1 // Copyright 2011 the V8 project authors. All rights reserved.
2 // Redistribution and use in source and binary forms, with or without
3 // modification, are permitted provided that the following conditions are
4 // met:
5 //
6 // * Redistributions of source code must retain the above copyright
7 // notice, this list of conditions and the following disclaimer.
8 // * Redistributions in binary form must reproduce the above
9 // copyright notice, this list of conditions and the following
10 // disclaimer in the documentation and/or other materials provided
11 // with the distribution.
12 // * Neither the name of Google Inc. nor the names of its
13 // contributors may be used to endorse or promote products derived
14 // from this software without specific prior written permission.
15 //
16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
28 #include "v8.h"
29
30 #include "accessors.h"
31 #include "api.h"
32 #include "arguments.h"
33 #include "bootstrapper.h"
34 #include "compiler.h"
35 #include "debug.h"
36 #include "execution.h"
37 #include "global-handles.h"
38 #include "natives.h"
39 #include "runtime.h"
40 #include "string-search.h"
41 #include "stub-cache.h"
42 #include "vm-state-inl.h"
43
44 namespace v8 {
45 namespace internal {
46
47
NumberOfHandles()48 int HandleScope::NumberOfHandles() {
49 Isolate* isolate = Isolate::Current();
50 HandleScopeImplementer* impl = isolate->handle_scope_implementer();
51 int n = impl->blocks()->length();
52 if (n == 0) return 0;
53 return ((n - 1) * kHandleBlockSize) + static_cast<int>(
54 (isolate->handle_scope_data()->next - impl->blocks()->last()));
55 }
56
57
Extend()58 Object** HandleScope::Extend() {
59 Isolate* isolate = Isolate::Current();
60 v8::ImplementationUtilities::HandleScopeData* current =
61 isolate->handle_scope_data();
62
63 Object** result = current->next;
64
65 ASSERT(result == current->limit);
66 // Make sure there's at least one scope on the stack and that the
67 // top of the scope stack isn't a barrier.
68 if (current->level == 0) {
69 Utils::ReportApiFailure("v8::HandleScope::CreateHandle()",
70 "Cannot create a handle without a HandleScope");
71 return NULL;
72 }
73 HandleScopeImplementer* impl = isolate->handle_scope_implementer();
74 // If there's more room in the last block, we use that. This is used
75 // for fast creation of scopes after scope barriers.
76 if (!impl->blocks()->is_empty()) {
77 Object** limit = &impl->blocks()->last()[kHandleBlockSize];
78 if (current->limit != limit) {
79 current->limit = limit;
80 ASSERT(limit - current->next < kHandleBlockSize);
81 }
82 }
83
84 // If we still haven't found a slot for the handle, we extend the
85 // current handle scope by allocating a new handle block.
86 if (result == current->limit) {
87 // If there's a spare block, use it for growing the current scope.
88 result = impl->GetSpareOrNewBlock();
89 // Add the extension to the global list of blocks, but count the
90 // extension as part of the current scope.
91 impl->blocks()->Add(result);
92 current->limit = &result[kHandleBlockSize];
93 }
94
95 return result;
96 }
97
98
DeleteExtensions(Isolate * isolate)99 void HandleScope::DeleteExtensions(Isolate* isolate) {
100 ASSERT(isolate == Isolate::Current());
101 v8::ImplementationUtilities::HandleScopeData* current =
102 isolate->handle_scope_data();
103 isolate->handle_scope_implementer()->DeleteExtensions(current->limit);
104 }
105
106
ZapRange(Object ** start,Object ** end)107 void HandleScope::ZapRange(Object** start, Object** end) {
108 ASSERT(end - start <= kHandleBlockSize);
109 for (Object** p = start; p != end; p++) {
110 *reinterpret_cast<Address*>(p) = v8::internal::kHandleZapValue;
111 }
112 }
113
114
current_level_address()115 Address HandleScope::current_level_address() {
116 return reinterpret_cast<Address>(
117 &Isolate::Current()->handle_scope_data()->level);
118 }
119
120
current_next_address()121 Address HandleScope::current_next_address() {
122 return reinterpret_cast<Address>(
123 &Isolate::Current()->handle_scope_data()->next);
124 }
125
126
current_limit_address()127 Address HandleScope::current_limit_address() {
128 return reinterpret_cast<Address>(
129 &Isolate::Current()->handle_scope_data()->limit);
130 }
131
132
AddKeysFromJSArray(Handle<FixedArray> content,Handle<JSArray> array)133 Handle<FixedArray> AddKeysFromJSArray(Handle<FixedArray> content,
134 Handle<JSArray> array) {
135 CALL_HEAP_FUNCTION(content->GetIsolate(),
136 content->AddKeysFromJSArray(*array), FixedArray);
137 }
138
139
UnionOfKeys(Handle<FixedArray> first,Handle<FixedArray> second)140 Handle<FixedArray> UnionOfKeys(Handle<FixedArray> first,
141 Handle<FixedArray> second) {
142 CALL_HEAP_FUNCTION(first->GetIsolate(),
143 first->UnionOfKeys(*second), FixedArray);
144 }
145
146
ReinitializeJSGlobalProxy(Handle<JSFunction> constructor,Handle<JSGlobalProxy> global)147 Handle<JSGlobalProxy> ReinitializeJSGlobalProxy(
148 Handle<JSFunction> constructor,
149 Handle<JSGlobalProxy> global) {
150 CALL_HEAP_FUNCTION(
151 constructor->GetIsolate(),
152 constructor->GetHeap()->ReinitializeJSGlobalProxy(*constructor, *global),
153 JSGlobalProxy);
154 }
155
156
SetExpectedNofProperties(Handle<JSFunction> func,int nof)157 void SetExpectedNofProperties(Handle<JSFunction> func, int nof) {
158 // If objects constructed from this function exist then changing
159 // 'estimated_nof_properties' is dangerous since the previous value might
160 // have been compiled into the fast construct stub. More over, the inobject
161 // slack tracking logic might have adjusted the previous value, so even
162 // passing the same value is risky.
