• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===---- SemaAccess.cpp - C++ Access Control -------------------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file provides Sema routines for C++ access control semantics.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "clang/Sema/SemaInternal.h"
15 #include "clang/Sema/DelayedDiagnostic.h"
16 #include "clang/Sema/Initialization.h"
17 #include "clang/Sema/Lookup.h"
18 #include "clang/AST/ASTContext.h"
19 #include "clang/AST/CXXInheritance.h"
20 #include "clang/AST/DeclCXX.h"
21 #include "clang/AST/DeclFriend.h"
22 #include "clang/AST/DeclObjC.h"
23 #include "clang/AST/DependentDiagnostic.h"
24 #include "clang/AST/ExprCXX.h"
25 
26 using namespace clang;
27 using namespace sema;
28 
29 /// A copy of Sema's enum without AR_delayed.
30 enum AccessResult {
31   AR_accessible,
32   AR_inaccessible,
33   AR_dependent
34 };
35 
36 /// SetMemberAccessSpecifier - Set the access specifier of a member.
37 /// Returns true on error (when the previous member decl access specifier
38 /// is different from the new member decl access specifier).
SetMemberAccessSpecifier(NamedDecl * MemberDecl,NamedDecl * PrevMemberDecl,AccessSpecifier LexicalAS)39 bool Sema::SetMemberAccessSpecifier(NamedDecl *MemberDecl,
40                                     NamedDecl *PrevMemberDecl,
41                                     AccessSpecifier LexicalAS) {
42   if (!PrevMemberDecl) {
43     // Use the lexical access specifier.
44     MemberDecl->setAccess(LexicalAS);
45     return false;
46   }
47 
48   // C++ [class.access.spec]p3: When a member is redeclared its access
49   // specifier must be same as its initial declaration.
50   if (LexicalAS != AS_none && LexicalAS != PrevMemberDecl->getAccess()) {
51     Diag(MemberDecl->getLocation(),
52          diag::err_class_redeclared_with_different_access)
53       << MemberDecl << LexicalAS;
54     Diag(PrevMemberDecl->getLocation(), diag::note_previous_access_declaration)
55       << PrevMemberDecl << PrevMemberDecl->getAccess();
56 
57     MemberDecl->setAccess(LexicalAS);
58     return true;
59   }
60 
61   MemberDecl->setAccess(PrevMemberDecl->getAccess());
62   return false;
63 }
64 
FindDeclaringClass(NamedDecl * D)65 static CXXRecordDecl *FindDeclaringClass(NamedDecl *D) {
66   DeclContext *DC = D->getDeclContext();
67 
68   // This can only happen at top: enum decls only "publish" their
69   // immediate members.
70   if (isa<EnumDecl>(DC))
71     DC = cast<EnumDecl>(DC)->getDeclContext();
72 
73   CXXRecordDecl *DeclaringClass = cast<CXXRecordDecl>(DC);
74   while (DeclaringClass->isAnonymousStructOrUnion())
75     DeclaringClass = cast<CXXRecordDecl>(DeclaringClass->getDeclContext());
76   return DeclaringClass;
77 }
78 
79 namespace {
80 struct EffectiveContext {
EffectiveContext__anon2f760c8f0111::EffectiveContext81   EffectiveContext() : Inner(0), Dependent(false) {}
82 
EffectiveContext__anon2f760c8f0111::EffectiveContext83   explicit EffectiveContext(DeclContext *DC)
84     : Inner(DC),
85       Dependent(DC->isDependentContext()) {
86 
87     // C++ [class.access.nest]p1:
88     //   A nested class is a member and as such has the same access
89     //   rights as any other member.
90     // C++ [class.access]p2:
91     //   A member of a class can also access all the names to which
92     //   the class has access.  A local class of a member function
93     //   may access the same names that the member function itself
94     //   may access.
95     // This almost implies that the privileges of nesting are transitive.
96     // Technically it says nothing about the local classes of non-member
97     // functions (which can gain privileges through friendship), but we
98     // take that as an oversight.
99     while (true) {
100       // We want to add canonical declarations to the EC lists for
101       // simplicity of checking, but we need to walk up through the
102       // actual current DC chain.  Otherwise, something like a local
103       // extern or friend which happens to be the canonical
104       // declaration will really mess us up.
105 
106       if (isa<CXXRecordDecl>(DC)) {
107         CXXRecordDecl *Record = cast<CXXRecordDecl>(DC);
108         Records.push_back(Record->getCanonicalDecl());
109         DC = Record->getDeclContext();
110       } else if (isa<FunctionDecl>(DC)) {
111         FunctionDecl *Function = cast<FunctionDecl>(DC);
112         Functions.push_back(Function->getCanonicalDecl());
113         if (Function->getFriendObjectKind())
114           DC = Function->getLexicalDeclContext();
115         else
116           DC = Function->getDeclContext();
117       } else if (DC->isFileContext()) {
118         break;
119       } else {
120         DC = DC->getParent();
121       }
122     }
123   }
124 
isDependent__anon2f760c8f0111::EffectiveContext125   bool isDependent() const { return Dependent; }
126 
includesClass__anon2f760c8f0111::EffectiveContext127   bool includesClass(const CXXRecordDecl *R) const {
128     R = R->getCanonicalDecl();
129     return std::find(Records.begin(), Records.end(), R)
130              != Records.end();
131   }
132 
133   /// Retrieves the innermost "useful" context.  Can be null if we're
134   /// doing access-control without privileges.
getInnerContext__anon2f760c8f0111::EffectiveContext135   DeclContext *getInnerContext() const {
136     return Inner;
137   }
138 
139   typedef SmallVectorImpl<CXXRecordDecl*>::const_iterator record_iterator;
140 
141   DeclContext *Inner;
142   SmallVector<FunctionDecl*, 4> Functions;
143   SmallVector<CXXRecordDecl*, 4> Records;
144   bool Dependent;
145 };
146 
147 /// Like sema::AccessedEntity, but kindly lets us scribble all over
148 /// it.
149 struct AccessTarget : public AccessedEntity {
AccessTarget__anon2f760c8f0111::AccessTarget150   AccessTarget(const AccessedEntity &Entity)
151     : AccessedEntity(Entity) {
152     initialize();
153   }
154 
AccessTarget__anon2f760c8f0111::AccessTarget155   AccessTarget(ASTContext &Context,
156                MemberNonce _,
157                CXXRecordDecl *NamingClass,
158                DeclAccessPair FoundDecl,
159                QualType BaseObjectType)
160     : AccessedEntity(Context.getDiagAllocator(), Member, NamingClass,
161                      FoundDecl, BaseObjectType) {
162     initialize();
163   }
164 
AccessTarget__anon2f760c8f0111::AccessTarget165   AccessTarget(ASTContext &Context,
166                BaseNonce _,
167                CXXRecordDecl *BaseClass,
168                CXXRecordDecl *DerivedClass,
169                AccessSpecifier Access)
170     : AccessedEntity(Context.getDiagAllocator(), Base, BaseClass, DerivedClass,
171                      Access) {
172     initialize();
173   }
174 
isInstanceMember__anon2f760c8f0111::AccessTarget175   bool isInstanceMember() const {
176     return (isMemberAccess() && getTargetDecl()->isCXXInstanceMember());
177   }
178 
hasInstanceContext__anon2f760c8f0111::AccessTarget179   bool hasInstanceContext() const {
180     return HasInstanceContext;
181   }
182 
183   class SavedInstanceContext {
184   public:
~SavedInstanceContext()185     ~SavedInstanceContext() {
186       Target.HasInstanceContext = Has;
187     }
188 
189   private:
190     friend struct AccessTarget;
SavedInstanceContext(AccessTarget & Target)191     explicit SavedInstanceContext(AccessTarget &Target)
192       : Target(Target), Has(Target.HasInstanceContext) {}
193     AccessTarget &Target;
194     bool Has;
195   };
196 
saveInstanceContext__anon2f760c8f0111::AccessTarget197   SavedInstanceContext saveInstanceContext() {
198     return SavedInstanceContext(*this);
199   }
200 
suppressInstanceContext__anon2f760c8f0111::AccessTarget201   void suppressInstanceContext() {
202     HasInstanceContext = false;
203   }
204 
resolveInstanceContext__anon2f760c8f0111::AccessTarget205   const CXXRecordDecl *resolveInstanceContext(Sema &S) const {
206     assert(HasInstanceContext);
207     if (CalculatedInstanceContext)
208       return InstanceContext;
209 
210     CalculatedInstanceContext = true;
211     DeclContext *IC = S.computeDeclContext(getBaseObjectType());
212     InstanceContext = (IC ? cast<CXXRecordDecl>(IC)->getCanonicalDecl() : 0);
213     return InstanceContext;
214   }
215 
getDeclaringClass__anon2f760c8f0111::AccessTarget216   const CXXRecordDecl *getDeclaringClass() const {
217     return DeclaringClass;
218   }
219 
220 private:
initialize__anon2f760c8f0111::AccessTarget221   void initialize() {
222     HasInstanceContext = (isMemberAccess() &&
223                           !getBaseObjectType().isNull() &&
224                           getTargetDecl()->isCXXInstanceMember());
225     CalculatedInstanceContext = false;
226     InstanceContext = 0;
227 
228     if (isMemberAccess())
229       DeclaringClass = FindDeclaringClass(getTargetDecl());
230     else
231       DeclaringClass = getBaseClass();
232     DeclaringClass = DeclaringClass->getCanonicalDecl();
233   }
234 
235   bool HasInstanceContext : 1;
236   mutable bool CalculatedInstanceContext : 1;
237   mutable const CXXRecordDecl *InstanceContext;
238   const CXXRecordDecl *DeclaringClass;
239 };
240 
241 }
242 
243 /// Checks whether one class might instantiate to the other.
MightInstantiateTo(const CXXRecordDecl * From,const CXXRecordDecl * To)244 static bool MightInstantiateTo(const CXXRecordDecl *From,
245                                const CXXRecordDecl *To) {
246   // Declaration names are always preserved by instantiation.
