBI;
3284 if (SI == &*BBI)
3285 if (FoldValueComparisonIntoPredecessors(SI, Builder))
3286 return SimplifyCFG(BB) | true;
3287
3288 // Try to transform the switch into an icmp and a branch.
3289 if (TurnSwitchRangeIntoICmp(SI, Builder))
3290 return SimplifyCFG(BB) | true;
3291
3292 // Remove unreachable cases.
3293 if (EliminateDeadSwitchCases(SI))
3294 return SimplifyCFG(BB) | true;
3295
3296 if (ForwardSwitchConditionToPHI(SI))
3297 return SimplifyCFG(BB) | true;
3298
3299 if (SwitchToLookupTable(SI, Builder))
3300 return SimplifyCFG(BB) | true;
3301
3302 return false;
3303 }
3304
SimplifyIndirectBr(IndirectBrInst * IBI)3305 bool SimplifyCFGOpt::SimplifyIndirectBr(IndirectBrInst *IBI) {
3306 BasicBlock *BB = IBI->getParent();
3307 bool Changed = false;
3308
3309 // Eliminate redundant destinations.
3310 SmallPtrSet<Value *, 8> Succs;
3311 for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) {
3312 BasicBlock *Dest = IBI->getDestination(i);
3313 if (!Dest->hasAddressTaken() || !Succs.insert(Dest)) {
3314 Dest->removePredecessor(BB);
3315 IBI->removeDestination(i);
3316 --i; --e;
3317 Changed = true;
3318 }
3319 }
3320
3321 if (IBI->getNumDestinations() == 0) {
3322 // If the indirectbr has no successors, change it to unreachable.
3323 new UnreachableInst(IBI->getContext(), IBI);
3324 EraseTerminatorInstAndDCECond(IBI);
3325 return true;
3326 }
3327
3328 if (IBI->getNumDestinations() == 1) {
3329 // If the indirectbr has one successor, change it to a direct branch.
3330 BranchInst::Create(IBI->getDestination(0), IBI);
3331 EraseTerminatorInstAndDCECond(IBI);
3332 return true;
3333 }
3334
3335 if (SelectInst *SI = dyn_cast<SelectInst>(IBI->getAddress())) {
3336 if (SimplifyIndirectBrOnSelect(IBI, SI))
3337 return SimplifyCFG(BB) | true;
3338 }
3339 return Changed;
3340 }
3341
SimplifyUncondBranch(BranchInst * BI,IRBuilder<> & Builder)3342 bool SimplifyCFGOpt::SimplifyUncondBranch(BranchInst *BI, IRBuilder<> &Builder){
3343 BasicBlock *BB = BI->getParent();
3344
3345 // If the Terminator is the only non-phi instruction, simplify the block.
3346 BasicBlock::iterator I = BB->getFirstNonPHIOrDbgOrLifetime();
3347 if (I->isTerminator() && BB != &BB->getParent()->getEntryBlock() &&
3348 TryToSimplifyUncondBranchFromEmptyBlock(BB))
3349 return true;
3350
3351 // If the only instruction in the block is a seteq/setne comparison
3352 // against a constant, try to simplify the block.
3353 if (ICmpInst *ICI = dyn_cast<ICmpInst>(I))
3354 if (ICI->isEquality() && isa<ConstantInt>(ICI->getOperand(1))) {
3355 for (++I; isa<DbgInfoIntrinsic>(I); ++I)
3356 ;
3357 if (I->isTerminator() &&
3358 TryToSimplifyUncondBranchWithICmpInIt(ICI, TD, Builder))
3359 return true;
3360 }
3361
3362 // If this basic block is ONLY a compare and a branch, and if a predecessor
3363 // branches to us and our successor, fold the comparison into the
3364 // predecessor and use logical operations to update the incoming value
3365 // for PHI nodes in common successor.
3366 if (FoldBranchToCommonDest(BI))
3367 return SimplifyCFG(BB) | true;
3368 return false;
3369 }
3370
3371
SimplifyCondBranch(BranchInst * BI,IRBuilder<> & Builder)3372 bool SimplifyCFGOpt::SimplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder) {
3373 BasicBlock *BB = BI->getParent();
3374
3375 // Conditional branch
3376 if (isValueEqualityComparison(BI)) {
3377 // If we only have one predecessor, and if it is a branch on this value,
3378 // see if that predecessor totally determines the outcome of this
3379 // switch.
3380 if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
3381 if (SimplifyEqualityComparisonWithOnlyPredecessor(BI, OnlyPred, Builder))
3382 return SimplifyCFG(BB) | true;
3383
3384 // This block must be empty, except for the setcond inst, if it exists.
3385 // Ignore dbg intrinsics.
3386 BasicBlock::iterator I = BB->begin();
3387 // Ignore dbg intrinsics.