163 if (func->shared()->live_objects_may_exist()) return;
164
165 func->shared()->set_expected_nof_properties(nof);
166 if (func->has_initial_map()) {
167 Handle<Map> new_initial_map =
168 func->GetIsolate()->factory()->CopyMapDropTransitions(
169 Handle<Map>(func->initial_map()));
170 new_initial_map->set_unused_property_fields(nof);
171 func->set_initial_map(*new_initial_map);
172 }
173 }
174
175
SetPrototypeProperty(Handle<JSFunction> func,Handle<JSObject> value)176 void SetPrototypeProperty(Handle<JSFunction> func, Handle<JSObject> value) {
177 CALL_HEAP_FUNCTION_VOID(func->GetIsolate(),
178 func->SetPrototype(*value));
179 }
180
181
ExpectedNofPropertiesFromEstimate(int estimate)182 static int ExpectedNofPropertiesFromEstimate(int estimate) {
183 // If no properties are added in the constructor, they are more likely
184 // to be added later.
185 if (estimate == 0) estimate = 2;
186
187 // We do not shrink objects that go into a snapshot (yet), so we adjust
188 // the estimate conservatively.
189 if (Serializer::enabled()) return estimate + 2;
190
191 // Inobject slack tracking will reclaim redundant inobject space later,
192 // so we can afford to adjust the estimate generously.
193 if (FLAG_clever_optimizations) {
194 return estimate + 8;
195 } else {
196 return estimate + 3;
197 }
198 }
199
200
SetExpectedNofPropertiesFromEstimate(Handle<SharedFunctionInfo> shared,int estimate)201 void SetExpectedNofPropertiesFromEstimate(Handle<SharedFunctionInfo> shared,
202 int estimate) {
203 // See the comment in SetExpectedNofProperties.
204 if (shared->live_objects_may_exist()) return;
205
206 shared->set_expected_nof_properties(
207 ExpectedNofPropertiesFromEstimate(estimate));
208 }
209
210
FlattenString(Handle<String> string)211 void FlattenString(Handle<String> string) {
212 CALL_HEAP_FUNCTION_VOID(string->GetIsolate(), string->TryFlatten());
213 }
214
215
FlattenGetString(Handle<String> string)216 Handle<String> FlattenGetString(Handle<String> string) {
217 CALL_HEAP_FUNCTION(string->GetIsolate(), string->TryFlatten(), String);
218 }
219
220
SetPrototype(Handle<JSFunction> function,Handle<Object> prototype)221 Handle<Object> SetPrototype(Handle<JSFunction> function,
222 Handle<Object> prototype) {
223 ASSERT(function->should_have_prototype());
224 CALL_HEAP_FUNCTION(function->GetIsolate(),
225 Accessors::FunctionSetPrototype(*function,
226 *prototype,
227 NULL),
228 Object);
229 }
230
231
SetProperty(Handle<Object> object,Handle<Object> key,Handle<Object> value,PropertyAttributes attributes,StrictModeFlag strict_mode)232 Handle<Object> SetProperty(Handle<Object> object,
233 Handle<Object> key,
234 Handle<Object> value,
235 PropertyAttributes attributes,
236 StrictModeFlag strict_mode) {
237 Isolate* isolate = Isolate::Current();
238 CALL_HEAP_FUNCTION(
239 isolate,
240 Runtime::SetObjectProperty(
241 isolate, object, key, value, attributes, strict_mode),
242 Object);
243 }
244
245
ForceSetProperty(Handle<JSObject> object,Handle<Object> key,Handle<Object> value,PropertyAttributes attributes)246 Handle<Object> ForceSetProperty(Handle<JSObject> object,
247 Handle<Object> key,
248 Handle<Object> value,
249 PropertyAttributes attributes) {
250 Isolate* isolate = object->GetIsolate();
251 CALL_HEAP_FUNCTION(
252 isolate,
253 Runtime::ForceSetObjectProperty(
254 isolate, object, key, value, attributes),
255 Object);
256 }
257
258
ForceDeleteProperty(Handle<JSObject> object,Handle<Object> key)259 Handle<Object> ForceDeleteProperty(Handle<JSObject> object,
