1 //===-- LiveIntervalAnalysis.cpp - Live Interval Analysis -----------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the LiveInterval analysis pass which is used
11 // by the Linear Scan Register allocator. This pass linearizes the
12 // basic blocks of the function in DFS order and uses the
13 // LiveVariables pass to conservatively compute live intervals for
14 // each virtual and physical register.
15 //
16 //===----------------------------------------------------------------------===//
17
18 #define DEBUG_TYPE "regalloc"
19 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
20 #include "llvm/Value.h"
21 #include "llvm/Analysis/AliasAnalysis.h"
22 #include "llvm/CodeGen/LiveVariables.h"
23 #include "llvm/CodeGen/MachineDominators.h"
24 #include "llvm/CodeGen/MachineInstr.h"
25 #include "llvm/CodeGen/MachineRegisterInfo.h"
26 #include "llvm/CodeGen/Passes.h"
27 #include "llvm/Target/TargetRegisterInfo.h"
28 #include "llvm/Target/TargetInstrInfo.h"
29 #include "llvm/Target/TargetMachine.h"
30 #include "llvm/Support/CommandLine.h"
31 #include "llvm/Support/Debug.h"
32 #include "llvm/Support/ErrorHandling.h"
33 #include "llvm/Support/raw_ostream.h"
34 #include "llvm/ADT/DenseSet.h"
35 #include "llvm/ADT/STLExtras.h"
36 #include "LiveRangeCalc.h"
37 #include "VirtRegMap.h"
38 #include <algorithm>
39 #include <limits>
40 #include <cmath>
41 using namespace llvm;
42
43 // Switch to the new experimental algorithm for computing live intervals.
44 static cl::opt<bool>
45 NewLiveIntervals("new-live-intervals", cl::Hidden,
46 cl::desc("Use new algorithm forcomputing live intervals"));
47
48 char LiveIntervals::ID = 0;
49 char &llvm::LiveIntervalsID = LiveIntervals::ID;
50 INITIALIZE_PASS_BEGIN(LiveIntervals, "liveintervals",
51 "Live Interval Analysis", false, false)
INITIALIZE_AG_DEPENDENCY(AliasAnalysis)52 INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
53 INITIALIZE_PASS_DEPENDENCY(LiveVariables)
54 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
55 INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
56 INITIALIZE_PASS_END(LiveIntervals, "liveintervals",
57 "Live Interval Analysis", false, false)
58
59 void LiveIntervals::getAnalysisUsage(AnalysisUsage &AU) const {
60 AU.setPreservesCFG();
61 AU.addRequired<AliasAnalysis>();
62 AU.addPreserved<AliasAnalysis>();
63 AU.addRequired<LiveVariables>();
64 AU.addPreserved<LiveVariables>();
65 AU.addPreservedID(MachineLoopInfoID);
66 AU.addRequiredTransitiveID(MachineDominatorsID);
67 AU.addPreservedID(MachineDominatorsID);
68 AU.addPreserved<SlotIndexes>();
69 AU.addRequiredTransitive<SlotIndexes>();
70 MachineFunctionPass::getAnalysisUsage(AU);
71 }
72
LiveIntervals()73 LiveIntervals::LiveIntervals() : MachineFunctionPass(ID),
74 DomTree(0), LRCalc(0) {
75 initializeLiveIntervalsPass(*PassRegistry::getPassRegistry());
76 }
77
~LiveIntervals()78 LiveIntervals::~LiveIntervals() {
79 delete LRCalc;
80 }
81
releaseMemory()82 void LiveIntervals::releaseMemory() {
83 // Free the live intervals themselves.
84 for (unsigned i = 0, e = VirtRegIntervals.size(); i != e; ++i)
85 delete VirtRegIntervals[TargetRegisterInfo::index2VirtReg(i)];
86 VirtRegIntervals.clear();
87 RegMaskSlots.clear();
88 RegMaskBits.clear();
89 RegMaskBlocks.clear();
90
91 for (unsigned i = 0, e = RegUnitIntervals.size(); i != e; ++i)
92 delete RegUnitIntervals[i];
93 RegUnitIntervals.clear();
94
95 // Release VNInfo memory regions, VNInfo objects don't need to be dtor'd.
96 VNInfoAllocator.Reset();
97 }
98
99 /// runOnMachineFunction - Register allocate the whole function
100 ///
runOnMachineFunction(MachineFunction & fn)101 bool LiveIntervals::runOnMachineFunction(MachineFunction &fn) {
102 MF = &fn;
103 MRI = &MF->getRegInfo();
104 TM = &fn.getTarget();
105 TRI = TM->getRegisterInfo();
106 TII = TM->getInstrInfo();
107 AA = &getAnalysis<AliasAnalysis>();
108 LV = &getAnalysis<LiveVariables>();
109 Indexes = &getAnalysis<SlotIndexes>();
110 DomTree = &getAnalysis<MachineDominatorTree>();
111 if (!LRCalc)
112 LRCalc = new LiveRangeCalc();
113 AllocatableRegs = TRI->getAllocatableSet(fn);
114 ReservedRegs = TRI->getReservedRegs(fn);
115
116 // Allocate space for all virtual registers.
