1 // Copyright 2011 the V8 project authors. All rights reserved.
2 // Redistribution and use in source and binary forms, with or without
3 // modification, are permitted provided that the following conditions are
4 // met:
5 //
6 // * Redistributions of source code must retain the above copyright
7 // notice, this list of conditions and the following disclaimer.
8 // * Redistributions in binary form must reproduce the above
9 // copyright notice, this list of conditions and the following
10 // disclaimer in the documentation and/or other materials provided
11 // with the distribution.
12 // * Neither the name of Google Inc. nor the names of its
13 // contributors may be used to endorse or promote products derived
14 // from this software without specific prior written permission.
15 //
16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
28 #ifndef V8_SPACES_INL_H_
29 #define V8_SPACES_INL_H_
30
31 #include "isolate.h"
32 #include "spaces.h"
33 #include "v8memory.h"
34
35 namespace v8 {
36 namespace internal {
37
38
39 // -----------------------------------------------------------------------------
40 // Bitmap
41
Clear(MemoryChunk * chunk)42 void Bitmap::Clear(MemoryChunk* chunk) {
43 Bitmap* bitmap = chunk->markbits();
44 for (int i = 0; i < bitmap->CellsCount(); i++) bitmap->cells()[i] = 0;
45 chunk->ResetLiveBytes();
46 }
47
48
49 // -----------------------------------------------------------------------------
50 // PageIterator
51
52
PageIterator(PagedSpace * space)53 PageIterator::PageIterator(PagedSpace* space)
54 : space_(space),
55 prev_page_(&space->anchor_),
56 next_page_(prev_page_->next_page()) { }
57
58
has_next()59 bool PageIterator::has_next() {
60 return next_page_ != &space_->anchor_;
61 }
62
63
next()64 Page* PageIterator::next() {
65 ASSERT(has_next());
66 prev_page_ = next_page_;
67 next_page_ = next_page_->next_page();
68 return prev_page_;
69 }
70
71
72 // -----------------------------------------------------------------------------
73 // NewSpacePageIterator
74
75
NewSpacePageIterator(NewSpace * space)76 NewSpacePageIterator::NewSpacePageIterator(NewSpace* space)
77 : prev_page_(NewSpacePage::FromAddress(space->ToSpaceStart())->prev_page()),
78 next_page_(NewSpacePage::FromAddress(space->ToSpaceStart())),
79 last_page_(NewSpacePage::FromLimit(space->ToSpaceEnd())) { }
80
NewSpacePageIterator(SemiSpace * space)81 NewSpacePageIterator::NewSpacePageIterator(SemiSpace* space)
82 : prev_page_(space->anchor()),
83 next_page_(prev_page_->next_page()),
84 last_page_(prev_page_->prev_page()) { }
85
NewSpacePageIterator(Address start,Address limit)86 NewSpacePageIterator::NewSpacePageIterator(Address start, Address limit)
87 : prev_page_(NewSpacePage::FromAddress(start)->prev_page()),
88 next_page_(NewSpacePage::FromAddress(start)),
89 last_page_(NewSpacePage::FromLimit(limit)) {
90 SemiSpace::AssertValidRange(start, limit);
91 }
92
93
has_next()94 bool NewSpacePageIterator::has_next() {
95 return prev_page_ != last_page_;
96 }
97
98
next()99 NewSpacePage* NewSpacePageIterator::next() {
100 ASSERT(has_next());
101 prev_page_ = next_page_;
102 next_page_ = next_page_->next_page();
103 return prev_page_;
104 }
105
106
107 // -----------------------------------------------------------------------------
108 // HeapObjectIterator
FromCurrentPage()109 HeapObject* HeapObjectIterator::FromCurrentPage() {
110 while (cur_addr_ != cur_end_) {
111 if (cur_addr_ == space_->top() && cur_addr_ != space_->limit()) {
112 cur_addr_ = space_->limit();
113 continue;
114 }
115 HeapObject* obj = HeapObject::FromAddress(cur_addr_);
116 int obj_size = (size_func_ == NULL) ? obj->Size() : size_func_(obj);
117 cur_addr_ += obj_size;
118 ASSERT(cur_addr_ <= cur_end_);
119 if (!obj->IsFiller()) {
120 ASSERT_OBJECT_SIZE(obj_size);
121 return obj;
122 }
123 }
124 return NULL;
125 }
126
127
128 // -----------------------------------------------------------------------------