260 Handle<Object> key) {
261 Isolate* isolate = object->GetIsolate();
262 CALL_HEAP_FUNCTION(isolate,
263 Runtime::ForceDeleteObjectProperty(isolate, object, key),
264 Object);
265 }
266
267
SetPropertyWithInterceptor(Handle<JSObject> object,Handle<String> key,Handle<Object> value,PropertyAttributes attributes,StrictModeFlag strict_mode)268 Handle<Object> SetPropertyWithInterceptor(Handle<JSObject> object,
269 Handle<String> key,
270 Handle<Object> value,
271 PropertyAttributes attributes,
272 StrictModeFlag strict_mode) {
273 CALL_HEAP_FUNCTION(object->GetIsolate(),
274 object->SetPropertyWithInterceptor(*key,
275 *value,
276 attributes,
277 strict_mode),
278 Object);
279 }
280
281
GetProperty(Handle<JSReceiver> obj,const char * name)282 Handle<Object> GetProperty(Handle<JSReceiver> obj,
283 const char* name) {
284 Isolate* isolate = obj->GetIsolate();
285 Handle<String> str = isolate->factory()->LookupAsciiSymbol(name);
286 CALL_HEAP_FUNCTION(isolate, obj->GetProperty(*str), Object);
287 }
288
289
GetProperty(Handle<Object> obj,Handle<Object> key)290 Handle<Object> GetProperty(Handle<Object> obj,
291 Handle<Object> key) {
292 Isolate* isolate = Isolate::Current();
293 CALL_HEAP_FUNCTION(isolate,
294 Runtime::GetObjectProperty(isolate, obj, key), Object);
295 }
296
297
GetPropertyWithInterceptor(Handle<JSObject> receiver,Handle<JSObject> holder,Handle<String> name,PropertyAttributes * attributes)298 Handle<Object> GetPropertyWithInterceptor(Handle<JSObject> receiver,
299 Handle<JSObject> holder,
300 Handle<String> name,
301 PropertyAttributes* attributes) {
302 Isolate* isolate = receiver->GetIsolate();
303 CALL_HEAP_FUNCTION(isolate,
304 holder->GetPropertyWithInterceptor(*receiver,
305 *name,
306 attributes),
307 Object);
308 }
309
310
SetPrototype(Handle<JSObject> obj,Handle<Object> value)311 Handle<Object> SetPrototype(Handle<JSObject> obj, Handle<Object> value) {
312 const bool skip_hidden_prototypes = false;
313 CALL_HEAP_FUNCTION(obj->GetIsolate(),
314 obj->SetPrototype(*value, skip_hidden_prototypes), Object);
315 }
316
317
LookupSingleCharacterStringFromCode(uint32_t index)318 Handle<Object> LookupSingleCharacterStringFromCode(uint32_t index) {
319 Isolate* isolate = Isolate::Current();
320 CALL_HEAP_FUNCTION(
321 isolate,
322 isolate->heap()->LookupSingleCharacterStringFromCode(index), Object);
323 }
324
325
SubString(Handle<String> str,int start,int end,PretenureFlag pretenure)326 Handle<String> SubString(Handle<String> str,
327 int start,
328 int end,
329 PretenureFlag pretenure) {
330 CALL_HEAP_FUNCTION(str->GetIsolate(),
331 str->SubString(start, end, pretenure), String);
332 }
333
334
Copy(Handle<JSObject> obj)335 Handle<JSObject> Copy(Handle<JSObject> obj) {
336 Isolate* isolate = obj->GetIsolate();
337 CALL_HEAP_FUNCTION(isolate,
338 isolate->heap()->CopyJSObject(*obj), JSObject);
339 }
340
341
SetAccessor(Handle<JSObject> obj,Handle<AccessorInfo> info)342 Handle<Object> SetAccessor(Handle<JSObject> obj, Handle<AccessorInfo> info) {
343 CALL_HEAP_FUNCTION(obj->GetIsolate(), obj->DefineAccessor(*info), Object);
344 }
345
346
347 // Wrappers for scripts are kept alive and cached in weak global
348 // handles referred from foreign objects held by the scripts as long as
349 // they are used. When they are not used anymore, the garbage
350 // collector will call the weak callback on the global handle
351 // associated with the wrapper and get rid of both the wrapper and the
352 // handle.