117 VirtRegIntervals.resize(MRI->getNumVirtRegs());
118
119 if (NewLiveIntervals) {
120 // This is the new way of computing live intervals.
121 // It is independent of LiveVariables, and it can run at any time.
122 computeVirtRegs();
123 computeRegMasks();
124 } else {
125 // This is the old way of computing live intervals.
126 // It depends on LiveVariables.
127 computeIntervals();
128 }
129 computeLiveInRegUnits();
130
131 DEBUG(dump());
132 return true;
133 }
134
135 /// print - Implement the dump method.
print(raw_ostream & OS,const Module *) const136 void LiveIntervals::print(raw_ostream &OS, const Module* ) const {
137 OS << "********** INTERVALS **********\n";
138
139 // Dump the regunits.
140 for (unsigned i = 0, e = RegUnitIntervals.size(); i != e; ++i)
141 if (LiveInterval *LI = RegUnitIntervals[i])
142 OS << PrintRegUnit(i, TRI) << " = " << *LI << '\n';
143
144 // Dump the virtregs.
145 for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
146 unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
147 if (hasInterval(Reg))
148 OS << PrintReg(Reg) << " = " << getInterval(Reg) << '\n';
149 }
150
151 printInstrs(OS);
152 }
153
printInstrs(raw_ostream & OS) const154 void LiveIntervals::printInstrs(raw_ostream &OS) const {
155 OS << "********** MACHINEINSTRS **********\n";
156 MF->print(OS, Indexes);
157 }
158
159 #ifndef NDEBUG
dumpInstrs() const160 void LiveIntervals::dumpInstrs() const {
161 printInstrs(dbgs());
162 }
163 #endif
164
165 static
MultipleDefsBySameMI(const MachineInstr & MI,unsigned MOIdx)166 bool MultipleDefsBySameMI(const MachineInstr &MI, unsigned MOIdx) {
167 unsigned Reg = MI.getOperand(MOIdx).getReg();
168 for (unsigned i = MOIdx+1, e = MI.getNumOperands(); i < e; ++i) {
169 const MachineOperand &MO = MI.getOperand(i);
170 if (!MO.isReg())
171 continue;
172 if (MO.getReg() == Reg && MO.isDef()) {
173 assert(MI.getOperand(MOIdx).getSubReg() != MO.getSubReg() &&
174 MI.getOperand(MOIdx).getSubReg() &&
175 (MO.getSubReg() || MO.isImplicit()));
176 return true;
177 }
178 }
179 return false;
180 }
181
182 /// isPartialRedef - Return true if the specified def at the specific index is
183 /// partially re-defining the specified live interval. A common case of this is
184 /// a definition of the sub-register.
isPartialRedef(SlotIndex MIIdx,MachineOperand & MO,LiveInterval & interval)185 bool LiveIntervals::isPartialRedef(SlotIndex MIIdx, MachineOperand &MO,
186 LiveInterval &interval) {
187 if (!MO.getSubReg() || MO.isEarlyClobber())
188 return false;
189
190 SlotIndex RedefIndex = MIIdx.getRegSlot();
191 const LiveRange *OldLR =
192 interval.getLiveRangeContaining(RedefIndex.getRegSlot(true));
193 MachineInstr *DefMI = getInstructionFromIndex(OldLR->valno->def);
194 if (DefMI != 0) {
195 return DefMI->findRegisterDefOperandIdx(interval.reg) != -1;
196 }
197 return false;
198 }
199
handleVirtualRegisterDef(MachineBasicBlock * mbb,MachineBasicBlock::iterator mi,SlotIndex MIIdx,MachineOperand & MO,unsigned MOIdx,LiveInterval & interval)200 void LiveIntervals::handleVirtualRegisterDef(MachineBasicBlock *mbb,
201 MachineBasicBlock::iterator mi,
202 SlotIndex MIIdx,
203 MachineOperand& MO,
204 unsigned MOIdx,
205 LiveInterval &interval) {
206 DEBUG(dbgs() << "\t\tregister: " << PrintReg(interval.reg, TRI));
207
208 // Virtual registers may be defined multiple times (due to phi
209 // elimination and 2-addr elimination). Much of what we do only has to be
210 // done once for the vreg. We use an empty interval to detect the first
211 // time we see a vreg.
212 LiveVariables::VarInfo& vi = LV->getVarInfo(interval.reg);
213 if (interval.empty()) {
214 // Get the Idx of the defining instructions.
215 SlotIndex defIndex = MIIdx.getRegSlot(MO.isEarlyClobber());
216
217 // Make sure the first definition is not a partial redefinition.