247   if (From->getDeclName() != To->getDeclName())
248     return false;
249 
250   const DeclContext *FromDC = From->getDeclContext()->getPrimaryContext();
251   const DeclContext *ToDC = To->getDeclContext()->getPrimaryContext();
252   if (FromDC == ToDC) return true;
253   if (FromDC->isFileContext() || ToDC->isFileContext()) return false;
254 
255   // Be conservative.
256   return true;
257 }
258 
259 /// Checks whether one class is derived from another, inclusively.
260 /// Properly indicates when it couldn't be determined due to
261 /// dependence.
262 ///
263 /// This should probably be donated to AST or at least Sema.
IsDerivedFromInclusive(const CXXRecordDecl * Derived,const CXXRecordDecl * Target)264 static AccessResult IsDerivedFromInclusive(const CXXRecordDecl *Derived,
265                                            const CXXRecordDecl *Target) {
266   assert(Derived->getCanonicalDecl() == Derived);
267   assert(Target->getCanonicalDecl() == Target);
268 
269   if (Derived == Target) return AR_accessible;
270 
271   bool CheckDependent = Derived->isDependentContext();
272   if (CheckDependent && MightInstantiateTo(Derived, Target))
273     return AR_dependent;
274 
275   AccessResult OnFailure = AR_inaccessible;
276   SmallVector<const CXXRecordDecl*, 8> Queue; // actually a stack
277 
278   while (true) {
279     if (Derived->isDependentContext() && !Derived->hasDefinition())
280       return AR_dependent;
281 
282     for (CXXRecordDecl::base_class_const_iterator
283            I = Derived->bases_begin(), E = Derived->bases_end(); I != E; ++I) {
284 
285       const CXXRecordDecl *RD;
286 
287       QualType T = I->getType();
288       if (const RecordType *RT = T->getAs<RecordType>()) {
289         RD = cast<CXXRecordDecl>(RT->getDecl());
290       } else if (const InjectedClassNameType *IT
291                    = T->getAs<InjectedClassNameType>()) {
292         RD = IT->getDecl();
293       } else {
294         assert(T->isDependentType() && "non-dependent base wasn't a record?");
295         OnFailure = AR_dependent;
296         continue;
297       }
298 
299       RD = RD->getCanonicalDecl();
300       if (RD == Target) return AR_accessible;
301       if (CheckDependent && MightInstantiateTo(RD, Target))
302         OnFailure = AR_dependent;
303 
304       Queue.push_back(RD);
305     }
306 
307     if (Queue.empty()) break;
308 
309     Derived = Queue.back();
310     Queue.pop_back();
311   }
312 
313   return OnFailure;
314 }
315 
316 
MightInstantiateTo(Sema & S,DeclContext * Context,DeclContext * Friend)317 static bool MightInstantiateTo(Sema &S, DeclContext *Context,
318                                DeclContext *Friend) {
319   if (Friend == Context)
320     return true;
321 
322   assert(!Friend->isDependentContext() &&
323          "can't handle friends with dependent contexts here");
324 
325   if (!Context->isDependentContext())
326     return false;
327 
328   if (Friend->isFileContext())
329     return false;
330 
331   // TODO: this is very conservative
332   return true;
333 }
334 
335 // Asks whether the type in 'context' can ever instantiate to the type
336 // in 'friend'.
MightInstantiateTo(Sema & S,CanQualType Context,CanQualType Friend)337 static bool MightInstantiateTo(Sema &S, CanQualType Context, CanQualType Friend) {
338   if (Friend == Context)
339     return true;
340 
341   if (!Friend->isDependentType() && !Context->isDependentType())
342     return false;
343 
344   // TODO: this is very conservative.
345   return true;
346 }
347 
MightInstantiateTo(Sema & S,FunctionDecl * Context,FunctionDecl * Friend)348 static bool MightInstantiateTo(Sema &S,
349                                FunctionDecl *Context,
350                                FunctionDecl *Friend) {
351   if (Context->getDeclName() != Friend->getDeclName())
352     return false;
353 
354   if (!MightInstantiateTo(S,
355                           Context->getDeclContext(),
356                           Friend->getDeclContext()))
357     return false;
358 
359   CanQual<FunctionProtoType> FriendTy
360     = S.Context.getCanonicalType(Friend->getType())
361          ->getAs<FunctionProtoType>();
362   CanQual<FunctionProtoType> ContextTy
363     = S.Context.getCanonicalType(Context->getType())
364          ->getAs<FunctionProtoType>();
365 
366   // There isn't any way that I know of to add qualifiers
367   // during instantiation.
368   if (FriendTy.getQualifiers() != ContextTy.getQualifiers())
369     return false;
370 
371   if (FriendTy->getNumArgs() != ContextTy->getNumArgs())
372     return false;
373 
374   if (!MightInstantiateTo(S,
375                           ContextTy->getResultType(),
376                           FriendTy->getResultType()))
377     return false;
378 
379   for (unsigned I = 0, E = FriendTy->getNumArgs(); I != E; ++I)
380     if (!MightInstantiateTo(S,
381                             ContextTy->getArgType(I),
382                             FriendTy->getArgType(I)))
383       return false;
384 
385   return true;
386 }
387 
MightInstantiateTo(Sema & S,FunctionTemplateDecl * Context,FunctionTemplateDecl * Friend)388 static bool MightInstantiateTo(Sema &S,
389                                FunctionTemplateDecl *Context,
390                                FunctionTemplateDecl *Friend) {
391   return MightInstantiateTo(S,
392                             Context->getTemplatedDecl(),
393                             Friend->getTemplatedDecl());
394 }
395 
MatchesFriend(Sema & S,const EffectiveContext & EC,const CXXRecordDecl * Friend)396 static AccessResult MatchesFriend(Sema &S,
397                                   const EffectiveContext &EC,
398                                   const CXXRecordDecl *Friend) {
399   if (EC.includesClass(Friend))
400     return AR_accessible;
401 
402   if (EC.isDependent()) {
403     CanQualType FriendTy
404       = S.Context.getCanonicalType(S.Context.getTypeDeclType(Friend));
405 
406     for (EffectiveContext::record_iterator
407            I = EC.Records.begin(), E = EC.Records.end(); I != E; ++I) {
408       CanQualType ContextTy
409         = S.Context.getCanonicalType(S.Context.getTypeDeclType(*I));
410       if (MightInstantiateTo(S, ContextTy, FriendTy))
411         return AR_dependent;
412     }
413   }
414 
415   return AR_inaccessible;
416 }
417 
MatchesFriend(Sema & S,const EffectiveContext & EC,CanQualType Friend)418 static AccessResult MatchesFriend(Sema &S,
419                                   const EffectiveContext &EC,
420                                   CanQualType Friend) {
421   if (const RecordType *RT = Friend->getAs<RecordType>())
422     return MatchesFriend(S, EC, cast<CXXRecordDecl>(RT->getDecl()));
423 
424   // TODO: we can do better than this
425   if (Friend->isDependentType())
426     return AR_dependent;
427 
428   return AR_inaccessible;
429 }
430 
431 /// Determines whether the given friend class template matches
432 /// anything in the effective context.
MatchesFriend(Sema & S,const EffectiveContext & EC,ClassTemplateDecl * Friend)433 static AccessResult MatchesFriend(Sema &S,
434                                   const EffectiveContext &EC,
435                                   ClassTemplateDecl *Friend) {
436   AccessResult OnFailure = AR_inaccessible;
437 
438   // Check whether the friend is the template of a class in the
439   // context chain.
440   for (SmallVectorImpl<CXXRecordDecl*>::const_iterator
441          I = EC.Records.begin(), E = EC.Records.end(); I != E; ++I) {
442     CXXRecordDecl *Record = *I;
443 
444     // Figure out whether the current class has a template:
445     ClassTemplateDecl *CTD;
446 
447     // A specialization of the template...
448     if (isa<ClassTemplateSpecializationDecl>(Record)) {
449       CTD = cast<ClassTemplateSpecializationDecl>(Record)
450         ->getSpecializedTemplate();
451 
452     // ... or the template pattern itself.
453     } else {
454       CTD = Record->getDescribedClassTemplate();
455       if (!CTD) continue;
456     }
457 
458     // It's a match.
459     if (Friend == CTD->getCanonicalDecl())
460       return AR_accessible;
461 
462     // If the context isn't dependent, it can't be a dependent match.
463     if (!EC.isDependent())
464       continue;
465 
466     // If the template names don't match, it can't be a dependent
467     // match.
468     if (CTD->getDeclName() != Friend->getDeclName())
469       continue;
470 
471     // If the class's context can't instantiate to the friend's
472     // context, it can't be a dependent match.
473     if (!MightInstantiateTo(S, CTD->getDeclContext(),
474                             Friend->getDeclContext()))
475       continue;
476 
477     // Otherwise, it's a dependent match.
478     OnFailure = AR_dependent;
479   }
480 
481   return OnFailure;
482 }
483 
484 /// Determines whether the given friend function matches anything in
485 /// the effective context.
MatchesFriend(Sema & S,const EffectiveContext & EC,FunctionDecl * Friend)486 static AccessResult MatchesFriend(Sema &S,
487                                   const EffectiveContext &EC,
488                                   FunctionDecl *Friend) {
489   AccessResult OnFailure = AR_inaccessible;
490 
491   for (SmallVectorImpl<FunctionDecl*>::const_iterator
492          I = EC.Functions.begin(), E = EC.Functions.end(); I != E; ++I) {
493     if (Friend == *I)
494       return AR_accessible;
495 
496     if (EC.isDependent() && MightInstantiateTo(S, *I, Friend))
497       OnFailure = AR_dependent;
498   }
499 
500   return OnFailure;
501 }
502 
503 /// Determines whether the given friend function template matches
504 /// anything in the effective context.
MatchesFriend(Sema & S,const EffectiveContext & EC,FunctionTemplateDecl * Friend)505 static AccessResult MatchesFriend(Sema &S,
506                                   const EffectiveContext &EC,
507                                   FunctionTemplateDecl *Friend) {
508   if (EC.Functions.empty()) return AR_inaccessible;
509 
510   AccessResult OnFailure = AR_inaccessible;
511 
512   for (SmallVectorImpl<FunctionDecl*>::const_iterator
513          I = EC.Functions.begin(), E = EC.Functions.end(); I != E; ++I) {
514 
515     FunctionTemplateDecl *FTD = (*I)->getPrimaryTemplate();
516     if (!FTD)
517       FTD = (*I)->getDescribedFunctionTemplate();
518     if (!FTD)
519       continue;
520 
521     FTD = FTD->getCanonicalDecl();
522 
523     if (Friend == FTD)
524       return AR_accessible;
525 
526     if (EC.isDependent() && MightInstantiateTo(S, FTD, Friend))
527       OnFailure = AR_dependent;
528   }
529 
530   return OnFailure;
531 }
532 
533 /// Determines whether the given friend declaration matches anything
534 /// in the effective context.
