1 //===- InstCombineSelect.cpp ----------------------------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the visitSelect function.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "InstCombine.h"
15 #include "llvm/Support/PatternMatch.h"
16 #include "llvm/Analysis/ConstantFolding.h"
17 #include "llvm/Analysis/InstructionSimplify.h"
18 using namespace llvm;
19 using namespace PatternMatch;
20
21 /// MatchSelectPattern - Pattern match integer [SU]MIN, [SU]MAX, and ABS idioms,
22 /// returning the kind and providing the out parameter results if we
23 /// successfully match.
24 static SelectPatternFlavor
MatchSelectPattern(Value * V,Value * & LHS,Value * & RHS)25 MatchSelectPattern(Value *V, Value *&LHS, Value *&RHS) {
26 SelectInst *SI = dyn_cast<SelectInst>(V);
27 if (SI == 0) return SPF_UNKNOWN;
28
29 ICmpInst *ICI = dyn_cast<ICmpInst>(SI->getCondition());
30 if (ICI == 0) return SPF_UNKNOWN;
31
32 LHS = ICI->getOperand(0);
33 RHS = ICI->getOperand(1);
34
35 // (icmp X, Y) ? X : Y
36 if (SI->getTrueValue() == ICI->getOperand(0) &&
37 SI->getFalseValue() == ICI->getOperand(1)) {
38 switch (ICI->getPredicate()) {
39 default: return SPF_UNKNOWN; // Equality.
40 case ICmpInst::ICMP_UGT:
41 case ICmpInst::ICMP_UGE: return SPF_UMAX;
42 case ICmpInst::ICMP_SGT:
43 case ICmpInst::ICMP_SGE: return SPF_SMAX;
44 case ICmpInst::ICMP_ULT:
45 case ICmpInst::ICMP_ULE: return SPF_UMIN;
46 case ICmpInst::ICMP_SLT:
47 case ICmpInst::ICMP_SLE: return SPF_SMIN;
48 }
49 }
50
51 // (icmp X, Y) ? Y : X
52 if (SI->getTrueValue() == ICI->getOperand(1) &&
53 SI->getFalseValue() == ICI->getOperand(0)) {
54 switch (ICI->getPredicate()) {
55 default: return SPF_UNKNOWN; // Equality.
56 case ICmpInst::ICMP_UGT:
57 case ICmpInst::ICMP_UGE: return SPF_UMIN;
58 case ICmpInst::ICMP_SGT:
59 case ICmpInst::ICMP_SGE: return SPF_SMIN;
60 case ICmpInst::ICMP_ULT:
61 case ICmpInst::ICMP_ULE: return SPF_UMAX;
62 case ICmpInst::ICMP_SLT:
63 case ICmpInst::ICMP_SLE: return SPF_SMAX;
64 }
65 }
66
67 // TODO: (X > 4) ? X : 5 --> (X >= 5) ? X : 5 --> MAX(X, 5)
68
69 return SPF_UNKNOWN;
70 }
71
72
73 /// GetSelectFoldableOperands - We want to turn code that looks like this:
74 /// %C = or %A, %B
75 /// %D = select %cond, %C, %A
76 /// into:
77 /// %C = select %cond, %B, 0
78 /// %D = or %A, %C
79 ///
80 /// Assuming that the specified instruction is an operand to the select, return
81 /// a bitmask indicating which operands of this instruction are foldable if they
82 /// equal the other incoming value of the select.
83 ///
GetSelectFoldableOperands(Instruction * I)84 static unsigned GetSelectFoldableOperands(Instruction *I) {
85 switch (I->getOpcode()) {
86 case Instruction::Add:
87 case Instruction::Mul:
88 case Instruction::And:
89 case Instruction::Or:
90 case Instruction::Xor:
91 return 3; // Can fold through either operand.
92 case Instruction::Sub: // Can only fold on the amount subtracted.
93 case Instruction::Shl: // Can only fold on the shift amount.
94 case Instruction::LShr:
95 case Instruction::AShr:
96 return 1;
97 default:
98 return 0; // Cannot fold
99 }
100 }
101
102 /// GetSelectFoldableConstant - For the same transformation as the previous
103 /// function, return the identity constant that goes into the select.
GetSelectFoldableConstant(Instruction * I)104 static Constant *GetSelectFoldableConstant(Instruction *I) {
105 switch (I->getOpcode()) {
106 default: llvm_unreachable("This cannot happen!");
107 case Instruction::Add:
108 case Instruction::Sub:
109 case Instruction::Or:
110 case Instruction::Xor:
111 case Instruction::Shl:
112 case Instruction::LShr:
113 case Instruction::AShr:
114 return Constant::getNullValue(I->getType());
115 case Instruction::And:
116 return Constant::getAllOnesValue(I->getType());
117 case Instruction::Mul:
118 return ConstantInt::get(I->getType(), 1);
119 }
120 }
121
122 /// FoldSelectOpOp - Here we have (select c, TI, FI), and we know that TI and FI
123 /// have the same opcode and only one use each. Try to simplify this.
FoldSelectOpOp(SelectInst & SI,Instruction * TI,Instruction * FI)124 Instruction *InstCombiner::FoldSelectOpOp(SelectInst &SI, Instruction *TI,
125 Instruction *FI) {
126 if (TI->getNumOperands() == 1) {
127 // If this is a non-volatile load or a cast from the same type,
128 // merge.
129 if (TI->isCast()) {
130 if (TI->getOperand(0)->getType() != FI->getOperand(0)->getType())
131 return 0;
132 // The select condition may be a vector. We may only change the operand
133 // type if the vector width remains the same (and matches the condition).