218 assert(!MO.readsReg() && "First def cannot also read virtual register "
219 "missing <undef> flag?");
220
221 VNInfo *ValNo = interval.getNextValue(defIndex, VNInfoAllocator);
222 assert(ValNo->id == 0 && "First value in interval is not 0?");
223
224 // Loop over all of the blocks that the vreg is defined in. There are
225 // two cases we have to handle here. The most common case is a vreg
226 // whose lifetime is contained within a basic block. In this case there
227 // will be a single kill, in MBB, which comes after the definition.
228 if (vi.Kills.size() == 1 && vi.Kills[0]->getParent() == mbb) {
229 // FIXME: what about dead vars?
230 SlotIndex killIdx;
231 if (vi.Kills[0] != mi)
232 killIdx = getInstructionIndex(vi.Kills[0]).getRegSlot();
233 else
234 killIdx = defIndex.getDeadSlot();
235
236 // If the kill happens after the definition, we have an intra-block
237 // live range.
238 if (killIdx > defIndex) {
239 assert(vi.AliveBlocks.empty() &&
240 "Shouldn't be alive across any blocks!");
241 LiveRange LR(defIndex, killIdx, ValNo);
242 interval.addRange(LR);
243 DEBUG(dbgs() << " +" << LR << "\n");
244 return;
245 }
246 }
247
248 // The other case we handle is when a virtual register lives to the end
249 // of the defining block, potentially live across some blocks, then is
250 // live into some number of blocks, but gets killed. Start by adding a
251 // range that goes from this definition to the end of the defining block.
252 LiveRange NewLR(defIndex, getMBBEndIdx(mbb), ValNo);
253 DEBUG(dbgs() << " +" << NewLR);
254 interval.addRange(NewLR);
255
256 bool PHIJoin = LV->isPHIJoin(interval.reg);
257
258 if (PHIJoin) {
259 // A phi join register is killed at the end of the MBB and revived as a
260 // new valno in the killing blocks.
261 assert(vi.AliveBlocks.empty() && "Phi join can't pass through blocks");
262 DEBUG(dbgs() << " phi-join");
263 } else {
264 // Iterate over all of the blocks that the variable is completely
265 // live in, adding [insrtIndex(begin), instrIndex(end)+4) to the
266 // live interval.
267 for (SparseBitVector<>::iterator I = vi.AliveBlocks.begin(),
268 E = vi.AliveBlocks.end(); I != E; ++I) {
269 MachineBasicBlock *aliveBlock = MF->getBlockNumbered(*I);
270 LiveRange LR(getMBBStartIdx(aliveBlock), getMBBEndIdx(aliveBlock),
271 ValNo);
272 interval.addRange(LR);
273 DEBUG(dbgs() << " +" << LR);
274 }
275 }
276
277 // Finally, this virtual register is live from the start of any killing
278 // block to the 'use' slot of the killing instruction.
279 for (unsigned i = 0, e = vi.Kills.size(); i != e; ++i) {
280 MachineInstr *Kill = vi.Kills[i];
281 SlotIndex Start = getMBBStartIdx(Kill->getParent());
282 SlotIndex killIdx = getInstructionIndex(Kill).getRegSlot();
283
284 // Create interval with one of a NEW value number. Note that this value
285 // number isn't actually defined by an instruction, weird huh? :)
286 if (PHIJoin) {
287 assert(getInstructionFromIndex(Start) == 0 &&
288 "PHI def index points at actual instruction.");
289 ValNo = interval.getNextValue(Start, VNInfoAllocator);
290 }
291 LiveRange LR(Start, killIdx, ValNo);
292 interval.addRange(LR);
293 DEBUG(dbgs() << " +" << LR);
294 }
295
296 } else {
297 if (MultipleDefsBySameMI(*mi, MOIdx))
298 // Multiple defs of the same virtual register by the same instruction.
299 // e.g. %reg1031:5<def>, %reg1031:6<def> = VLD1q16 %reg1024<kill>, ...
300 // This is likely due to elimination of REG_SEQUENCE instructions. Return
301 // here since there is nothing to do.
302 return;
303
304 // If this is the second time we see a virtual register definition, it
305 // must be due to phi elimination or two addr elimination. If this is
306 // the result of two address elimination, then the vreg is one of the
307 // def-and-use register operand.
308
309 // It may also be partial redef like this:
310 // 80 %reg1041:6<def> = VSHRNv4i16 %reg1034<kill>, 12, pred:14, pred:%reg0
311 // 120 %reg1041:5<def> = VSHRNv4i16 %reg1039<kill>, 12, pred:14, pred:%reg0
312 bool PartReDef = isPartialRedef(MIIdx, MO, interval);
313 if (PartReDef || mi->isRegTiedToUseOperand(MOIdx)) {
314 // If this is a two-address definition, then we have already processed
315 // the live range. The only problem is that we didn't realize there
316 // are actually two values in the live interval. Because of this we
317 // need to take the LiveRegion that defines this register and split it
318 // into two values.
