1 //===- InstructionCombining.cpp - Combine multiple instructions -----------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // InstructionCombining - Combine instructions to form fewer, simple
11 // instructions. This pass does not modify the CFG. This pass is where
12 // algebraic simplification happens.
13 //
14 // This pass combines things like:
15 // %Y = add i32 %X, 1
16 // %Z = add i32 %Y, 1
17 // into:
18 // %Z = add i32 %X, 2
19 //
20 // This is a simple worklist driven algorithm.
21 //
22 // This pass guarantees that the following canonicalizations are performed on
23 // the program:
24 // 1. If a binary operator has a constant operand, it is moved to the RHS
25 // 2. Bitwise operators with constant operands are always grouped so that
26 // shifts are performed first, then or's, then and's, then xor's.
27 // 3. Compare instructions are converted from <,>,<=,>= to ==,!= if possible
28 // 4. All cmp instructions on boolean values are replaced with logical ops
29 // 5. add X, X is represented as (X*2) => (X << 1)
30 // 6. Multiplies with a power-of-two constant argument are transformed into
31 // shifts.
32 // ... etc.
33 //
34 //===----------------------------------------------------------------------===//
35
36 #define DEBUG_TYPE "instcombine"
37 #include "llvm/Transforms/Scalar.h"
38 #include "InstCombine.h"
39 #include "llvm/IntrinsicInst.h"
40 #include "llvm/Analysis/ConstantFolding.h"
41 #include "llvm/Analysis/InstructionSimplify.h"
42 #include "llvm/Analysis/MemoryBuiltins.h"
43 #include "llvm/Target/TargetData.h"
44 #include "llvm/Target/TargetLibraryInfo.h"
45 #include "llvm/Transforms/Utils/Local.h"
46 #include "llvm/Support/CFG.h"
47 #include "llvm/Support/Debug.h"
48 #include "llvm/Support/GetElementPtrTypeIterator.h"
49 #include "llvm/Support/PatternMatch.h"
50 #include "llvm/Support/ValueHandle.h"
51 #include "llvm/ADT/SmallPtrSet.h"
52 #include "llvm/ADT/Statistic.h"
53 #include "llvm/ADT/StringSwitch.h"
54 #include "llvm-c/Initialization.h"
55 #include <algorithm>
56 #include <climits>
57 using namespace llvm;
58 using namespace llvm::PatternMatch;
59
60 STATISTIC(NumCombined , "Number of insts combined");
61 STATISTIC(NumConstProp, "Number of constant folds");
62 STATISTIC(NumDeadInst , "Number of dead inst eliminated");
63 STATISTIC(NumSunkInst , "Number of instructions sunk");
64 STATISTIC(NumExpand, "Number of expansions");
65 STATISTIC(NumFactor , "Number of factorizations");
66 STATISTIC(NumReassoc , "Number of reassociations");
67
68 // Initialization Routines
initializeInstCombine(PassRegistry & Registry)69 void llvm::initializeInstCombine(PassRegistry &Registry) {
70 initializeInstCombinerPass(Registry);
71 }
72
LLVMInitializeInstCombine(LLVMPassRegistryRef R)73 void LLVMInitializeInstCombine(LLVMPassRegistryRef R) {
74 initializeInstCombine(*unwrap(R));
75 }
76
77 char InstCombiner::ID = 0;
78 INITIALIZE_PASS_BEGIN(InstCombiner, "instcombine",
79 "Combine redundant instructions", false, false)
INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo)80 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo)
81 INITIALIZE_PASS_END(InstCombiner, "instcombine",
82 "Combine redundant instructions", false, false)
83
84 void InstCombiner::getAnalysisUsage(AnalysisUsage &AU) const {
85 AU.setPreservesCFG();
86 AU.addRequired<TargetLibraryInfo>();
87 }
88
89
EmitGEPOffset(User * GEP)90 Value *InstCombiner::EmitGEPOffset(User *GEP) {
91 return llvm::EmitGEPOffset(Builder, *getTargetData(), GEP);
92 }
93
94 /// ShouldChangeType - Return true if it is desirable to convert a computation
95 /// from 'From' to 'To'. We don't want to convert from a legal to an illegal
96 /// type for example, or from a smaller to a larger illegal type.
ShouldChangeType(Type * From,Type * To) const97 bool InstCombiner::ShouldChangeType(Type *From, Type *To) const {
98 assert(From->isIntegerTy() && To->isIntegerTy());
99
100 // If we don't have TD, we don't know if the source/dest are legal.
101 if (!TD) return false;
102
103 unsigned FromWidth = From->getPrimitiveSizeInBits();
104 unsigned ToWidth = To->getPrimitiveSizeInBits();
105 bool FromLegal = TD->isLegalInteger(FromWidth);
106 bool ToLegal = TD->isLegalInteger(ToWidth);
107
108 // If this is a legal integer from type, and the result would be an illegal
109 // type, don't do the transformation.
110 if (FromLegal && !ToLegal)
111 return false;
112
113 // Otherwise, if both are illegal, do not increase the size of the result. We
114 // do allow things like i160 -> i64, but not i64 -> i160.
115 if (!FromLegal && !ToLegal && ToWidth > FromWidth)
116 return false;
117
118 return true;
119 }
120
121 // Return true, if No Signed Wrap should be maintained for I.
122 // The No Signed Wrap flag can be kept if the operation "B (I.getOpcode) C",
123 // where both B and C should be ConstantInts, results in a constant that does
124 // not overflow. This function only handles the Add and Sub opcodes. For
125 // all other opcodes, the function conservatively returns false.
MaintainNoSignedWrap(BinaryOperator & I,Value * B,Value * C)126 static bool MaintainNoSignedWrap(BinaryOperator &I, Value *B, Value *C) {
127 OverflowingBinaryOperator *OBO = dyn_cast<OverflowingBinaryOperator>(&I);
128 if (!OBO || !OBO->hasNoSignedWrap()) {
129 return false;
130 }
131
132 // We reason about Add and Sub Only.
133 Instruction::BinaryOps Opcode = I.getOpcode();
134 if (Opcode != Instruction::Add &&
135 Opcode != Instruction::Sub) {
136 return false;
137 }
138
139 ConstantInt *CB = dyn_cast<ConstantInt>(B);
140 ConstantInt *CC = dyn_cast<ConstantInt>(C);
141
142 if (!CB || !CC) {
143 return false;
144 }
145
146 const APInt &BVal = CB->getValue();
147 const APInt &CVal = CC->getValue();
148 bool Overflow = false;
149
150 if (Opcode == Instruction::Add) {
151 BVal.sadd_ov(CVal, Overflow);
152 } else {
153 BVal.ssub_ov(CVal, Overflow);
154 }
155
156 return !Overflow;
157 }
158
159 /// SimplifyAssociativeOrCommutative - This performs a few simplifications for
160 /// operators which are associative or commutative:
161 //
162 // Commutative operators:
163 //
164 // 1. Order operands such that they are listed from right (least complex) to
165 // left (most complex). This puts constants before unary operators before
166 // binary operators.
167 //
168 // Associative operators:
169 //
170 // 2. Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies.
171 // 3. Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies.
172 //
173 // Associative and commutative operators:
174 //
175 // 4. Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies.
176 // 5. Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies.
177 // 6. Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)"
178 // if C1 and C2 are constants.
179 //
SimplifyAssociativeOrCommutative(BinaryOperator & I)180 bool InstCombiner::SimplifyAssociativeOrCommutative(BinaryOperator &I) {
181 Instruction::BinaryOps Opcode = I.getOpcode();
182 bool Changed = false;
183
184 do {
185 // Order operands such that they are listed from right (least complex) to
186 // left (most complex). This puts constants before unary operators before
187 // binary operators.
188 if (I.isCommutative() && getComplexity(I.getOperand(0)) <
189 getComplexity(I.getOperand(1)))
190 Changed = !I.swapOperands();
191
192 BinaryOperator *Op0 = dyn_cast<BinaryOperator>(I.getOperand(0));
193 BinaryOperator *Op1 = dyn_cast<BinaryOperator>(I.getOperand(1));
194
195 if (I.isAssociative()) {
196 // Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies.
197 if (Op0 && Op0->getOpcode() == Opcode) {
198 Value *A = Op0->getOperand(0);
199 Value *B = Op0->getOperand(1);
200 Value *C = I.getOperand(1);
201
202 // Does "B op C" simplify?
203 if (Value *V = SimplifyBinOp(Opcode, B, C, TD)) {
204 // It simplifies to V. Form "A op V".
205 I.setOperand(0, A);
206 I.setOperand(1, V);
207 // Conservatively clear the optional flags, since they may not be
208 // preserved by the reassociation.
209 if (MaintainNoSignedWrap(I, B, C) &&
210 (!Op0 || (isa<BinaryOperator>(Op0) && Op0->hasNoSignedWrap()))) {
211 // Note: this is only valid because SimplifyBinOp doesn't look at
212 // the operands to Op0.
213 I.clearSubclassOptionalData();
214 I.setHasNoSignedWrap(true);
215 } else {
216 I.clearSubclassOptionalData();
217 }
218
219 Changed = true;
220 ++NumReassoc;
221 continue;
222 }
223 }
224
225 // Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies.
226 if (Op1 && Op1->getOpcode() == Opcode) {
227 Value *A = I.getOperand(0);
228 Value *B = Op1->getOperand(0);
229 Value *C = Op1->getOperand(1);
230
231 // Does "A op B" simplify?
232 if (Value *V = SimplifyBinOp(Opcode, A, B, TD)) {
233 // It simplifies to V. Form "V op C".
234 I.setOperand(0, V);
235 I.setOperand(1, C);
236 // Conservatively clear the optional flags, since they may not be
237 // preserved by the reassociation.
238 I.clearSubclassOptionalData();
239 Changed = true;
240 ++NumReassoc;
241 continue;
242 }
243 }
244 }
245
246 if (I.isAssociative() && I.isCommutative()) {
247 // Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies.
248 if (Op0 && Op0->getOpcode() == Opcode) {
249 Value *A = Op0->getOperand(0);
250 Value *B = Op0->getOperand(1);
251 Value *C = I.getOperand(1);
252
253 // Does "C op A" simplify?
254 if (Value *V = SimplifyBinOp(Opcode, C, A, TD)) {
255 // It simplifies to V. Form "V op B".
256 I.setOperand(0, V);
257 I.setOperand(1, B);
258 // Conservatively clear the optional flags, since they may not be
259 // preserved by the reassociation.
260 I.clearSubclassOptionalData();
261 Changed = true;
262 ++NumReassoc;
263 continue;
264 }
265 }
266
267 // Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies.
268 if (Op1 && Op1->getOpcode() == Opcode) {
269 Value *A = I.getOperand(0);
270 Value *B = Op1->getOperand(0);
271 Value *C = Op1->getOperand(1);
272
273 // Does "C op A" simplify?
274 if (Value *V = SimplifyBinOp(Opcode, C, A, TD)) {
275 // It simplifies to V. Form "B op V".
276 I.setOperand(0, B);
277 I.setOperand(1, V);
278 // Conservatively clear the optional flags, since they may not be
279 // preserved by the reassociation.
280 I.clearSubclassOptionalData();
281 Changed = true;
282 ++NumReassoc;
283 continue;
284 }
285 }
286
287 // Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)"
288 // if C1 and C2 are constants.
289 if (Op0 && Op1 &&
290 Op0->getOpcode() == Opcode && Op1->getOpcode() == Opcode &&
291 isa<Constant>(Op0->getOperand(1)) &&
292 isa<Constant>(Op1->getOperand(1)) &&
293 Op0->hasOneUse() && Op1->hasOneUse()) {
294 Value *A = Op0->getOperand(0);
295 Constant *C1 = cast<Constant>(Op0->getOperand(1));
296 Value *B = Op1->getOperand(0);
297 Constant *C2 = cast<Constant>(Op1->getOperand(1));
298
299 Constant *Folded = ConstantExpr::get(Opcode, C1, C2);
300 BinaryOperator *New = BinaryOperator::Create(Opcode, A, B);
301 InsertNewInstWith(New, I);
302 New->takeName(Op1);
303 I.setOperand(0, New);
304 I.setOperand(1, Folded);
305 // Conservatively clear the optional flags, since they may not be
306 // preserved by the reassociation.