MatchesFriend(Sema & S,const EffectiveContext & EC,FriendDecl * FriendD)535 static AccessResult MatchesFriend(Sema &S,
536                                   const EffectiveContext &EC,
537                                   FriendDecl *FriendD) {
538   // Whitelist accesses if there's an invalid or unsupported friend
539   // declaration.
540   if (FriendD->isInvalidDecl() || FriendD->isUnsupportedFriend())
541     return AR_accessible;
542 
543   if (TypeSourceInfo *T = FriendD->getFriendType())
544     return MatchesFriend(S, EC, T->getType()->getCanonicalTypeUnqualified());
545 
546   NamedDecl *Friend
547     = cast<NamedDecl>(FriendD->getFriendDecl()->getCanonicalDecl());
548 
549   // FIXME: declarations with dependent or templated scope.
550 
551   if (isa<ClassTemplateDecl>(Friend))
552     return MatchesFriend(S, EC, cast<ClassTemplateDecl>(Friend));
553 
554   if (isa<FunctionTemplateDecl>(Friend))
555     return MatchesFriend(S, EC, cast<FunctionTemplateDecl>(Friend));
556 
557   if (isa<CXXRecordDecl>(Friend))
558     return MatchesFriend(S, EC, cast<CXXRecordDecl>(Friend));
559 
560   assert(isa<FunctionDecl>(Friend) && "unknown friend decl kind");
561   return MatchesFriend(S, EC, cast<FunctionDecl>(Friend));
562 }
563 
GetFriendKind(Sema & S,const EffectiveContext & EC,const CXXRecordDecl * Class)564 static AccessResult GetFriendKind(Sema &S,
565                                   const EffectiveContext &EC,
566                                   const CXXRecordDecl *Class) {
567   AccessResult OnFailure = AR_inaccessible;
568 
569   // Okay, check friends.
570   for (CXXRecordDecl::friend_iterator I = Class->friend_begin(),
571          E = Class->friend_end(); I != E; ++I) {
572     FriendDecl *Friend = *I;
573 
574     switch (MatchesFriend(S, EC, Friend)) {
575     case AR_accessible:
576       return AR_accessible;
577 
578     case AR_inaccessible:
579       continue;
580 
581     case AR_dependent:
582       OnFailure = AR_dependent;
583       break;
584     }
585   }
586 
587   // That's it, give up.
588   return OnFailure;
589 }
590 
591 namespace {
592 
593 /// A helper class for checking for a friend which will grant access
594 /// to a protected instance member.
595 struct ProtectedFriendContext {
596   Sema &S;
597   const EffectiveContext &EC;
598   const CXXRecordDecl *NamingClass;
599   bool CheckDependent;
600   bool EverDependent;
601 
602   /// The path down to the current base class.
603   SmallVector<const CXXRecordDecl*, 20> CurPath;
604 
ProtectedFriendContext__anon2f760c8f0211::ProtectedFriendContext605   ProtectedFriendContext(Sema &S, const EffectiveContext &EC,
606                          const CXXRecordDecl *InstanceContext,
607                          const CXXRecordDecl *NamingClass)
608     : S(S), EC(EC), NamingClass(NamingClass),
609       CheckDependent(InstanceContext->isDependentContext() ||
610                      NamingClass->isDependentContext()),
611       EverDependent(false) {}
612 
613   /// Check classes in the current path for friendship, starting at
614   /// the given index.
checkFriendshipAlongPath__anon2f760c8f0211::ProtectedFriendContext615   bool checkFriendshipAlongPath(unsigned I) {
616     assert(I < CurPath.size());
617     for (unsigned E = CurPath.size(); I != E; ++I) {
618       switch (GetFriendKind(S, EC, CurPath[I])) {
619       case AR_accessible:   return true;
620       case AR_inaccessible: continue;
621       case AR_dependent:    EverDependent = true; continue;
622       }
623     }
624     return false;
625   }
626 
627   /// Perform a search starting at the given class.
628   ///
629   /// PrivateDepth is the index of the last (least derived) class
630   /// along the current path such that a notional public member of
631   /// the final class in the path would have access in that class.
findFriendship__anon2f760c8f0211::ProtectedFriendContext632   bool findFriendship(const CXXRecordDecl *Cur, unsigned PrivateDepth) {
633     // If we ever reach the naming class, check the current path for
634     // friendship.  We can also stop recursing because we obviously
635     // won't find the naming class there again.
636     if (Cur == NamingClass)
637       return checkFriendshipAlongPath(PrivateDepth);
638 
639     if (CheckDependent && MightInstantiateTo(Cur, NamingClass))
640       EverDependent = true;
641 
642     // Recurse into the base classes.
643     for (CXXRecordDecl::base_class_const_iterator
644            I = Cur->bases_begin(), E = Cur->bases_end(); I != E; ++I) {
645 
646       // If this is private inheritance, then a public member of the
647       // base will not have any access in classes derived from Cur.
648       unsigned BasePrivateDepth = PrivateDepth;
649       if (I->getAccessSpecifier() == AS_private)
650         BasePrivateDepth = CurPath.size() - 1;
651 
652       const CXXRecordDecl *RD;
653 
654       QualType T = I->getType();
655       if (const RecordType *RT = T->getAs<RecordType>()) {
656         RD = cast<CXXRecordDecl>(RT->getDecl());
657       } else if (const InjectedClassNameType *IT
658                    = T->getAs<InjectedClassNameType>()) {
659         RD = IT->getDecl();
660       } else {
661         assert(T->isDependentType() && "non-dependent base wasn't a record?");
662         EverDependent = true;
663         continue;
664       }
665 
666       // Recurse.  We don't need to clean up if this returns true.
667       CurPath.push_back(RD);
668       if (findFriendship(RD->getCanonicalDecl(), BasePrivateDepth))
669         return true;
670       CurPath.pop_back();
671     }
672 
673     return false;
674   }
675 
findFriendship__anon2f760c8f0211::ProtectedFriendContext676   bool findFriendship(const CXXRecordDecl *Cur) {
677     assert(CurPath.empty());
678     CurPath.push_back(Cur);
679     return findFriendship(Cur, 0);
680   }
681 };
682 }
683 
684 /// Search for a class P that EC is a friend of, under the constraint
685 ///   InstanceContext <= P
686 /// if InstanceContext exists, or else
687 ///   NamingClass <= P
688 /// and with the additional restriction that a protected member of
689 /// NamingClass would have some natural access in P, which implicitly
690 /// imposes the constraint that P <= NamingClass.
691 ///
692 /// This isn't quite the condition laid out in the standard.
693 /// Instead of saying that a notional protected member of NamingClass
694 /// would have to have some natural access in P, it says the actual
695 /// target has to have some natural access in P, which opens up the
696 /// possibility that the target (which is not necessarily a member
697 /// of NamingClass) might be more accessible along some path not
698 /// passing through it.  That's really a bad idea, though, because it
699 /// introduces two problems:
700 ///   - Most importantly, it breaks encapsulation because you can
701 ///     access a forbidden base class's members by directly subclassing
702 ///     it elsewhere.
703 ///   - It also makes access substantially harder to compute because it
704 ///     breaks the hill-climbing algorithm: knowing that the target is
705 ///     accessible in some base class would no longer let you change
706 ///     the question solely to whether the base class is accessible,
707 ///     because the original target might have been more accessible
708 ///     because of crazy subclassing.
709 /// So we don't implement that.
GetProtectedFriendKind(Sema & S,const EffectiveContext & EC,const CXXRecordDecl * InstanceContext,const CXXRecordDecl * NamingClass)710 static AccessResult GetProtectedFriendKind(Sema &S, const EffectiveContext &EC,
711                                            const CXXRecordDecl *InstanceContext,
712                                            const CXXRecordDecl *NamingClass) {
713   assert(InstanceContext == 0 ||
714          InstanceContext->getCanonicalDecl() == InstanceContext);
715   assert(NamingClass->getCanonicalDecl() == NamingClass);
716 
717   // If we don't have an instance context, our constraints give us
718   // that NamingClass <= P <= NamingClass, i.e. P == NamingClass.
719   // This is just the usual friendship check.
720   if (!InstanceContext) return GetFriendKind(S, EC, NamingClass);
721 
722   ProtectedFriendContext PRC(S, EC, InstanceContext, NamingClass);
723   if (PRC.findFriendship(InstanceContext)) return AR_accessible;
724   if (PRC.EverDependent) return AR_dependent;
725   return AR_inaccessible;
726 }
727 
HasAccess(Sema & S,const EffectiveContext & EC,const CXXRecordDecl * NamingClass,AccessSpecifier Access,const AccessTarget & Target)728 static AccessResult HasAccess(Sema &S,
729                               const EffectiveContext &EC,
730                               const CXXRecordDecl *NamingClass,
731                               AccessSpecifier Access,
732                               const AccessTarget &Target) {
733   assert(NamingClass->getCanonicalDecl() == NamingClass &&
734          "declaration should be canonicalized before being passed here");
735 
736   if (Access == AS_public) return AR_accessible;
737   assert(Access == AS_private || Access == AS_protected);
738 
739   AccessResult OnFailure = AR_inaccessible;
740 
741   for (EffectiveContext::record_iterator
742          I = EC.Records.begin(), E = EC.Records.end(); I != E; ++I) {
743     // All the declarations in EC have been canonicalized, so pointer
744     // equality from this point on will work fine.