ClearWrapperCache(Persistent<v8::Value> handle,void *)353 static void ClearWrapperCache(Persistent<v8::Value> handle, void*) {
354 Handle<Object> cache = Utils::OpenHandle(*handle);
355 JSValue* wrapper = JSValue::cast(*cache);
356 Foreign* foreign = Script::cast(wrapper->value())->wrapper();
357 ASSERT(foreign->foreign_address() ==
358 reinterpret_cast<Address>(cache.location()));
359 foreign->set_foreign_address(0);
360 Isolate* isolate = Isolate::Current();
361 isolate->global_handles()->Destroy(cache.location());
362 isolate->counters()->script_wrappers()->Decrement();
363 }
364
365
GetScriptWrapper(Handle<Script> script)366 Handle<JSValue> GetScriptWrapper(Handle<Script> script) {
367 if (script->wrapper()->foreign_address() != NULL) {
368 // Return the script wrapper directly from the cache.
369 return Handle<JSValue>(
370 reinterpret_cast<JSValue**>(script->wrapper()->foreign_address()));
371 }
372 Isolate* isolate = Isolate::Current();
373 // Construct a new script wrapper.
374 isolate->counters()->script_wrappers()->Increment();
375 Handle<JSFunction> constructor = isolate->script_function();
376 Handle<JSValue> result =
377 Handle<JSValue>::cast(isolate->factory()->NewJSObject(constructor));
378 result->set_value(*script);
379
380 // Create a new weak global handle and use it to cache the wrapper
381 // for future use. The cache will automatically be cleared by the
382 // garbage collector when it is not used anymore.
383 Handle<Object> handle = isolate->global_handles()->Create(*result);
384 isolate->global_handles()->MakeWeak(handle.location(), NULL,
385 &ClearWrapperCache);
386 script->wrapper()->set_foreign_address(
387 reinterpret_cast<Address>(handle.location()));
388 return result;
389 }
390
391
392 // Init line_ends array with code positions of line ends inside script
393 // source.
InitScriptLineEnds(Handle<Script> script)394 void InitScriptLineEnds(Handle<Script> script) {
395 if (!script->line_ends()->IsUndefined()) return;
396
397 Isolate* isolate = script->GetIsolate();
398
399 if (!script->source()->IsString()) {
400 ASSERT(script->source()->IsUndefined());
401 Handle<FixedArray> empty = isolate->factory()->NewFixedArray(0);
402 script->set_line_ends(*empty);
403 ASSERT(script->line_ends()->IsFixedArray());
404 return;
405 }
406
407 Handle<String> src(String::cast(script->source()), isolate);
408
409 Handle<FixedArray> array = CalculateLineEnds(src, true);
410
411 if (*array != isolate->heap()->empty_fixed_array()) {
412 array->set_map(isolate->heap()->fixed_cow_array_map());
413 }
414
415 script->set_line_ends(*array);
416 ASSERT(script->line_ends()->IsFixedArray());
417 }
418
419
420 template <typename SourceChar>
CalculateLineEnds(Isolate * isolate,List<int> * line_ends,Vector<const SourceChar> src,bool with_last_line)421 static void CalculateLineEnds(Isolate* isolate,
422 List<int>* line_ends,
423 Vector<const SourceChar> src,
424 bool with_last_line) {
425 const int src_len = src.length();
426 StringSearch<char, SourceChar> search(isolate, CStrVector("\n"));
427
428 // Find and record line ends.
429 int position = 0;
430 while (position != -1 && position < src_len) {
431 position = search.Search(src, position);
432 if (position != -1) {
433 line_ends->Add(position);
434 position++;
435 } else if (with_last_line) {
436 // Even if the last line misses a line end, it is counted.
437 line_ends->Add(src_len);
438 return;
439 }
440 }
441 }
442
443
CalculateLineEnds(Handle<String> src,bool with_last_line)444 Handle<FixedArray> CalculateLineEnds(Handle<String> src,
445 bool with_last_line) {
446 src = FlattenGetString(src);
447 // Rough estimate of line count based on a roughly estimated average
448 // length of (unpacked) code.
449 int line_count_estimate = src->length() >> 4;
450 List<int> line_ends(line_count_estimate);
451 Isolate* isolate = src->GetIsolate();
452 {
453 AssertNoAllocation no_heap_allocation; // ensure vectors stay valid.
454 // Dispatch on type of strings.
455 String::FlatContent content = src->GetFlatContent();
456 ASSERT(content.IsFlat());
457 if (content.IsAscii()) {
458 CalculateLineEnds(isolate,
459 &line_ends,
460 content.ToAsciiVector(),
461 with_last_line);
462 } else {
463 CalculateLineEnds(isolate,
464 &line_ends,
465 content.ToUC16Vector(),
466 with_last_line);
467 }
468 }
469 int line_count = line_ends.length();
470 Handle<FixedArray> array = isolate->factory()->NewFixedArray(line_count);
471 for (int i = 0; i < line_count; i++) {
472 array->set(i, Smi::FromInt(line_ends[i]));
473 }
474 return array;
475 }
476
477
478 // Convert code position into line number.