134 Type *CondTy = SI.getCondition()->getType();
135 if (CondTy->isVectorTy() && CondTy->getVectorNumElements() !=
136 FI->getOperand(0)->getType()->getVectorNumElements())
137 return 0;
138 } else {
139 return 0; // unknown unary op.
140 }
141
142 // Fold this by inserting a select from the input values.
143 Value *NewSI = Builder->CreateSelect(SI.getCondition(), TI->getOperand(0),
144 FI->getOperand(0), SI.getName()+".v");
145 return CastInst::Create(Instruction::CastOps(TI->getOpcode()), NewSI,
146 TI->getType());
147 }
148
149 // Only handle binary operators here.
150 if (!isa<BinaryOperator>(TI))
151 return 0;
152
153 // Figure out if the operations have any operands in common.
154 Value *MatchOp, *OtherOpT, *OtherOpF;
155 bool MatchIsOpZero;
156 if (TI->getOperand(0) == FI->getOperand(0)) {
157 MatchOp = TI->getOperand(0);
158 OtherOpT = TI->getOperand(1);
159 OtherOpF = FI->getOperand(1);
160 MatchIsOpZero = true;
161 } else if (TI->getOperand(1) == FI->getOperand(1)) {
162 MatchOp = TI->getOperand(1);
163 OtherOpT = TI->getOperand(0);
164 OtherOpF = FI->getOperand(0);
165 MatchIsOpZero = false;
166 } else if (!TI->isCommutative()) {
167 return 0;
168 } else if (TI->getOperand(0) == FI->getOperand(1)) {
169 MatchOp = TI->getOperand(0);
170 OtherOpT = TI->getOperand(1);
171 OtherOpF = FI->getOperand(0);
172 MatchIsOpZero = true;
173 } else if (TI->getOperand(1) == FI->getOperand(0)) {
174 MatchOp = TI->getOperand(1);
175 OtherOpT = TI->getOperand(0);
176 OtherOpF = FI->getOperand(1);
177 MatchIsOpZero = true;
178 } else {
179 return 0;
180 }
181
182 // If we reach here, they do have operations in common.
183 Value *NewSI = Builder->CreateSelect(SI.getCondition(), OtherOpT,
184 OtherOpF, SI.getName()+".v");
185
186 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(TI)) {
187 if (MatchIsOpZero)
188 return BinaryOperator::Create(BO->getOpcode(), MatchOp, NewSI);
189 else
190 return BinaryOperator::Create(BO->getOpcode(), NewSI, MatchOp);
191 }
192 llvm_unreachable("Shouldn't get here");
193 }
194
isSelect01(Constant * C1,Constant * C2)195 static bool isSelect01(Constant *C1, Constant *C2) {
196 ConstantInt *C1I = dyn_cast<ConstantInt>(C1);
197 if (!C1I)
198 return false;
199 ConstantInt *C2I = dyn_cast<ConstantInt>(C2);
200 if (!C2I)
201 return false;
202 if (!C1I->isZero() && !C2I->isZero()) // One side must be zero.
203 return false;
204 return C1I->isOne() || C1I->isAllOnesValue() ||
205 C2I->isOne() || C2I->isAllOnesValue();
206 }
207
208 /// FoldSelectIntoOp - Try fold the select into one of the operands to
209 /// facilitate further optimization.
FoldSelectIntoOp(SelectInst & SI,Value * TrueVal,Value * FalseVal)210 Instruction *InstCombiner::FoldSelectIntoOp(SelectInst &SI, Value *TrueVal,
211 Value *FalseVal) {
212 // See the comment above GetSelectFoldableOperands for a description of the
213 // transformation we are doing here.
214 if (Instruction *TVI = dyn_cast<Instruction>(TrueVal)) {
215 if (TVI->hasOneUse() && TVI->getNumOperands() == 2 &&
216 !isa<Constant>(FalseVal)) {
217 if (unsigned SFO = GetSelectFoldableOperands(TVI)) {
218 unsigned OpToFold = 0;
219 if ((SFO & 1) && FalseVal == TVI->getOperand(0)) {
220 OpToFold = 1;
221 } else if ((SFO & 2) && FalseVal == TVI->getOperand(1)) {
222 OpToFold = 2;
223 }
224
225 if (OpToFold) {
226 Constant *C = GetSelectFoldableConstant(TVI);
227 Value *OOp = TVI->getOperand(2-OpToFold);
228 // Avoid creating select between 2 constants unless it's selecting
229 // between 0, 1 and -1.
230 if (!isa<Constant>(OOp) || isSelect01(C, cast<Constant>(OOp))) {
231 Value *NewSel = Builder->CreateSelect(SI.getCondition(), OOp, C);
232 NewSel->takeName(TVI);
233 BinaryOperator *TVI_BO = cast<BinaryOperator>(TVI);
234 BinaryOperator *BO = BinaryOperator::Create(TVI_BO->getOpcode(),
235 FalseVal, NewSel);
236 if (isa<PossiblyExactOperator>(BO))
237 BO->setIsExact(TVI_BO->isExact());
238 if (isa<OverflowingBinaryOperator>(BO)) {
239 BO->setHasNoUnsignedWrap(TVI_BO->hasNoUnsignedWrap());
240 BO->setHasNoSignedWrap(TVI_BO->hasNoSignedWrap());
241 }
242 return BO;
243 }
244 }
245 }
246 }
247 }
248
249 if (Instruction *FVI = dyn_cast<Instruction>(FalseVal)) {
250 if (FVI->hasOneUse() && FVI->getNumOperands() == 2 &&
251 !isa<Constant>(TrueVal)) {
252 if (unsigned SFO = GetSelectFoldableOperands(FVI)) {
253 unsigned OpToFold = 0;
254 if ((SFO & 1) && TrueVal == FVI->getOperand(0)) {
255 OpToFold = 1;
256 } else if ((SFO & 2) && TrueVal == FVI->getOperand(1)) {
257 OpToFold = 2;
258 }
259
260 if (OpToFold) {
261 Constant *C = GetSelectFoldableConstant(FVI);
262 Value *OOp = FVI->getOperand(2-OpToFold);
263 // Avoid creating select between 2 constants unless it's selecting
264 // between 0, 1 and -1.