307 I.clearSubclassOptionalData();
308
309 Changed = true;
310 continue;
311 }
312 }
313
314 // No further simplifications.
315 return Changed;
316 } while (1);
317 }
318
319 /// LeftDistributesOverRight - Whether "X LOp (Y ROp Z)" is always equal to
320 /// "(X LOp Y) ROp (X LOp Z)".
LeftDistributesOverRight(Instruction::BinaryOps LOp,Instruction::BinaryOps ROp)321 static bool LeftDistributesOverRight(Instruction::BinaryOps LOp,
322 Instruction::BinaryOps ROp) {
323 switch (LOp) {
324 default:
325 return false;
326
327 case Instruction::And:
328 // And distributes over Or and Xor.
329 switch (ROp) {
330 default:
331 return false;
332 case Instruction::Or:
333 case Instruction::Xor:
334 return true;
335 }
336
337 case Instruction::Mul:
338 // Multiplication distributes over addition and subtraction.
339 switch (ROp) {
340 default:
341 return false;
342 case Instruction::Add:
343 case Instruction::Sub:
344 return true;
345 }
346
347 case Instruction::Or:
348 // Or distributes over And.
349 switch (ROp) {
350 default:
351 return false;
352 case Instruction::And:
353 return true;
354 }
355 }
356 }
357
358 /// RightDistributesOverLeft - Whether "(X LOp Y) ROp Z" is always equal to
359 /// "(X ROp Z) LOp (Y ROp Z)".
RightDistributesOverLeft(Instruction::BinaryOps LOp,Instruction::BinaryOps ROp)360 static bool RightDistributesOverLeft(Instruction::BinaryOps LOp,
361 Instruction::BinaryOps ROp) {
362 if (Instruction::isCommutative(ROp))
363 return LeftDistributesOverRight(ROp, LOp);
364 // TODO: It would be nice to handle division, aka "(X + Y)/Z = X/Z + Y/Z",
365 // but this requires knowing that the addition does not overflow and other
366 // such subtleties.
367 return false;
368 }
369
370 /// SimplifyUsingDistributiveLaws - This tries to simplify binary operations
371 /// which some other binary operation distributes over either by factorizing
372 /// out common terms (eg "(A*B)+(A*C)" -> "A*(B+C)") or expanding out if this
373 /// results in simplifications (eg: "A & (B | C) -> (A&B) | (A&C)" if this is
374 /// a win). Returns the simplified value, or null if it didn't simplify.
SimplifyUsingDistributiveLaws(BinaryOperator & I)375 Value *InstCombiner::SimplifyUsingDistributiveLaws(BinaryOperator &I) {
376 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
377 BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS);
378 BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS);
379 Instruction::BinaryOps TopLevelOpcode = I.getOpcode(); // op
380
381 // Factorization.
382 if (Op0 && Op1 && Op0->getOpcode() == Op1->getOpcode()) {
383 // The instruction has the form "(A op' B) op (C op' D)". Try to factorize
384 // a common term.
385 Value *A = Op0->getOperand(0), *B = Op0->getOperand(1);
386 Value *C = Op1->getOperand(0), *D = Op1->getOperand(1);
387 Instruction::BinaryOps InnerOpcode = Op0->getOpcode(); // op'
388
389 // Does "X op' Y" always equal "Y op' X"?
390 bool InnerCommutative = Instruction::isCommutative(InnerOpcode);
391
392 // Does "X op' (Y op Z)" always equal "(X op' Y) op (X op' Z)"?
393 if (LeftDistributesOverRight(InnerOpcode, TopLevelOpcode))
394 // Does the instruction have the form "(A op' B) op (A op' D)" or, in the
395 // commutative case, "(A op' B) op (C op' A)"?
396 if (A == C || (InnerCommutative && A == D)) {
397 if (A != C)
398 std::swap(C, D);
399 // Consider forming "A op' (B op D)".
400 // If "B op D" simplifies then it can be formed with no cost.
401 Value *V = SimplifyBinOp(TopLevelOpcode, B, D, TD);
402 // If "B op D" doesn't simplify then only go on if both of the existing
403 // operations "A op' B" and "C op' D" will be zapped as no longer used.
404 if (!V && Op0->hasOneUse() && Op1->hasOneUse())
405 V = Builder->CreateBinOp(TopLevelOpcode, B, D, Op1->getName());
406 if (V) {
407 ++NumFactor;
408 V = Builder->CreateBinOp(InnerOpcode, A, V);
409 V->takeName(&I);
410 return V;
411 }
412 }
413
414 // Does "(X op Y) op' Z" always equal "(X op' Z) op (Y op' Z)"?
415 if (RightDistributesOverLeft(TopLevelOpcode, InnerOpcode))
416 // Does the instruction have the form "(A op' B) op (C op' B)" or, in the
417 // commutative case, "(A op' B) op (B op' D)"?
418 if (B == D || (InnerCommutative && B == C)) {
419 if (B != D)
420 std::swap(C, D);
421 // Consider forming "(A op C) op' B".
422 // If "A op C" simplifies then it can be formed with no cost.
423 Value *V = SimplifyBinOp(TopLevelOpcode, A, C, TD);
424 // If "A op C" doesn't simplify then only go on if both of the existing
425 // operations "A op' B" and "C op' D" will be zapped as no longer used.
426 if (!V && Op0->hasOneUse() && Op1->hasOneUse())
427 V = Builder->CreateBinOp(TopLevelOpcode, A, C, Op0->getName());
428 if (V) {
429 ++NumFactor;
430 V = Builder->CreateBinOp(InnerOpcode, V, B);
431 V->takeName(&I);
432 return V;
433 }
434 }
435 }
436
437 // Expansion.
438 if (Op0 && RightDistributesOverLeft(Op0->getOpcode(), TopLevelOpcode)) {
439 // The instruction has the form "(A op' B) op C". See if expanding it out
440 // to "(A op C) op' (B op C)" results in simplifications.
441 Value *A = Op0->getOperand(0), *B = Op0->getOperand(1), *C = RHS;
442 Instruction::BinaryOps InnerOpcode = Op0->getOpcode(); // op'
443
444 // Do "A op C" and "B op C" both simplify?
445 if (Value *L = SimplifyBinOp(TopLevelOpcode, A, C, TD))
446 if (Value *R = SimplifyBinOp(TopLevelOpcode, B, C, TD)) {
447 // They do! Return "L op' R".
448 ++NumExpand;
449 // If "L op' R" equals "A op' B" then "L op' R" is just the LHS.
450 if ((L == A && R == B) ||
451 (Instruction::isCommutative(InnerOpcode) && L == B && R == A))
452 return Op0;
453 // Otherwise return "L op' R" if it simplifies.
454 if (Value *V = SimplifyBinOp(InnerOpcode, L, R, TD))
455 return V;
456 // Otherwise, create a new instruction.
457 C = Builder->CreateBinOp(InnerOpcode, L, R);
458 C->takeName(&I);
459 return C;
460 }
461 }
462
463 if (Op1 && LeftDistributesOverRight(TopLevelOpcode, Op1->getOpcode())) {
464 // The instruction has the form "A op (B op' C)". See if expanding it out
465 // to "(A op B) op' (A op C)" results in simplifications.
466 Value *A = LHS, *B = Op1->getOperand(0), *C = Op1->getOperand(1);
467 Instruction::BinaryOps InnerOpcode = Op1->getOpcode(); // op'
468
469 // Do "A op B" and "A op C" both simplify?
470 if (Value *L = SimplifyBinOp(TopLevelOpcode, A, B, TD))
471 if (Value *R = SimplifyBinOp(TopLevelOpcode, A, C, TD)) {
472 // They do! Return "L op' R".
473 ++NumExpand;
474 // If "L op' R" equals "B op' C" then "L op' R" is just the RHS.
475 if ((L == B && R == C) ||
476 (Instruction::isCommutative(InnerOpcode) && L == C && R == B))
477 return Op1;
478 // Otherwise return "L op' R" if it simplifies.
479 if (Value *V = SimplifyBinOp(InnerOpcode, L, R, TD))
480 return V;
481 // Otherwise, create a new instruction.
482 A = Builder->CreateBinOp(InnerOpcode, L, R);
483 A->takeName(&I);
484 return A;
485 }
486 }
487
488 return 0;
489 }
490
491 // dyn_castNegVal - Given a 'sub' instruction, return the RHS of the instruction
492 // if the LHS is a constant zero (which is the 'negate' form).
493 //
dyn_castNegVal(Value * V) const494 Value *InstCombiner::dyn_castNegVal(Value *V) const {
495 if (BinaryOperator::isNeg(V))
496 return BinaryOperator::getNegArgument(V);
497
498 // Constants can be considered to be negated values if they can be folded.
499 if (ConstantInt *C = dyn_cast<ConstantInt>(V))
500 return ConstantExpr::getNeg(C);
501
502 if (ConstantDataVector *C = dyn_cast<ConstantDataVector>(V))
503 if (C->getType()->getElementType()->isIntegerTy())
504 return ConstantExpr::getNeg(C);
505
506 return 0;
507 }
508
509 // dyn_castFNegVal - Given a 'fsub' instruction, return the RHS of the
510 // instruction if the LHS is a constant negative zero (which is the 'negate'
511 // form).
512 //
dyn_castFNegVal(Value * V) const513 Value *InstCombiner::dyn_castFNegVal(Value *V) const {
514 if (BinaryOperator::isFNeg(V))
515 return BinaryOperator::getFNegArgument(V);
516
517 // Constants can be considered to be negated values if they can be folded.
518 if (ConstantFP *C = dyn_cast<ConstantFP>(V))
519 return ConstantExpr::getFNeg(C);
520
521 if (ConstantDataVector *C = dyn_cast<ConstantDataVector>(V))
522 if (C->getType()->getElementType()->isFloatingPointTy())
523 return ConstantExpr::getFNeg(C);
524
525 return 0;
526 }
527
FoldOperationIntoSelectOperand(Instruction & I,Value * SO,InstCombiner * IC)528 static Value *FoldOperationIntoSelectOperand(Instruction &I, Value *SO,
529 InstCombiner *IC) {
530 if (CastInst *CI = dyn_cast<CastInst>(&I)) {
531 return IC->Builder->CreateCast(CI->getOpcode(), SO, I.getType());
532 }
533
534 // Figure out if the constant is the left or the right argument.
535 bool ConstIsRHS = isa<Constant>(I.getOperand(1));
536 Constant *ConstOperand = cast<Constant>(I.getOperand(ConstIsRHS));
537
538 if (Constant *SOC = dyn_cast<Constant>(SO)) {
539 if (ConstIsRHS)
540 return ConstantExpr::get(I.getOpcode(), SOC, ConstOperand);
541 return ConstantExpr::get(I.getOpcode(), ConstOperand, SOC);
542 }
543
544 Value *Op0 = SO, *Op1 = ConstOperand;
545 if (!ConstIsRHS)
546 std::swap(Op0, Op1);
547
548 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(&I))
549 return IC->Builder->CreateBinOp(BO->getOpcode(), Op0, Op1,
550 SO->getName()+".op");
551 if (ICmpInst *CI = dyn_cast<ICmpInst>(&I))
552 return IC->Builder->CreateICmp(CI->getPredicate(), Op0, Op1,
553 SO->getName()+".cmp");
554 if (FCmpInst *CI = dyn_cast<FCmpInst>(&I))
555 return IC->Builder->CreateICmp(CI->getPredicate(), Op0, Op1,
556 SO->getName()+".cmp");
557 llvm_unreachable("Unknown binary instruction type!");
558 }
559
560 // FoldOpIntoSelect - Given an instruction with a select as one operand and a
561 // constant as the other operand, try to fold the binary operator into the
562 // select arguments. This also works for Cast instructions, which obviously do
563 // not have a second operand.
FoldOpIntoSelect(Instruction & Op,SelectInst * SI)564 Instruction *InstCombiner::FoldOpIntoSelect(Instruction &Op, SelectInst *SI) {
565 // Don't modify shared select instructions
566 if (!SI->hasOneUse()) return 0;
567 Value *TV = SI->getOperand(1);
568 Value *FV = SI->getOperand(2);
569
570 if (isa<Constant>(TV) || isa<Constant>(FV)) {
571 // Bool selects with constant operands can be folded to logical ops.