GetScriptLineNumber(Handle<Script> script,int code_pos)479 int GetScriptLineNumber(Handle<Script> script, int code_pos) {
480 InitScriptLineEnds(script);
481 AssertNoAllocation no_allocation;
482 FixedArray* line_ends_array = FixedArray::cast(script->line_ends());
483 const int line_ends_len = line_ends_array->length();
484
485 if (!line_ends_len) return -1;
486
487 if ((Smi::cast(line_ends_array->get(0)))->value() >= code_pos) {
488 return script->line_offset()->value();
489 }
490
491 int left = 0;
492 int right = line_ends_len;
493 while (int half = (right - left) / 2) {
494 if ((Smi::cast(line_ends_array->get(left + half)))->value() > code_pos) {
495 right -= half;
496 } else {
497 left += half;
498 }
499 }
500 return right + script->line_offset()->value();
501 }
502
503 // Convert code position into column number.
GetScriptColumnNumber(Handle<Script> script,int code_pos)504 int GetScriptColumnNumber(Handle<Script> script, int code_pos) {
505 int line_number = GetScriptLineNumber(script, code_pos);
506 if (line_number == -1) return -1;
507
508 AssertNoAllocation no_allocation;
509 FixedArray* line_ends_array = FixedArray::cast(script->line_ends());
510 line_number = line_number - script->line_offset()->value();
511 if (line_number == 0) return code_pos + script->column_offset()->value();
512 int prev_line_end_pos =
513 Smi::cast(line_ends_array->get(line_number - 1))->value();
514 return code_pos - (prev_line_end_pos + 1);
515 }
516
GetScriptLineNumberSafe(Handle<Script> script,int code_pos)517 int GetScriptLineNumberSafe(Handle<Script> script, int code_pos) {
518 AssertNoAllocation no_allocation;
519 if (!script->line_ends()->IsUndefined()) {
520 return GetScriptLineNumber(script, code_pos);
521 }
522 // Slow mode: we do not have line_ends. We have to iterate through source.
523 if (!script->source()->IsString()) {
524 return -1;
525 }
526 String* source = String::cast(script->source());
527 int line = 0;
528 int len = source->length();
529 for (int pos = 0; pos < len; pos++) {
530 if (pos == code_pos) {
531 break;
532 }
533 if (source->Get(pos) == '\n') {
534 line++;
535 }
536 }
537 return line;
538 }
539
540
IterateInstance(ObjectVisitor * v)541 void CustomArguments::IterateInstance(ObjectVisitor* v) {
542 v->VisitPointers(values_, values_ + ARRAY_SIZE(values_));
543 }
544
545
546 // Compute the property keys from the interceptor.
GetKeysForNamedInterceptor(Handle<JSReceiver> receiver,Handle<JSObject> object)547 v8::Handle<v8::Array> GetKeysForNamedInterceptor(Handle<JSReceiver> receiver,
548 Handle<JSObject> object) {
549 Isolate* isolate = receiver->GetIsolate();
550 Handle<InterceptorInfo> interceptor(object->GetNamedInterceptor());
551 CustomArguments args(isolate, interceptor->data(), *receiver, *object);
552 v8::AccessorInfo info(args.end());
553 v8::Handle<v8::Array> result;
554 if (!interceptor->enumerator()->IsUndefined()) {
555 v8::NamedPropertyEnumerator enum_fun =
556 v8::ToCData<v8::NamedPropertyEnumerator>(interceptor->enumerator());
557 LOG(isolate, ApiObjectAccess("interceptor-named-enum", *object));
558 {
559 // Leaving JavaScript.
560 VMState state(isolate, EXTERNAL);
561 result = enum_fun(info);
562 }
563 }
564 return result;
565 }
566
567
568 // Compute the element keys from the interceptor.
GetKeysForIndexedInterceptor(Handle<JSReceiver> receiver,Handle<JSObject> object)569 v8::Handle<v8::Array> GetKeysForIndexedInterceptor(Handle<JSReceiver> receiver,
570 Handle<JSObject> object) {
571 Isolate* isolate = receiver->GetIsolate();
572 Handle<InterceptorInfo> interceptor(object->GetIndexedInterceptor());
573 CustomArguments args(isolate, interceptor->data(), *receiver, *object);
574 v8::AccessorInfo info(args.end());
575 v8::Handle<v8::Array> result;
576 if (!interceptor->enumerator()->IsUndefined()) {
577 v8::IndexedPropertyEnumerator enum_fun =
578 v8::ToCData<v8::IndexedPropertyEnumerator>(interceptor->enumerator());
579 LOG(isolate, ApiObjectAccess("interceptor-indexed-enum", *object));
580 {
581 // Leaving JavaScript.