129 // MemoryAllocator
130
131 #ifdef ENABLE_HEAP_PROTECTION
132
Protect(Address start,size_t size)133 void MemoryAllocator::Protect(Address start, size_t size) {
134 OS::Protect(start, size);
135 }
136
137
Unprotect(Address start,size_t size,Executability executable)138 void MemoryAllocator::Unprotect(Address start,
139 size_t size,
140 Executability executable) {
141 OS::Unprotect(start, size, executable);
142 }
143
144
ProtectChunkFromPage(Page * page)145 void MemoryAllocator::ProtectChunkFromPage(Page* page) {
146 int id = GetChunkId(page);
147 OS::Protect(chunks_[id].address(), chunks_[id].size());
148 }
149
150
UnprotectChunkFromPage(Page * page)151 void MemoryAllocator::UnprotectChunkFromPage(Page* page) {
152 int id = GetChunkId(page);
153 OS::Unprotect(chunks_[id].address(), chunks_[id].size(),
154 chunks_[id].owner()->executable() == EXECUTABLE);
155 }
156
157 #endif
158
159
160 // --------------------------------------------------------------------------
161 // PagedSpace
Initialize(Heap * heap,MemoryChunk * chunk,Executability executable,PagedSpace * owner)162 Page* Page::Initialize(Heap* heap,
163 MemoryChunk* chunk,
164 Executability executable,
165 PagedSpace* owner) {
166 Page* page = reinterpret_cast<Page*>(chunk);
167 ASSERT(chunk->size() == static_cast<size_t>(kPageSize));
168 ASSERT(chunk->owner() == owner);
169 owner->IncreaseCapacity(page->area_size());
170 owner->Free(page->area_start(), page->area_size());
171
172 heap->incremental_marking()->SetOldSpacePageFlags(chunk);
173
174 return page;
175 }
176
177
Contains(Address addr)178 bool PagedSpace::Contains(Address addr) {
179 Page* p = Page::FromAddress(addr);
180 if (!p->is_valid()) return false;
181 return p->owner() == this;
182 }
183
184
set_scan_on_scavenge(bool scan)185 void MemoryChunk::set_scan_on_scavenge(bool scan) {
186 if (scan) {
187 if (!scan_on_scavenge()) heap_->increment_scan_on_scavenge_pages();
188 SetFlag(SCAN_ON_SCAVENGE);
189 } else {
190 if (scan_on_scavenge()) heap_->decrement_scan_on_scavenge_pages();
191 ClearFlag(SCAN_ON_SCAVENGE);
192 }
193 heap_->incremental_marking()->SetOldSpacePageFlags(this);
194 }
195
196
FromAnyPointerAddress(Address addr)197 MemoryChunk* MemoryChunk::FromAnyPointerAddress(Address addr) {
198 MemoryChunk* maybe = reinterpret_cast<MemoryChunk*>(
199 OffsetFrom(addr) & ~Page::kPageAlignmentMask);
200 if (maybe->owner() != NULL) return maybe;
201 LargeObjectIterator iterator(HEAP->lo_space());
202 for (HeapObject* o = iterator.Next(); o != NULL; o = iterator.Next()) {
203 // Fixed arrays are the only pointer-containing objects in large object
204 // space.
205 if (o->IsFixedArray()) {
206 MemoryChunk* chunk = MemoryChunk::FromAddress(o->address());
207 if (chunk->Contains(addr)) {
208 return chunk;
209 }
210 }
211 }
212 UNREACHABLE();
213 return NULL;
214 }
215
216
PointerChunkIterator(Heap * heap)217 PointerChunkIterator::PointerChunkIterator(Heap* heap)
218 : state_(kOldPointerState),
219 old_pointer_iterator_(heap->old_pointer_space()),
220 map_iterator_(heap->map_space()),
221 lo_iterator_(heap->lo_space()) { }
222
223
next_page()224 Page* Page::next_page() {
225 ASSERT(next_chunk()->owner() == owner());
226 return static_cast<Page*>(next_chunk());
227 }
228
229
prev_page()230 Page* Page::prev_page() {
231 ASSERT(prev_chunk()->owner() == owner());
232 return static_cast<Page*>(prev_chunk());
233 }
234
235
set_next_page(Page * page)236 void Page::set_next_page(Page* page) {
237 ASSERT(page->owner() == owner());
238 set_next_chunk(page);
239 }
240
241
set_prev_page(Page * page)242 void Page::set_prev_page(Page* page) {
243 ASSERT(page->owner() == owner());
244 set_prev_chunk(page);
245 }
246
247
248 // Try linear allocation in the page of alloc_info's allocation top. Does
249 // not contain slow case logic (e.g. move to the next page or try free list
250 // allocation) so it can be used by all the allocation functions and for all
251 // the paged spaces.