3388 while (isa<DbgInfoIntrinsic>(I))
3389 ++I;
3390 if (&*I == BI) {
3391 if (FoldValueComparisonIntoPredecessors(BI, Builder))
3392 return SimplifyCFG(BB) | true;
3393 } else if (&*I == cast<Instruction>(BI->getCondition())){
3394 ++I;
3395 // Ignore dbg intrinsics.
3396 while (isa<DbgInfoIntrinsic>(I))
3397 ++I;
3398 if (&*I == BI && FoldValueComparisonIntoPredecessors(BI, Builder))
3399 return SimplifyCFG(BB) | true;
3400 }
3401 }
3402
3403 // Try to turn "br (X == 0 | X == 1), T, F" into a switch instruction.
3404 if (SimplifyBranchOnICmpChain(BI, TD, Builder))
3405 return true;
3406
3407 // If this basic block is ONLY a compare and a branch, and if a predecessor
3408 // branches to us and one of our successors, fold the comparison into the
3409 // predecessor and use logical operations to pick the right destination.
3410 if (FoldBranchToCommonDest(BI))
3411 return SimplifyCFG(BB) | true;
3412
3413 // We have a conditional branch to two blocks that are only reachable
3414 // from BI. We know that the condbr dominates the two blocks, so see if
3415 // there is any identical code in the "then" and "else" blocks. If so, we
3416 // can hoist it up to the branching block.
3417 if (BI->getSuccessor(0)->getSinglePredecessor() != 0) {
3418 if (BI->getSuccessor(1)->getSinglePredecessor() != 0) {
3419 if (HoistThenElseCodeToIf(BI))
3420 return SimplifyCFG(BB) | true;
3421 } else {
3422 // If Successor #1 has multiple preds, we may be able to conditionally
3423 // execute Successor #0 if it branches to successor #1.
3424 TerminatorInst *Succ0TI = BI->getSuccessor(0)->getTerminator();
3425 if (Succ0TI->getNumSuccessors() == 1 &&
3426 Succ0TI->getSuccessor(0) == BI->getSuccessor(1))
3427 if (SpeculativelyExecuteBB(BI, BI->getSuccessor(0)))
3428 return SimplifyCFG(BB) | true;
3429 }
3430 } else if (BI->getSuccessor(1)->getSinglePredecessor() != 0) {
3431 // If Successor #0 has multiple preds, we may be able to conditionally
3432 // execute Successor #1 if it branches to successor #0.
3433 TerminatorInst *Succ1TI = BI->getSuccessor(1)->getTerminator();
3434 if (Succ1TI->getNumSuccessors() == 1 &&
3435 Succ1TI->getSuccessor(0) == BI->getSuccessor(0))
3436 if (SpeculativelyExecuteBB(BI, BI->getSuccessor(1)))
3437 return SimplifyCFG(BB) | true;
3438 }
3439
3440 // If this is a branch on a phi node in the current block, thread control
3441 // through this block if any PHI node entries are constants.
3442 if (PHINode *PN = dyn_cast<PHINode>(BI->getCondition()))
3443 if (PN->getParent() == BI->getParent())
3444 if (FoldCondBranchOnPHI(BI, TD))
3445 return SimplifyCFG(BB) | true;
3446
3447 // Scan predecessor blocks for conditional branches.
3448 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
3449 if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator()))
3450 if (PBI != BI && PBI->isConditional())
3451 if (SimplifyCondBranchToCondBranch(PBI, BI))
3452 return SimplifyCFG(BB) | true;
3453
3454 return false;
3455 }
3456
3457 /// Check if passing a value to an instruction will cause undefined behavior.
passingValueIsAlwaysUndefined(Value * V,Instruction * I)3458 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I) {
3459 Constant *C = dyn_cast<Constant>(V);
3460 if (!C)
3461 return false;
3462
3463 if (!I->hasOneUse()) // Only look at single-use instructions, for compile time
3464 return false;
3465
3466 if (C->isNullValue()) {
3467 Instruction *Use = I->use_back();
3468
3469 // Now make sure that there are no instructions in between that can alter
3470 // control flow (eg. calls)
3471 for (BasicBlock::iterator i = ++BasicBlock::iterator(I); &*i != Use; ++i)
3472 if (i == I->getParent()->end() || i->mayHaveSideEffects())
3473 return false;
3474
3475 // Look through GEPs. A load from a GEP derived from NULL is still undefined
3476 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Use))
3477 if (GEP->getPointerOperand() == I)
3478 return passingValueIsAlwaysUndefined(V, GEP);
3479
3480 // Look through bitcasts.
3481 if (BitCastInst *BC = dyn_cast<BitCastInst>(Use))
3482 return passingValueIsAlwaysUndefined(V, BC);
3483
3484 // Load from null is undefined.
3485 if (LoadInst *LI = dyn_cast<LoadInst>(Use))
3486 return LI->getPointerAddressSpace() == 0;
3487
3488 // Store to null is undefined.