745     const CXXRecordDecl *ECRecord = *I;
746 
747     // [B2] and [M2]
748     if (Access == AS_private) {
749       if (ECRecord == NamingClass)
750         return AR_accessible;
751 
752       if (EC.isDependent() && MightInstantiateTo(ECRecord, NamingClass))
753         OnFailure = AR_dependent;
754 
755     // [B3] and [M3]
756     } else {
757       assert(Access == AS_protected);
758       switch (IsDerivedFromInclusive(ECRecord, NamingClass)) {
759       case AR_accessible: break;
760       case AR_inaccessible: continue;
761       case AR_dependent: OnFailure = AR_dependent; continue;
762       }
763 
764       // C++ [class.protected]p1:
765       //   An additional access check beyond those described earlier in
766       //   [class.access] is applied when a non-static data member or
767       //   non-static member function is a protected member of its naming
768       //   class.  As described earlier, access to a protected member is
769       //   granted because the reference occurs in a friend or member of
770       //   some class C.  If the access is to form a pointer to member,
771       //   the nested-name-specifier shall name C or a class derived from
772       //   C. All other accesses involve a (possibly implicit) object
773       //   expression. In this case, the class of the object expression
774       //   shall be C or a class derived from C.
775       //
776       // We interpret this as a restriction on [M3].
777 
778       // In this part of the code, 'C' is just our context class ECRecord.
779 
780       // These rules are different if we don't have an instance context.
781       if (!Target.hasInstanceContext()) {
782         // If it's not an instance member, these restrictions don't apply.
783         if (!Target.isInstanceMember()) return AR_accessible;
784 
785         // If it's an instance member, use the pointer-to-member rule
786         // that the naming class has to be derived from the effective
787         // context.
788 
789         // Emulate a MSVC bug where the creation of pointer-to-member
790         // to protected member of base class is allowed but only from
791         // static member functions.
792         if (S.getLangOpts().MicrosoftMode && !EC.Functions.empty())
793           if (CXXMethodDecl* MD = dyn_cast<CXXMethodDecl>(EC.Functions.front()))
794             if (MD->isStatic()) return AR_accessible;
795 
796         // Despite the standard's confident wording, there is a case
797         // where you can have an instance member that's neither in a
798         // pointer-to-member expression nor in a member access:  when
799         // it names a field in an unevaluated context that can't be an
800         // implicit member.  Pending clarification, we just apply the
801         // same naming-class restriction here.
802         //   FIXME: we're probably not correctly adding the
803         //   protected-member restriction when we retroactively convert
804         //   an expression to being evaluated.
805 
806         // We know that ECRecord derives from NamingClass.  The
807         // restriction says to check whether NamingClass derives from
808         // ECRecord, but that's not really necessary: two distinct
809         // classes can't be recursively derived from each other.  So
810         // along this path, we just need to check whether the classes
811         // are equal.
812         if (NamingClass == ECRecord) return AR_accessible;
813 
814         // Otherwise, this context class tells us nothing;  on to the next.
815         continue;
816       }
817 
818       assert(Target.isInstanceMember());
819 
820       const CXXRecordDecl *InstanceContext = Target.resolveInstanceContext(S);
821       if (!InstanceContext) {
822         OnFailure = AR_dependent;
823         continue;
824       }
825 
826       switch (IsDerivedFromInclusive(InstanceContext, ECRecord)) {
827       case AR_accessible: return AR_accessible;
828       case AR_inaccessible: continue;
829       case AR_dependent: OnFailure = AR_dependent; continue;
830       }
831     }
832   }
833 
834   // [M3] and [B3] say that, if the target is protected in N, we grant
835   // access if the access occurs in a friend or member of some class P
836   // that's a subclass of N and where the target has some natural
837   // access in P.  The 'member' aspect is easy to handle because P
838   // would necessarily be one of the effective-context records, and we
839   // address that above.  The 'friend' aspect is completely ridiculous
840   // to implement because there are no restrictions at all on P
841   // *unless* the [class.protected] restriction applies.  If it does,
842   // however, we should ignore whether the naming class is a friend,
843   // and instead rely on whether any potential P is a friend.
844   if (Access == AS_protected && Target.isInstanceMember()) {
845     // Compute the instance context if possible.
846     const CXXRecordDecl *InstanceContext = 0;
847     if (Target.hasInstanceContext()) {
848       InstanceContext = Target.resolveInstanceContext(S);
849       if (!InstanceContext) return AR_dependent;
850     }
851 
852     switch (GetProtectedFriendKind(S, EC, InstanceContext, NamingClass)) {
853     case AR_accessible: return AR_accessible;
854     case AR_inaccessible: return OnFailure;
855     case AR_dependent: return AR_dependent;
856     }
857     llvm_unreachable("impossible friendship kind");
858   }
859 
860   switch (GetFriendKind(S, EC, NamingClass)) {
861   case AR_accessible: return AR_accessible;
862   case AR_inaccessible: return OnFailure;
863   case AR_dependent: return AR_dependent;
864   }
865 
866   // Silence bogus warnings
867   llvm_unreachable("impossible friendship kind");
868 }
869 
870 /// Finds the best path from the naming class to the declaring class,
871 /// taking friend declarations into account.
872 ///
873 /// C++0x [class.access.base]p5:
874 ///   A member m is accessible at the point R when named in class N if
875 ///   [M1] m as a member of N is public, or
876 ///   [M2] m as a member of N is private, and R occurs in a member or
877 ///        friend of class N, or
878 ///   [M3] m as a member of N is protected, and R occurs in a member or
879 ///        friend of class N, or in a member or friend of a class P
880 ///        derived from N, where m as a member of P is public, private,
881 ///        or protected, or
882 ///   [M4] there exists a base class B of N that is accessible at R, and
883 ///        m is accessible at R when named in class B.
884 ///
885 /// C++0x [class.access.base]p4:
886 ///   A base class B of N is accessible at R, if
887 ///   [B1] an invented public member of B would be a public member of N, or
888 ///   [B2] R occurs in a member or friend of class N, and an invented public
889 ///        member of B would be a private or protected member of N, or
890 ///   [B3] R occurs in a member or friend of a class P derived from N, and an
891 ///        invented public member of B would be a private or protected member
892 ///        of P, or
893 ///   [B4] there exists a class S such that B is a base class of S accessible
894 ///        at R and S is a base class of N accessible at R.
895 ///
896 /// Along a single inheritance path we can restate both of these
897 /// iteratively:
898 ///
899 /// First, we note that M1-4 are equivalent to B1-4 if the member is
900 /// treated as a notional base of its declaring class with inheritance
901 /// access equivalent to the member's access.  Therefore we need only
902 /// ask whether a class B is accessible from a class N in context R.
903 ///
904 /// Let B_1 .. B_n be the inheritance path in question (i.e. where
905 /// B_1 = N, B_n = B, and for all i, B_{i+1} is a direct base class of
906 /// B_i).  For i in 1..n, we will calculate ACAB(i), the access to the
907 /// closest accessible base in the path:
908 ///   Access(a, b) = (* access on the base specifier from a to b *)
909 ///   Merge(a, forbidden) = forbidden
910 ///   Merge(a, private) = forbidden
911 ///   Merge(a, b) = min(a,b)
912 ///   Accessible(c, forbidden) = false
913 ///   Accessible(c, private) = (R is c) || IsFriend(c, R)
914 ///   Accessible(c, protected) = (R derived from c) || IsFriend(c, R)
915 ///   Accessible(c, public) = true
916 ///   ACAB(n) = public
917 ///   ACAB(i) =
918 ///     let AccessToBase = Merge(Access(B_i, B_{i+1}), ACAB(i+1)) in
919 ///     if Accessible(B_i, AccessToBase) then public else AccessToBase
920 ///
921 /// B is an accessible base of N at R iff ACAB(1) = public.
922 ///
923 /// \param FinalAccess the access of the "final step", or AS_public if
924 ///   there is no final step.
925 /// \return null if friendship is dependent
FindBestPath(Sema & S,const EffectiveContext & EC,AccessTarget & Target,AccessSpecifier FinalAccess,CXXBasePaths & Paths)926 static CXXBasePath *FindBestPath(Sema &S,
927                                  const EffectiveContext &EC,
928                                  AccessTarget &Target,
929                                  AccessSpecifier FinalAccess,
930                                  CXXBasePaths &Paths) {
931   // Derive the paths to the desired base.
932   const CXXRecordDecl *Derived = Target.getNamingClass();
933   const CXXRecordDecl *Base = Target.getDeclaringClass();
934 
935   // FIXME: fail correctly when there are dependent paths.
936   bool isDerived = Derived->isDerivedFrom(const_cast<CXXRecordDecl*>(Base),
937                                           Paths);
938   assert(isDerived && "derived class not actually derived from base");
939   (void) isDerived;
940 
941   CXXBasePath *BestPath = 0;
942 
943   assert(FinalAccess != AS_none && "forbidden access after declaring class");
944 
945   bool AnyDependent = false;
946 
947   // Derive the friend-modified access along each path.
948   for (CXXBasePaths::paths_iterator PI = Paths.begin(), PE = Paths.end();
949          PI != PE; ++PI) {
950     AccessTarget::SavedInstanceContext _ = Target.saveInstanceContext();
951 
952     // Walk through the path backwards.
953     AccessSpecifier PathAccess = FinalAccess;
954     CXXBasePath::iterator I = PI->end(), E = PI->begin();
955     while (I != E) {
956       --I;
957 
958       assert(PathAccess != AS_none);
959 
960       // If the declaration is a private member of a base class, there
961       // is no level of friendship in derived classes that can make it
962       // accessible.
963       if (PathAccess == AS_private) {
964         PathAccess = AS_none;
965         break;
966       }
967 
968       const CXXRecordDecl *NC = I->Class->getCanonicalDecl();
969 
970       AccessSpecifier BaseAccess = I->Base->getAccessSpecifier();
971       PathAccess = std::max(PathAccess, BaseAccess);
972 
973       switch (HasAccess(S, EC, NC, PathAccess, Target)) {
974       case AR_inaccessible: break;
975       case AR_accessible:
976         PathAccess = AS_public;
977 
978         // Future tests are not against members and so do not have
979         // instance context.
980         Target.suppressInstanceContext();
981         break;
982       case AR_dependent:
983         AnyDependent = true;
984         goto Next;
985       }
986     }
987 
988     // Note that we modify the path's Access field to the
989     // friend-modified access.