265 if (!isa<Constant>(OOp) || isSelect01(C, cast<Constant>(OOp))) {
266 Value *NewSel = Builder->CreateSelect(SI.getCondition(), C, OOp);
267 NewSel->takeName(FVI);
268 BinaryOperator *FVI_BO = cast<BinaryOperator>(FVI);
269 BinaryOperator *BO = BinaryOperator::Create(FVI_BO->getOpcode(),
270 TrueVal, NewSel);
271 if (isa<PossiblyExactOperator>(BO))
272 BO->setIsExact(FVI_BO->isExact());
273 if (isa<OverflowingBinaryOperator>(BO)) {
274 BO->setHasNoUnsignedWrap(FVI_BO->hasNoUnsignedWrap());
275 BO->setHasNoSignedWrap(FVI_BO->hasNoSignedWrap());
276 }
277 return BO;
278 }
279 }
280 }
281 }
282 }
283
284 return 0;
285 }
286
287 /// SimplifyWithOpReplaced - See if V simplifies when its operand Op is
288 /// replaced with RepOp.
SimplifyWithOpReplaced(Value * V,Value * Op,Value * RepOp,const TargetData * TD,const TargetLibraryInfo * TLI)289 static Value *SimplifyWithOpReplaced(Value *V, Value *Op, Value *RepOp,
290 const TargetData *TD,
291 const TargetLibraryInfo *TLI) {
292 // Trivial replacement.
293 if (V == Op)
294 return RepOp;
295
296 Instruction *I = dyn_cast<Instruction>(V);
297 if (!I)
298 return 0;
299
300 // If this is a binary operator, try to simplify it with the replaced op.
301 if (BinaryOperator *B = dyn_cast<BinaryOperator>(I)) {
302 if (B->getOperand(0) == Op)
303 return SimplifyBinOp(B->getOpcode(), RepOp, B->getOperand(1), TD, TLI);
304 if (B->getOperand(1) == Op)
305 return SimplifyBinOp(B->getOpcode(), B->getOperand(0), RepOp, TD, TLI);
306 }
307
308 // Same for CmpInsts.
309 if (CmpInst *C = dyn_cast<CmpInst>(I)) {
310 if (C->getOperand(0) == Op)
311 return SimplifyCmpInst(C->getPredicate(), RepOp, C->getOperand(1), TD,
312 TLI);
313 if (C->getOperand(1) == Op)
314 return SimplifyCmpInst(C->getPredicate(), C->getOperand(0), RepOp, TD,
315 TLI);
316 }
317
318 // TODO: We could hand off more cases to instsimplify here.
319
320 // If all operands are constant after substituting Op for RepOp then we can
321 // constant fold the instruction.
322 if (Constant *CRepOp = dyn_cast<Constant>(RepOp)) {
323 // Build a list of all constant operands.
324 SmallVector<Constant*, 8> ConstOps;
325 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
326 if (I->getOperand(i) == Op)
327 ConstOps.push_back(CRepOp);
328 else if (Constant *COp = dyn_cast<Constant>(I->getOperand(i)))
329 ConstOps.push_back(COp);
330 else
331 break;
332 }
333
334 // All operands were constants, fold it.
335 if (ConstOps.size() == I->getNumOperands()) {
336 if (LoadInst *LI = dyn_cast<LoadInst>(I))
337 if (!LI->isVolatile())
338 return ConstantFoldLoadFromConstPtr(ConstOps[0], TD);
339
340 return ConstantFoldInstOperands(I->getOpcode(), I->getType(),
341 ConstOps, TD, TLI);
342 }
343 }
344
345 return 0;
346 }
347
348 /// visitSelectInstWithICmp - Visit a SelectInst that has an
349 /// ICmpInst as its first operand.
350 ///
visitSelectInstWithICmp(SelectInst & SI,ICmpInst * ICI)351 Instruction *InstCombiner::visitSelectInstWithICmp(SelectInst &SI,
352 ICmpInst *ICI) {
353 bool Changed = false;
354 ICmpInst::Predicate Pred = ICI->getPredicate();
355 Value *CmpLHS = ICI->getOperand(0);
356 Value *CmpRHS = ICI->getOperand(1);
357 Value *TrueVal = SI.getTrueValue();
358 Value *FalseVal = SI.getFalseValue();
359
360 // Check cases where the comparison is with a constant that
361 // can be adjusted to fit the min/max idiom. We may move or edit ICI
362 // here, so make sure the select is the only user.
363 if (ICI->hasOneUse())
364 if (ConstantInt *CI = dyn_cast<ConstantInt>(CmpRHS)) {
365 // X < MIN ? T : F --> F
366 if ((Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_ULT)
367 && CI->isMinValue(Pred == ICmpInst::ICMP_SLT))
368 return ReplaceInstUsesWith(SI, FalseVal);
369 // X > MAX ? T : F --> F
370 else if ((Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_UGT)
371 && CI->isMaxValue(Pred == ICmpInst::ICMP_SGT))
372 return ReplaceInstUsesWith(SI, FalseVal);
373 switch (Pred) {
374 default: break;
375 case ICmpInst::ICMP_ULT:
376 case ICmpInst::ICMP_SLT:
377 case ICmpInst::ICMP_UGT:
378 case ICmpInst::ICMP_SGT: {
379 // These transformations only work for selects over integers.
