• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //==- CoreEngine.cpp - Path-Sensitive Dataflow Engine ------------*- C++ -*-//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 //  This file defines a generic engine for intraprocedural, path-sensitive,
11 //  dataflow analysis via graph reachability engine.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #define DEBUG_TYPE "CoreEngine"
16 
17 #include "clang/StaticAnalyzer/Core/PathSensitive/AnalysisManager.h"
18 #include "clang/StaticAnalyzer/Core/PathSensitive/CoreEngine.h"
19 #include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngine.h"
20 #include "clang/AST/Expr.h"
21 #include "clang/AST/StmtCXX.h"
22 #include "llvm/Support/Casting.h"
23 #include "llvm/ADT/DenseMap.h"
24 #include "llvm/ADT/Statistic.h"
25 
26 using namespace clang;
27 using namespace ento;
28 
29 STATISTIC(NumSteps,
30             "The # of steps executed.");
31 STATISTIC(NumReachedMaxSteps,
32             "The # of times we reached the max number of steps.");
33 STATISTIC(NumPathsExplored,
34             "The # of paths explored by the analyzer.");
35 
36 //===----------------------------------------------------------------------===//
37 // Worklist classes for exploration of reachable states.
38 //===----------------------------------------------------------------------===//
39 
~Visitor()40 WorkList::Visitor::~Visitor() {}
41 
42 namespace {
43 class DFS : public WorkList {
44   SmallVector<WorkListUnit,20> Stack;
45 public:
hasWork() const46   virtual bool hasWork() const {
47     return !Stack.empty();
48   }
49 
enqueue(const WorkListUnit & U)50   virtual void enqueue(const WorkListUnit& U) {
51     Stack.push_back(U);
52   }
53 
dequeue()54   virtual WorkListUnit dequeue() {
55     assert (!Stack.empty());
56     const WorkListUnit& U = Stack.back();
57     Stack.pop_back(); // This technically "invalidates" U, but we are fine.
58     return U;
59   }
60 
visitItemsInWorkList(Visitor & V)61   virtual bool visitItemsInWorkList(Visitor &V) {
62     for (SmallVectorImpl<WorkListUnit>::iterator
63          I = Stack.begin(), E = Stack.end(); I != E; ++I) {
64       if (V.visit(*I))
65         return true;
66     }
67     return false;
68   }
69 };
70 
71 class BFS : public WorkList {
72   std::deque<WorkListUnit> Queue;
73 public:
hasWork() const74   virtual bool hasWork() const {
75     return !Queue.empty();
76   }
77 
enqueue(const WorkListUnit & U)78   virtual void enqueue(const WorkListUnit& U) {
79     Queue.push_back(U);
80   }
81 
dequeue()82   virtual WorkListUnit dequeue() {
83     WorkListUnit U = Queue.front();
84     Queue.pop_front();
85     return U;
86   }
87 
visitItemsInWorkList(Visitor & V)88   virtual bool visitItemsInWorkList(Visitor &V) {
89     for (std::deque<WorkListUnit>::iterator
90          I = Queue.begin(), E = Queue.end(); I != E; ++I) {
91       if (V.visit(*I))
92         return true;
93     }
94     return false;
95   }
96 };
97 
98 } // end anonymous namespace
99 
100 // Place the dstor for WorkList here because it contains virtual member
101 // functions, and we the code for the dstor generated in one compilation unit.
~WorkList()102 WorkList::~WorkList() {}
103 
makeDFS()104 WorkList *WorkList::makeDFS() { return new DFS(); }
makeBFS()105 WorkList *WorkList::makeBFS() { return new BFS(); }
106 
107 namespace {
108   class BFSBlockDFSContents : public WorkList {
109     std::deque<WorkListUnit> Queue;
110     SmallVector<WorkListUnit,20> Stack;
111   public:
hasWork() const112     virtual bool hasWork() const {
113       return !Queue.empty() || !Stack.empty();
114     }
115 
enqueue(const WorkListUnit & U)116     virtual void enqueue(const WorkListUnit& U) {
117       if (isa<BlockEntrance>(U.getNode()->getLocation()))
118         Queue.push_front(U);
119       else
120         Stack.push_back(U);
121     }
122 
dequeue()123     virtual WorkListUnit dequeue() {
124       // Process all basic blocks to completion.