572 if (SI->getType()->isIntegerTy(1)) return 0;
573
574 // If it's a bitcast involving vectors, make sure it has the same number of
575 // elements on both sides.
576 if (BitCastInst *BC = dyn_cast<BitCastInst>(&Op)) {
577 VectorType *DestTy = dyn_cast<VectorType>(BC->getDestTy());
578 VectorType *SrcTy = dyn_cast<VectorType>(BC->getSrcTy());
579
580 // Verify that either both or neither are vectors.
581 if ((SrcTy == NULL) != (DestTy == NULL)) return 0;
582 // If vectors, verify that they have the same number of elements.
583 if (SrcTy && SrcTy->getNumElements() != DestTy->getNumElements())
584 return 0;
585 }
586
587 Value *SelectTrueVal = FoldOperationIntoSelectOperand(Op, TV, this);
588 Value *SelectFalseVal = FoldOperationIntoSelectOperand(Op, FV, this);
589
590 return SelectInst::Create(SI->getCondition(),
591 SelectTrueVal, SelectFalseVal);
592 }
593 return 0;
594 }
595
596
597 /// FoldOpIntoPhi - Given a binary operator, cast instruction, or select which
598 /// has a PHI node as operand #0, see if we can fold the instruction into the
599 /// PHI (which is only possible if all operands to the PHI are constants).
600 ///
FoldOpIntoPhi(Instruction & I)601 Instruction *InstCombiner::FoldOpIntoPhi(Instruction &I) {
602 PHINode *PN = cast<PHINode>(I.getOperand(0));
603 unsigned NumPHIValues = PN->getNumIncomingValues();
604 if (NumPHIValues == 0)
605 return 0;
606
607 // We normally only transform phis with a single use. However, if a PHI has
608 // multiple uses and they are all the same operation, we can fold *all* of the
609 // uses into the PHI.
610 if (!PN->hasOneUse()) {
611 // Walk the use list for the instruction, comparing them to I.
612 for (Value::use_iterator UI = PN->use_begin(), E = PN->use_end();
613 UI != E; ++UI) {
614 Instruction *User = cast<Instruction>(*UI);
615 if (User != &I && !I.isIdenticalTo(User))
616 return 0;
617 }
618 // Otherwise, we can replace *all* users with the new PHI we form.
619 }
620
621 // Check to see if all of the operands of the PHI are simple constants
622 // (constantint/constantfp/undef). If there is one non-constant value,
623 // remember the BB it is in. If there is more than one or if *it* is a PHI,
624 // bail out. We don't do arbitrary constant expressions here because moving
625 // their computation can be expensive without a cost model.
626 BasicBlock *NonConstBB = 0;
627 for (unsigned i = 0; i != NumPHIValues; ++i) {
628 Value *InVal = PN->getIncomingValue(i);
629 if (isa<Constant>(InVal) && !isa<ConstantExpr>(InVal))
630 continue;
631
632 if (isa<PHINode>(InVal)) return 0; // Itself a phi.
633 if (NonConstBB) return 0; // More than one non-const value.
634
635 NonConstBB = PN->getIncomingBlock(i);
636
637 // If the InVal is an invoke at the end of the pred block, then we can't
638 // insert a computation after it without breaking the edge.
639 if (InvokeInst *II = dyn_cast<InvokeInst>(InVal))
640 if (II->getParent() == NonConstBB)
641 return 0;
642
643 // If the incoming non-constant value is in I's block, we will remove one
644 // instruction, but insert another equivalent one, leading to infinite
645 // instcombine.
646 if (NonConstBB == I.getParent())
647 return 0;
648 }
649
650 // If there is exactly one non-constant value, we can insert a copy of the
651 // operation in that block. However, if this is a critical edge, we would be
652 // inserting the computation one some other paths (e.g. inside a loop). Only
653 // do this if the pred block is unconditionally branching into the phi block.
654 if (NonConstBB != 0) {
655 BranchInst *BI = dyn_cast<BranchInst>(NonConstBB->getTerminator());
656 if (!BI || !BI->isUnconditional()) return 0;
657 }
658
659 // Okay, we can do the transformation: create the new PHI node.
660 PHINode *NewPN = PHINode::Create(I.getType(), PN->getNumIncomingValues());
661 InsertNewInstBefore(NewPN, *PN);
662 NewPN->takeName(PN);
663
664 // If we are going to have to insert a new computation, do so right before the
665 // predecessors terminator.
666 if (NonConstBB)
667 Builder->SetInsertPoint(NonConstBB->getTerminator());
668
669 // Next, add all of the operands to the PHI.
670 if (SelectInst *SI = dyn_cast<SelectInst>(&I)) {
671 // We only currently try to fold the condition of a select when it is a phi,
672 // not the true/false values.
673 Value *TrueV = SI->getTrueValue();
674 Value *FalseV = SI->getFalseValue();
675 BasicBlock *PhiTransBB = PN->getParent();
676 for (unsigned i = 0; i != NumPHIValues; ++i) {
677 BasicBlock *ThisBB = PN->getIncomingBlock(i);
678 Value *TrueVInPred = TrueV->DoPHITranslation(PhiTransBB, ThisBB);
679 Value *FalseVInPred = FalseV->DoPHITranslation(PhiTransBB, ThisBB);
680 Value *InV = 0;
681 if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i)))
682 InV = InC->isNullValue() ? FalseVInPred : TrueVInPred;
683 else
684 InV = Builder->CreateSelect(PN->getIncomingValue(i),
685 TrueVInPred, FalseVInPred, "phitmp");
686 NewPN->addIncoming(InV, ThisBB);
687 }
688 } else if (CmpInst *CI = dyn_cast<CmpInst>(&I)) {
689 Constant *C = cast<Constant>(I.getOperand(1));
690 for (unsigned i = 0; i != NumPHIValues; ++i) {
691 Value *InV = 0;
692 if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i)))
693 InV = ConstantExpr::getCompare(CI->getPredicate(), InC, C);
694 else if (isa<ICmpInst>(CI))
695 InV = Builder->CreateICmp(CI->getPredicate(), PN->getIncomingValue(i),
696 C, "phitmp");
697 else
698 InV = Builder->CreateFCmp(CI->getPredicate(), PN->getIncomingValue(i),
699 C, "phitmp");
700 NewPN->addIncoming(InV, PN->getIncomingBlock(i));
701 }
702 } else if (I.getNumOperands() == 2) {
703 Constant *C = cast<Constant>(I.getOperand(1));
704 for (unsigned i = 0; i != NumPHIValues; ++i) {
705 Value *InV = 0;
706 if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i)))
707 InV = ConstantExpr::get(I.getOpcode(), InC, C);
708 else
709 InV = Builder->CreateBinOp(cast<BinaryOperator>(I).getOpcode(),
710 PN->getIncomingValue(i), C, "phitmp");
711 NewPN->addIncoming(InV, PN->getIncomingBlock(i));
712 }
713 } else {
714 CastInst *CI = cast<CastInst>(&I);
715 Type *RetTy = CI->getType();
716 for (unsigned i = 0; i != NumPHIValues; ++i) {
717 Value *InV;
718 if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i)))
719 InV = ConstantExpr::getCast(CI->getOpcode(), InC, RetTy);
720 else
721 InV = Builder->CreateCast(CI->getOpcode(),
722 PN->getIncomingValue(i), I.getType(), "phitmp");
723 NewPN->addIncoming(InV, PN->getIncomingBlock(i));
724 }
725 }
726
727 for (Value::use_iterator UI = PN->use_begin(), E = PN->use_end();
728 UI != E; ) {
729 Instruction *User = cast<Instruction>(*UI++);
730 if (User == &I) continue;
731 ReplaceInstUsesWith(*User, NewPN);
732 EraseInstFromFunction(*User);
733 }
734 return ReplaceInstUsesWith(I, NewPN);
735 }
736
737 /// FindElementAtOffset - Given a type and a constant offset, determine whether
738 /// or not there is a sequence of GEP indices into the type that will land us at
739 /// the specified offset. If so, fill them into NewIndices and return the
740 /// resultant element type, otherwise return null.
FindElementAtOffset(Type * Ty,int64_t Offset,SmallVectorImpl<Value * > & NewIndices)741 Type *InstCombiner::FindElementAtOffset(Type *Ty, int64_t Offset,
742 SmallVectorImpl<Value*> &NewIndices) {
743 if (!TD) return 0;
744 if (!Ty->isSized()) return 0;
745
746 // Start with the index over the outer type. Note that the type size
747 // might be zero (even if the offset isn't zero) if the indexed type
748 // is something like [0 x {int, int}]
749 Type *IntPtrTy = TD->getIntPtrType(Ty->getContext());
750 int64_t FirstIdx = 0;
751 if (int64_t TySize = TD->getTypeAllocSize(Ty)) {
752 FirstIdx = Offset/TySize;
753 Offset -= FirstIdx*TySize;
754
755 // Handle hosts where % returns negative instead of values [0..TySize).
756 if (Offset < 0) {
757 --FirstIdx;
758 Offset += TySize;
759 assert(Offset >= 0);
760 }
761 assert((uint64_t)Offset < (uint64_t)TySize && "Out of range offset");
762 }
763
764 NewIndices.push_back(ConstantInt::get(IntPtrTy, FirstIdx));
765
766 // Index into the types. If we fail, set OrigBase to null.
767 while (Offset) {
768 // Indexing into tail padding between struct/array elements.
769 if (uint64_t(Offset*8) >= TD->getTypeSizeInBits(Ty))
770 return 0;
771
772 if (StructType *STy = dyn_cast<StructType>(Ty)) {
773 const StructLayout *SL = TD->getStructLayout(STy);
774 assert(Offset < (int64_t)SL->getSizeInBytes() &&
775 "Offset must stay within the indexed type");
776
777 unsigned Elt = SL->getElementContainingOffset(Offset);
778 NewIndices.push_back(ConstantInt::get(Type::getInt32Ty(Ty->getContext()),
779 Elt));
780
781 Offset -= SL->getElementOffset(Elt);
782 Ty = STy->getElementType(Elt);
783 } else if (ArrayType *AT = dyn_cast<ArrayType>(Ty)) {
784 uint64_t EltSize = TD->getTypeAllocSize(AT->getElementType());
785 assert(EltSize && "Cannot index into a zero-sized array");
786 NewIndices.push_back(ConstantInt::get(IntPtrTy,Offset/EltSize));
787 Offset %= EltSize;
788 Ty = AT->getElementType();
789 } else {
790 // Otherwise, we can't index into the middle of this atomic type, bail.
791 return 0;
792 }
793 }
794
795 return Ty;
796 }
797
shouldMergeGEPs(GEPOperator & GEP,GEPOperator & Src)798 static bool shouldMergeGEPs(GEPOperator &GEP, GEPOperator &Src) {
799 // If this GEP has only 0 indices, it is the same pointer as
800 // Src. If Src is not a trivial GEP too, don't combine
801 // the indices.
802 if (GEP.hasAllZeroIndices() && !Src.hasAllZeroIndices() &&
803 !Src.hasOneUse())
804 return false;
805 return true;
806 }
807
visitGetElementPtrInst(GetElementPtrInst & GEP)808 Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) {
809 SmallVector<Value*, 8> Ops(GEP.op_begin(), GEP.op_end());
810
811 if (Value *V = SimplifyGEPInst(Ops, TD))
812 return ReplaceInstUsesWith(GEP, V);
813
814 Value *PtrOp = GEP.getOperand(0);
815
816 // Eliminate unneeded casts for indices, and replace indices which displace
817 // by multiples of a zero size type with zero.
818 if (TD) {
819 bool MadeChange = false;
820 Type *IntPtrTy = TD->getIntPtrType(GEP.getContext());
821
822 gep_type_iterator GTI = gep_type_begin(GEP);
823 for (User::op_iterator I = GEP.op_begin() + 1, E = GEP.op_end();
824 I != E; ++I, ++GTI) {
825 // Skip indices into struct types.