3489 if (StoreInst *SI = dyn_cast<StoreInst>(Use))
3490 return SI->getPointerAddressSpace() == 0 && SI->getPointerOperand() == I;
3491 }
3492 return false;
3493 }
3494
3495 /// If BB has an incoming value that will always trigger undefined behavior
3496 /// (eg. null pointer dereference), remove the branch leading here.
removeUndefIntroducingPredecessor(BasicBlock * BB)3497 static bool removeUndefIntroducingPredecessor(BasicBlock *BB) {
3498 for (BasicBlock::iterator i = BB->begin();
3499 PHINode *PHI = dyn_cast<PHINode>(i); ++i)
3500 for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i)
3501 if (passingValueIsAlwaysUndefined(PHI->getIncomingValue(i), PHI)) {
3502 TerminatorInst *T = PHI->getIncomingBlock(i)->getTerminator();
3503 IRBuilder<> Builder(T);
3504 if (BranchInst *BI = dyn_cast<BranchInst>(T)) {
3505 BB->removePredecessor(PHI->getIncomingBlock(i));
3506 // Turn uncoditional branches into unreachables and remove the dead
3507 // destination from conditional branches.
3508 if (BI->isUnconditional())
3509 Builder.CreateUnreachable();
3510 else
3511 Builder.CreateBr(BI->getSuccessor(0) == BB ? BI->getSuccessor(1) :
3512 BI->getSuccessor(0));
3513 BI->eraseFromParent();
3514 return true;
3515 }
3516 // TODO: SwitchInst.
3517 }
3518
3519 return false;
3520 }
3521
run(BasicBlock * BB)3522 bool SimplifyCFGOpt::run(BasicBlock *BB) {
3523 bool Changed = false;
3524
3525 assert(BB && BB->getParent() && "Block not embedded in function!");
3526 assert(BB->getTerminator() && "Degenerate basic block encountered!");
3527
3528 // Remove basic blocks that have no predecessors (except the entry block)...
3529 // or that just have themself as a predecessor. These are unreachable.
3530 if ((pred_begin(BB) == pred_end(BB) &&
3531 BB != &BB->getParent()->getEntryBlock()) ||
3532 BB->getSinglePredecessor() == BB) {
3533 DEBUG(dbgs() << "Removing BB: \n" << *BB);
3534 DeleteDeadBlock(BB);
3535 return true;
3536 }
3537
3538 // Check to see if we can constant propagate this terminator instruction
3539 // away...
3540 Changed |= ConstantFoldTerminator(BB, true);
3541
3542 // Check for and eliminate duplicate PHI nodes in this block.
3543 Changed |= EliminateDuplicatePHINodes(BB);
3544
3545 // Check for and remove branches that will always cause undefined behavior.
3546 Changed |= removeUndefIntroducingPredecessor(BB);
3547
3548 // Merge basic blocks into their predecessor if there is only one distinct
3549 // pred, and if there is only one distinct successor of the predecessor, and
3550 // if there are no PHI nodes.
3551 //
3552 if (MergeBlockIntoPredecessor(BB))
3553 return true;
3554
3555 IRBuilder<> Builder(BB);
3556
3557 // If there is a trivial two-entry PHI node in this basic block, and we can
3558 // eliminate it, do so now.
3559 if (PHINode *PN = dyn_cast<PHINode>(BB->begin()))
3560 if (PN->getNumIncomingValues() == 2)
3561 Changed |= FoldTwoEntryPHINode(PN, TD);
3562
3563 Builder.SetInsertPoint(BB->getTerminator());
3564 if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
3565 if (BI->isUnconditional()) {
3566 if (SimplifyUncondBranch(BI, Builder)) return true;
3567 } else {
3568 if (SimplifyCondBranch(BI, Builder)) return true;
3569 }
3570 } else if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) {
3571 if (SimplifyReturn(RI, Builder)) return true;
3572 } else if (ResumeInst *RI = dyn_cast<ResumeInst>(BB->getTerminator())) {
3573 if (SimplifyResume(RI, Builder)) return true;
3574 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) {
3575 if (SimplifySwitch(SI, Builder)) return true;
3576 } else if (UnreachableInst *UI =
3577 dyn_cast<UnreachableInst>(BB->getTerminator())) {
3578 if (SimplifyUnreachable(UI)) return true;
3579 } else if (IndirectBrInst *IBI =
3580 dyn_cast<IndirectBrInst>(BB->getTerminator())) {
3581 if (SimplifyIndirectBr(IBI)) return true;
3582 }
3583
3584 return Changed;
3585 }
3586
3587 /// SimplifyCFG - This function is used to do simplification of a CFG. For
3588 /// example, it adjusts branches to branches to eliminate the extra hop, it
3589 /// eliminates unreachable basic blocks, and does other "peephole" optimization
3590 /// of the CFG. It returns true if a modification was made.
3591 ///
SimplifyCFG(BasicBlock * BB,const TargetData * TD)3592 bool llvm::SimplifyCFG(BasicBlock *BB, const TargetData *TD) {
3593 return SimplifyCFGOpt(TD).run(BB);
3594 }
3595