380 IntegerType *SelectTy = dyn_cast<IntegerType>(SI.getType());
381 if (!SelectTy)
382 break;
383
384 Constant *AdjustedRHS;
385 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_SGT)
386 AdjustedRHS = ConstantInt::get(CI->getContext(), CI->getValue() + 1);
387 else // (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_SLT)
388 AdjustedRHS = ConstantInt::get(CI->getContext(), CI->getValue() - 1);
389
390 // X > C ? X : C+1 --> X < C+1 ? C+1 : X
391 // X < C ? X : C-1 --> X > C-1 ? C-1 : X
392 if ((CmpLHS == TrueVal && AdjustedRHS == FalseVal) ||
393 (CmpLHS == FalseVal && AdjustedRHS == TrueVal))
394 ; // Nothing to do here. Values match without any sign/zero extension.
395
396 // Types do not match. Instead of calculating this with mixed types
397 // promote all to the larger type. This enables scalar evolution to
398 // analyze this expression.
399 else if (CmpRHS->getType()->getScalarSizeInBits()
400 < SelectTy->getBitWidth()) {
401 Constant *sextRHS = ConstantExpr::getSExt(AdjustedRHS, SelectTy);
402
403 // X = sext x; x >s c ? X : C+1 --> X = sext x; X <s C+1 ? C+1 : X
404 // X = sext x; x <s c ? X : C-1 --> X = sext x; X >s C-1 ? C-1 : X
405 // X = sext x; x >u c ? X : C+1 --> X = sext x; X <u C+1 ? C+1 : X
406 // X = sext x; x <u c ? X : C-1 --> X = sext x; X >u C-1 ? C-1 : X
407 if (match(TrueVal, m_SExt(m_Specific(CmpLHS))) &&
408 sextRHS == FalseVal) {
409 CmpLHS = TrueVal;
410 AdjustedRHS = sextRHS;
411 } else if (match(FalseVal, m_SExt(m_Specific(CmpLHS))) &&
412 sextRHS == TrueVal) {
413 CmpLHS = FalseVal;
414 AdjustedRHS = sextRHS;
415 } else if (ICI->isUnsigned()) {
416 Constant *zextRHS = ConstantExpr::getZExt(AdjustedRHS, SelectTy);
417 // X = zext x; x >u c ? X : C+1 --> X = zext x; X <u C+1 ? C+1 : X
418 // X = zext x; x <u c ? X : C-1 --> X = zext x; X >u C-1 ? C-1 : X
419 // zext + signed compare cannot be changed:
420 // 0xff <s 0x00, but 0x00ff >s 0x0000
421 if (match(TrueVal, m_ZExt(m_Specific(CmpLHS))) &&
422 zextRHS == FalseVal) {
423 CmpLHS = TrueVal;
424 AdjustedRHS = zextRHS;
425 } else if (match(FalseVal, m_ZExt(m_Specific(CmpLHS))) &&
426 zextRHS == TrueVal) {
427 CmpLHS = FalseVal;
428 AdjustedRHS = zextRHS;
429 } else
430 break;
431 } else
432 break;
433 } else
434 break;
435
436 Pred = ICmpInst::getSwappedPredicate(Pred);
437 CmpRHS = AdjustedRHS;
438 std::swap(FalseVal, TrueVal);
439 ICI->setPredicate(Pred);
440 ICI->setOperand(0, CmpLHS);
441 ICI->setOperand(1, CmpRHS);
442 SI.setOperand(1, TrueVal);
443 SI.setOperand(2, FalseVal);
444
445 // Move ICI instruction right before the select instruction. Otherwise
446 // the sext/zext value may be defined after the ICI instruction uses it.
447 ICI->moveBefore(&SI);
448
449 Changed = true;
450 break;
451 }
452 }
453 }
454
455 // Transform (X >s -1) ? C1 : C2 --> ((X >>s 31) & (C2 - C1)) + C1
456 // and (X <s 0) ? C2 : C1 --> ((X >>s 31) & (C2 - C1)) + C1
457 // FIXME: Type and constness constraints could be lifted, but we have to
458 // watch code size carefully. We should consider xor instead of
459 // sub/add when we decide to do that.
460 if (IntegerType *Ty = dyn_cast<IntegerType>(CmpLHS->getType())) {
461 if (TrueVal->getType() == Ty) {
462 if (ConstantInt *Cmp = dyn_cast<ConstantInt>(CmpRHS)) {
463 ConstantInt *C1 = NULL, *C2 = NULL;
464 if (Pred == ICmpInst::ICMP_SGT && Cmp->isAllOnesValue()) {
465 C1 = dyn_cast<ConstantInt>(TrueVal);
466 C2 = dyn_cast<ConstantInt>(FalseVal);
467 } else if (Pred == ICmpInst::ICMP_SLT && Cmp->isNullValue()) {
468 C1 = dyn_cast<ConstantInt>(FalseVal);
469 C2 = dyn_cast<ConstantInt>(TrueVal);
470 }
471 if (C1 && C2) {
472 // This shift results in either -1 or 0.
473 Value *AShr = Builder->CreateAShr(CmpLHS, Ty->getBitWidth()-1);
474
475 // Check if we can express the operation with a single or.