125       if (!Stack.empty()) {
126         const WorkListUnit& U = Stack.back();
127         Stack.pop_back(); // This technically "invalidates" U, but we are fine.
128         return U;
129       }
130 
131       assert(!Queue.empty());
132       // Don't use const reference.  The subsequent pop_back() might make it
133       // unsafe.
134       WorkListUnit U = Queue.front();
135       Queue.pop_front();
136       return U;
137     }
visitItemsInWorkList(Visitor & V)138     virtual bool visitItemsInWorkList(Visitor &V) {
139       for (SmallVectorImpl<WorkListUnit>::iterator
140            I = Stack.begin(), E = Stack.end(); I != E; ++I) {
141         if (V.visit(*I))
142           return true;
143       }
144       for (std::deque<WorkListUnit>::iterator
145            I = Queue.begin(), E = Queue.end(); I != E; ++I) {
146         if (V.visit(*I))
147           return true;
148       }
149       return false;
150     }
151 
152   };
153 } // end anonymous namespace
154 
makeBFSBlockDFSContents()155 WorkList* WorkList::makeBFSBlockDFSContents() {
156   return new BFSBlockDFSContents();
157 }
158 
159 //===----------------------------------------------------------------------===//
160 // Core analysis engine.
161 //===----------------------------------------------------------------------===//
162 
163 /// ExecuteWorkList - Run the worklist algorithm for a maximum number of steps.
ExecuteWorkList(const LocationContext * L,unsigned Steps,ProgramStateRef InitState)164 bool CoreEngine::ExecuteWorkList(const LocationContext *L, unsigned Steps,
165                                    ProgramStateRef InitState) {
166 
167   if (G->num_roots() == 0) { // Initialize the analysis by constructing
168     // the root if none exists.
169 
170     const CFGBlock *Entry = &(L->getCFG()->getEntry());
171 
172     assert (Entry->empty() &&
173             "Entry block must be empty.");
174 
175     assert (Entry->succ_size() == 1 &&
176             "Entry block must have 1 successor.");
177 
178     // Mark the entry block as visited.
179     FunctionSummaries->markVisitedBasicBlock(Entry->getBlockID(),
180                                              L->getDecl(),
181                                              L->getCFG()->getNumBlockIDs());
182 
183     // Get the solitary successor.
184     const CFGBlock *Succ = *(Entry->succ_begin());
185 
186     // Construct an edge representing the
187     // starting location in the function.
188     BlockEdge StartLoc(Entry, Succ, L);
189 
190     // Set the current block counter to being empty.
191     WList->setBlockCounter(BCounterFactory.GetEmptyCounter());
192 
193     if (!InitState)
194       // Generate the root.
195       generateNode(StartLoc, SubEng.getInitialState(L), 0);
196     else
197       generateNode(StartLoc, InitState, 0);
198   }
199 
200   // Check if we have a steps limit
201   bool UnlimitedSteps = Steps == 0;
202 
203   while (WList->hasWork()) {
204     if (!UnlimitedSteps) {
205       if (Steps == 0) {
206         NumReachedMaxSteps++;
207         break;
208       }
209       --Steps;
210     }
211 
212     NumSteps++;
213 
214     const WorkListUnit& WU = WList->dequeue();
215 
216     // Set the current block counter.
217     WList->setBlockCounter(WU.getBlockCounter());
218 
219     // Retrieve the node.