826 SequentialType *SeqTy = dyn_cast<SequentialType>(*GTI);
827 if (!SeqTy) continue;
828
829 // If the element type has zero size then any index over it is equivalent
830 // to an index of zero, so replace it with zero if it is not zero already.
831 if (SeqTy->getElementType()->isSized() &&
832 TD->getTypeAllocSize(SeqTy->getElementType()) == 0)
833 if (!isa<Constant>(*I) || !cast<Constant>(*I)->isNullValue()) {
834 *I = Constant::getNullValue(IntPtrTy);
835 MadeChange = true;
836 }
837
838 Type *IndexTy = (*I)->getType();
839 if (IndexTy != IntPtrTy && !IndexTy->isVectorTy()) {
840 // If we are using a wider index than needed for this platform, shrink
841 // it to what we need. If narrower, sign-extend it to what we need.
842 // This explicit cast can make subsequent optimizations more obvious.
843 *I = Builder->CreateIntCast(*I, IntPtrTy, true);
844 MadeChange = true;
845 }
846 }
847 if (MadeChange) return &GEP;
848 }
849
850 // Combine Indices - If the source pointer to this getelementptr instruction
851 // is a getelementptr instruction, combine the indices of the two
852 // getelementptr instructions into a single instruction.
853 //
854 if (GEPOperator *Src = dyn_cast<GEPOperator>(PtrOp)) {
855 if (!shouldMergeGEPs(*cast<GEPOperator>(&GEP), *Src))
856 return 0;
857
858 // Note that if our source is a gep chain itself that we wait for that
859 // chain to be resolved before we perform this transformation. This
860 // avoids us creating a TON of code in some cases.
861 if (GEPOperator *SrcGEP =
862 dyn_cast<GEPOperator>(Src->getOperand(0)))
863 if (SrcGEP->getNumOperands() == 2 && shouldMergeGEPs(*Src, *SrcGEP))
864 return 0; // Wait until our source is folded to completion.
865
866 SmallVector<Value*, 8> Indices;
867
868 // Find out whether the last index in the source GEP is a sequential idx.
869 bool EndsWithSequential = false;
870 for (gep_type_iterator I = gep_type_begin(*Src), E = gep_type_end(*Src);
871 I != E; ++I)
872 EndsWithSequential = !(*I)->isStructTy();
873
874 // Can we combine the two pointer arithmetics offsets?
875 if (EndsWithSequential) {
876 // Replace: gep (gep %P, long B), long A, ...
877 // With: T = long A+B; gep %P, T, ...
878 //
879 Value *Sum;
880 Value *SO1 = Src->getOperand(Src->getNumOperands()-1);
881 Value *GO1 = GEP.getOperand(1);
882 if (SO1 == Constant::getNullValue(SO1->getType())) {
883 Sum = GO1;
884 } else if (GO1 == Constant::getNullValue(GO1->getType())) {
885 Sum = SO1;
886 } else {
887 // If they aren't the same type, then the input hasn't been processed
888 // by the loop above yet (which canonicalizes sequential index types to
889 // intptr_t). Just avoid transforming this until the input has been
890 // normalized.
891 if (SO1->getType() != GO1->getType())
892 return 0;
893 Sum = Builder->CreateAdd(SO1, GO1, PtrOp->getName()+".sum");
894 }
895
896 // Update the GEP in place if possible.
897 if (Src->getNumOperands() == 2) {
898 GEP.setOperand(0, Src->getOperand(0));
899 GEP.setOperand(1, Sum);
900 return &GEP;
901 }
902 Indices.append(Src->op_begin()+1, Src->op_end()-1);
903 Indices.push_back(Sum);
904 Indices.append(GEP.op_begin()+2, GEP.op_end());
905 } else if (isa<Constant>(*GEP.idx_begin()) &&
906 cast<Constant>(*GEP.idx_begin())->isNullValue() &&
907 Src->getNumOperands() != 1) {
908 // Otherwise we can do the fold if the first index of the GEP is a zero
909 Indices.append(Src->op_begin()+1, Src->op_end());
910 Indices.append(GEP.idx_begin()+1, GEP.idx_end());
911 }
912
913 if (!Indices.empty())
914 return (GEP.isInBounds() && Src->isInBounds()) ?
915 GetElementPtrInst::CreateInBounds(Src->getOperand(0), Indices,
916 GEP.getName()) :
917 GetElementPtrInst::Create(Src->getOperand(0), Indices, GEP.getName());
918 }
919
920 // Handle gep(bitcast x) and gep(gep x, 0, 0, 0).
921 Value *StrippedPtr = PtrOp->stripPointerCasts();
922 PointerType *StrippedPtrTy = dyn_cast<PointerType>(StrippedPtr->getType());
923
924 // We do not handle pointer-vector geps here.
925 if (!StrippedPtrTy)
926 return 0;
927
928 if (StrippedPtr != PtrOp &&
929 StrippedPtrTy->getAddressSpace() == GEP.getPointerAddressSpace()) {
930
931 bool HasZeroPointerIndex = false;
932 if (ConstantInt *C = dyn_cast<ConstantInt>(GEP.getOperand(1)))
933 HasZeroPointerIndex = C->isZero();
934
935 // Transform: GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ...
936 // into : GEP [10 x i8]* X, i32 0, ...
937 //
938 // Likewise, transform: GEP (bitcast i8* X to [0 x i8]*), i32 0, ...
939 // into : GEP i8* X, ...
940 //
941 // This occurs when the program declares an array extern like "int X[];"
942 if (HasZeroPointerIndex) {
943 PointerType *CPTy = cast<PointerType>(PtrOp->getType());
944 if (ArrayType *CATy =
945 dyn_cast<ArrayType>(CPTy->getElementType())) {
946 // GEP (bitcast i8* X to [0 x i8]*), i32 0, ... ?
947 if (CATy->getElementType() == StrippedPtrTy->getElementType()) {
948 // -> GEP i8* X, ...
949 SmallVector<Value*, 8> Idx(GEP.idx_begin()+1, GEP.idx_end());
950 GetElementPtrInst *Res =
951 GetElementPtrInst::Create(StrippedPtr, Idx, GEP.getName());
952 Res->setIsInBounds(GEP.isInBounds());
953 return Res;
954 }
955
956 if (ArrayType *XATy =
957 dyn_cast<ArrayType>(StrippedPtrTy->getElementType())){
958 // GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ... ?
959 if (CATy->getElementType() == XATy->getElementType()) {
960 // -> GEP [10 x i8]* X, i32 0, ...
961 // At this point, we know that the cast source type is a pointer
962 // to an array of the same type as the destination pointer
963 // array. Because the array type is never stepped over (there
964 // is a leading zero) we can fold the cast into this GEP.
965 GEP.setOperand(0, StrippedPtr);
966 return &GEP;
967 }
968 }
969 }
970 } else if (GEP.getNumOperands() == 2) {
971 // Transform things like:
972 // %t = getelementptr i32* bitcast ([2 x i32]* %str to i32*), i32 %V
973 // into: %t1 = getelementptr [2 x i32]* %str, i32 0, i32 %V; bitcast
974 Type *SrcElTy = StrippedPtrTy->getElementType();
975 Type *ResElTy=cast<PointerType>(PtrOp->getType())->getElementType();
976 if (TD && SrcElTy->isArrayTy() &&
977 TD->getTypeAllocSize(cast<ArrayType>(SrcElTy)->getElementType()) ==
978 TD->getTypeAllocSize(ResElTy)) {
979 Value *Idx[2];
980 Idx[0] = Constant::getNullValue(Type::getInt32Ty(GEP.getContext()));
981 Idx[1] = GEP.getOperand(1);
982 Value *NewGEP = GEP.isInBounds() ?
983 Builder->CreateInBoundsGEP(StrippedPtr, Idx, GEP.getName()) :
984 Builder->CreateGEP(StrippedPtr, Idx, GEP.getName());
985 // V and GEP are both pointer types --> BitCast
986 return new BitCastInst(NewGEP, GEP.getType());
987 }
988
989 // Transform things like:
990 // getelementptr i8* bitcast ([100 x double]* X to i8*), i32 %tmp
991 // (where tmp = 8*tmp2) into:
992 // getelementptr [100 x double]* %arr, i32 0, i32 %tmp2; bitcast
993
994 if (TD && SrcElTy->isArrayTy() && ResElTy->isIntegerTy(8)) {
995 uint64_t ArrayEltSize =
996 TD->getTypeAllocSize(cast<ArrayType>(SrcElTy)->getElementType());
997
998 // Check to see if "tmp" is a scale by a multiple of ArrayEltSize. We
999 // allow either a mul, shift, or constant here.
1000 Value *NewIdx = 0;
1001 ConstantInt *Scale = 0;
1002 if (ArrayEltSize == 1) {
1003 NewIdx = GEP.getOperand(1);
1004 Scale = ConstantInt::get(cast<IntegerType>(NewIdx->getType()), 1);
1005 } else if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP.getOperand(1))) {
1006 NewIdx = ConstantInt::get(CI->getType(), 1);
1007 Scale = CI;
1008 } else if (Instruction *Inst =dyn_cast<Instruction>(GEP.getOperand(1))){
1009 if (Inst->getOpcode() == Instruction::Shl &&
1010 isa<ConstantInt>(Inst->getOperand(1))) {
1011 ConstantInt *ShAmt = cast<ConstantInt>(Inst->getOperand(1));
1012 uint32_t ShAmtVal = ShAmt->getLimitedValue(64);
1013 Scale = ConstantInt::get(cast<IntegerType>(Inst->getType()),
1014 1ULL << ShAmtVal);
1015 NewIdx = Inst->getOperand(0);
1016 } else if (Inst->getOpcode() == Instruction::Mul &&
1017 isa<ConstantInt>(Inst->getOperand(1))) {
1018 Scale = cast<ConstantInt>(Inst->getOperand(1));
1019 NewIdx = Inst->getOperand(0);
1020 }
1021 }
1022
1023 // If the index will be to exactly the right offset with the scale taken
1024 // out, perform the transformation. Note, we don't know whether Scale is
1025 // signed or not. We'll use unsigned version of division/modulo
1026 // operation after making sure Scale doesn't have the sign bit set.
1027 if (ArrayEltSize && Scale && Scale->getSExtValue() >= 0LL &&
1028 Scale->getZExtValue() % ArrayEltSize == 0) {
1029 Scale = ConstantInt::get(Scale->getType(),
1030 Scale->getZExtValue() / ArrayEltSize);
1031 if (Scale->getZExtValue() != 1) {
1032 Constant *C = ConstantExpr::getIntegerCast(Scale, NewIdx->getType(),
1033 false /*ZExt*/);
1034 NewIdx = Builder->CreateMul(NewIdx, C, "idxscale");
1035 }
1036
1037 // Insert the new GEP instruction.
1038 Value *Idx[2];
1039 Idx[0] = Constant::getNullValue(Type::getInt32Ty(GEP.getContext()));
1040 Idx[1] = NewIdx;
1041 Value *NewGEP = GEP.isInBounds() ?
1042 Builder->CreateInBoundsGEP(StrippedPtr, Idx, GEP.getName()):
1043 Builder->CreateGEP(StrippedPtr, Idx, GEP.getName());
1044 // The NewGEP must be pointer typed, so must the old one -> BitCast
1045 return new BitCastInst(NewGEP, GEP.getType());
1046 }
1047 }
1048 }
1049 }
1050
1051 /// See if we can simplify:
1052 /// X = bitcast A* to B*
1053 /// Y = gep X, <...constant indices...>
1054 /// into a gep of the original struct. This is important for SROA and alias
1055 /// analysis of unions. If "A" is also a bitcast, wait for A/X to be merged.
1056 if (BitCastInst *BCI = dyn_cast<BitCastInst>(PtrOp)) {
1057 if (TD &&
1058 !isa<BitCastInst>(BCI->getOperand(0)) && GEP.hasAllConstantIndices() &&
1059 StrippedPtrTy->getAddressSpace() == GEP.getPointerAddressSpace()) {
1060
1061 // Determine how much the GEP moves the pointer.