319 SlotIndex RedefIndex = MIIdx.getRegSlot(MO.isEarlyClobber());
320
321 const LiveRange *OldLR =
322 interval.getLiveRangeContaining(RedefIndex.getRegSlot(true));
323 VNInfo *OldValNo = OldLR->valno;
324 SlotIndex DefIndex = OldValNo->def.getRegSlot();
325
326 // Delete the previous value, which should be short and continuous,
327 // because the 2-addr copy must be in the same MBB as the redef.
328 interval.removeRange(DefIndex, RedefIndex);
329
330 // The new value number (#1) is defined by the instruction we claimed
331 // defined value #0.
332 VNInfo *ValNo = interval.createValueCopy(OldValNo, VNInfoAllocator);
333
334 // Value#0 is now defined by the 2-addr instruction.
335 OldValNo->def = RedefIndex;
336
337 // Add the new live interval which replaces the range for the input copy.
338 LiveRange LR(DefIndex, RedefIndex, ValNo);
339 DEBUG(dbgs() << " replace range with " << LR);
340 interval.addRange(LR);
341
342 // If this redefinition is dead, we need to add a dummy unit live
343 // range covering the def slot.
344 if (MO.isDead())
345 interval.addRange(LiveRange(RedefIndex, RedefIndex.getDeadSlot(),
346 OldValNo));
347
348 DEBUG(dbgs() << " RESULT: " << interval);
349 } else if (LV->isPHIJoin(interval.reg)) {
350 // In the case of PHI elimination, each variable definition is only
351 // live until the end of the block. We've already taken care of the
352 // rest of the live range.
353
354 SlotIndex defIndex = MIIdx.getRegSlot();
355 if (MO.isEarlyClobber())
356 defIndex = MIIdx.getRegSlot(true);
357
358 VNInfo *ValNo = interval.getNextValue(defIndex, VNInfoAllocator);
359
360 SlotIndex killIndex = getMBBEndIdx(mbb);
361 LiveRange LR(defIndex, killIndex, ValNo);
362 interval.addRange(LR);
363 DEBUG(dbgs() << " phi-join +" << LR);
364 } else {
365 llvm_unreachable("Multiply defined register");
366 }
367 }
368
369 DEBUG(dbgs() << '\n');
370 }
371
handleRegisterDef(MachineBasicBlock * MBB,MachineBasicBlock::iterator MI,SlotIndex MIIdx,MachineOperand & MO,unsigned MOIdx)372 void LiveIntervals::handleRegisterDef(MachineBasicBlock *MBB,
373 MachineBasicBlock::iterator MI,
374 SlotIndex MIIdx,
375 MachineOperand& MO,
376 unsigned MOIdx) {
377 if (TargetRegisterInfo::isVirtualRegister(MO.getReg()))
378 handleVirtualRegisterDef(MBB, MI, MIIdx, MO, MOIdx,
379 getOrCreateInterval(MO.getReg()));
380 }
381
382 /// computeIntervals - computes the live intervals for virtual
383 /// registers. for some ordering of the machine instructions [1,N] a
384 /// live interval is an interval [i, j) where 1 <= i <= j < N for
385 /// which a variable is live
computeIntervals()386 void LiveIntervals::computeIntervals() {
387 DEBUG(dbgs() << "********** COMPUTING LIVE INTERVALS **********\n"
388 << "********** Function: " << MF->getName() << '\n');
389
390 RegMaskBlocks.resize(MF->getNumBlockIDs());
391
392 SmallVector<unsigned, 8> UndefUses;
393 for (MachineFunction::iterator MBBI = MF->begin(), E = MF->end();
394 MBBI != E; ++MBBI) {
395 MachineBasicBlock *MBB = MBBI;
396 RegMaskBlocks[MBB->getNumber()].first = RegMaskSlots.size();
397
398 if (MBB->empty())
399 continue;
400
401 // Track the index of the current machine instr.
402 SlotIndex MIIndex = getMBBStartIdx(MBB);
403 DEBUG(dbgs() << "BB#" << MBB->getNumber()
404 << ":\t\t# derived from " << MBB->getName() << "\n");
405
406 // Skip over empty initial indices.
407 if (getInstructionFromIndex(MIIndex) == 0)
408 MIIndex = Indexes->getNextNonNullIndex(MIIndex);
409
410 for (MachineBasicBlock::iterator MI = MBB->begin(), miEnd = MBB->end();
411 MI != miEnd; ++MI) {
412 DEBUG(dbgs() << MIIndex << "\t" << *MI);
413 if (MI->isDebugValue())
414 continue;
415 assert(Indexes->getInstructionFromIndex(MIIndex) == MI &&
416 "Lost SlotIndex synchronization");
417
418 // Handle defs.
419 for (int i = MI->getNumOperands() - 1; i >= 0; --i) {
420 MachineOperand &MO = MI->getOperand(i);
421
422 // Collect register masks.