582 VMState state(isolate, EXTERNAL);
583 result = enum_fun(info);
584 }
585 }
586 return result;
587 }
588
589
ContainsOnlyValidKeys(Handle<FixedArray> array)590 static bool ContainsOnlyValidKeys(Handle<FixedArray> array) {
591 int len = array->length();
592 for (int i = 0; i < len; i++) {
593 Object* e = array->get(i);
594 if (!(e->IsString() || e->IsNumber())) return false;
595 }
596 return true;
597 }
598
599
GetKeysInFixedArrayFor(Handle<JSReceiver> object,KeyCollectionType type,bool * threw)600 Handle<FixedArray> GetKeysInFixedArrayFor(Handle<JSReceiver> object,
601 KeyCollectionType type,
602 bool* threw) {
603 USE(ContainsOnlyValidKeys);
604 Isolate* isolate = object->GetIsolate();
605 Handle<FixedArray> content = isolate->factory()->empty_fixed_array();
606 Handle<JSObject> arguments_boilerplate = Handle<JSObject>(
607 isolate->context()->global_context()->arguments_boilerplate(),
608 isolate);
609 Handle<JSFunction> arguments_function = Handle<JSFunction>(
610 JSFunction::cast(arguments_boilerplate->map()->constructor()),
611 isolate);
612
613 // Only collect keys if access is permitted.
614 for (Handle<Object> p = object;
615 *p != isolate->heap()->null_value();
616 p = Handle<Object>(p->GetPrototype(), isolate)) {
617 if (p->IsJSProxy()) {
618 Handle<JSProxy> proxy(JSProxy::cast(*p), isolate);
619 Handle<Object> args[] = { proxy };
620 Handle<Object> names = Execution::Call(
621 isolate->proxy_enumerate(), object, ARRAY_SIZE(args), args, threw);
622 if (*threw) return content;
623 content = AddKeysFromJSArray(content, Handle<JSArray>::cast(names));
624 break;
625 }
626
627 Handle<JSObject> current(JSObject::cast(*p), isolate);
628
629 // Check access rights if required.
630 if (current->IsAccessCheckNeeded() &&
631 !isolate->MayNamedAccess(*current,
632 isolate->heap()->undefined_value(),
633 v8::ACCESS_KEYS)) {
634 isolate->ReportFailedAccessCheck(*current, v8::ACCESS_KEYS);
635 break;
636 }
637
638 // Compute the element keys.
639 Handle<FixedArray> element_keys =
640 isolate->factory()->NewFixedArray(current->NumberOfEnumElements());
641 current->GetEnumElementKeys(*element_keys);
642 content = UnionOfKeys(content, element_keys);
643 ASSERT(ContainsOnlyValidKeys(content));
644
645 // Add the element keys from the interceptor.
646 if (current->HasIndexedInterceptor()) {
647 v8::Handle<v8::Array> result =
648 GetKeysForIndexedInterceptor(object, current);
649 if (!result.IsEmpty())
650 content = AddKeysFromJSArray(content, v8::Utils::OpenHandle(*result));
651 ASSERT(ContainsOnlyValidKeys(content));
652 }
653
654 // We can cache the computed property keys if access checks are
655 // not needed and no interceptors are involved.
656 //
657 // We do not use the cache if the object has elements and
658 // therefore it does not make sense to cache the property names
659 // for arguments objects. Arguments objects will always have
660 // elements.
661 // Wrapped strings have elements, but don't have an elements
662 // array or dictionary. So the fast inline test for whether to
663 // use the cache says yes, so we should not create a cache.
664 bool cache_enum_keys =
665 ((current->map()->constructor() != *arguments_function) &&
666 !current->IsJSValue() &&
667 !current->IsAccessCheckNeeded() &&
668 !current->HasNamedInterceptor() &&
669 !current->HasIndexedInterceptor());
670 // Compute the property keys and cache them if possible.
671 content =
672 UnionOfKeys(content, GetEnumPropertyKeys(current, cache_enum_keys));
673 ASSERT(ContainsOnlyValidKeys(content));
674
675 // Add the property keys from the interceptor.
676 if (current->HasNamedInterceptor()) {
677 v8::Handle<v8::Array> result =
678 GetKeysForNamedInterceptor(object, current);
679 if (!result.IsEmpty())
680 content = AddKeysFromJSArray(content, v8::Utils::OpenHandle(*result));
681 ASSERT(ContainsOnlyValidKeys(content));
682 }
683
684 // If we only want local properties we bail out after the first
685 // iteration.