1062 SmallVector<Value*, 8> Ops(GEP.idx_begin(), GEP.idx_end());
1063 int64_t Offset = TD->getIndexedOffset(GEP.getPointerOperandType(), Ops);
1064
1065 // If this GEP instruction doesn't move the pointer, just replace the GEP
1066 // with a bitcast of the real input to the dest type.
1067 if (Offset == 0) {
1068 // If the bitcast is of an allocation, and the allocation will be
1069 // converted to match the type of the cast, don't touch this.
1070 if (isa<AllocaInst>(BCI->getOperand(0)) ||
1071 isAllocationFn(BCI->getOperand(0), TLI)) {
1072 // See if the bitcast simplifies, if so, don't nuke this GEP yet.
1073 if (Instruction *I = visitBitCast(*BCI)) {
1074 if (I != BCI) {
1075 I->takeName(BCI);
1076 BCI->getParent()->getInstList().insert(BCI, I);
1077 ReplaceInstUsesWith(*BCI, I);
1078 }
1079 return &GEP;
1080 }
1081 }
1082 return new BitCastInst(BCI->getOperand(0), GEP.getType());
1083 }
1084
1085 // Otherwise, if the offset is non-zero, we need to find out if there is a
1086 // field at Offset in 'A's type. If so, we can pull the cast through the
1087 // GEP.
1088 SmallVector<Value*, 8> NewIndices;
1089 Type *InTy =
1090 cast<PointerType>(BCI->getOperand(0)->getType())->getElementType();
1091 if (FindElementAtOffset(InTy, Offset, NewIndices)) {
1092 Value *NGEP = GEP.isInBounds() ?
1093 Builder->CreateInBoundsGEP(BCI->getOperand(0), NewIndices) :
1094 Builder->CreateGEP(BCI->getOperand(0), NewIndices);
1095
1096 if (NGEP->getType() == GEP.getType())
1097 return ReplaceInstUsesWith(GEP, NGEP);
1098 NGEP->takeName(&GEP);
1099 return new BitCastInst(NGEP, GEP.getType());
1100 }
1101 }
1102 }
1103
1104 return 0;
1105 }
1106
1107
1108
1109 static bool
isAllocSiteRemovable(Instruction * AI,SmallVectorImpl<WeakVH> & Users,const TargetLibraryInfo * TLI)1110 isAllocSiteRemovable(Instruction *AI, SmallVectorImpl<WeakVH> &Users,
1111 const TargetLibraryInfo *TLI) {
1112 SmallVector<Instruction*, 4> Worklist;
1113 Worklist.push_back(AI);
1114
1115 do {
1116 Instruction *PI = Worklist.pop_back_val();
1117 for (Value::use_iterator UI = PI->use_begin(), UE = PI->use_end(); UI != UE;
1118 ++UI) {
1119 Instruction *I = cast<Instruction>(*UI);
1120 switch (I->getOpcode()) {
1121 default:
1122 // Give up the moment we see something we can't handle.
1123 return false;
1124
1125 case Instruction::BitCast:
1126 case Instruction::GetElementPtr:
1127 Users.push_back(I);
1128 Worklist.push_back(I);
1129 continue;
1130
1131 case Instruction::ICmp: {
1132 ICmpInst *ICI = cast<ICmpInst>(I);
1133 // We can fold eq/ne comparisons with null to false/true, respectively.
1134 if (!ICI->isEquality() || !isa<ConstantPointerNull>(ICI->getOperand(1)))
1135 return false;
1136 Users.push_back(I);
1137 continue;
1138 }
1139
1140 case Instruction::Call:
1141 // Ignore no-op and store intrinsics.
1142 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
1143 switch (II->getIntrinsicID()) {
1144 default:
1145 return false;
1146
1147 case Intrinsic::memmove:
1148 case Intrinsic::memcpy:
1149 case Intrinsic::memset: {
1150 MemIntrinsic *MI = cast<MemIntrinsic>(II);
1151 if (MI->isVolatile() || MI->getRawDest() != PI)
1152 return false;
1153 }
1154 // fall through
1155 case Intrinsic::dbg_declare:
1156 case Intrinsic::dbg_value:
1157 case Intrinsic::invariant_start:
1158 case Intrinsic::invariant_end:
1159 case Intrinsic::lifetime_start:
1160 case Intrinsic::lifetime_end:
1161 case Intrinsic::objectsize:
1162 Users.push_back(I);
1163 continue;
1164 }
1165 }
1166
1167 if (isFreeCall(I, TLI)) {
1168 Users.push_back(I);
1169 continue;
1170 }
1171 return false;
1172
1173 case Instruction::Store: {
1174 StoreInst *SI = cast<StoreInst>(I);
1175 if (SI->isVolatile() || SI->getPointerOperand() != PI)
1176 return false;
1177 Users.push_back(I);
1178 continue;
1179 }
1180 }
1181 llvm_unreachable("missing a return?");
1182 }
1183 } while (!Worklist.empty());
1184 return true;
1185 }
1186
visitAllocSite(Instruction & MI)1187 Instruction *InstCombiner::visitAllocSite(Instruction &MI) {
1188 // If we have a malloc call which is only used in any amount of comparisons
1189 // to null and free calls, delete the calls and replace the comparisons with
1190 // true or false as appropriate.
1191 SmallVector<WeakVH, 64> Users;
1192 if (isAllocSiteRemovable(&MI, Users, TLI)) {
1193 for (unsigned i = 0, e = Users.size(); i != e; ++i) {
1194 Instruction *I = cast_or_null<Instruction>(&*Users[i]);
1195 if (!I) continue;
1196
1197 if (ICmpInst *C = dyn_cast<ICmpInst>(I)) {
1198 ReplaceInstUsesWith(*C,
1199 ConstantInt::get(Type::getInt1Ty(C->getContext()),
1200 C->isFalseWhenEqual()));
1201 } else if (isa<BitCastInst>(I) || isa<GetElementPtrInst>(I)) {
1202 ReplaceInstUsesWith(*I, UndefValue::get(I->getType()));
1203 } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
1204 if (II->getIntrinsicID() == Intrinsic::objectsize) {
1205 ConstantInt *CI = cast<ConstantInt>(II->getArgOperand(1));
1206 uint64_t DontKnow = CI->isZero() ? -1ULL : 0;
1207 ReplaceInstUsesWith(*I, ConstantInt::get(I->getType(), DontKnow));
1208 }
1209 }
1210 EraseInstFromFunction(*I);
1211 }
1212
1213 if (InvokeInst *II = dyn_cast<InvokeInst>(&MI)) {
1214 // Replace invoke with a NOP intrinsic to maintain the original CFG
1215 Module *M = II->getParent()->getParent()->getParent();
1216 Function *F = Intrinsic::getDeclaration(M, Intrinsic::donothing);
1217 InvokeInst::Create(F, II->getNormalDest(), II->getUnwindDest(),
1218 ArrayRef<Value *>(), "", II->getParent());
1219 }
1220 return EraseInstFromFunction(MI);
1221 }
1222 return 0;
1223 }
1224
1225
1226
visitFree(CallInst & FI)1227 Instruction *InstCombiner::visitFree(CallInst &FI) {
1228 Value *Op = FI.getArgOperand(0);
1229
1230 // free undef -> unreachable.
1231 if (isa<UndefValue>(Op)) {
1232 // Insert a new store to null because we cannot modify the CFG here.
1233 Builder->CreateStore(ConstantInt::getTrue(FI.getContext()),
1234 UndefValue::get(Type::getInt1PtrTy(FI.getContext())));
1235 return EraseInstFromFunction(FI);
1236 }
1237
1238 // If we have 'free null' delete the instruction. This can happen in stl code
1239 // when lots of inlining happens.
1240 if (isa<ConstantPointerNull>(Op))
1241 return EraseInstFromFunction(FI);
1242
1243 return 0;
1244 }
1245
1246
1247
visitBranchInst(BranchInst & BI)1248 Instruction *InstCombiner::visitBranchInst(BranchInst &BI) {
1249 // Change br (not X), label True, label False to: br X, label False, True
1250 Value *X = 0;
1251 BasicBlock *TrueDest;
1252 BasicBlock *FalseDest;
1253 if (match(&BI, m_Br(m_Not(m_Value(X)), TrueDest, FalseDest)) &&
1254 !isa<Constant>(X)) {
1255 // Swap Destinations and condition...
1256 BI.setCondition(X);
1257 BI.swapSuccessors();
1258 return &BI;
1259 }
1260
1261 // Cannonicalize fcmp_one -> fcmp_oeq
1262 FCmpInst::Predicate FPred; Value *Y;
1263 if (match(&BI, m_Br(m_FCmp(FPred, m_Value(X), m_Value(Y)),
1264 TrueDest, FalseDest)) &&
1265 BI.getCondition()->hasOneUse())
1266 if (FPred == FCmpInst::FCMP_ONE || FPred == FCmpInst::FCMP_OLE ||
1267 FPred == FCmpInst::FCMP_OGE) {
1268 FCmpInst *Cond = cast<FCmpInst>(BI.getCondition());
1269 Cond->setPredicate(FCmpInst::getInversePredicate(FPred));
1270
1271 // Swap Destinations and condition.
1272 BI.swapSuccessors();
1273 Worklist.Add(Cond);
1274 return &BI;
1275 }
1276
1277 // Cannonicalize icmp_ne -> icmp_eq
1278 ICmpInst::Predicate IPred;
1279 if (match(&BI, m_Br(m_ICmp(IPred, m_Value(X), m_Value(Y)),
1280 TrueDest, FalseDest)) &&
1281 BI.getCondition()->hasOneUse())
1282 if (IPred == ICmpInst::ICMP_NE || IPred == ICmpInst::ICMP_ULE ||
1283 IPred == ICmpInst::ICMP_SLE || IPred == ICmpInst::ICMP_UGE ||
1284 IPred == ICmpInst::ICMP_SGE) {
1285 ICmpInst *Cond = cast<ICmpInst>(BI.getCondition());
1286 Cond->setPredicate(ICmpInst::getInversePredicate(IPred));
1287 // Swap Destinations and condition.
1288 BI.swapSuccessors();
1289 Worklist.Add(Cond);
1290 return &BI;
1291 }
1292
1293 return 0;
1294 }
1295
visitSwitchInst(SwitchInst & SI)1296 Instruction *InstCombiner::visitSwitchInst(SwitchInst &SI) {
1297 Value *Cond = SI.getCondition();
1298 if (Instruction *I = dyn_cast<Instruction>(Cond)) {
1299 if (I->getOpcode() == Instruction::Add)
1300 if (ConstantInt *AddRHS = dyn_cast<ConstantInt>(I->getOperand(1))) {
1301 // change 'switch (X+4) case 1:' into 'switch (X) case -3'
1302 // Skip the first item since that's the default case.
1303 for (SwitchInst::CaseIt i = SI.case_begin(), e = SI.case_end();
1304 i != e; ++i) {
1305 ConstantInt* CaseVal = i.getCaseValue();
1306 Constant* NewCaseVal = ConstantExpr::getSub(cast<Constant>(CaseVal),
1307 AddRHS);
1308 assert(isa<ConstantInt>(NewCaseVal) &&
1309 "Result of expression should be constant");
1310 i.setValue(cast<ConstantInt>(NewCaseVal));
1311 }
1312 SI.setCondition(I->getOperand(0));
1313 Worklist.Add(I);
1314 return &SI;
1315 }
1316 }
1317 return 0;
1318 }
1319
visitExtractValueInst(ExtractValueInst & EV)1320 Instruction *InstCombiner::visitExtractValueInst(ExtractValueInst &EV) {
1321 Value *Agg = EV.getAggregateOperand();
1322
1323 if (!EV.hasIndices())
1324 return ReplaceInstUsesWith(EV, Agg);
1325
1326 if (Constant *C = dyn_cast<Constant>(Agg)) {
1327 if (Constant *C2 = C->getAggregateElement(*EV.idx_begin())) {
1328 if (EV.getNumIndices() == 0)
1329 return ReplaceInstUsesWith(EV, C2);
1330 // Extract the remaining indices out of the constant indexed by the
1331 // first index
1332 return ExtractValueInst::Create(C2, EV.getIndices().slice(1));
1333 }
1334 return 0; // Can't handle other constants
1335 }
1336
1337 if (InsertValueInst *IV = dyn_cast<InsertValueInst>(Agg)) {
1338 // We're extracting from an insertvalue instruction, compare the indices
1339 const unsigned *exti, *exte, *insi, *inse;
1340 for (exti = EV.idx_begin(), insi = IV->idx_begin(),
1341 exte = EV.idx_end(), inse = IV->idx_end();
1342 exti != exte && insi != inse;
1343 ++exti, ++insi) {
1344 if (*insi != *exti)
1345 // The insert and extract both reference distinctly different elements.