990     if (BestPath == 0 || PathAccess < BestPath->Access) {
991       BestPath = &*PI;
992       BestPath->Access = PathAccess;
993 
994       // Short-circuit if we found a public path.
995       if (BestPath->Access == AS_public)
996         return BestPath;
997     }
998 
999   Next: ;
1000   }
1001 
1002   assert((!BestPath || BestPath->Access != AS_public) &&
1003          "fell out of loop with public path");
1004 
1005   // We didn't find a public path, but at least one path was subject
1006   // to dependent friendship, so delay the check.
1007   if (AnyDependent)
1008     return 0;
1009 
1010   return BestPath;
1011 }
1012 
1013 /// Given that an entity has protected natural access, check whether
1014 /// access might be denied because of the protected member access
1015 /// restriction.
1016 ///
1017 /// \return true if a note was emitted
TryDiagnoseProtectedAccess(Sema & S,const EffectiveContext & EC,AccessTarget & Target)1018 static bool TryDiagnoseProtectedAccess(Sema &S, const EffectiveContext &EC,
1019                                        AccessTarget &Target) {
1020   // Only applies to instance accesses.
1021   if (!Target.isInstanceMember())
1022     return false;
1023 
1024   assert(Target.isMemberAccess());
1025 
1026   const CXXRecordDecl *NamingClass = Target.getNamingClass();
1027   NamingClass = NamingClass->getCanonicalDecl();
1028 
1029   for (EffectiveContext::record_iterator
1030          I = EC.Records.begin(), E = EC.Records.end(); I != E; ++I) {
1031     const CXXRecordDecl *ECRecord = *I;
1032     switch (IsDerivedFromInclusive(ECRecord, NamingClass)) {
1033     case AR_accessible: break;
1034     case AR_inaccessible: continue;
1035     case AR_dependent: continue;
1036     }
1037 
1038     // The effective context is a subclass of the declaring class.
1039     // Check whether the [class.protected] restriction is limiting
1040     // access.
1041 
1042     // To get this exactly right, this might need to be checked more
1043     // holistically;  it's not necessarily the case that gaining
1044     // access here would grant us access overall.
1045 
1046     NamedDecl *D = Target.getTargetDecl();
1047 
1048     // If we don't have an instance context, [class.protected] says the
1049     // naming class has to equal the context class.
1050     if (!Target.hasInstanceContext()) {
1051       // If it does, the restriction doesn't apply.
1052       if (NamingClass == ECRecord) continue;
1053 
1054       // TODO: it would be great to have a fixit here, since this is
1055       // such an obvious error.
1056       S.Diag(D->getLocation(), diag::note_access_protected_restricted_noobject)
1057         << S.Context.getTypeDeclType(ECRecord);
1058       return true;
1059     }
1060 
1061     const CXXRecordDecl *InstanceContext = Target.resolveInstanceContext(S);
1062     assert(InstanceContext && "diagnosing dependent access");
1063 
1064     switch (IsDerivedFromInclusive(InstanceContext, ECRecord)) {
1065     case AR_accessible: continue;
1066     case AR_dependent: continue;
1067     case AR_inaccessible:
1068       break;
1069     }
1070 
1071     // Okay, the restriction seems to be what's limiting us.
1072 
1073     // Use a special diagnostic for constructors and destructors.
1074     if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D) ||
1075         (isa<FunctionTemplateDecl>(D) &&
1076          isa<CXXConstructorDecl>(
1077                 cast<FunctionTemplateDecl>(D)->getTemplatedDecl()))) {
1078       S.Diag(D->getLocation(), diag::note_access_protected_restricted_ctordtor)
1079         << isa<CXXDestructorDecl>(D);
1080       return true;
1081     }
1082 
1083     // Otherwise, use the generic diagnostic.
1084     S.Diag(D->getLocation(), diag::note_access_protected_restricted_object)
1085       << S.Context.getTypeDeclType(ECRecord);
1086     return true;
1087   }
1088 
1089   return false;
1090 }
1091 
1092 /// Diagnose the path which caused the given declaration or base class
1093 /// to become inaccessible.
DiagnoseAccessPath(Sema & S,const EffectiveContext & EC,AccessTarget & Entity)1094 static void DiagnoseAccessPath(Sema &S,
1095                                const EffectiveContext &EC,
1096                                AccessTarget &Entity) {
1097   AccessSpecifier Access = Entity.getAccess();
1098 
1099   NamedDecl *D = (Entity.isMemberAccess() ? Entity.getTargetDecl() : 0);
1100   const CXXRecordDecl *DeclaringClass = Entity.getDeclaringClass();
1101 
1102   // Easy case: the decl's natural access determined its path access.
1103   // We have to check against AS_private here in case Access is AS_none,
1104   // indicating a non-public member of a private base class.
1105   if (D && (Access == D->getAccess() || D->getAccess() == AS_private)) {
1106     switch (HasAccess(S, EC, DeclaringClass, D->getAccess(), Entity)) {
1107     case AR_inaccessible: {
1108       if (Access == AS_protected &&
1109           TryDiagnoseProtectedAccess(S, EC, Entity))
1110         return;
1111 
1112       // Find an original declaration.
1113       while (D->isOutOfLine()) {
1114         NamedDecl *PrevDecl = 0;
1115         if (VarDecl *VD = dyn_cast<VarDecl>(D))
1116           PrevDecl = VD->getPreviousDecl();
1117         else if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
1118           PrevDecl = FD->getPreviousDecl();
1119         else if (TypedefNameDecl *TND = dyn_cast<TypedefNameDecl>(D))
1120           PrevDecl = TND->getPreviousDecl();
1121         else if (TagDecl *TD = dyn_cast<TagDecl>(D)) {
1122           if (isa<RecordDecl>(D) && cast<RecordDecl>(D)->isInjectedClassName())
1123             break;
1124           PrevDecl = TD->getPreviousDecl();
1125         }
1126         if (!PrevDecl) break;
1127         D = PrevDecl;
1128       }
1129 
1130       CXXRecordDecl *DeclaringClass = FindDeclaringClass(D);
1131       Decl *ImmediateChild;
1132       if (D->getDeclContext() == DeclaringClass)
1133         ImmediateChild = D;
1134       else {
1135         DeclContext *DC = D->getDeclContext();
1136         while (DC->getParent() != DeclaringClass)
1137           DC = DC->getParent();
1138         ImmediateChild = cast<Decl>(DC);
1139       }
1140 
1141       // Check whether there's an AccessSpecDecl preceding this in the
1142       // chain of the DeclContext.
1143       bool Implicit = true;
1144       for (CXXRecordDecl::decl_iterator
1145              I = DeclaringClass->decls_begin(), E = DeclaringClass->decls_end();
1146            I != E; ++I) {
1147         if (*I == ImmediateChild) break;
1148         if (isa<AccessSpecDecl>(*I)) {
1149           Implicit = false;
1150           break;
1151         }
1152       }
1153 
1154       S.Diag(D->getLocation(), diag::note_access_natural)
1155         << (unsigned) (Access == AS_protected)
1156         << Implicit;
1157       return;
1158     }
1159 
1160     case AR_accessible: break;
1161 
1162     case AR_dependent:
1163       llvm_unreachable("can't diagnose dependent access failures");
1164     }
1165   }
1166 
1167   CXXBasePaths Paths;
1168   CXXBasePath &Path = *FindBestPath(S, EC, Entity, AS_public, Paths);
1169 
1170   CXXBasePath::iterator I = Path.end(), E = Path.begin();
1171   while (I != E) {
1172     --I;
1173 
1174     const CXXBaseSpecifier *BS = I->Base;
1175     AccessSpecifier BaseAccess = BS->getAccessSpecifier();
1176 
1177     // If this is public inheritance, or the derived class is a friend,
1178     // skip this step.
1179     if (BaseAccess == AS_public)
1180       continue;
1181 
1182     switch (GetFriendKind(S, EC, I->Class)) {
1183     case AR_accessible: continue;
1184     case AR_inaccessible: break;
1185     case AR_dependent:
1186       llvm_unreachable("can't diagnose dependent access failures");
1187     }
1188 
1189     // Check whether this base specifier is the tighest point
1190     // constraining access.  We have to check against AS_private for
1191     // the same reasons as above.
1192     if (BaseAccess == AS_private || BaseAccess >= Access) {
1193 
1194       // We're constrained by inheritance, but we want to say
1195       // "declared private here" if we're diagnosing a hierarchy
1196       // conversion and this is the final step.
1197       unsigned diagnostic;
1198       if (D) diagnostic = diag::note_access_constrained_by_path;
1199       else if (I + 1 == Path.end()) diagnostic = diag::note_access_natural;
1200       else diagnostic = diag::note_access_constrained_by_path;
1201 
1202       S.Diag(BS->getSourceRange().getBegin(), diagnostic)
1203         << BS->getSourceRange()
1204         << (BaseAccess == AS_protected)
1205         << (BS->getAccessSpecifierAsWritten() == AS_none);
1206 
1207       if (D)
1208         S.Diag(D->getLocation(), diag::note_field_decl);
1209 
1210       return;
1211     }
1212   }
1213 
1214   llvm_unreachable("access not apparently constrained by path");
1215 }
1216 
DiagnoseBadAccess(Sema & S,SourceLocation Loc,const EffectiveContext & EC,AccessTarget & Entity)1217 static void DiagnoseBadAccess(Sema &S, SourceLocation Loc,
1218                               const EffectiveContext &EC,
1219                               AccessTarget &Entity) {
1220   const CXXRecordDecl *NamingClass = Entity.getNamingClass();
1221   const CXXRecordDecl *DeclaringClass = Entity.getDeclaringClass();
1222   NamedDecl *D = (Entity.isMemberAccess() ? Entity.getTargetDecl() : 0);
1223 
1224   S.Diag(Loc, Entity.getDiag())
1225     << (Entity.getAccess() == AS_protected)
1226     << (D ? D->getDeclName() : DeclarationName())
1227     << S.Context.getTypeDeclType(NamingClass)
1228     << S.Context.getTypeDeclType(DeclaringClass);
1229   DiagnoseAccessPath(S, EC, Entity);
1230 }
1231 
1232 /// MSVC has a bug where if during an using declaration name lookup,
1233 /// the declaration found is unaccessible (private) and that declaration
1234 /// was bring into scope via another using declaration whose target
1235 /// declaration is accessible (public) then no error is generated.