476 if (C2->isAllOnesValue())
477 return ReplaceInstUsesWith(SI, Builder->CreateOr(AShr, C1));
478
479 Value *And = Builder->CreateAnd(AShr, C2->getValue()-C1->getValue());
480 return ReplaceInstUsesWith(SI, Builder->CreateAdd(And, C1));
481 }
482 }
483 }
484 }
485
486 // If we have an equality comparison then we know the value in one of the
487 // arms of the select. See if substituting this value into the arm and
488 // simplifying the result yields the same value as the other arm.
489 if (Pred == ICmpInst::ICMP_EQ) {
490 if (SimplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, TD, TLI) == TrueVal ||
491 SimplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, TD, TLI) == TrueVal)
492 return ReplaceInstUsesWith(SI, FalseVal);
493 if (SimplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, TD, TLI) == FalseVal ||
494 SimplifyWithOpReplaced(TrueVal, CmpRHS, CmpLHS, TD, TLI) == FalseVal)
495 return ReplaceInstUsesWith(SI, FalseVal);
496 } else if (Pred == ICmpInst::ICMP_NE) {
497 if (SimplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, TD, TLI) == FalseVal ||
498 SimplifyWithOpReplaced(TrueVal, CmpRHS, CmpLHS, TD, TLI) == FalseVal)
499 return ReplaceInstUsesWith(SI, TrueVal);
500 if (SimplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, TD, TLI) == TrueVal ||
501 SimplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, TD, TLI) == TrueVal)
502 return ReplaceInstUsesWith(SI, TrueVal);
503 }
504
505 // NOTE: if we wanted to, this is where to detect integer MIN/MAX
506
507 if (CmpRHS != CmpLHS && isa<Constant>(CmpRHS)) {
508 if (CmpLHS == TrueVal && Pred == ICmpInst::ICMP_EQ) {
509 // Transform (X == C) ? X : Y -> (X == C) ? C : Y
510 SI.setOperand(1, CmpRHS);
511 Changed = true;
512 } else if (CmpLHS == FalseVal && Pred == ICmpInst::ICMP_NE) {
513 // Transform (X != C) ? Y : X -> (X != C) ? Y : C
514 SI.setOperand(2, CmpRHS);
515 Changed = true;
516 }
517 }
518
519 return Changed ? &SI : 0;
520 }
521
522
523 /// CanSelectOperandBeMappingIntoPredBlock - SI is a select whose condition is a
524 /// PHI node (but the two may be in different blocks). See if the true/false
525 /// values (V) are live in all of the predecessor blocks of the PHI. For
526 /// example, cases like this cannot be mapped:
527 ///
528 /// X = phi [ C1, BB1], [C2, BB2]
529 /// Y = add
530 /// Z = select X, Y, 0
531 ///
532 /// because Y is not live in BB1/BB2.
533 ///
CanSelectOperandBeMappingIntoPredBlock(const Value * V,const SelectInst & SI)534 static bool CanSelectOperandBeMappingIntoPredBlock(const Value *V,
535 const SelectInst &SI) {
536 // If the value is a non-instruction value like a constant or argument, it
537 // can always be mapped.
538 const Instruction *I = dyn_cast<Instruction>(V);
539 if (I == 0) return true;
540
541 // If V is a PHI node defined in the same block as the condition PHI, we can
542 // map the arguments.
543 const PHINode *CondPHI = cast<PHINode>(SI.getCondition());
544
545 if (const PHINode *VP = dyn_cast<PHINode>(I))
546 if (VP->getParent() == CondPHI->getParent())
547 return true;
548
549 // Otherwise, if the PHI and select are defined in the same block and if V is
550 // defined in a different block, then we can transform it.
551 if (SI.getParent() == CondPHI->getParent() &&
552 I->getParent() != CondPHI->getParent())
553 return true;
554
555 // Otherwise we have a 'hard' case and we can't tell without doing more
556 // detailed dominator based analysis, punt.
557 return false;
558 }
559
560 /// FoldSPFofSPF - We have an SPF (e.g. a min or max) of an SPF of the form:
561 /// SPF2(SPF1(A, B), C)
FoldSPFofSPF(Instruction * Inner,SelectPatternFlavor SPF1,Value * A,Value * B,Instruction & Outer,SelectPatternFlavor SPF2,Value * C)562 Instruction *InstCombiner::FoldSPFofSPF(Instruction *Inner,
563 SelectPatternFlavor SPF1,
564 Value *A, Value *B,
565 Instruction &Outer,
566 SelectPatternFlavor SPF2, Value *C) {
567 if (C == A || C == B) {
568 // MAX(MAX(A, B), B) -> MAX(A, B)
569 // MIN(MIN(a, b), a) -> MIN(a, b)
570 if (SPF1 == SPF2)
571 return ReplaceInstUsesWith(Outer, Inner);
572
573 // MAX(MIN(a, b), a) -> a
574 // MIN(MAX(a, b), a) -> a
575 if ((SPF1 == SPF_SMIN && SPF2 == SPF_SMAX) ||
576 (SPF1 == SPF_SMAX && SPF2 == SPF_SMIN) ||
577 (SPF1 == SPF_UMIN && SPF2 == SPF_UMAX) ||
578 (SPF1 == SPF_UMAX && SPF2 == SPF_UMIN))
579 return ReplaceInstUsesWith(Outer, C);
580 }
581
582 // TODO: MIN(MIN(A, 23), 97)
583 return 0;
584 }
585
586
587 /// foldSelectICmpAnd - If one of the constants is zero (we know they can't
588 /// both be) and we have an icmp instruction with zero, and we have an 'and'
589 /// with the non-constant value and a power of two we can turn the select
590 /// into a shift on the result of the 'and'.