1346 // This means the extract is not influenced by the insert, and we can
1347 // replace the aggregate operand of the extract with the aggregate
1348 // operand of the insert. i.e., replace
1349 // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1
1350 // %E = extractvalue { i32, { i32 } } %I, 0
1351 // with
1352 // %E = extractvalue { i32, { i32 } } %A, 0
1353 return ExtractValueInst::Create(IV->getAggregateOperand(),
1354 EV.getIndices());
1355 }
1356 if (exti == exte && insi == inse)
1357 // Both iterators are at the end: Index lists are identical. Replace
1358 // %B = insertvalue { i32, { i32 } } %A, i32 42, 1, 0
1359 // %C = extractvalue { i32, { i32 } } %B, 1, 0
1360 // with "i32 42"
1361 return ReplaceInstUsesWith(EV, IV->getInsertedValueOperand());
1362 if (exti == exte) {
1363 // The extract list is a prefix of the insert list. i.e. replace
1364 // %I = insertvalue { i32, { i32 } } %A, i32 42, 1, 0
1365 // %E = extractvalue { i32, { i32 } } %I, 1
1366 // with
1367 // %X = extractvalue { i32, { i32 } } %A, 1
1368 // %E = insertvalue { i32 } %X, i32 42, 0
1369 // by switching the order of the insert and extract (though the
1370 // insertvalue should be left in, since it may have other uses).
1371 Value *NewEV = Builder->CreateExtractValue(IV->getAggregateOperand(),
1372 EV.getIndices());
1373 return InsertValueInst::Create(NewEV, IV->getInsertedValueOperand(),
1374 makeArrayRef(insi, inse));
1375 }
1376 if (insi == inse)
1377 // The insert list is a prefix of the extract list
1378 // We can simply remove the common indices from the extract and make it
1379 // operate on the inserted value instead of the insertvalue result.
1380 // i.e., replace
1381 // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1
1382 // %E = extractvalue { i32, { i32 } } %I, 1, 0
1383 // with
1384 // %E extractvalue { i32 } { i32 42 }, 0
1385 return ExtractValueInst::Create(IV->getInsertedValueOperand(),
1386 makeArrayRef(exti, exte));
1387 }
1388 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Agg)) {
1389 // We're extracting from an intrinsic, see if we're the only user, which
1390 // allows us to simplify multiple result intrinsics to simpler things that
1391 // just get one value.
1392 if (II->hasOneUse()) {
1393 // Check if we're grabbing the overflow bit or the result of a 'with
1394 // overflow' intrinsic. If it's the latter we can remove the intrinsic
1395 // and replace it with a traditional binary instruction.
1396 switch (II->getIntrinsicID()) {
1397 case Intrinsic::uadd_with_overflow:
1398 case Intrinsic::sadd_with_overflow:
1399 if (*EV.idx_begin() == 0) { // Normal result.
1400 Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1);
1401 ReplaceInstUsesWith(*II, UndefValue::get(II->getType()));
1402 EraseInstFromFunction(*II);
1403 return BinaryOperator::CreateAdd(LHS, RHS);
1404 }
1405
1406 // If the normal result of the add is dead, and the RHS is a constant,
1407 // we can transform this into a range comparison.
1408 // overflow = uadd a, -4 --> overflow = icmp ugt a, 3
1409 if (II->getIntrinsicID() == Intrinsic::uadd_with_overflow)
1410 if (ConstantInt *CI = dyn_cast<ConstantInt>(II->getArgOperand(1)))
1411 return new ICmpInst(ICmpInst::ICMP_UGT, II->getArgOperand(0),
1412 ConstantExpr::getNot(CI));
1413 break;
1414 case Intrinsic::usub_with_overflow:
1415 case Intrinsic::ssub_with_overflow:
1416 if (*EV.idx_begin() == 0) { // Normal result.
1417 Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1);
1418 ReplaceInstUsesWith(*II, UndefValue::get(II->getType()));
1419 EraseInstFromFunction(*II);
1420 return BinaryOperator::CreateSub(LHS, RHS);
1421 }
1422 break;
1423 case Intrinsic::umul_with_overflow:
1424 case Intrinsic::smul_with_overflow:
1425 if (*EV.idx_begin() == 0) { // Normal result.
1426 Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1);
1427 ReplaceInstUsesWith(*II, UndefValue::get(II->getType()));
1428 EraseInstFromFunction(*II);
1429 return BinaryOperator::CreateMul(LHS, RHS);
1430 }
1431 break;
1432 default:
1433 break;
1434 }
1435 }
1436 }
1437 if (LoadInst *L = dyn_cast<LoadInst>(Agg))
1438 // If the (non-volatile) load only has one use, we can rewrite this to a
1439 // load from a GEP. This reduces the size of the load.
1440 // FIXME: If a load is used only by extractvalue instructions then this
1441 // could be done regardless of having multiple uses.
1442 if (L->isSimple() && L->hasOneUse()) {
1443 // extractvalue has integer indices, getelementptr has Value*s. Convert.
1444 SmallVector<Value*, 4> Indices;
1445 // Prefix an i32 0 since we need the first element.
1446 Indices.push_back(Builder->getInt32(0));
1447 for (ExtractValueInst::idx_iterator I = EV.idx_begin(), E = EV.idx_end();
1448 I != E; ++I)
1449 Indices.push_back(Builder->getInt32(*I));
1450
1451 // We need to insert these at the location of the old load, not at that of
1452 // the extractvalue.
1453 Builder->SetInsertPoint(L->getParent(), L);
1454 Value *GEP = Builder->CreateInBoundsGEP(L->getPointerOperand(), Indices);
1455 // Returning the load directly will cause the main loop to insert it in
1456 // the wrong spot, so use ReplaceInstUsesWith().
1457 return ReplaceInstUsesWith(EV, Builder->CreateLoad(GEP));
1458 }
1459 // We could simplify extracts from other values. Note that nested extracts may
1460 // already be simplified implicitly by the above: extract (extract (insert) )
1461 // will be translated into extract ( insert ( extract ) ) first and then just
1462 // the value inserted, if appropriate. Similarly for extracts from single-use
1463 // loads: extract (extract (load)) will be translated to extract (load (gep))
1464 // and if again single-use then via load (gep (gep)) to load (gep).
1465 // However, double extracts from e.g. function arguments or return values
1466 // aren't handled yet.
1467 return 0;
1468 }
1469
1470 enum Personality_Type {
1471 Unknown_Personality,
1472 GNU_Ada_Personality,
1473 GNU_CXX_Personality,
1474 GNU_ObjC_Personality
1475 };
1476
1477 /// RecognizePersonality - See if the given exception handling personality
1478 /// function is one that we understand. If so, return a description of it;
1479 /// otherwise return Unknown_Personality.
RecognizePersonality(Value * Pers)1480 static Personality_Type RecognizePersonality(Value *Pers) {
1481 Function *F = dyn_cast<Function>(Pers->stripPointerCasts());
1482 if (!F)
1483 return Unknown_Personality;
1484 return StringSwitch<Personality_Type>(F->getName())
1485 .Case("__gnat_eh_personality", GNU_Ada_Personality)
1486 .Case("__gxx_personality_v0", GNU_CXX_Personality)
1487 .Case("__objc_personality_v0", GNU_ObjC_Personality)
1488 .Default(Unknown_Personality);
1489 }
1490
1491 /// isCatchAll - Return 'true' if the given typeinfo will match anything.
isCatchAll(Personality_Type Personality,Constant * TypeInfo)1492 static bool isCatchAll(Personality_Type Personality, Constant *TypeInfo) {
1493 switch (Personality) {
1494 case Unknown_Personality:
1495 return false;
1496 case GNU_Ada_Personality:
1497 // While __gnat_all_others_value will match any Ada exception, it doesn't
1498 // match foreign exceptions (or didn't, before gcc-4.7).
1499 return false;
1500 case GNU_CXX_Personality:
1501 case GNU_ObjC_Personality:
1502 return TypeInfo->isNullValue();
1503 }
1504 llvm_unreachable("Unknown personality!");
1505 }
1506
shorter_filter(const Value * LHS,const Value * RHS)1507 static bool shorter_filter(const Value *LHS, const Value *RHS) {
1508 return
1509 cast<ArrayType>(LHS->getType())->getNumElements()
1510 <
1511 cast<ArrayType>(RHS->getType())->getNumElements();
1512 }
1513
visitLandingPadInst(LandingPadInst & LI)1514 Instruction *InstCombiner::visitLandingPadInst(LandingPadInst &LI) {
1515 // The logic here should be correct for any real-world personality function.
1516 // However if that turns out not to be true, the offending logic can always
1517 // be conditioned on the personality function, like the catch-all logic is.
1518 Personality_Type Personality = RecognizePersonality(LI.getPersonalityFn());
1519
1520 // Simplify the list of clauses, eg by removing repeated catch clauses
1521 // (these are often created by inlining).
1522 bool MakeNewInstruction = false; // If true, recreate using the following:
1523 SmallVector<Value *, 16> NewClauses; // - Clauses for the new instruction;
1524 bool CleanupFlag = LI.isCleanup(); // - The new instruction is a cleanup.
1525
1526 SmallPtrSet<Value *, 16> AlreadyCaught; // Typeinfos known caught already.
1527 for (unsigned i = 0, e = LI.getNumClauses(); i != e; ++i) {
1528 bool isLastClause = i + 1 == e;
1529 if (LI.isCatch(i)) {
1530 // A catch clause.
1531 Value *CatchClause = LI.getClause(i);
1532 Constant *TypeInfo = cast<Constant>(CatchClause->stripPointerCasts());
1533
1534 // If we already saw this clause, there is no point in having a second
1535 // copy of it.
1536 if (AlreadyCaught.insert(TypeInfo)) {
1537 // This catch clause was not already seen.
1538 NewClauses.push_back(CatchClause);
1539 } else {
1540 // Repeated catch clause - drop the redundant copy.
1541 MakeNewInstruction = true;
1542 }
1543
1544 // If this is a catch-all then there is no point in keeping any following
1545 // clauses or marking the landingpad as having a cleanup.
1546 if (isCatchAll(Personality, TypeInfo)) {
1547 if (!isLastClause)
1548 MakeNewInstruction = true;
1549 CleanupFlag = false;
1550 break;
1551 }
1552 } else {
1553 // A filter clause. If any of the filter elements were already caught
1554 // then they can be dropped from the filter. It is tempting to try to
1555 // exploit the filter further by saying that any typeinfo that does not
1556 // occur in the filter can't be caught later (and thus can be dropped).
1557 // However this would be wrong, since typeinfos can match without being
1558 // equal (for example if one represents a C++ class, and the other some
1559 // class derived from it).
1560 assert(LI.isFilter(i) && "Unsupported landingpad clause!");
1561 Value *FilterClause = LI.getClause(i);
1562 ArrayType *FilterType = cast<ArrayType>(FilterClause->getType());
1563 unsigned NumTypeInfos = FilterType->getNumElements();
1564
1565 // An empty filter catches everything, so there is no point in keeping any
1566 // following clauses or marking the landingpad as having a cleanup. By
1567 // dealing with this case here the following code is made a bit simpler.
1568 if (!NumTypeInfos) {
1569 NewClauses.push_back(FilterClause);
1570 if (!isLastClause)
1571 MakeNewInstruction = true;
1572 CleanupFlag = false;
1573 break;
1574 }
1575
1576 bool MakeNewFilter = false; // If true, make a new filter.
1577 SmallVector<Constant *, 16> NewFilterElts; // New elements.
1578 if (isa<ConstantAggregateZero>(FilterClause)) {
1579 // Not an empty filter - it contains at least one null typeinfo.