1236 /// Example:
1237 ///   class A {
1238 ///   public:
1239 ///     int f();
1240 ///   };
1241 ///   class B : public A {
1242 ///   private:
1243 ///     using A::f;
1244 ///   };
1245 ///   class C : public B {
1246 ///   private:
1247 ///     using B::f;
1248 ///   };
1249 ///
1250 /// Here, B::f is private so this should fail in Standard C++, but
1251 /// because B::f refers to A::f which is public MSVC accepts it.
IsMicrosoftUsingDeclarationAccessBug(Sema & S,SourceLocation AccessLoc,AccessTarget & Entity)1252 static bool IsMicrosoftUsingDeclarationAccessBug(Sema& S,
1253                                                  SourceLocation AccessLoc,
1254                                                  AccessTarget &Entity) {
1255   if (UsingShadowDecl *Shadow =
1256                          dyn_cast<UsingShadowDecl>(Entity.getTargetDecl())) {
1257     const NamedDecl *OrigDecl = Entity.getTargetDecl()->getUnderlyingDecl();
1258     if (Entity.getTargetDecl()->getAccess() == AS_private &&
1259         (OrigDecl->getAccess() == AS_public ||
1260          OrigDecl->getAccess() == AS_protected)) {
1261       S.Diag(AccessLoc, diag::ext_ms_using_declaration_inaccessible)
1262         << Shadow->getUsingDecl()->getQualifiedNameAsString()
1263         << OrigDecl->getQualifiedNameAsString();
1264       return true;
1265     }
1266   }
1267   return false;
1268 }
1269 
1270 /// Determines whether the accessed entity is accessible.  Public members
1271 /// have been weeded out by this point.
IsAccessible(Sema & S,const EffectiveContext & EC,AccessTarget & Entity)1272 static AccessResult IsAccessible(Sema &S,
1273                                  const EffectiveContext &EC,
1274                                  AccessTarget &Entity) {
1275   // Determine the actual naming class.
1276   CXXRecordDecl *NamingClass = Entity.getNamingClass();
1277   while (NamingClass->isAnonymousStructOrUnion())
1278     NamingClass = cast<CXXRecordDecl>(NamingClass->getParent());
1279   NamingClass = NamingClass->getCanonicalDecl();
1280 
1281   AccessSpecifier UnprivilegedAccess = Entity.getAccess();
1282   assert(UnprivilegedAccess != AS_public && "public access not weeded out");
1283 
1284   // Before we try to recalculate access paths, try to white-list
1285   // accesses which just trade in on the final step, i.e. accesses
1286   // which don't require [M4] or [B4]. These are by far the most
1287   // common forms of privileged access.
1288   if (UnprivilegedAccess != AS_none) {
1289     switch (HasAccess(S, EC, NamingClass, UnprivilegedAccess, Entity)) {
1290     case AR_dependent:
1291       // This is actually an interesting policy decision.  We don't
1292       // *have* to delay immediately here: we can do the full access
1293       // calculation in the hope that friendship on some intermediate
1294       // class will make the declaration accessible non-dependently.
1295       // But that's not cheap, and odds are very good (note: assertion
1296       // made without data) that the friend declaration will determine
1297       // access.
1298       return AR_dependent;
1299 
1300     case AR_accessible: return AR_accessible;
1301     case AR_inaccessible: break;
1302     }
1303   }
1304 
1305   AccessTarget::SavedInstanceContext _ = Entity.saveInstanceContext();
1306 
1307   // We lower member accesses to base accesses by pretending that the
1308   // member is a base class of its declaring class.
1309   AccessSpecifier FinalAccess;
1310 
1311   if (Entity.isMemberAccess()) {
1312     // Determine if the declaration is accessible from EC when named
1313     // in its declaring class.
1314     NamedDecl *Target = Entity.getTargetDecl();
1315     const CXXRecordDecl *DeclaringClass = Entity.getDeclaringClass();
1316 
1317     FinalAccess = Target->getAccess();
1318     switch (HasAccess(S, EC, DeclaringClass, FinalAccess, Entity)) {
1319     case AR_accessible:
1320       FinalAccess = AS_public;
1321       break;
1322     case AR_inaccessible: break;
1323     case AR_dependent: return AR_dependent; // see above
1324     }
1325 
1326     if (DeclaringClass == NamingClass)
1327       return (FinalAccess == AS_public ? AR_accessible : AR_inaccessible);
1328 
1329     Entity.suppressInstanceContext();
1330   } else {
1331     FinalAccess = AS_public;
1332   }
1333 
1334   assert(Entity.getDeclaringClass() != NamingClass);
1335 
1336   // Append the declaration's access if applicable.
1337   CXXBasePaths Paths;
1338   CXXBasePath *Path = FindBestPath(S, EC, Entity, FinalAccess, Paths);
1339   if (!Path)
1340     return AR_dependent;
1341 
1342   assert(Path->Access <= UnprivilegedAccess &&
1343          "access along best path worse than direct?");
1344   if (Path->Access == AS_public)
1345     return AR_accessible;
1346   return AR_inaccessible;
1347 }
1348 
DelayDependentAccess(Sema & S,const EffectiveContext & EC,SourceLocation Loc,const AccessTarget & Entity)1349 static void DelayDependentAccess(Sema &S,
1350                                  const EffectiveContext &EC,
1351                                  SourceLocation Loc,
1352                                  const AccessTarget &Entity) {
1353   assert(EC.isDependent() && "delaying non-dependent access");
1354   DeclContext *DC = EC.getInnerContext();
1355   assert(DC->isDependentContext() && "delaying non-dependent access");
1356   DependentDiagnostic::Create(S.Context, DC, DependentDiagnostic::Access,
1357                               Loc,
1358                               Entity.isMemberAccess(),
1359                               Entity.getAccess(),
1360                               Entity.getTargetDecl(),
1361                               Entity.getNamingClass(),
1362                               Entity.getBaseObjectType(),
1363                               Entity.getDiag());
1364 }
1365 
1366 /// Checks access to an entity from the given effective context.
CheckEffectiveAccess(Sema & S,const EffectiveContext & EC,SourceLocation Loc,AccessTarget & Entity)1367 static AccessResult CheckEffectiveAccess(Sema &S,
1368                                          const EffectiveContext &EC,
1369                                          SourceLocation Loc,
1370                                          AccessTarget &Entity) {
1371   assert(Entity.getAccess() != AS_public && "called for public access!");
1372 
1373   if (S.getLangOpts().MicrosoftMode &&
1374       IsMicrosoftUsingDeclarationAccessBug(S, Loc, Entity))
1375     return AR_accessible;
1376 
1377   switch (IsAccessible(S, EC, Entity)) {
1378   case AR_dependent:
1379     DelayDependentAccess(S, EC, Loc, Entity);
1380     return AR_dependent;
1381 
1382   case AR_inaccessible:
1383     if (!Entity.isQuiet())
1384       DiagnoseBadAccess(S, Loc, EC, Entity);
1385     return AR_inaccessible;
1386 
1387   case AR_accessible:
1388     return AR_accessible;
1389   }
1390 
1391   // silence unnecessary warning
1392   llvm_unreachable("invalid access result");
1393 }
1394 
CheckAccess(Sema & S,SourceLocation Loc,AccessTarget & Entity)1395 static Sema::AccessResult CheckAccess(Sema &S, SourceLocation Loc,
1396                                       AccessTarget &Entity) {
1397   // If the access path is public, it's accessible everywhere.
1398   if (Entity.getAccess() == AS_public)
1399     return Sema::AR_accessible;
1400 
1401   // If we're currently parsing a declaration, we may need to delay
1402   // access control checking, because our effective context might be
1403   // different based on what the declaration comes out as.
1404   //
1405   // For example, we might be parsing a declaration with a scope
1406   // specifier, like this:
1407   //   A::private_type A::foo() { ... }
1408   //
1409   // Or we might be parsing something that will turn out to be a friend:
1410   //   void foo(A::private_type);
1411   //   void B::foo(A::private_type);
1412   if (S.DelayedDiagnostics.shouldDelayDiagnostics()) {
1413     S.DelayedDiagnostics.add(DelayedDiagnostic::makeAccess(Loc, Entity));
1414     return Sema::AR_delayed;
1415   }
1416 
1417   EffectiveContext EC(S.CurContext);
1418   switch (CheckEffectiveAccess(S, EC, Loc, Entity)) {
1419   case AR_accessible: return Sema::AR_accessible;
1420   case AR_inaccessible: return Sema::AR_inaccessible;
1421   case AR_dependent: return Sema::AR_dependent;
1422   }
1423   llvm_unreachable("falling off end");
1424 }
1425 
HandleDelayedAccessCheck(DelayedDiagnostic & DD,Decl * decl)1426 void Sema::HandleDelayedAccessCheck(DelayedDiagnostic &DD, Decl *decl) {
1427   // Access control for names used in the declarations of functions
1428   // and function templates should normally be evaluated in the context
1429   // of the declaration, just in case it's a friend of something.
1430   // However, this does not apply to local extern declarations.
1431 
1432   DeclContext *DC = decl->getDeclContext();
1433   if (FunctionDecl *fn = dyn_cast<FunctionDecl>(decl)) {
1434     if (!DC->isFunctionOrMethod()) DC = fn;
1435   } else if (FunctionTemplateDecl *fnt = dyn_cast<FunctionTemplateDecl>(decl)) {
1436     // Never a local declaration.