foldSelectICmpAnd(const SelectInst & SI,ConstantInt * TrueVal,ConstantInt * FalseVal,InstCombiner::BuilderTy * Builder)591 static Value *foldSelectICmpAnd(const SelectInst &SI, ConstantInt *TrueVal,
592 ConstantInt *FalseVal,
593 InstCombiner::BuilderTy *Builder) {
594 const ICmpInst *IC = dyn_cast<ICmpInst>(SI.getCondition());
595 if (!IC || !IC->isEquality())
596 return 0;
597
598 if (!match(IC->getOperand(1), m_Zero()))
599 return 0;
600
601 ConstantInt *AndRHS;
602 Value *LHS = IC->getOperand(0);
603 if (LHS->getType() != SI.getType() ||
604 !match(LHS, m_And(m_Value(), m_ConstantInt(AndRHS))))
605 return 0;
606
607 // If both select arms are non-zero see if we have a select of the form
608 // 'x ? 2^n + C : C'. Then we can offset both arms by C, use the logic
609 // for 'x ? 2^n : 0' and fix the thing up at the end.
610 ConstantInt *Offset = 0;
611 if (!TrueVal->isZero() && !FalseVal->isZero()) {
612 if ((TrueVal->getValue() - FalseVal->getValue()).isPowerOf2())
613 Offset = FalseVal;
614 else if ((FalseVal->getValue() - TrueVal->getValue()).isPowerOf2())
615 Offset = TrueVal;
616 else
617 return 0;
618
619 // Adjust TrueVal and FalseVal to the offset.
620 TrueVal = ConstantInt::get(Builder->getContext(),
621 TrueVal->getValue() - Offset->getValue());
622 FalseVal = ConstantInt::get(Builder->getContext(),
623 FalseVal->getValue() - Offset->getValue());
624 }
625
626 // Make sure the mask in the 'and' and one of the select arms is a power of 2.
627 if (!AndRHS->getValue().isPowerOf2() ||
628 (!TrueVal->getValue().isPowerOf2() &&
629 !FalseVal->getValue().isPowerOf2()))
630 return 0;
631
632 // Determine which shift is needed to transform result of the 'and' into the
633 // desired result.
634 ConstantInt *ValC = !TrueVal->isZero() ? TrueVal : FalseVal;
635 unsigned ValZeros = ValC->getValue().logBase2();
636 unsigned AndZeros = AndRHS->getValue().logBase2();
637
638 Value *V = LHS;
639 if (ValZeros > AndZeros)
640 V = Builder->CreateShl(V, ValZeros - AndZeros);
641 else if (ValZeros < AndZeros)
642 V = Builder->CreateLShr(V, AndZeros - ValZeros);
643
644 // Okay, now we know that everything is set up, we just don't know whether we
645 // have a icmp_ne or icmp_eq and whether the true or false val is the zero.
646 bool ShouldNotVal = !TrueVal->isZero();
647 ShouldNotVal ^= IC->getPredicate() == ICmpInst::ICMP_NE;
648 if (ShouldNotVal)
649 V = Builder->CreateXor(V, ValC);
650
651 // Apply an offset if needed.
652 if (Offset)
653 V = Builder->CreateAdd(V, Offset);
654 return V;
655 }
656
visitSelectInst(SelectInst & SI)657 Instruction *InstCombiner::visitSelectInst(SelectInst &SI) {
658 Value *CondVal = SI.getCondition();
659 Value *TrueVal = SI.getTrueValue();
660 Value *FalseVal = SI.getFalseValue();
661
662 if (Value *V = SimplifySelectInst(CondVal, TrueVal, FalseVal, TD))
663 return ReplaceInstUsesWith(SI, V);
664
665 if (SI.getType()->isIntegerTy(1)) {
666 if (ConstantInt *C = dyn_cast<ConstantInt>(TrueVal)) {
667 if (C->getZExtValue()) {
668 // Change: A = select B, true, C --> A = or B, C
669 return BinaryOperator::CreateOr(CondVal, FalseVal);
670 }
671 // Change: A = select B, false, C --> A = and !B, C
672 Value *NotCond = Builder->CreateNot(CondVal, "not."+CondVal->getName());
673 return BinaryOperator::CreateAnd(NotCond, FalseVal);
674 } else if (ConstantInt *C = dyn_cast<ConstantInt>(FalseVal)) {
675 if (C->getZExtValue() == false) {
676 // Change: A = select B, C, false --> A = and B, C
677 return BinaryOperator::CreateAnd(CondVal, TrueVal);
678 }
679 // Change: A = select B, C, true --> A = or !B, C
680 Value *NotCond = Builder->CreateNot(CondVal, "not."+CondVal->getName());
681 return BinaryOperator::CreateOr(NotCond, TrueVal);
682 }
683
684 // select a, b, a -> a&b
685 // select a, a, b -> a|b
686 if (CondVal == TrueVal)
687 return BinaryOperator::CreateOr(CondVal, FalseVal);
688 else if (CondVal == FalseVal)
689 return BinaryOperator::CreateAnd(CondVal, TrueVal);
690
691 // select a, ~a, b -> (~a)&b
692 // select a, b, ~a -> (~a)|b
693 if (match(TrueVal, m_Not(m_Specific(CondVal))))
694 return BinaryOperator::CreateAnd(TrueVal, FalseVal);
695 else if (match(FalseVal, m_Not(m_Specific(CondVal))))
696 return BinaryOperator::CreateOr(TrueVal, FalseVal);
697 }
698
699 // Selecting between two integer constants?