1580 assert(NumTypeInfos > 0 && "Should have handled empty filter already!");
1581 Constant *TypeInfo =
1582 Constant::getNullValue(FilterType->getElementType());
1583 // If this typeinfo is a catch-all then the filter can never match.
1584 if (isCatchAll(Personality, TypeInfo)) {
1585 // Throw the filter away.
1586 MakeNewInstruction = true;
1587 continue;
1588 }
1589
1590 // There is no point in having multiple copies of this typeinfo, so
1591 // discard all but the first copy if there is more than one.
1592 NewFilterElts.push_back(TypeInfo);
1593 if (NumTypeInfos > 1)
1594 MakeNewFilter = true;
1595 } else {
1596 ConstantArray *Filter = cast<ConstantArray>(FilterClause);
1597 SmallPtrSet<Value *, 16> SeenInFilter; // For uniquing the elements.
1598 NewFilterElts.reserve(NumTypeInfos);
1599
1600 // Remove any filter elements that were already caught or that already
1601 // occurred in the filter. While there, see if any of the elements are
1602 // catch-alls. If so, the filter can be discarded.
1603 bool SawCatchAll = false;
1604 for (unsigned j = 0; j != NumTypeInfos; ++j) {
1605 Value *Elt = Filter->getOperand(j);
1606 Constant *TypeInfo = cast<Constant>(Elt->stripPointerCasts());
1607 if (isCatchAll(Personality, TypeInfo)) {
1608 // This element is a catch-all. Bail out, noting this fact.
1609 SawCatchAll = true;
1610 break;
1611 }
1612 if (AlreadyCaught.count(TypeInfo))
1613 // Already caught by an earlier clause, so having it in the filter
1614 // is pointless.
1615 continue;
1616 // There is no point in having multiple copies of the same typeinfo in
1617 // a filter, so only add it if we didn't already.
1618 if (SeenInFilter.insert(TypeInfo))
1619 NewFilterElts.push_back(cast<Constant>(Elt));
1620 }
1621 // A filter containing a catch-all cannot match anything by definition.
1622 if (SawCatchAll) {
1623 // Throw the filter away.
1624 MakeNewInstruction = true;
1625 continue;
1626 }
1627
1628 // If we dropped something from the filter, make a new one.
1629 if (NewFilterElts.size() < NumTypeInfos)
1630 MakeNewFilter = true;
1631 }
1632 if (MakeNewFilter) {
1633 FilterType = ArrayType::get(FilterType->getElementType(),
1634 NewFilterElts.size());
1635 FilterClause = ConstantArray::get(FilterType, NewFilterElts);
1636 MakeNewInstruction = true;
1637 }
1638
1639 NewClauses.push_back(FilterClause);
1640
1641 // If the new filter is empty then it will catch everything so there is
1642 // no point in keeping any following clauses or marking the landingpad
1643 // as having a cleanup. The case of the original filter being empty was
1644 // already handled above.
1645 if (MakeNewFilter && !NewFilterElts.size()) {
1646 assert(MakeNewInstruction && "New filter but not a new instruction!");
1647 CleanupFlag = false;
1648 break;
1649 }
1650 }
1651 }
1652
1653 // If several filters occur in a row then reorder them so that the shortest
1654 // filters come first (those with the smallest number of elements). This is
1655 // advantageous because shorter filters are more likely to match, speeding up
1656 // unwinding, but mostly because it increases the effectiveness of the other
1657 // filter optimizations below.
1658 for (unsigned i = 0, e = NewClauses.size(); i + 1 < e; ) {
1659 unsigned j;
1660 // Find the maximal 'j' s.t. the range [i, j) consists entirely of filters.
1661 for (j = i; j != e; ++j)
1662 if (!isa<ArrayType>(NewClauses[j]->getType()))
1663 break;
1664
1665 // Check whether the filters are already sorted by length. We need to know
1666 // if sorting them is actually going to do anything so that we only make a
1667 // new landingpad instruction if it does.
1668 for (unsigned k = i; k + 1 < j; ++k)
1669 if (shorter_filter(NewClauses[k+1], NewClauses[k])) {
1670 // Not sorted, so sort the filters now. Doing an unstable sort would be
1671 // correct too but reordering filters pointlessly might confuse users.
1672 std::stable_sort(NewClauses.begin() + i, NewClauses.begin() + j,
1673 shorter_filter);
1674 MakeNewInstruction = true;
1675 break;
1676 }
1677
1678 // Look for the next batch of filters.
1679 i = j + 1;
1680 }
1681
1682 // If typeinfos matched if and only if equal, then the elements of a filter L
1683 // that occurs later than a filter F could be replaced by the intersection of
1684 // the elements of F and L. In reality two typeinfos can match without being
1685 // equal (for example if one represents a C++ class, and the other some class
1686 // derived from it) so it would be wrong to perform this transform in general.
1687 // However the transform is correct and useful if F is a subset of L. In that
1688 // case L can be replaced by F, and thus removed altogether since repeating a
1689 // filter is pointless. So here we look at all pairs of filters F and L where
1690 // L follows F in the list of clauses, and remove L if every element of F is
1691 // an element of L. This can occur when inlining C++ functions with exception
1692 // specifications.
1693 for (unsigned i = 0; i + 1 < NewClauses.size(); ++i) {
1694 // Examine each filter in turn.
1695 Value *Filter = NewClauses[i];
1696 ArrayType *FTy = dyn_cast<ArrayType>(Filter->getType());
1697 if (!FTy)
1698 // Not a filter - skip it.
1699 continue;
1700 unsigned FElts = FTy->getNumElements();
1701 // Examine each filter following this one. Doing this backwards means that
1702 // we don't have to worry about filters disappearing under us when removed.
1703 for (unsigned j = NewClauses.size() - 1; j != i; --j) {
1704 Value *LFilter = NewClauses[j];
1705 ArrayType *LTy = dyn_cast<ArrayType>(LFilter->getType());
1706 if (!LTy)
1707 // Not a filter - skip it.
1708 continue;
1709 // If Filter is a subset of LFilter, i.e. every element of Filter is also
1710 // an element of LFilter, then discard LFilter.
1711 SmallVector<Value *, 16>::iterator J = NewClauses.begin() + j;
1712 // If Filter is empty then it is a subset of LFilter.
1713 if (!FElts) {
1714 // Discard LFilter.
1715 NewClauses.erase(J);
1716 MakeNewInstruction = true;
1717 // Move on to the next filter.
1718 continue;
1719 }
1720 unsigned LElts = LTy->getNumElements();
1721 // If Filter is longer than LFilter then it cannot be a subset of it.
1722 if (FElts > LElts)
1723 // Move on to the next filter.
1724 continue;
1725 // At this point we know that LFilter has at least one element.
1726 if (isa<ConstantAggregateZero>(LFilter)) { // LFilter only contains zeros.
1727 // Filter is a subset of LFilter iff Filter contains only zeros (as we
1728 // already know that Filter is not longer than LFilter).
1729 if (isa<ConstantAggregateZero>(Filter)) {
1730 assert(FElts <= LElts && "Should have handled this case earlier!");
1731 // Discard LFilter.
1732 NewClauses.erase(J);
1733 MakeNewInstruction = true;
1734 }
1735 // Move on to the next filter.
1736 continue;
1737 }
1738 ConstantArray *LArray = cast<ConstantArray>(LFilter);
1739 if (isa<ConstantAggregateZero>(Filter)) { // Filter only contains zeros.
1740 // Since Filter is non-empty and contains only zeros, it is a subset of
1741 // LFilter iff LFilter contains a zero.
1742 assert(FElts > 0 && "Should have eliminated the empty filter earlier!");
1743 for (unsigned l = 0; l != LElts; ++l)
1744 if (LArray->getOperand(l)->isNullValue()) {
1745 // LFilter contains a zero - discard it.
1746 NewClauses.erase(J);
1747 MakeNewInstruction = true;
1748 break;
1749 }
1750 // Move on to the next filter.
1751 continue;
1752 }
1753 // At this point we know that both filters are ConstantArrays. Loop over
1754 // operands to see whether every element of Filter is also an element of
1755 // LFilter. Since filters tend to be short this is probably faster than
1756 // using a method that scales nicely.
1757 ConstantArray *FArray = cast<ConstantArray>(Filter);
1758 bool AllFound = true;
1759 for (unsigned f = 0; f != FElts; ++f) {
1760 Value *FTypeInfo = FArray->getOperand(f)->stripPointerCasts();
1761 AllFound = false;
1762 for (unsigned l = 0; l != LElts; ++l) {
1763 Value *LTypeInfo = LArray->getOperand(l)->stripPointerCasts();
1764 if (LTypeInfo == FTypeInfo) {
1765 AllFound = true;
1766 break;
1767 }
1768 }
1769 if (!AllFound)
1770 break;
1771 }
1772 if (AllFound) {
1773 // Discard LFilter.
1774 NewClauses.erase(J);
1775 MakeNewInstruction = true;
1776 }
1777 // Move on to the next filter.
1778 }
1779 }
1780
1781 // If we changed any of the clauses, replace the old landingpad instruction
1782 // with a new one.
1783 if (MakeNewInstruction) {
1784 LandingPadInst *NLI = LandingPadInst::Create(LI.getType(),
1785 LI.getPersonalityFn(),
1786 NewClauses.size());
1787 for (unsigned i = 0, e = NewClauses.size(); i != e; ++i)
1788 NLI->addClause(NewClauses[i]);
1789 // A landing pad with no clauses must have the cleanup flag set. It is
1790 // theoretically possible, though highly unlikely, that we eliminated all
1791 // clauses. If so, force the cleanup flag to true.
1792 if (NewClauses.empty())
1793 CleanupFlag = true;
1794 NLI->setCleanup(CleanupFlag);
1795 return NLI;
1796 }
1797
1798 // Even if none of the clauses changed, we may nonetheless have understood
1799 // that the cleanup flag is pointless. Clear it if so.
1800 if (LI.isCleanup() != CleanupFlag) {
1801 assert(!CleanupFlag && "Adding a cleanup, not removing one?!");
1802 LI.setCleanup(CleanupFlag);
1803 return &LI;
1804 }
1805
1806 return 0;
1807 }
1808
1809
1810
1811
1812 /// TryToSinkInstruction - Try to move the specified instruction from its
1813 /// current block into the beginning of DestBlock, which can only happen if it's
1814 /// safe to move the instruction past all of the instructions between it and the
1815 /// end of its block.
TryToSinkInstruction(Instruction * I,BasicBlock * DestBlock)1816 static bool TryToSinkInstruction(Instruction *I, BasicBlock *DestBlock) {
1817 assert(I->hasOneUse() && "Invariants didn't hold!");
1818
1819 // Cannot move control-flow-involving, volatile loads, vaarg, etc.
1820 if (isa<PHINode>(I) || isa<LandingPadInst>(I) || I->mayHaveSideEffects() ||
1821 isa<TerminatorInst>(I))
1822 return false;
1823
1824 // Do not sink alloca instructions out of the entry block.
1825 if (isa<AllocaInst>(I) && I->getParent() ==
1826 &DestBlock->getParent()->getEntryBlock())
1827 return false;
1828
1829 // We can only sink load instructions if there is nothing between the load and
1830 // the end of block that could change the value.
1831 if (I->mayReadFromMemory()) {
1832 for (BasicBlock::iterator Scan = I, E = I->getParent()->end();
1833 Scan != E; ++Scan)
1834 if (Scan->mayWriteToMemory())
1835 return false;
1836 }
1837
1838 BasicBlock::iterator InsertPos = DestBlock->getFirstInsertionPt();
1839 I->moveBefore(InsertPos);
1840 ++NumSunkInst;
1841 return true;
1842 }
1843
1844
1845 /// AddReachableCodeToWorklist - Walk the function in depth-first order, adding
1846 /// all reachable code to the worklist.
1847 ///
1848 /// This has a couple of tricks to make the code faster and more powerful. In
1849 /// particular, we constant fold and DCE instructions as we go, to avoid adding
1850 /// them to the worklist (this significantly speeds up instcombine on code where
1851 /// many instructions are dead or constant). Additionally, if we find a branch
1852 /// whose condition is a known constant, we only visit the reachable successors.