220     ExplodedNode *Node = WU.getNode();
221 
222     dispatchWorkItem(Node, Node->getLocation(), WU);
223   }
224   SubEng.processEndWorklist(hasWorkRemaining());
225   return WList->hasWork();
226 }
227 
dispatchWorkItem(ExplodedNode * Pred,ProgramPoint Loc,const WorkListUnit & WU)228 void CoreEngine::dispatchWorkItem(ExplodedNode* Pred, ProgramPoint Loc,
229                                   const WorkListUnit& WU) {
230   // Dispatch on the location type.
231   switch (Loc.getKind()) {
232     case ProgramPoint::BlockEdgeKind:
233       HandleBlockEdge(cast<BlockEdge>(Loc), Pred);
234       break;
235 
236     case ProgramPoint::BlockEntranceKind:
237       HandleBlockEntrance(cast<BlockEntrance>(Loc), Pred);
238       break;
239 
240     case ProgramPoint::BlockExitKind:
241       assert (false && "BlockExit location never occur in forward analysis.");
242       break;
243 
244     case ProgramPoint::CallEnterKind: {
245       CallEnter CEnter = cast<CallEnter>(Loc);
246       SubEng.processCallEnter(CEnter, Pred);
247       break;
248     }
249 
250     case ProgramPoint::CallExitBeginKind:
251       SubEng.processCallExit(Pred);
252       break;
253 
254     case ProgramPoint::EpsilonKind: {
255       assert(Pred->hasSinglePred() &&
256              "Assume epsilon has exactly one predecessor by construction");
257       ExplodedNode *PNode = Pred->getFirstPred();
258       dispatchWorkItem(Pred, PNode->getLocation(), WU);
259       break;
260     }
261     default:
262       assert(isa<PostStmt>(Loc) ||
263              isa<PostInitializer>(Loc) ||
264              isa<PostImplicitCall>(Loc) ||
265              isa<CallExitEnd>(Loc));
266       HandlePostStmt(WU.getBlock(), WU.getIndex(), Pred);
267       break;
268   }
269 }
270 
ExecuteWorkListWithInitialState(const LocationContext * L,unsigned Steps,ProgramStateRef InitState,ExplodedNodeSet & Dst)271 bool CoreEngine::ExecuteWorkListWithInitialState(const LocationContext *L,
272                                                  unsigned Steps,
273                                                  ProgramStateRef InitState,
274                                                  ExplodedNodeSet &Dst) {
275   bool DidNotFinish = ExecuteWorkList(L, Steps, InitState);
276   for (ExplodedGraph::eop_iterator I = G->eop_begin(),
277                                    E = G->eop_end(); I != E; ++I) {
278     Dst.Add(*I);
279   }
280   return DidNotFinish;
281 }
282 
HandleBlockEdge(const BlockEdge & L,ExplodedNode * Pred)283 void CoreEngine::HandleBlockEdge(const BlockEdge &L, ExplodedNode *Pred) {
284 
285   const CFGBlock *Blk = L.getDst();
286   NodeBuilderContext BuilderCtx(*this, Blk, Pred);
287 
288   // Mark this block as visited.
289   const LocationContext *LC = Pred->getLocationContext();
290   FunctionSummaries->markVisitedBasicBlock(Blk->getBlockID(),
291                                            LC->getDecl(),
292                                            LC->getCFG()->getNumBlockIDs());
293 
294   // Check if we are entering the EXIT block.
295   if (Blk == &(L.getLocationContext()->getCFG()->getExit())) {
296 
297     assert (L.getLocationContext()->getCFG()->getExit().size() == 0
298             && "EXIT block cannot contain Stmts.");
299 
300     // Process the final state transition.
301     SubEng.processEndOfFunction(BuilderCtx);
302 
303     // This path is done. Don't enqueue any more nodes.
304     return;
305   }
306 
307   // Call into the SubEngine to process entering the CFGBlock.
308   ExplodedNodeSet dstNodes;
309   BlockEntrance BE(Blk, Pred->getLocationContext());
310   NodeBuilderWithSinks nodeBuilder(Pred, dstNodes, BuilderCtx, BE);
311   SubEng.processCFGBlockEntrance(L, nodeBuilder);
312 
313   // Auto-generate a node.