700 if (ConstantInt *TrueValC = dyn_cast<ConstantInt>(TrueVal))
701 if (ConstantInt *FalseValC = dyn_cast<ConstantInt>(FalseVal)) {
702 // select C, 1, 0 -> zext C to int
703 if (FalseValC->isZero() && TrueValC->getValue() == 1)
704 return new ZExtInst(CondVal, SI.getType());
705
706 // select C, -1, 0 -> sext C to int
707 if (FalseValC->isZero() && TrueValC->isAllOnesValue())
708 return new SExtInst(CondVal, SI.getType());
709
710 // select C, 0, 1 -> zext !C to int
711 if (TrueValC->isZero() && FalseValC->getValue() == 1) {
712 Value *NotCond = Builder->CreateNot(CondVal, "not."+CondVal->getName());
713 return new ZExtInst(NotCond, SI.getType());
714 }
715
716 // select C, 0, -1 -> sext !C to int
717 if (TrueValC->isZero() && FalseValC->isAllOnesValue()) {
718 Value *NotCond = Builder->CreateNot(CondVal, "not."+CondVal->getName());
719 return new SExtInst(NotCond, SI.getType());
720 }
721
722 if (Value *V = foldSelectICmpAnd(SI, TrueValC, FalseValC, Builder))
723 return ReplaceInstUsesWith(SI, V);
724 }
725
726 // See if we are selecting two values based on a comparison of the two values.
727 if (FCmpInst *FCI = dyn_cast<FCmpInst>(CondVal)) {
728 if (FCI->getOperand(0) == TrueVal && FCI->getOperand(1) == FalseVal) {
729 // Transform (X == Y) ? X : Y -> Y
730 if (FCI->getPredicate() == FCmpInst::FCMP_OEQ) {
731 // This is not safe in general for floating point:
732 // consider X== -0, Y== +0.
733 // It becomes safe if either operand is a nonzero constant.
734 ConstantFP *CFPt, *CFPf;
735 if (((CFPt = dyn_cast<ConstantFP>(TrueVal)) &&
736 !CFPt->getValueAPF().isZero()) ||
737 ((CFPf = dyn_cast<ConstantFP>(FalseVal)) &&
738 !CFPf->getValueAPF().isZero()))
739 return ReplaceInstUsesWith(SI, FalseVal);
740 }
741 // Transform (X une Y) ? X : Y -> X
742 if (FCI->getPredicate() == FCmpInst::FCMP_UNE) {
743 // This is not safe in general for floating point:
744 // consider X== -0, Y== +0.
745 // It becomes safe if either operand is a nonzero constant.
746 ConstantFP *CFPt, *CFPf;
747 if (((CFPt = dyn_cast<ConstantFP>(TrueVal)) &&
748 !CFPt->getValueAPF().isZero()) ||
749 ((CFPf = dyn_cast<ConstantFP>(FalseVal)) &&
750 !CFPf->getValueAPF().isZero()))
751 return ReplaceInstUsesWith(SI, TrueVal);
752 }
753 // NOTE: if we wanted to, this is where to detect MIN/MAX
754
755 } else if (FCI->getOperand(0) == FalseVal && FCI->getOperand(1) == TrueVal){
756 // Transform (X == Y) ? Y : X -> X
757 if (FCI->getPredicate() == FCmpInst::FCMP_OEQ) {
758 // This is not safe in general for floating point:
759 // consider X== -0, Y== +0.
760 // It becomes safe if either operand is a nonzero constant.
761 ConstantFP *CFPt, *CFPf;
762 if (((CFPt = dyn_cast<ConstantFP>(TrueVal)) &&
763 !CFPt->getValueAPF().isZero()) ||
764 ((CFPf = dyn_cast<ConstantFP>(FalseVal)) &&
765 !CFPf->getValueAPF().isZero()))
766 return ReplaceInstUsesWith(SI, FalseVal);
767 }
768 // Transform (X une Y) ? Y : X -> Y
769 if (FCI->getPredicate() == FCmpInst::FCMP_UNE) {
770 // This is not safe in general for floating point:
771 // consider X== -0, Y== +0.
772 // It becomes safe if either operand is a nonzero constant.
773 ConstantFP *CFPt, *CFPf;
774 if (((CFPt = dyn_cast<ConstantFP>(TrueVal)) &&
775 !CFPt->getValueAPF().isZero()) ||
776 ((CFPf = dyn_cast<ConstantFP>(FalseVal)) &&
777 !CFPf->getValueAPF().isZero()))
778 return ReplaceInstUsesWith(SI, TrueVal);
779 }
780 // NOTE: if we wanted to, this is where to detect MIN/MAX
781 }
782 // NOTE: if we wanted to, this is where to detect ABS
783 }
784
785 // See if we are selecting two values based on a comparison of the two values.
786 if (ICmpInst *ICI = dyn_cast<ICmpInst>(CondVal))
787 if (Instruction *Result = visitSelectInstWithICmp(SI, ICI))
788 return Result;
789
790 if (Instruction *TI = dyn_cast<Instruction>(TrueVal))
791 if (Instruction *FI = dyn_cast<Instruction>(FalseVal))
792 if (TI->hasOneUse() && FI->hasOneUse()) {
793 Instruction *AddOp = 0, *SubOp = 0;
794
795 // Turn (select C, (op X, Y), (op X, Z)) -> (op X, (select C, Y, Z))
796 if (TI->getOpcode() == FI->getOpcode())
797 if (Instruction *IV = FoldSelectOpOp(SI, TI, FI))
798 return IV;
799
800 // Turn select C, (X+Y), (X-Y) --> (X+(select C, Y, (-Y))). This is
801 // even legal for FP.