1853 ///
AddReachableCodeToWorklist(BasicBlock * BB,SmallPtrSet<BasicBlock *,64> & Visited,InstCombiner & IC,const TargetData * TD,const TargetLibraryInfo * TLI)1854 static bool AddReachableCodeToWorklist(BasicBlock *BB,
1855 SmallPtrSet<BasicBlock*, 64> &Visited,
1856 InstCombiner &IC,
1857 const TargetData *TD,
1858 const TargetLibraryInfo *TLI) {
1859 bool MadeIRChange = false;
1860 SmallVector<BasicBlock*, 256> Worklist;
1861 Worklist.push_back(BB);
1862
1863 SmallVector<Instruction*, 128> InstrsForInstCombineWorklist;
1864 DenseMap<ConstantExpr*, Constant*> FoldedConstants;
1865
1866 do {
1867 BB = Worklist.pop_back_val();
1868
1869 // We have now visited this block! If we've already been here, ignore it.
1870 if (!Visited.insert(BB)) continue;
1871
1872 for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) {
1873 Instruction *Inst = BBI++;
1874
1875 // DCE instruction if trivially dead.
1876 if (isInstructionTriviallyDead(Inst, TLI)) {
1877 ++NumDeadInst;
1878 DEBUG(errs() << "IC: DCE: " << *Inst << '\n');
1879 Inst->eraseFromParent();
1880 continue;
1881 }
1882
1883 // ConstantProp instruction if trivially constant.
1884 if (!Inst->use_empty() && isa<Constant>(Inst->getOperand(0)))
1885 if (Constant *C = ConstantFoldInstruction(Inst, TD, TLI)) {
1886 DEBUG(errs() << "IC: ConstFold to: " << *C << " from: "
1887 << *Inst << '\n');
1888 Inst->replaceAllUsesWith(C);
1889 ++NumConstProp;
1890 Inst->eraseFromParent();
1891 continue;
1892 }
1893
1894 if (TD) {
1895 // See if we can constant fold its operands.
1896 for (User::op_iterator i = Inst->op_begin(), e = Inst->op_end();
1897 i != e; ++i) {
1898 ConstantExpr *CE = dyn_cast<ConstantExpr>(i);
1899 if (CE == 0) continue;
1900
1901 Constant*& FoldRes = FoldedConstants[CE];
1902 if (!FoldRes)
1903 FoldRes = ConstantFoldConstantExpression(CE, TD, TLI);
1904 if (!FoldRes)
1905 FoldRes = CE;
1906
1907 if (FoldRes != CE) {
1908 *i = FoldRes;
1909 MadeIRChange = true;
1910 }
1911 }
1912 }
1913
1914 InstrsForInstCombineWorklist.push_back(Inst);
1915 }
1916
1917 // Recursively visit successors. If this is a branch or switch on a
1918 // constant, only visit the reachable successor.
1919 TerminatorInst *TI = BB->getTerminator();
1920 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
1921 if (BI->isConditional() && isa<ConstantInt>(BI->getCondition())) {
1922 bool CondVal = cast<ConstantInt>(BI->getCondition())->getZExtValue();
1923 BasicBlock *ReachableBB = BI->getSuccessor(!CondVal);
1924 Worklist.push_back(ReachableBB);
1925 continue;
1926 }
1927 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
1928 if (ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition())) {
1929 // See if this is an explicit destination.
1930 for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end();
1931 i != e; ++i)
1932 if (i.getCaseValue() == Cond) {
1933 BasicBlock *ReachableBB = i.getCaseSuccessor();
1934 Worklist.push_back(ReachableBB);
1935 continue;
1936 }
1937
1938 // Otherwise it is the default destination.
1939 Worklist.push_back(SI->getDefaultDest());
1940 continue;
1941 }
1942 }
1943
1944 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
1945 Worklist.push_back(TI->getSuccessor(i));
1946 } while (!Worklist.empty());
1947
1948 // Once we've found all of the instructions to add to instcombine's worklist,
1949 // add them in reverse order. This way instcombine will visit from the top
1950 // of the function down. This jives well with the way that it adds all uses
1951 // of instructions to the worklist after doing a transformation, thus avoiding
1952 // some N^2 behavior in pathological cases.
1953 IC.Worklist.AddInitialGroup(&InstrsForInstCombineWorklist[0],
1954 InstrsForInstCombineWorklist.size());
1955
1956 return MadeIRChange;
1957 }
1958
DoOneIteration(Function & F,unsigned Iteration)1959 bool InstCombiner::DoOneIteration(Function &F, unsigned Iteration) {
1960 MadeIRChange = false;
1961
1962 DEBUG(errs() << "\n\nINSTCOMBINE ITERATION #" << Iteration << " on "
1963 << F.getName() << "\n");
1964
1965 {
1966 // Do a depth-first traversal of the function, populate the worklist with
1967 // the reachable instructions. Ignore blocks that are not reachable. Keep
1968 // track of which blocks we visit.
1969 SmallPtrSet<BasicBlock*, 64> Visited;
1970 MadeIRChange |= AddReachableCodeToWorklist(F.begin(), Visited, *this, TD,
1971 TLI);
1972
1973 // Do a quick scan over the function. If we find any blocks that are
1974 // unreachable, remove any instructions inside of them. This prevents
1975 // the instcombine code from having to deal with some bad special cases.
1976 for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
1977 if (Visited.count(BB)) continue;
1978
1979 // Delete the instructions backwards, as it has a reduced likelihood of
1980 // having to update as many def-use and use-def chains.
1981 Instruction *EndInst = BB->getTerminator(); // Last not to be deleted.
1982 while (EndInst != BB->begin()) {
1983 // Delete the next to last instruction.
1984 BasicBlock::iterator I = EndInst;
1985 Instruction *Inst = --I;
1986 if (!Inst->use_empty())
1987 Inst->replaceAllUsesWith(UndefValue::get(Inst->getType()));
1988 if (isa<LandingPadInst>(Inst)) {
1989 EndInst = Inst;
1990 continue;
1991 }
1992 if (!isa<DbgInfoIntrinsic>(Inst)) {
1993 ++NumDeadInst;
1994 MadeIRChange = true;
1995 }
1996 Inst->eraseFromParent();
1997 }
1998 }
1999 }
2000
2001 while (!Worklist.isEmpty()) {
2002 Instruction *I = Worklist.RemoveOne();
2003 if (I == 0) continue; // skip null values.
2004
2005 // Check to see if we can DCE the instruction.
2006 if (isInstructionTriviallyDead(I, TLI)) {
2007 DEBUG(errs() << "IC: DCE: " << *I << '\n');
2008 EraseInstFromFunction(*I);
2009 ++NumDeadInst;
2010 MadeIRChange = true;
2011 continue;
2012 }
2013
2014 // Instruction isn't dead, see if we can constant propagate it.
2015 if (!I->use_empty() && isa<Constant>(I->getOperand(0)))
2016 if (Constant *C = ConstantFoldInstruction(I, TD, TLI)) {
2017 DEBUG(errs() << "IC: ConstFold to: " << *C << " from: " << *I << '\n');
2018
2019 // Add operands to the worklist.
2020 ReplaceInstUsesWith(*I, C);
2021 ++NumConstProp;
2022 EraseInstFromFunction(*I);
2023 MadeIRChange = true;
2024 continue;
2025 }
2026
2027 // See if we can trivially sink this instruction to a successor basic block.
2028 if (I->hasOneUse()) {
2029 BasicBlock *BB = I->getParent();
2030 Instruction *UserInst = cast<Instruction>(I->use_back());
2031 BasicBlock *UserParent;
2032
2033 // Get the block the use occurs in.
2034 if (PHINode *PN = dyn_cast<PHINode>(UserInst))
2035 UserParent = PN->getIncomingBlock(I->use_begin().getUse());
2036 else
2037 UserParent = UserInst->getParent();
2038
2039 if (UserParent != BB) {
2040 bool UserIsSuccessor = false;
2041 // See if the user is one of our successors.
2042 for (succ_iterator SI = succ_begin(BB), E = succ_end(BB); SI != E; ++SI)
2043 if (*SI == UserParent) {
2044 UserIsSuccessor = true;
2045 break;
2046 }
2047
2048 // If the user is one of our immediate successors, and if that successor
2049 // only has us as a predecessors (we'd have to split the critical edge
2050 // otherwise), we can keep going.
2051 if (UserIsSuccessor && UserParent->getSinglePredecessor())
2052 // Okay, the CFG is simple enough, try to sink this instruction.
2053 MadeIRChange |= TryToSinkInstruction(I, UserParent);
2054 }
2055 }
2056
2057 // Now that we have an instruction, try combining it to simplify it.
2058 Builder->SetInsertPoint(I->getParent(), I);
2059 Builder->SetCurrentDebugLocation(I->getDebugLoc());
2060
2061 #ifndef NDEBUG
2062 std::string OrigI;
2063 #endif
2064 DEBUG(raw_string_ostream SS(OrigI); I->print(SS); OrigI = SS.str(););
2065 DEBUG(errs() << "IC: Visiting: " << OrigI << '\n');
2066
2067 if (Instruction *Result = visit(*I)) {
2068 ++NumCombined;
2069 // Should we replace the old instruction with a new one?
2070 if (Result != I) {
2071 DEBUG(errs() << "IC: Old = " << *I << '\n'
2072 << " New = " << *Result << '\n');
2073
2074 if (!I->getDebugLoc().isUnknown())
2075 Result->setDebugLoc(I->getDebugLoc());
2076 // Everything uses the new instruction now.
2077 I->replaceAllUsesWith(Result);
2078
2079 // Move the name to the new instruction first.
2080 Result->takeName(I);
2081
2082 // Push the new instruction and any users onto the worklist.
2083 Worklist.Add(Result);
2084 Worklist.AddUsersToWorkList(*Result);
2085
2086 // Insert the new instruction into the basic block...
2087 BasicBlock *InstParent = I->getParent();
2088 BasicBlock::iterator InsertPos = I;
2089
2090 // If we replace a PHI with something that isn't a PHI, fix up the
2091 // insertion point.
2092 if (!isa<PHINode>(Result) && isa<PHINode>(InsertPos))
2093 InsertPos = InstParent->getFirstInsertionPt();
2094
2095 InstParent->getInstList().insert(InsertPos, Result);
2096
2097 EraseInstFromFunction(*I);
2098 } else {
2099 #ifndef NDEBUG
2100 DEBUG(errs() << "IC: Mod = " << OrigI << '\n'
2101 << " New = " << *I << '\n');
2102 #endif
2103
2104 // If the instruction was modified, it's possible that it is now dead.
2105 // if so, remove it.
2106 if (isInstructionTriviallyDead(I, TLI)) {
2107 EraseInstFromFunction(*I);
2108 } else {
2109 Worklist.Add(I);
2110 Worklist.AddUsersToWorkList(*I);
2111 }
2112 }
2113 MadeIRChange = true;
2114 }
2115 }
2116
2117 Worklist.Zap();
2118 return MadeIRChange;
2119 }
2120
2121
runOnFunction(Function & F)2122 bool InstCombiner::runOnFunction(Function &F) {
2123 TD = getAnalysisIfAvailable<TargetData>();
2124 TLI = &getAnalysis<TargetLibraryInfo>();
2125
2126 /// Builder - This is an IRBuilder that automatically inserts new
2127 /// instructions into the worklist when they are created.
2128 IRBuilder<true, TargetFolder, InstCombineIRInserter>
2129 TheBuilder(F.getContext(), TargetFolder(TD),
2130 InstCombineIRInserter(Worklist));
2131 Builder = &TheBuilder;
2132
2133 bool EverMadeChange = false;
2134
2135 // Lower dbg.declare intrinsics otherwise their value may be clobbered
2136 // by instcombiner.
2137 EverMadeChange = LowerDbgDeclare(F);
2138
2139 // Iterate while there is work to do.
2140 unsigned Iteration = 0;
2141 while (DoOneIteration(F, Iteration++))
2142 EverMadeChange = true;
2143
2144 Builder = 0;
2145 return EverMadeChange;
2146 }
2147
createInstructionCombiningPass()2148 FunctionPass *llvm::createInstructionCombiningPass() {
2149 return new InstCombiner();
2150 }
2151