314   if (!nodeBuilder.hasGeneratedNodes()) {
315     nodeBuilder.generateNode(Pred->State, Pred);
316   }
317 
318   // Enqueue nodes onto the worklist.
319   enqueue(dstNodes);
320 }
321 
HandleBlockEntrance(const BlockEntrance & L,ExplodedNode * Pred)322 void CoreEngine::HandleBlockEntrance(const BlockEntrance &L,
323                                        ExplodedNode *Pred) {
324 
325   // Increment the block counter.
326   const LocationContext *LC = Pred->getLocationContext();
327   unsigned BlockId = L.getBlock()->getBlockID();
328   BlockCounter Counter = WList->getBlockCounter();
329   Counter = BCounterFactory.IncrementCount(Counter, LC->getCurrentStackFrame(),
330                                            BlockId);
331   WList->setBlockCounter(Counter);
332 
333   // Process the entrance of the block.
334   if (CFGElement E = L.getFirstElement()) {
335     NodeBuilderContext Ctx(*this, L.getBlock(), Pred);
336     SubEng.processCFGElement(E, Pred, 0, &Ctx);
337   }
338   else
339     HandleBlockExit(L.getBlock(), Pred);
340 }
341 
HandleBlockExit(const CFGBlock * B,ExplodedNode * Pred)342 void CoreEngine::HandleBlockExit(const CFGBlock * B, ExplodedNode *Pred) {
343 
344   if (const Stmt *Term = B->getTerminator()) {
345     switch (Term->getStmtClass()) {
346       default:
347         llvm_unreachable("Analysis for this terminator not implemented.");
348 
349       case Stmt::BinaryOperatorClass: // '&&' and '||'
350         HandleBranch(cast<BinaryOperator>(Term)->getLHS(), Term, B, Pred);
351         return;
352 
353       case Stmt::BinaryConditionalOperatorClass:
354       case Stmt::ConditionalOperatorClass:
355         HandleBranch(cast<AbstractConditionalOperator>(Term)->getCond(),
356                      Term, B, Pred);
357         return;
358 
359         // FIXME: Use constant-folding in CFG construction to simplify this
360         // case.
361 
362       case Stmt::ChooseExprClass:
363         HandleBranch(cast<ChooseExpr>(Term)->getCond(), Term, B, Pred);
364         return;
365 
366       case Stmt::CXXTryStmtClass: {
367         // Generate a node for each of the successors.
368         // Our logic for EH analysis can certainly be improved.
369         for (CFGBlock::const_succ_iterator it = B->succ_begin(),
370              et = B->succ_end(); it != et; ++it) {
371           if (const CFGBlock *succ = *it) {
372             generateNode(BlockEdge(B, succ, Pred->getLocationContext()),
373                          Pred->State, Pred);
374           }
375         }
376         return;
377       }
378 
379       case Stmt::DoStmtClass:
380         HandleBranch(cast<DoStmt>(Term)->getCond(), Term, B, Pred);
381         return;
382 
383       case Stmt::CXXForRangeStmtClass:
384         HandleBranch(cast<CXXForRangeStmt>(Term)->getCond(), Term, B, Pred);
385         return;
386 
387       case Stmt::ForStmtClass:
388         HandleBranch(cast<ForStmt>(Term)->getCond(), Term, B, Pred);
389         return;
390 
391       case Stmt::ContinueStmtClass:
392       case Stmt::BreakStmtClass:
393       case Stmt::GotoStmtClass:
394         break;
395 
396       case Stmt::IfStmtClass:
397         HandleBranch(cast<IfStmt>(Term)->getCond(), Term, B, Pred);
398         return;
399 
400       case Stmt::IndirectGotoStmtClass: {
401         // Only 1 successor: the indirect goto dispatch block.