686 if (type == LOCAL_ONLY)
687 break;
688 }
689 return content;
690 }
691
692
GetKeysFor(Handle<JSReceiver> object,bool * threw)693 Handle<JSArray> GetKeysFor(Handle<JSReceiver> object, bool* threw) {
694 Isolate* isolate = object->GetIsolate();
695 isolate->counters()->for_in()->Increment();
696 Handle<FixedArray> elements =
697 GetKeysInFixedArrayFor(object, INCLUDE_PROTOS, threw);
698 return isolate->factory()->NewJSArrayWithElements(elements);
699 }
700
701
GetEnumPropertyKeys(Handle<JSObject> object,bool cache_result)702 Handle<FixedArray> GetEnumPropertyKeys(Handle<JSObject> object,
703 bool cache_result) {
704 int index = 0;
705 Isolate* isolate = object->GetIsolate();
706 if (object->HasFastProperties()) {
707 if (object->map()->instance_descriptors()->HasEnumCache()) {
708 isolate->counters()->enum_cache_hits()->Increment();
709 DescriptorArray* desc = object->map()->instance_descriptors();
710 return Handle<FixedArray>(FixedArray::cast(desc->GetEnumCache()),
711 isolate);
712 }
713 isolate->counters()->enum_cache_misses()->Increment();
714 Handle<Map> map(object->map());
715 int num_enum = object->NumberOfLocalProperties(DONT_ENUM);
716
717 Handle<FixedArray> storage = isolate->factory()->NewFixedArray(num_enum);
718 Handle<FixedArray> sort_array = isolate->factory()->NewFixedArray(num_enum);
719
720 Handle<FixedArray> indices;
721 Handle<FixedArray> sort_array2;
722
723 if (cache_result) {
724 indices = isolate->factory()->NewFixedArray(num_enum);
725 sort_array2 = isolate->factory()->NewFixedArray(num_enum);
726 }
727
728 Handle<DescriptorArray> descs =
729 Handle<DescriptorArray>(object->map()->instance_descriptors(), isolate);
730
731 for (int i = 0; i < descs->number_of_descriptors(); i++) {
732 if (descs->IsProperty(i) && !descs->IsDontEnum(i)) {
733 storage->set(index, descs->GetKey(i));
734 PropertyDetails details(descs->GetDetails(i));
735 sort_array->set(index, Smi::FromInt(details.index()));
736 if (!indices.is_null()) {
737 if (details.type() != FIELD) {
738 indices = Handle<FixedArray>();
739 sort_array2 = Handle<FixedArray>();
740 } else {
741 int field_index = Descriptor::IndexFromValue(descs->GetValue(i));
742 if (field_index >= map->inobject_properties()) {
743 field_index = -(field_index - map->inobject_properties() + 1);
744 }
745 indices->set(index, Smi::FromInt(field_index));
746 sort_array2->set(index, Smi::FromInt(details.index()));
747 }
748 }
749 index++;
750 }
751 }
752 storage->SortPairs(*sort_array, sort_array->length());
753 if (!indices.is_null()) {
754 indices->SortPairs(*sort_array2, sort_array2->length());
755 }
756 if (cache_result) {
757 Handle<FixedArray> bridge_storage =
758 isolate->factory()->NewFixedArray(
759 DescriptorArray::kEnumCacheBridgeLength);
760 DescriptorArray* desc = object->map()->instance_descriptors();
761 desc->SetEnumCache(*bridge_storage,
762 *storage,
763 indices.is_null() ? Object::cast(Smi::FromInt(0))
764 : Object::cast(*indices));
765 }
766 ASSERT(storage->length() == index);
767 return storage;
768 } else {
769 int num_enum = object->NumberOfLocalProperties(DONT_ENUM);
770 Handle<FixedArray> storage = isolate->factory()->NewFixedArray(num_enum);
771 Handle<FixedArray> sort_array = isolate->factory()->NewFixedArray(num_enum);
772 object->property_dictionary()->CopyEnumKeysTo(*storage, *sort_array);
773 return storage;
774 }
775 }
776
777
ObjectHashSetAdd(Handle<ObjectHashSet> table,Handle<Object> key)778 Handle<ObjectHashSet> ObjectHashSetAdd(Handle<ObjectHashSet> table,
779 Handle<Object> key) {
780 CALL_HEAP_FUNCTION(table->GetIsolate(),
781 table->Add(*key),
782 ObjectHashSet);
783 }
784
785
ObjectHashSetRemove(Handle<ObjectHashSet> table,Handle<Object> key)786 Handle<ObjectHashSet> ObjectHashSetRemove(Handle<ObjectHashSet> table,
787 Handle<Object> key) {
788 CALL_HEAP_FUNCTION(table->GetIsolate(),
789 table->Remove(*key),
790 ObjectHashSet);
791 }
792
793
PutIntoObjectHashTable(Handle<ObjectHashTable> table,Handle<Object> key,Handle<Object> value)794 Handle<ObjectHashTable> PutIntoObjectHashTable(Handle<ObjectHashTable> table,
795 Handle<Object> key,
796 Handle<Object> value) {
797 CALL_HEAP_FUNCTION(table->GetIsolate(),
798 table->Put(*key, *value),
799 ObjectHashTable);
800 }
801
802
803 // This method determines the type of string involved and then gets the UTF8
804 // length of the string. It doesn't flatten the string and has log(n) recursion
805 // for a string of length n. If the failure flag gets set, then we have to
806 // flatten the string and retry. Failures are caused by surrogate pairs in deep
807 // cons strings.
808
809 // Single surrogate characters that are encountered in the UTF-16 character
810 // sequence of the input string get counted as 3 UTF-8 bytes, because that
811 // is the way that WriteUtf8 will encode them. Surrogate pairs are counted and
812 // encoded as one 4-byte UTF-8 sequence.