AllocateLinearly(int size_in_bytes)252 HeapObject* PagedSpace::AllocateLinearly(int size_in_bytes) {
253 Address current_top = allocation_info_.top;
254 Address new_top = current_top + size_in_bytes;
255 if (new_top > allocation_info_.limit) return NULL;
256
257 allocation_info_.top = new_top;
258 return HeapObject::FromAddress(current_top);
259 }
260
261
262 // Raw allocation.
AllocateRaw(int size_in_bytes)263 MaybeObject* PagedSpace::AllocateRaw(int size_in_bytes) {
264 HeapObject* object = AllocateLinearly(size_in_bytes);
265 if (object != NULL) {
266 if (identity() == CODE_SPACE) {
267 SkipList::Update(object->address(), size_in_bytes);
268 }
269 return object;
270 }
271
272 object = free_list_.Allocate(size_in_bytes);
273 if (object != NULL) {
274 if (identity() == CODE_SPACE) {
275 SkipList::Update(object->address(), size_in_bytes);
276 }
277 return object;
278 }
279
280 object = SlowAllocateRaw(size_in_bytes);
281 if (object != NULL) {
282 if (identity() == CODE_SPACE) {
283 SkipList::Update(object->address(), size_in_bytes);
284 }
285 return object;
286 }
287
288 return Failure::RetryAfterGC(identity());
289 }
290
291
292 // -----------------------------------------------------------------------------
293 // NewSpace
294
295
AllocateRaw(int size_in_bytes)296 MaybeObject* NewSpace::AllocateRaw(int size_in_bytes) {
297 Address old_top = allocation_info_.top;
298 if (allocation_info_.limit - old_top < size_in_bytes) {
299 return SlowAllocateRaw(size_in_bytes);
300 }
301
302 Object* obj = HeapObject::FromAddress(allocation_info_.top);
303 allocation_info_.top += size_in_bytes;
304 ASSERT_SEMISPACE_ALLOCATION_INFO(allocation_info_, to_space_);
305
306 return obj;
307 }
308
309
Initialize(Heap * heap,MemoryChunk * chunk)310 LargePage* LargePage::Initialize(Heap* heap, MemoryChunk* chunk) {
311 heap->incremental_marking()->SetOldSpacePageFlags(chunk);
312 return static_cast<LargePage*>(chunk);
313 }
314
315
Available()316 intptr_t LargeObjectSpace::Available() {
317 return ObjectSizeFor(heap()->isolate()->memory_allocator()->Available());
318 }
319
320
321 template <typename StringType>
ShrinkStringAtAllocationBoundary(String * string,int length)322 void NewSpace::ShrinkStringAtAllocationBoundary(String* string, int length) {
323 ASSERT(length <= string->length());
324 ASSERT(string->IsSeqString());
325 ASSERT(string->address() + StringType::SizeFor(string->length()) ==
326 allocation_info_.top);
327 Address old_top = allocation_info_.top;
328 allocation_info_.top =
329 string->address() + StringType::SizeFor(length);
330 string->set_length(length);
331 if (Marking::IsBlack(Marking::MarkBitFrom(string))) {
332 int delta = static_cast<int>(old_top - allocation_info_.top);
333 MemoryChunk::IncrementLiveBytesFromMutator(string->address(), -delta);
334 }
335 }
336
337
IsFreeListNode(HeapObject * object)338 bool FreeListNode::IsFreeListNode(HeapObject* object) {
339 Map* map = object->map();
340 Heap* heap = object->GetHeap();
341 return map == heap->raw_unchecked_free_space_map()
342 || map == heap->raw_unchecked_one_pointer_filler_map()
343 || map == heap->raw_unchecked_two_pointer_filler_map();
344 }
345
346 } } // namespace v8::internal
347
348 #endif // V8_SPACES_INL_H_
349