1437     DC = fnt->getTemplatedDecl();
1438   }
1439 
1440   EffectiveContext EC(DC);
1441 
1442   AccessTarget Target(DD.getAccessData());
1443 
1444   if (CheckEffectiveAccess(*this, EC, DD.Loc, Target) == ::AR_inaccessible)
1445     DD.Triggered = true;
1446 }
1447 
HandleDependentAccessCheck(const DependentDiagnostic & DD,const MultiLevelTemplateArgumentList & TemplateArgs)1448 void Sema::HandleDependentAccessCheck(const DependentDiagnostic &DD,
1449                         const MultiLevelTemplateArgumentList &TemplateArgs) {
1450   SourceLocation Loc = DD.getAccessLoc();
1451   AccessSpecifier Access = DD.getAccess();
1452 
1453   Decl *NamingD = FindInstantiatedDecl(Loc, DD.getAccessNamingClass(),
1454                                        TemplateArgs);
1455   if (!NamingD) return;
1456   Decl *TargetD = FindInstantiatedDecl(Loc, DD.getAccessTarget(),
1457                                        TemplateArgs);
1458   if (!TargetD) return;
1459 
1460   if (DD.isAccessToMember()) {
1461     CXXRecordDecl *NamingClass = cast<CXXRecordDecl>(NamingD);
1462     NamedDecl *TargetDecl = cast<NamedDecl>(TargetD);
1463     QualType BaseObjectType = DD.getAccessBaseObjectType();
1464     if (!BaseObjectType.isNull()) {
1465       BaseObjectType = SubstType(BaseObjectType, TemplateArgs, Loc,
1466                                  DeclarationName());
1467       if (BaseObjectType.isNull()) return;
1468     }
1469 
1470     AccessTarget Entity(Context,
1471                         AccessTarget::Member,
1472                         NamingClass,
1473                         DeclAccessPair::make(TargetDecl, Access),
1474                         BaseObjectType);
1475     Entity.setDiag(DD.getDiagnostic());
1476     CheckAccess(*this, Loc, Entity);
1477   } else {
1478     AccessTarget Entity(Context,
1479                         AccessTarget::Base,
1480                         cast<CXXRecordDecl>(TargetD),
1481                         cast<CXXRecordDecl>(NamingD),
1482                         Access);
1483     Entity.setDiag(DD.getDiagnostic());
1484     CheckAccess(*this, Loc, Entity);
1485   }
1486 }
1487 
CheckUnresolvedLookupAccess(UnresolvedLookupExpr * E,DeclAccessPair Found)1488 Sema::AccessResult Sema::CheckUnresolvedLookupAccess(UnresolvedLookupExpr *E,
1489                                                      DeclAccessPair Found) {
1490   if (!getLangOpts().AccessControl ||
1491       !E->getNamingClass() ||
1492       Found.getAccess() == AS_public)
1493     return AR_accessible;
1494 
1495   AccessTarget Entity(Context, AccessTarget::Member, E->getNamingClass(),
1496                       Found, QualType());
1497   Entity.setDiag(diag::err_access) << E->getSourceRange();
1498 
1499   return CheckAccess(*this, E->getNameLoc(), Entity);
1500 }
1501 
1502 /// Perform access-control checking on a previously-unresolved member
1503 /// access which has now been resolved to a member.
CheckUnresolvedMemberAccess(UnresolvedMemberExpr * E,DeclAccessPair Found)1504 Sema::AccessResult Sema::CheckUnresolvedMemberAccess(UnresolvedMemberExpr *E,
1505                                                      DeclAccessPair Found) {
1506   if (!getLangOpts().AccessControl ||
1507       Found.getAccess() == AS_public)
1508     return AR_accessible;
1509 
1510   QualType BaseType = E->getBaseType();
1511   if (E->isArrow())
1512     BaseType = BaseType->getAs<PointerType>()->getPointeeType();
1513 
1514   AccessTarget Entity(Context, AccessTarget::Member, E->getNamingClass(),
1515                       Found, BaseType);
1516   Entity.setDiag(diag::err_access) << E->getSourceRange();
1517 
1518   return CheckAccess(*this, E->getMemberLoc(), Entity);
1519 }
1520 
1521 /// Is the given special member function accessible for the purposes of
1522 /// deciding whether to define a special member function as deleted?
isSpecialMemberAccessibleForDeletion(CXXMethodDecl * decl,AccessSpecifier access,QualType objectType)1523 bool Sema::isSpecialMemberAccessibleForDeletion(CXXMethodDecl *decl,
1524                                                 AccessSpecifier access,
1525                                                 QualType objectType) {
1526   // Fast path.
1527   if (access == AS_public || !getLangOpts().AccessControl) return true;
1528 
1529   AccessTarget entity(Context, AccessTarget::Member, decl->getParent(),
1530                       DeclAccessPair::make(decl, access), objectType);
1531 
1532   // Suppress diagnostics.
1533   entity.setDiag(PDiag());
1534 
1535   switch (CheckAccess(*this, SourceLocation(), entity)) {
1536   case AR_accessible: return true;
1537   case AR_inaccessible: return false;
1538   case AR_dependent: llvm_unreachable("dependent for =delete computation");
1539   case AR_delayed: llvm_unreachable("cannot delay =delete computation");
1540   }
1541   llvm_unreachable("bad access result");
1542 }
1543 
CheckDestructorAccess(SourceLocation Loc,CXXDestructorDecl * Dtor,const PartialDiagnostic & PDiag,QualType ObjectTy)1544 Sema::AccessResult Sema::CheckDestructorAccess(SourceLocation Loc,
1545                                                CXXDestructorDecl *Dtor,
1546                                                const PartialDiagnostic &PDiag,
1547                                                QualType ObjectTy) {
1548   if (!getLangOpts().AccessControl)
1549     return AR_accessible;
1550 
1551   // There's never a path involved when checking implicit destructor access.
1552   AccessSpecifier Access = Dtor->getAccess();
1553   if (Access == AS_public)
1554     return AR_accessible;
1555 
1556   CXXRecordDecl *NamingClass = Dtor->getParent();
1557   if (ObjectTy.isNull()) ObjectTy = Context.getTypeDeclType(NamingClass);
1558 
1559   AccessTarget Entity(Context, AccessTarget::Member, NamingClass,
1560                       DeclAccessPair::make(Dtor, Access),
1561                       ObjectTy);
1562   Entity.setDiag(PDiag); // TODO: avoid copy
1563 
1564   return CheckAccess(*this, Loc, Entity);
1565 }
1566 
1567 /// Checks access to a constructor.
CheckConstructorAccess(SourceLocation UseLoc,CXXConstructorDecl * Constructor,const InitializedEntity & Entity,AccessSpecifier Access,bool IsCopyBindingRefToTemp)1568 Sema::AccessResult Sema::CheckConstructorAccess(SourceLocation UseLoc,
1569                                                 CXXConstructorDecl *Constructor,
1570                                                 const InitializedEntity &Entity,
1571                                                 AccessSpecifier Access,
1572                                                 bool IsCopyBindingRefToTemp) {
1573   if (!getLangOpts().AccessControl || Access == AS_public)
1574     return AR_accessible;
1575 
1576   PartialDiagnostic PD(PDiag());
1577   switch (Entity.getKind()) {
1578   default:
1579     PD = PDiag(IsCopyBindingRefToTemp
1580                  ? diag::ext_rvalue_to_reference_access_ctor
1581                  : diag::err_access_ctor);
1582 
1583     break;
1584 
1585   case InitializedEntity::EK_Base:
1586     PD = PDiag(diag::err_access_base_ctor);
1587     PD << Entity.isInheritedVirtualBase()
1588        << Entity.getBaseSpecifier()->getType() << getSpecialMember(Constructor);
1589     break;
1590 
1591   case InitializedEntity::EK_Member: {
1592     const FieldDecl *Field = cast<FieldDecl>(Entity.getDecl());
1593     PD = PDiag(diag::err_access_field_ctor);
1594     PD << Field->getType() << getSpecialMember(Constructor);
1595     break;
1596   }
1597 
1598   case InitializedEntity::EK_LambdaCapture: {
1599     const VarDecl *Var = Entity.getCapturedVar();
1600     PD = PDiag(diag::err_access_lambda_capture);
1601     PD << Var->getName() << Entity.getType() << getSpecialMember(Constructor);
1602     break;
1603   }
1604 
1605   }
1606 
1607   return CheckConstructorAccess(UseLoc, Constructor, Entity, Access, PD);
1608 }
1609 
1610 /// Checks access to a constructor.
CheckConstructorAccess(SourceLocation UseLoc,CXXConstructorDecl * Constructor,const InitializedEntity & Entity,AccessSpecifier Access,const PartialDiagnostic & PD)1611 Sema::AccessResult Sema::CheckConstructorAccess(SourceLocation UseLoc,
1612                                                 CXXConstructorDecl *Constructor,
1613                                                 const InitializedEntity &Entity,
1614                                                 AccessSpecifier Access,
1615                                                 const PartialDiagnostic &PD) {
1616   if (!getLangOpts().AccessControl ||
1617       Access == AS_public)
1618     return AR_accessible;
1619 
1620   CXXRecordDecl *NamingClass = Constructor->getParent();
1621 
1622   // Initializing a base sub-object is an instance method call on an
1623   // object of the derived class.  Otherwise, we have an instance method
1624   // call on an object of the constructed type.
1625   CXXRecordDecl *ObjectClass;
1626   if (Entity.getKind() == InitializedEntity::EK_Base) {
1627     ObjectClass = cast<CXXConstructorDecl>(CurContext)->getParent();
1628   } else {
1629     ObjectClass = NamingClass;
1630   }
1631 
1632   AccessTarget AccessEntity(Context, AccessTarget::Member, NamingClass,
1633                             DeclAccessPair::make(Constructor, Access),
1634                             Context.getTypeDeclType(ObjectClass));
1635   AccessEntity.setDiag(PD);
1636 
1637   return CheckAccess(*this, UseLoc, AccessEntity);
1638 }
1639 
1640 /// Checks access to an overloaded operator new or delete.
CheckAllocationAccess(SourceLocation OpLoc,SourceRange PlacementRange,CXXRecordDecl * NamingClass,DeclAccessPair Found,bool Diagnose)1641 Sema::AccessResult Sema::CheckAllocationAccess(SourceLocation OpLoc,
1642                                                SourceRange PlacementRange,
1643                                                CXXRecordDecl *NamingClass,
1644                                                DeclAccessPair Found,
1645                                                bool Diagnose) {
1646   if (!getLangOpts().AccessControl ||
1647       !NamingClass ||
1648       Found.getAccess() == AS_public)
1649     return AR_accessible;
1650 
1651   AccessTarget Entity(Context, AccessTarget::Member, NamingClass, Found,
1652                       QualType());
1653   if (Diagnose)
1654     Entity.setDiag(diag::err_access)
1655       << PlacementRange;
1656 
1657   return CheckAccess(*this, OpLoc, Entity);
1658 }
1659 
1660 /// Checks access to an overloaded member operator, including
1661 /// conversion operators.