423 if (MO.isRegMask()) {
424 RegMaskSlots.push_back(MIIndex.getRegSlot());
425 RegMaskBits.push_back(MO.getRegMask());
426 continue;
427 }
428
429 if (!MO.isReg() || !TargetRegisterInfo::isVirtualRegister(MO.getReg()))
430 continue;
431
432 // handle register defs - build intervals
433 if (MO.isDef())
434 handleRegisterDef(MBB, MI, MIIndex, MO, i);
435 else if (MO.isUndef())
436 UndefUses.push_back(MO.getReg());
437 }
438
439 // Move to the next instr slot.
440 MIIndex = Indexes->getNextNonNullIndex(MIIndex);
441 }
442
443 // Compute the number of register mask instructions in this block.
444 std::pair<unsigned, unsigned> &RMB = RegMaskBlocks[MBB->getNumber()];
445 RMB.second = RegMaskSlots.size() - RMB.first;
446 }
447
448 // Create empty intervals for registers defined by implicit_def's (except
449 // for those implicit_def that define values which are liveout of their
450 // blocks.
451 for (unsigned i = 0, e = UndefUses.size(); i != e; ++i) {
452 unsigned UndefReg = UndefUses[i];
453 (void)getOrCreateInterval(UndefReg);
454 }
455 }
456
createInterval(unsigned reg)457 LiveInterval* LiveIntervals::createInterval(unsigned reg) {
458 float Weight = TargetRegisterInfo::isPhysicalRegister(reg) ? HUGE_VALF : 0.0F;
459 return new LiveInterval(reg, Weight);
460 }
461
462
463 /// computeVirtRegInterval - Compute the live interval of a virtual register,
464 /// based on defs and uses.
computeVirtRegInterval(LiveInterval * LI)465 void LiveIntervals::computeVirtRegInterval(LiveInterval *LI) {
466 assert(LRCalc && "LRCalc not initialized.");
467 assert(LI->empty() && "Should only compute empty intervals.");
468 LRCalc->reset(MF, getSlotIndexes(), DomTree, &getVNInfoAllocator());
469 LRCalc->createDeadDefs(LI);
470 LRCalc->extendToUses(LI);
471 }
472
computeVirtRegs()473 void LiveIntervals::computeVirtRegs() {
474 for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
475 unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
476 if (MRI->reg_nodbg_empty(Reg))
477 continue;
478 LiveInterval *LI = createInterval(Reg);
479 VirtRegIntervals[Reg] = LI;
480 computeVirtRegInterval(LI);
481 }
482 }
483
computeRegMasks()484 void LiveIntervals::computeRegMasks() {
485 RegMaskBlocks.resize(MF->getNumBlockIDs());
486
487 // Find all instructions with regmask operands.
488 for (MachineFunction::iterator MBBI = MF->begin(), E = MF->end();
489 MBBI != E; ++MBBI) {
490 MachineBasicBlock *MBB = MBBI;
491 std::pair<unsigned, unsigned> &RMB = RegMaskBlocks[MBB->getNumber()];
492 RMB.first = RegMaskSlots.size();
493 for (MachineBasicBlock::iterator MI = MBB->begin(), ME = MBB->end();
494 MI != ME; ++MI)
495 for (MIOperands MO(MI); MO.isValid(); ++MO) {
496 if (!MO->isRegMask())
497 continue;
498 RegMaskSlots.push_back(Indexes->getInstructionIndex(MI).getRegSlot());
499 RegMaskBits.push_back(MO->getRegMask());
500 }
501 // Compute the number of register mask instructions in this block.
502 RMB.second = RegMaskSlots.size() - RMB.first;
503 }
504 }
505
506 //===----------------------------------------------------------------------===//
507 // Register Unit Liveness
508 //===----------------------------------------------------------------------===//
509 //
510 // Fixed interference typically comes from ABI boundaries: Function arguments
511 // and return values are passed in fixed registers, and so are exception
512 // pointers entering landing pads. Certain instructions require values to be
513 // present in specific registers. That is also represented through fixed
514 // interference.
515 //
516
517 /// computeRegUnitInterval - Compute the live interval of a register unit, based
518 /// on the uses and defs of aliasing registers. The interval should be empty,
519 /// or contain only dead phi-defs from ABI blocks.
computeRegUnitInterval(LiveInterval * LI)520 void LiveIntervals::computeRegUnitInterval(LiveInterval *LI) {
521 unsigned Unit = LI->reg;
522
523 assert(LRCalc && "LRCalc not initialized.");
524 LRCalc->reset(MF, getSlotIndexes(), DomTree, &getVNInfoAllocator());
525
526 // The physregs aliasing Unit are the roots and their super-registers.
527 // Create all values as dead defs before extending to uses. Note that roots
528 // may share super-registers. That's OK because createDeadDefs() is
529 // idempotent. It is very rare for a register unit to have multiple roots, so
530 // uniquing super-registers is probably not worthwhile.