402         assert (B->succ_size() == 1);
403 
404         IndirectGotoNodeBuilder
405            builder(Pred, B, cast<IndirectGotoStmt>(Term)->getTarget(),
406                    *(B->succ_begin()), this);
407 
408         SubEng.processIndirectGoto(builder);
409         return;
410       }
411 
412       case Stmt::ObjCForCollectionStmtClass: {
413         // In the case of ObjCForCollectionStmt, it appears twice in a CFG:
414         //
415         //  (1) inside a basic block, which represents the binding of the
416         //      'element' variable to a value.
417         //  (2) in a terminator, which represents the branch.
418         //
419         // For (1), subengines will bind a value (i.e., 0 or 1) indicating
420         // whether or not collection contains any more elements.  We cannot
421         // just test to see if the element is nil because a container can
422         // contain nil elements.
423         HandleBranch(Term, Term, B, Pred);
424         return;
425       }
426 
427       case Stmt::SwitchStmtClass: {
428         SwitchNodeBuilder builder(Pred, B, cast<SwitchStmt>(Term)->getCond(),
429                                     this);
430 
431         SubEng.processSwitch(builder);
432         return;
433       }
434 
435       case Stmt::WhileStmtClass:
436         HandleBranch(cast<WhileStmt>(Term)->getCond(), Term, B, Pred);
437         return;
438     }
439   }
440 
441   assert (B->succ_size() == 1 &&
442           "Blocks with no terminator should have at most 1 successor.");
443 
444   generateNode(BlockEdge(B, *(B->succ_begin()), Pred->getLocationContext()),
445                Pred->State, Pred);
446 }
447 
HandleBranch(const Stmt * Cond,const Stmt * Term,const CFGBlock * B,ExplodedNode * Pred)448 void CoreEngine::HandleBranch(const Stmt *Cond, const Stmt *Term,
449                                 const CFGBlock * B, ExplodedNode *Pred) {
450   assert(B->succ_size() == 2);
451   NodeBuilderContext Ctx(*this, B, Pred);
452   ExplodedNodeSet Dst;
453   SubEng.processBranch(Cond, Term, Ctx, Pred, Dst,
454                        *(B->succ_begin()), *(B->succ_begin()+1));
455   // Enqueue the new frontier onto the worklist.
456   enqueue(Dst);
457 }
458 
HandlePostStmt(const CFGBlock * B,unsigned StmtIdx,ExplodedNode * Pred)459 void CoreEngine::HandlePostStmt(const CFGBlock *B, unsigned StmtIdx,
460                                   ExplodedNode *Pred) {
461   assert(B);
462   assert(!B->empty());
463 
464   if (StmtIdx == B->size())
465     HandleBlockExit(B, Pred);
466   else {
467     NodeBuilderContext Ctx(*this, B, Pred);
468     SubEng.processCFGElement((*B)[StmtIdx], Pred, StmtIdx, &Ctx);
469   }
470 }
471 
472 /// generateNode - Utility method to generate nodes, hook up successors,
473 ///  and add nodes to the worklist.
generateNode(const ProgramPoint & Loc,ProgramStateRef State,ExplodedNode * Pred)474 void CoreEngine::generateNode(const ProgramPoint &Loc,
475                               ProgramStateRef State,
476                               ExplodedNode *Pred) {
477 
478   bool IsNew;
479   ExplodedNode *Node = G->getNode(Loc, State, false, &IsNew);
480 
481   if (Pred)
482     Node->addPredecessor(Pred, *G);  // Link 'Node' with its predecessor.
483   else {
484     assert (IsNew);
485     G->addRoot(Node);  // 'Node' has no predecessor.  Make it a root.
486   }
487 
488   // Only add 'Node' to the worklist if it was freshly generated.
489   if (IsNew) WList->enqueue(Node);
490 }
491 
enqueueStmtNode(ExplodedNode * N,const CFGBlock * Block,unsigned Idx)492 void CoreEngine::enqueueStmtNode(ExplodedNode *N,
493                                  const CFGBlock *Block, unsigned Idx) {
494   assert(Block);
495   assert (!N->isSink());
496 
497   // Check if this node entered a callee.