CheckMemberOperatorAccess(SourceLocation OpLoc,Expr * ObjectExpr,Expr * ArgExpr,DeclAccessPair Found)1662 Sema::AccessResult Sema::CheckMemberOperatorAccess(SourceLocation OpLoc,
1663                                                    Expr *ObjectExpr,
1664                                                    Expr *ArgExpr,
1665                                                    DeclAccessPair Found) {
1666   if (!getLangOpts().AccessControl ||
1667       Found.getAccess() == AS_public)
1668     return AR_accessible;
1669 
1670   const RecordType *RT = ObjectExpr->getType()->castAs<RecordType>();
1671   CXXRecordDecl *NamingClass = cast<CXXRecordDecl>(RT->getDecl());
1672 
1673   AccessTarget Entity(Context, AccessTarget::Member, NamingClass, Found,
1674                       ObjectExpr->getType());
1675   Entity.setDiag(diag::err_access)
1676     << ObjectExpr->getSourceRange()
1677     << (ArgExpr ? ArgExpr->getSourceRange() : SourceRange());
1678 
1679   return CheckAccess(*this, OpLoc, Entity);
1680 }
1681 
1682 /// Checks access to the target of a friend declaration.
CheckFriendAccess(NamedDecl * target)1683 Sema::AccessResult Sema::CheckFriendAccess(NamedDecl *target) {
1684   assert(isa<CXXMethodDecl>(target) ||
1685          (isa<FunctionTemplateDecl>(target) &&
1686           isa<CXXMethodDecl>(cast<FunctionTemplateDecl>(target)
1687                                ->getTemplatedDecl())));
1688 
1689   // Friendship lookup is a redeclaration lookup, so there's never an
1690   // inheritance path modifying access.
1691   AccessSpecifier access = target->getAccess();
1692 
1693   if (!getLangOpts().AccessControl || access == AS_public)
1694     return AR_accessible;
1695 
1696   CXXMethodDecl *method = dyn_cast<CXXMethodDecl>(target);
1697   if (!method)
1698     method = cast<CXXMethodDecl>(
1699                      cast<FunctionTemplateDecl>(target)->getTemplatedDecl());
1700   assert(method->getQualifier());
1701 
1702   AccessTarget entity(Context, AccessTarget::Member,
1703                       cast<CXXRecordDecl>(target->getDeclContext()),
1704                       DeclAccessPair::make(target, access),
1705                       /*no instance context*/ QualType());
1706   entity.setDiag(diag::err_access_friend_function)
1707     << method->getQualifierLoc().getSourceRange();
1708 
1709   // We need to bypass delayed-diagnostics because we might be called
1710   // while the ParsingDeclarator is active.
1711   EffectiveContext EC(CurContext);
1712   switch (CheckEffectiveAccess(*this, EC, target->getLocation(), entity)) {
1713   case AR_accessible: return Sema::AR_accessible;
1714   case AR_inaccessible: return Sema::AR_inaccessible;
1715   case AR_dependent: return Sema::AR_dependent;
1716   }
1717   llvm_unreachable("falling off end");
1718 }
1719 
CheckAddressOfMemberAccess(Expr * OvlExpr,DeclAccessPair Found)1720 Sema::AccessResult Sema::CheckAddressOfMemberAccess(Expr *OvlExpr,
1721                                                     DeclAccessPair Found) {
1722   if (!getLangOpts().AccessControl ||
1723       Found.getAccess() == AS_none ||
1724       Found.getAccess() == AS_public)
1725     return AR_accessible;
1726 
1727   OverloadExpr *Ovl = OverloadExpr::find(OvlExpr).Expression;
1728   CXXRecordDecl *NamingClass = Ovl->getNamingClass();
1729 
1730   AccessTarget Entity(Context, AccessTarget::Member, NamingClass, Found,
1731                       /*no instance context*/ QualType());
1732   Entity.setDiag(diag::err_access)
1733     << Ovl->getSourceRange();
1734 
1735   return CheckAccess(*this, Ovl->getNameLoc(), Entity);
1736 }
1737 
1738 /// Checks access for a hierarchy conversion.
1739 ///
1740 /// \param ForceCheck true if this check should be performed even if access
1741 ///     control is disabled;  some things rely on this for semantics
1742 /// \param ForceUnprivileged true if this check should proceed as if the
1743 ///     context had no special privileges
CheckBaseClassAccess(SourceLocation AccessLoc,QualType Base,QualType Derived,const CXXBasePath & Path,unsigned DiagID,bool ForceCheck,bool ForceUnprivileged)1744 Sema::AccessResult Sema::CheckBaseClassAccess(SourceLocation AccessLoc,
1745                                               QualType Base,
1746                                               QualType Derived,
1747                                               const CXXBasePath &Path,
1748                                               unsigned DiagID,
1749                                               bool ForceCheck,
1750                                               bool ForceUnprivileged) {
1751   if (!ForceCheck && !getLangOpts().AccessControl)
1752     return AR_accessible;
1753 
1754   if (Path.Access == AS_public)
1755     return AR_accessible;
1756 
1757   CXXRecordDecl *BaseD, *DerivedD;
1758   BaseD = cast<CXXRecordDecl>(Base->getAs<RecordType>()->getDecl());
1759   DerivedD = cast<CXXRecordDecl>(Derived->getAs<RecordType>()->getDecl());
1760 
1761   AccessTarget Entity(Context, AccessTarget::Base, BaseD, DerivedD,
1762                       Path.Access);
1763   if (DiagID)
1764     Entity.setDiag(DiagID) << Derived << Base;
1765 
1766   if (ForceUnprivileged) {
1767     switch (CheckEffectiveAccess(*this, EffectiveContext(),
1768                                  AccessLoc, Entity)) {
1769     case ::AR_accessible: return Sema::AR_accessible;
1770     case ::AR_inaccessible: return Sema::AR_inaccessible;
1771     case ::AR_dependent: return Sema::AR_dependent;
1772     }
1773     llvm_unreachable("unexpected result from CheckEffectiveAccess");
1774   }
1775   return CheckAccess(*this, AccessLoc, Entity);
1776 }
1777 
1778 /// Checks access to all the declarations in the given result set.
CheckLookupAccess(const LookupResult & R)1779 void Sema::CheckLookupAccess(const LookupResult &R) {
1780   assert(getLangOpts().AccessControl
1781          && "performing access check without access control");
1782   assert(R.getNamingClass() && "performing access check without naming class");
1783 
1784   for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
1785     if (I.getAccess() != AS_public) {
1786       AccessTarget Entity(Context, AccessedEntity::Member,
1787                           R.getNamingClass(), I.getPair(),
1788                           R.getBaseObjectType());
1789       Entity.setDiag(diag::err_access);
1790       CheckAccess(*this, R.getNameLoc(), Entity);
1791     }
1792   }
1793 }
1794 
1795 /// Checks access to Decl from the given class. The check will take access
1796 /// specifiers into account, but no member access expressions and such.
1797 ///
1798 /// \param Decl the declaration to check if it can be accessed
1799 /// \param Ctx the class/context from which to start the search
1800 /// \return true if the Decl is accessible from the Class, false otherwise.
IsSimplyAccessible(NamedDecl * Decl,DeclContext * Ctx)1801 bool Sema::IsSimplyAccessible(NamedDecl *Decl, DeclContext *Ctx) {
1802   if (CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(Ctx)) {
1803     if (!Decl->isCXXClassMember())
1804       return true;
1805 
1806     QualType qType = Class->getTypeForDecl()->getCanonicalTypeInternal();
1807     AccessTarget Entity(Context, AccessedEntity::Member, Class,
1808                         DeclAccessPair::make(Decl, Decl->getAccess()),
1809                         qType);
1810     if (Entity.getAccess() == AS_public)
1811       return true;
1812 
1813     EffectiveContext EC(CurContext);
1814     return ::IsAccessible(*this, EC, Entity) != ::AR_inaccessible;
1815   }
1816 
1817   if (ObjCIvarDecl *Ivar = dyn_cast<ObjCIvarDecl>(Decl)) {
1818     // @public and @package ivars are always accessible.
1819     if (Ivar->getCanonicalAccessControl() == ObjCIvarDecl::Public ||
1820         Ivar->getCanonicalAccessControl() == ObjCIvarDecl::Package)
1821       return true;
1822 
1823 
1824 
1825     // If we are inside a class or category implementation, determine the
1826     // interface we're in.
1827     ObjCInterfaceDecl *ClassOfMethodDecl = 0;
1828     if (ObjCMethodDecl *MD = getCurMethodDecl())
1829       ClassOfMethodDecl =  MD->getClassInterface();
1830     else if (FunctionDecl *FD = getCurFunctionDecl()) {
1831       if (ObjCImplDecl *Impl
1832             = dyn_cast<ObjCImplDecl>(FD->getLexicalDeclContext())) {
1833         if (ObjCImplementationDecl *IMPD
1834               = dyn_cast<ObjCImplementationDecl>(Impl))
1835           ClassOfMethodDecl = IMPD->getClassInterface();
1836         else if (ObjCCategoryImplDecl* CatImplClass
1837                    = dyn_cast<ObjCCategoryImplDecl>(Impl))
1838           ClassOfMethodDecl = CatImplClass->getClassInterface();
1839       }
1840     }
1841 
1842     // If we're not in an interface, this ivar is inaccessible.
1843     if (!ClassOfMethodDecl)
1844       return false;
1845 
1846     // If we're inside the same interface that owns the ivar, we're fine.
1847     if (declaresSameEntity(ClassOfMethodDecl, Ivar->getContainingInterface()))
1848       return true;
1849 
1850     // If the ivar is private, it's inaccessible.
1851     if (Ivar->getCanonicalAccessControl() == ObjCIvarDecl::Private)
1852       return false;
1853 
1854     return Ivar->getContainingInterface()->isSuperClassOf(ClassOfMethodDecl);
1855   }
1856 
1857   return true;
1858 }
1859