531 for (MCRegUnitRootIterator Roots(Unit, TRI); Roots.isValid(); ++Roots) {
532 unsigned Root = *Roots;
533 if (!MRI->reg_empty(Root))
534 LRCalc->createDeadDefs(LI, Root);
535 for (MCSuperRegIterator Supers(Root, TRI); Supers.isValid(); ++Supers) {
536 if (!MRI->reg_empty(*Supers))
537 LRCalc->createDeadDefs(LI, *Supers);
538 }
539 }
540
541 // Now extend LI to reach all uses.
542 // Ignore uses of reserved registers. We only track defs of those.
543 for (MCRegUnitRootIterator Roots(Unit, TRI); Roots.isValid(); ++Roots) {
544 unsigned Root = *Roots;
545 if (!isReserved(Root) && !MRI->reg_empty(Root))
546 LRCalc->extendToUses(LI, Root);
547 for (MCSuperRegIterator Supers(Root, TRI); Supers.isValid(); ++Supers) {
548 unsigned Reg = *Supers;
549 if (!isReserved(Reg) && !MRI->reg_empty(Reg))
550 LRCalc->extendToUses(LI, Reg);
551 }
552 }
553 }
554
555
556 /// computeLiveInRegUnits - Precompute the live ranges of any register units
557 /// that are live-in to an ABI block somewhere. Register values can appear
558 /// without a corresponding def when entering the entry block or a landing pad.
559 ///
computeLiveInRegUnits()560 void LiveIntervals::computeLiveInRegUnits() {
561 RegUnitIntervals.resize(TRI->getNumRegUnits());
562 DEBUG(dbgs() << "Computing live-in reg-units in ABI blocks.\n");
563
564 // Keep track of the intervals allocated.
565 SmallVector<LiveInterval*, 8> NewIntvs;
566
567 // Check all basic blocks for live-ins.
568 for (MachineFunction::const_iterator MFI = MF->begin(), MFE = MF->end();
569 MFI != MFE; ++MFI) {
570 const MachineBasicBlock *MBB = MFI;
571
572 // We only care about ABI blocks: Entry + landing pads.
573 if ((MFI != MF->begin() && !MBB->isLandingPad()) || MBB->livein_empty())
574 continue;
575
576 // Create phi-defs at Begin for all live-in registers.
577 SlotIndex Begin = Indexes->getMBBStartIdx(MBB);
578 DEBUG(dbgs() << Begin << "\tBB#" << MBB->getNumber());
579 for (MachineBasicBlock::livein_iterator LII = MBB->livein_begin(),
580 LIE = MBB->livein_end(); LII != LIE; ++LII) {
581 for (MCRegUnitIterator Units(*LII, TRI); Units.isValid(); ++Units) {
582 unsigned Unit = *Units;
583 LiveInterval *Intv = RegUnitIntervals[Unit];
584 if (!Intv) {
585 Intv = RegUnitIntervals[Unit] = new LiveInterval(Unit, HUGE_VALF);
586 NewIntvs.push_back(Intv);
587 }
588 VNInfo *VNI = Intv->createDeadDef(Begin, getVNInfoAllocator());
589 (void)VNI;
590 DEBUG(dbgs() << ' ' << PrintRegUnit(Unit, TRI) << '#' << VNI->id);
591 }
592 }
593 DEBUG(dbgs() << '\n');
594 }
595 DEBUG(dbgs() << "Created " << NewIntvs.size() << " new intervals.\n");
596
597 // Compute the 'normal' part of the intervals.
598 for (unsigned i = 0, e = NewIntvs.size(); i != e; ++i)
599 computeRegUnitInterval(NewIntvs[i]);
600 }
601
602
603 /// shrinkToUses - After removing some uses of a register, shrink its live
604 /// range to just the remaining uses. This method does not compute reaching
605 /// defs for new uses, and it doesn't remove dead defs.
shrinkToUses(LiveInterval * li,SmallVectorImpl<MachineInstr * > * dead)606 bool LiveIntervals::shrinkToUses(LiveInterval *li,
607 SmallVectorImpl<MachineInstr*> *dead) {
608 DEBUG(dbgs() << "Shrink: " << *li << '\n');
609 assert(TargetRegisterInfo::isVirtualRegister(li->reg)
610 && "Can only shrink virtual registers");
611 // Find all the values used, including PHI kills.
612 SmallVector<std::pair<SlotIndex, VNInfo*>, 16> WorkList;
613
614 // Blocks that have already been added to WorkList as live-out.
615 SmallPtrSet<MachineBasicBlock*, 16> LiveOut;
616
617 // Visit all instructions reading li->reg.