498   if (isa<CallEnter>(N->getLocation())) {
499     // Still use the index of the CallExpr. It's needed to create the callee
500     // StackFrameContext.
501     WList->enqueue(N, Block, Idx);
502     return;
503   }
504 
505   // Do not create extra nodes. Move to the next CFG element.
506   if (isa<PostInitializer>(N->getLocation()) ||
507       isa<PostImplicitCall>(N->getLocation())) {
508     WList->enqueue(N, Block, Idx+1);
509     return;
510   }
511 
512   if (isa<EpsilonPoint>(N->getLocation())) {
513     WList->enqueue(N, Block, Idx);
514     return;
515   }
516 
517   // At this point, we know we're processing a normal statement.
518   CFGStmt CS = cast<CFGStmt>((*Block)[Idx]);
519   PostStmt Loc(CS.getStmt(), N->getLocationContext());
520 
521   if (Loc == N->getLocation()) {
522     // Note: 'N' should be a fresh node because otherwise it shouldn't be
523     // a member of Deferred.
524     WList->enqueue(N, Block, Idx+1);
525     return;
526   }
527 
528   bool IsNew;
529   ExplodedNode *Succ = G->getNode(Loc, N->getState(), false, &IsNew);
530   Succ->addPredecessor(N, *G);
531 
532   if (IsNew)
533     WList->enqueue(Succ, Block, Idx+1);
534 }
535 
generateCallExitBeginNode(ExplodedNode * N)536 ExplodedNode *CoreEngine::generateCallExitBeginNode(ExplodedNode *N) {
537   // Create a CallExitBegin node and enqueue it.
538   const StackFrameContext *LocCtx
539                          = cast<StackFrameContext>(N->getLocationContext());
540 
541   // Use the callee location context.
542   CallExitBegin Loc(LocCtx);
543 
544   bool isNew;
545   ExplodedNode *Node = G->getNode(Loc, N->getState(), false, &isNew);
546   Node->addPredecessor(N, *G);
547   return isNew ? Node : 0;
548 }
549 
550 
enqueue(ExplodedNodeSet & Set)551 void CoreEngine::enqueue(ExplodedNodeSet &Set) {
552   for (ExplodedNodeSet::iterator I = Set.begin(),
553                                  E = Set.end(); I != E; ++I) {
554     WList->enqueue(*I);
555   }
556 }
557 
enqueue(ExplodedNodeSet & Set,const CFGBlock * Block,unsigned Idx)558 void CoreEngine::enqueue(ExplodedNodeSet &Set,
559                          const CFGBlock *Block, unsigned Idx) {
560   for (ExplodedNodeSet::iterator I = Set.begin(),
561                                  E = Set.end(); I != E; ++I) {
562     enqueueStmtNode(*I, Block, Idx);
563   }
564 }
565 
enqueueEndOfFunction(ExplodedNodeSet & Set)566 void CoreEngine::enqueueEndOfFunction(ExplodedNodeSet &Set) {
567   for (ExplodedNodeSet::iterator I = Set.begin(), E = Set.end(); I != E; ++I) {
568     ExplodedNode *N = *I;
569     // If we are in an inlined call, generate CallExitBegin node.
570     if (N->getLocationContext()->getParent()) {
571       N = generateCallExitBeginNode(N);
572       if (N)
573         WList->enqueue(N);
574     } else {
575       // TODO: We should run remove dead bindings here.