802 if ((TI->getOpcode() == Instruction::Sub &&
803 FI->getOpcode() == Instruction::Add) ||
804 (TI->getOpcode() == Instruction::FSub &&
805 FI->getOpcode() == Instruction::FAdd)) {
806 AddOp = FI; SubOp = TI;
807 } else if ((FI->getOpcode() == Instruction::Sub &&
808 TI->getOpcode() == Instruction::Add) ||
809 (FI->getOpcode() == Instruction::FSub &&
810 TI->getOpcode() == Instruction::FAdd)) {
811 AddOp = TI; SubOp = FI;
812 }
813
814 if (AddOp) {
815 Value *OtherAddOp = 0;
816 if (SubOp->getOperand(0) == AddOp->getOperand(0)) {
817 OtherAddOp = AddOp->getOperand(1);
818 } else if (SubOp->getOperand(0) == AddOp->getOperand(1)) {
819 OtherAddOp = AddOp->getOperand(0);
820 }
821
822 if (OtherAddOp) {
823 // So at this point we know we have (Y -> OtherAddOp):
824 // select C, (add X, Y), (sub X, Z)
825 Value *NegVal; // Compute -Z
826 if (SI.getType()->isFPOrFPVectorTy()) {
827 NegVal = Builder->CreateFNeg(SubOp->getOperand(1));
828 } else {
829 NegVal = Builder->CreateNeg(SubOp->getOperand(1));
830 }
831
832 Value *NewTrueOp = OtherAddOp;
833 Value *NewFalseOp = NegVal;
834 if (AddOp != TI)
835 std::swap(NewTrueOp, NewFalseOp);
836 Value *NewSel =
837 Builder->CreateSelect(CondVal, NewTrueOp,
838 NewFalseOp, SI.getName() + ".p");
839
840 if (SI.getType()->isFPOrFPVectorTy())
841 return BinaryOperator::CreateFAdd(SubOp->getOperand(0), NewSel);
842 else
843 return BinaryOperator::CreateAdd(SubOp->getOperand(0), NewSel);
844 }
845 }
846 }
847
848 // See if we can fold the select into one of our operands.
849 if (SI.getType()->isIntegerTy()) {
850 if (Instruction *FoldI = FoldSelectIntoOp(SI, TrueVal, FalseVal))
851 return FoldI;
852
853 // MAX(MAX(a, b), a) -> MAX(a, b)
854 // MIN(MIN(a, b), a) -> MIN(a, b)
855 // MAX(MIN(a, b), a) -> a
856 // MIN(MAX(a, b), a) -> a
857 Value *LHS, *RHS, *LHS2, *RHS2;
858 if (SelectPatternFlavor SPF = MatchSelectPattern(&SI, LHS, RHS)) {
859 if (SelectPatternFlavor SPF2 = MatchSelectPattern(LHS, LHS2, RHS2))
860 if (Instruction *R = FoldSPFofSPF(cast<Instruction>(LHS),SPF2,LHS2,RHS2,
861 SI, SPF, RHS))
862 return R;
863 if (SelectPatternFlavor SPF2 = MatchSelectPattern(RHS, LHS2, RHS2))
864 if (Instruction *R = FoldSPFofSPF(cast<Instruction>(RHS),SPF2,LHS2,RHS2,
865 SI, SPF, LHS))
866 return R;
867 }
868
869 // TODO.
870 // ABS(-X) -> ABS(X)
871 // ABS(ABS(X)) -> ABS(X)
872 }
873
874 // See if we can fold the select into a phi node if the condition is a select.
875 if (isa<PHINode>(SI.getCondition()))
876 // The true/false values have to be live in the PHI predecessor's blocks.
877 if (CanSelectOperandBeMappingIntoPredBlock(TrueVal, SI) &&
878 CanSelectOperandBeMappingIntoPredBlock(FalseVal, SI))
879 if (Instruction *NV = FoldOpIntoPhi(SI))
880 return NV;
881
882 if (SelectInst *TrueSI = dyn_cast<SelectInst>(TrueVal)) {
883 if (TrueSI->getCondition() == CondVal) {
884 if (SI.getTrueValue() == TrueSI->getTrueValue())
885 return 0;
886 SI.setOperand(1, TrueSI->getTrueValue());
887 return &SI;
888 }
889 }
890 if (SelectInst *FalseSI = dyn_cast<SelectInst>(FalseVal)) {
891 if (FalseSI->getCondition() == CondVal) {
892 if (SI.getFalseValue() == FalseSI->getFalseValue())
893 return 0;
894 SI.setOperand(2, FalseSI->getFalseValue());
895 return &SI;
896 }
897 }
898
899 if (BinaryOperator::isNot(CondVal)) {
900 SI.setOperand(0, BinaryOperator::getNotArgument(CondVal));
901 SI.setOperand(1, FalseVal);
902 SI.setOperand(2, TrueVal);
903 return &SI;
904 }
905
906 if (VectorType* VecTy = dyn_cast<VectorType>(SI.getType())) {
907 unsigned VWidth = VecTy->getNumElements();
908 APInt UndefElts(VWidth, 0);
909 APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth));
910 if (Value *V = SimplifyDemandedVectorElts(&SI, AllOnesEltMask, UndefElts)) {
911 if (V != &SI)
912 return ReplaceInstUsesWith(SI, V);
913 return &SI;
914 }
915 }
916
917 return 0;
918 }
919