618 for (MachineRegisterInfo::reg_iterator I = MRI->reg_begin(li->reg);
619 MachineInstr *UseMI = I.skipInstruction();) {
620 if (UseMI->isDebugValue() || !UseMI->readsVirtualRegister(li->reg))
621 continue;
622 SlotIndex Idx = getInstructionIndex(UseMI).getRegSlot();
623 LiveRangeQuery LRQ(*li, Idx);
624 VNInfo *VNI = LRQ.valueIn();
625 if (!VNI) {
626 // This shouldn't happen: readsVirtualRegister returns true, but there is
627 // no live value. It is likely caused by a target getting <undef> flags
628 // wrong.
629 DEBUG(dbgs() << Idx << '\t' << *UseMI
630 << "Warning: Instr claims to read non-existent value in "
631 << *li << '\n');
632 continue;
633 }
634 // Special case: An early-clobber tied operand reads and writes the
635 // register one slot early.
636 if (VNInfo *DefVNI = LRQ.valueDefined())
637 Idx = DefVNI->def;
638
639 WorkList.push_back(std::make_pair(Idx, VNI));
640 }
641
642 // Create a new live interval with only minimal live segments per def.
643 LiveInterval NewLI(li->reg, 0);
644 for (LiveInterval::vni_iterator I = li->vni_begin(), E = li->vni_end();
645 I != E; ++I) {
646 VNInfo *VNI = *I;
647 if (VNI->isUnused())
648 continue;
649 NewLI.addRange(LiveRange(VNI->def, VNI->def.getDeadSlot(), VNI));
650 }
651
652 // Keep track of the PHIs that are in use.
653 SmallPtrSet<VNInfo*, 8> UsedPHIs;
654
655 // Extend intervals to reach all uses in WorkList.
656 while (!WorkList.empty()) {
657 SlotIndex Idx = WorkList.back().first;
658 VNInfo *VNI = WorkList.back().second;
659 WorkList.pop_back();
660 const MachineBasicBlock *MBB = getMBBFromIndex(Idx.getPrevSlot());
661 SlotIndex BlockStart = getMBBStartIdx(MBB);
662
663 // Extend the live range for VNI to be live at Idx.
664 if (VNInfo *ExtVNI = NewLI.extendInBlock(BlockStart, Idx)) {
665 (void)ExtVNI;
666 assert(ExtVNI == VNI && "Unexpected existing value number");
667 // Is this a PHIDef we haven't seen before?
668 if (!VNI->isPHIDef() || VNI->def != BlockStart || !UsedPHIs.insert(VNI))
669 continue;
670 // The PHI is live, make sure the predecessors are live-out.
671 for (MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(),
672 PE = MBB->pred_end(); PI != PE; ++PI) {
673 if (!LiveOut.insert(*PI))
674 continue;
675 SlotIndex Stop = getMBBEndIdx(*PI);
676 // A predecessor is not required to have a live-out value for a PHI.
677 if (VNInfo *PVNI = li->getVNInfoBefore(Stop))
678 WorkList.push_back(std::make_pair(Stop, PVNI));
679 }
680 continue;
681 }
682
683 // VNI is live-in to MBB.
684 DEBUG(dbgs() << " live-in at " << BlockStart << '\n');
685 NewLI.addRange(LiveRange(BlockStart, Idx, VNI));
686
687 // Make sure VNI is live-out from the predecessors.
688 for (MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(),
689 PE = MBB->pred_end(); PI != PE; ++PI) {
690 if (!LiveOut.insert(*PI))
691 continue;
692 SlotIndex Stop = getMBBEndIdx(*PI);
693 assert(li->getVNInfoBefore(Stop) == VNI &&
694 "Wrong value out of predecessor");
695 WorkList.push_back(std::make_pair(Stop, VNI));
696 }
697 }
698
699 // Handle dead values.
700 bool CanSeparate = false;
701 for (LiveInterval::vni_iterator I = li->vni_begin(), E = li->vni_end();
702 I != E; ++I) {
703 VNInfo *VNI = *I;
704 if (VNI->isUnused())
705 continue;
706 LiveInterval::iterator LII = NewLI.FindLiveRangeContaining(VNI->def);
707 assert(LII != NewLI.end() && "Missing live range for PHI");
708 if (LII->end != VNI->def.getDeadSlot())
709 continue;
710 if (VNI->isPHIDef()) {
711 // This is a dead PHI. Remove it.
712 VNI->markUnused();
713 NewLI.removeRange(*LII);
714 DEBUG(dbgs() << "Dead PHI at " << VNI->def << " may separate interval\n");
715 CanSeparate = true;
716 } else {
717 // This is a dead def. Make sure the instruction knows.
718 MachineInstr *MI = getInstructionFromIndex(VNI->def);
719 assert(MI && "No instruction defining live value");
720 MI->addRegisterDead(li->reg, TRI);
721 if (dead && MI->allDefsAreDead()) {
722 DEBUG(dbgs() << "All defs dead: " << VNI->def << '\t' << *MI);
723 dead->push_back(MI);
724 }
725 }
726 }
727
728 // Move the trimmed ranges back.