813
814 // This function conceptually uses recursion on the two halves of cons strings.
815 // However, in order to avoid the recursion going too deep it recurses on the
816 // second string of the cons, but iterates on the first substring (by manually
817 // eliminating it as a tail recursion). This means it counts the UTF-8 length
818 // from the end to the start, which makes no difference to the total.
819
820 // Surrogate pairs are recognized even if they are split across two sides of a
821 // cons, which complicates the implementation somewhat. Therefore, too deep
822 // recursion cannot always be avoided. This case is detected, and the failure
823 // flag is set, a signal to the caller that the string should be flattened and
824 // the operation retried.
Utf8LengthHelper(String * input,int from,int to,bool followed_by_surrogate,int max_recursion,bool * failure,bool * starts_with_surrogate)825 int Utf8LengthHelper(String* input,
826 int from,
827 int to,
828 bool followed_by_surrogate,
829 int max_recursion,
830 bool* failure,
831 bool* starts_with_surrogate) {
832 if (from == to) return 0;
833 int total = 0;
834 bool dummy;
835 while (true) {
836 if (input->IsAsciiRepresentation()) {
837 *starts_with_surrogate = false;
838 return total + to - from;
839 }
840 switch (StringShape(input).representation_tag()) {
841 case kConsStringTag: {
842 ConsString* str = ConsString::cast(input);
843 String* first = str->first();
844 String* second = str->second();
845 int first_length = first->length();
846 if (first_length - from > to - first_length) {
847 if (first_length < to) {
848 // Right hand side is shorter. No need to check the recursion depth
849 // since this can only happen log(n) times.
850 bool right_starts_with_surrogate = false;
851 total += Utf8LengthHelper(second,
852 0,
853 to - first_length,
854 followed_by_surrogate,
855 max_recursion - 1,
856 failure,
857 &right_starts_with_surrogate);
858 if (*failure) return 0;
859 followed_by_surrogate = right_starts_with_surrogate;
860 input = first;
861 to = first_length;
862 } else {
863 // We only need the left hand side.
864 input = first;
865 }
866 } else {
867 if (first_length > from) {
868 // Left hand side is shorter.
869 if (first->IsAsciiRepresentation()) {
870 total += first_length - from;
871 *starts_with_surrogate = false;
872 starts_with_surrogate = &dummy;
873 input = second;
874 from = 0;
875 to -= first_length;
876 } else if (second->IsAsciiRepresentation()) {
877 followed_by_surrogate = false;
878 total += to - first_length;
879 input = first;
880 to = first_length;
881 } else if (max_recursion > 0) {
882 bool right_starts_with_surrogate = false;
883 // Recursing on the long one. This may fail.
884 total += Utf8LengthHelper(second,
885 0,
886 to - first_length,
887 followed_by_surrogate,
888 max_recursion - 1,
889 failure,
890 &right_starts_with_surrogate);
891 if (*failure) return 0;
892 input = first;
893 to = first_length;
894 followed_by_surrogate = right_starts_with_surrogate;
895 } else {
896 *failure = true;
897 return 0;
898 }
899 } else {
900 // We only need the right hand side.
901 input = second;
902 from = 0;
903 to -= first_length;
904 }
905 }
906 continue;
907 }
908 case kExternalStringTag:
909 case kSeqStringTag: {
910 Vector<const uc16> vector = input->GetFlatContent().ToUC16Vector();
911 const uc16* p = vector.start();
912 int previous = unibrow::Utf16::kNoPreviousCharacter;
913 for (int i = from; i < to; i++) {
914 uc16 c = p[i];
915 total += unibrow::Utf8::Length(c, previous);
916 previous = c;
917 }
918 if (to - from > 0) {
919 if (unibrow::Utf16::IsLeadSurrogate(previous) &&
920 followed_by_surrogate) {
921 total -= unibrow::Utf8::kBytesSavedByCombiningSurrogates;
922 }
923 if (unibrow::Utf16::IsTrailSurrogate(p[from])) {
924 *starts_with_surrogate = true;
925 }
926 }
927 return total;
928 }
929 case kSlicedStringTag: {
930 SlicedString* str = SlicedString::cast(input);
931 int offset = str->offset();
932 input = str->parent();
933 from += offset;
934 to += offset;
935 continue;
936 }
937 default:
938 break;
939 }
940 UNREACHABLE();
941 return 0;
942 }
943 return 0;
944 }
945
946
Utf8Length(Handle<String> str)947 int Utf8Length(Handle<String> str) {
948 bool dummy;
949 bool failure;
950 int len;
951 const int kRecursionBudget = 100;
952 do {
953 failure = false;
954 len = Utf8LengthHelper(
955 *str, 0, str->length(), false, kRecursionBudget, &failure, &dummy);
956 if (failure) FlattenString(str);
957 } while (failure);
958 return len;
959 }
960
961 } } // namespace v8::internal
962