576       G->addEndOfPath(N);
577       NumPathsExplored++;
578     }
579   }
580 }
581 
582 
anchor()583 void NodeBuilder::anchor() { }
584 
generateNodeImpl(const ProgramPoint & Loc,ProgramStateRef State,ExplodedNode * FromN,bool MarkAsSink)585 ExplodedNode* NodeBuilder::generateNodeImpl(const ProgramPoint &Loc,
586                                             ProgramStateRef State,
587                                             ExplodedNode *FromN,
588                                             bool MarkAsSink) {
589   HasGeneratedNodes = true;
590   bool IsNew;
591   ExplodedNode *N = C.Eng.G->getNode(Loc, State, MarkAsSink, &IsNew);
592   N->addPredecessor(FromN, *C.Eng.G);
593   Frontier.erase(FromN);
594 
595   if (!IsNew)
596     return 0;
597 
598   if (!MarkAsSink)
599     Frontier.Add(N);
600 
601   return N;
602 }
603 
anchor()604 void NodeBuilderWithSinks::anchor() { }
605 
~StmtNodeBuilder()606 StmtNodeBuilder::~StmtNodeBuilder() {
607   if (EnclosingBldr)
608     for (ExplodedNodeSet::iterator I = Frontier.begin(),
609                                    E = Frontier.end(); I != E; ++I )
610       EnclosingBldr->addNodes(*I);
611 }
612 
anchor()613 void BranchNodeBuilder::anchor() { }
614 
generateNode(ProgramStateRef State,bool branch,ExplodedNode * NodePred)615 ExplodedNode *BranchNodeBuilder::generateNode(ProgramStateRef State,
616                                               bool branch,
617                                               ExplodedNode *NodePred) {
618   // If the branch has been marked infeasible we should not generate a node.
619   if (!isFeasible(branch))
620     return NULL;
621 
622   ProgramPoint Loc = BlockEdge(C.Block, branch ? DstT:DstF,
623                                NodePred->getLocationContext());
624   ExplodedNode *Succ = generateNodeImpl(Loc, State, NodePred);
625   return Succ;
626 }
627 
628 ExplodedNode*
generateNode(const iterator & I,ProgramStateRef St,bool IsSink)629 IndirectGotoNodeBuilder::generateNode(const iterator &I,
630                                       ProgramStateRef St,
631                                       bool IsSink) {
632   bool IsNew;
633   ExplodedNode *Succ = Eng.G->getNode(BlockEdge(Src, I.getBlock(),
634                                       Pred->getLocationContext()), St,
635                                       IsSink, &IsNew);
636   Succ->addPredecessor(Pred, *Eng.G);
637 
638   if (!IsNew)
639     return 0;
640 
641   if (!IsSink)
642     Eng.WList->enqueue(Succ);
643 
644   return Succ;
645 }
646 
647 
648 ExplodedNode*
generateCaseStmtNode(const iterator & I,ProgramStateRef St)649 SwitchNodeBuilder::generateCaseStmtNode(const iterator &I,
650                                         ProgramStateRef St) {
651 
652   bool IsNew;
653   ExplodedNode *Succ = Eng.G->getNode(BlockEdge(Src, I.getBlock(),
654                                       Pred->getLocationContext()), St,
655                                       false, &IsNew);
656   Succ->addPredecessor(Pred, *Eng.G);
657   if (!IsNew)
658     return 0;
659 
660   Eng.WList->enqueue(Succ);
661   return Succ;
662 }
663 
664 
665 ExplodedNode*
generateDefaultCaseNode(ProgramStateRef St,bool IsSink)666 SwitchNodeBuilder::generateDefaultCaseNode(ProgramStateRef St,
667                                            bool IsSink) {
668   // Get the block for the default case.
669   assert(Src->succ_rbegin() != Src->succ_rend());
670   CFGBlock *DefaultBlock = *Src->succ_rbegin();
671 
672   // Sanity check for default blocks that are unreachable and not caught
673   // by earlier stages.
674   if (!DefaultBlock)
675     return NULL;
676 
677   bool IsNew;
678   ExplodedNode *Succ = Eng.G->getNode(BlockEdge(Src, DefaultBlock,
679                                       Pred->getLocationContext()), St,
680                                       IsSink, &IsNew);
681   Succ->addPredecessor(Pred, *Eng.G);
682 
683   if (!IsNew)
684     return 0;
685 
686   if (!IsSink)
687     Eng.WList->enqueue(Succ);
688 
689   return Succ;
690 }
691