729 li->ranges.swap(NewLI.ranges);
730 DEBUG(dbgs() << "Shrunk: " << *li << '\n');
731 return CanSeparate;
732 }
733
734
735 //===----------------------------------------------------------------------===//
736 // Register allocator hooks.
737 //
738
addKillFlags(const VirtRegMap * VRM)739 void LiveIntervals::addKillFlags(const VirtRegMap *VRM) {
740 // Keep track of regunit ranges.
741 SmallVector<std::pair<LiveInterval*, LiveInterval::iterator>, 8> RU;
742
743 for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
744 unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
745 if (MRI->reg_nodbg_empty(Reg))
746 continue;
747 LiveInterval *LI = &getInterval(Reg);
748 if (LI->empty())
749 continue;
750
751 // Find the regunit intervals for the assigned register. They may overlap
752 // the virtual register live range, cancelling any kills.
753 RU.clear();
754 for (MCRegUnitIterator Units(VRM->getPhys(Reg), TRI); Units.isValid();
755 ++Units) {
756 LiveInterval *RUInt = &getRegUnit(*Units);
757 if (RUInt->empty())
758 continue;
759 RU.push_back(std::make_pair(RUInt, RUInt->find(LI->begin()->end)));
760 }
761
762 // Every instruction that kills Reg corresponds to a live range end point.
763 for (LiveInterval::iterator RI = LI->begin(), RE = LI->end(); RI != RE;
764 ++RI) {
765 // A block index indicates an MBB edge.
766 if (RI->end.isBlock())
767 continue;
768 MachineInstr *MI = getInstructionFromIndex(RI->end);
769 if (!MI)
770 continue;
771
772 // Check if any of the reguints are live beyond the end of RI. That could
773 // happen when a physreg is defined as a copy of a virtreg:
774 //
775 // %EAX = COPY %vreg5
776 // FOO %vreg5 <--- MI, cancel kill because %EAX is live.
777 // BAR %EAX<kill>
778 //
779 // There should be no kill flag on FOO when %vreg5 is rewritten as %EAX.
780 bool CancelKill = false;
781 for (unsigned u = 0, e = RU.size(); u != e; ++u) {
782 LiveInterval *RInt = RU[u].first;
783 LiveInterval::iterator &I = RU[u].second;
784 if (I == RInt->end())
785 continue;
786 I = RInt->advanceTo(I, RI->end);
787 if (I == RInt->end() || I->start >= RI->end)
788 continue;
789 // I is overlapping RI.
790 CancelKill = true;
791 break;
792 }
793 if (CancelKill)
794 MI->clearRegisterKills(Reg, NULL);
795 else
796 MI->addRegisterKilled(Reg, NULL);
797 }
798 }
799 }
800
801 MachineBasicBlock*
intervalIsInOneMBB(const LiveInterval & LI) const802 LiveIntervals::intervalIsInOneMBB(const LiveInterval &LI) const {
803 // A local live range must be fully contained inside the block, meaning it is
804 // defined and killed at instructions, not at block boundaries. It is not
805 // live in or or out of any block.
806 //
807 // It is technically possible to have a PHI-defined live range identical to a
808 // single block, but we are going to return false in that case.
809
810 SlotIndex Start = LI.beginIndex();
811 if (Start.isBlock())
812 return NULL;
813
814 SlotIndex Stop = LI.endIndex();
815 if (Stop.isBlock())
816 return NULL;
817
818 // getMBBFromIndex doesn't need to search the MBB table when both indexes
819 // belong to proper instructions.
820 MachineBasicBlock *MBB1 = Indexes->getMBBFromIndex(Start);
821 MachineBasicBlock *MBB2 = Indexes->getMBBFromIndex(Stop);
822 return MBB1 == MBB2 ? MBB1 : NULL;
823 }
824
825 bool
hasPHIKill(const LiveInterval & LI,const VNInfo * VNI) const826 LiveIntervals::hasPHIKill(const LiveInterval &LI, const VNInfo *VNI) const {
827 for (LiveInterval::const_vni_iterator I = LI.vni_begin(), E = LI.vni_end();
828 I != E; ++I) {
829 const VNInfo *PHI = *I;
830 if (PHI->isUnused() || !PHI->isPHIDef())
831 continue;
832 const MachineBasicBlock *PHIMBB = getMBBFromIndex(PHI->def);
833 // Conservatively return true instead of scanning huge predecessor lists.
834 if (PHIMBB->pred_size() > 100)
835 return true;
836 for (MachineBasicBlock::const_pred_iterator
837 PI = PHIMBB->pred_begin(), PE = PHIMBB->pred_end(); PI != PE; ++PI)
838 if (VNI == LI.getVNInfoBefore(Indexes->getMBBEndIdx(*PI)))
839 return true;
840 }
841 return false;
842 }
843
844 float
getSpillWeight(bool isDef,bool isUse,unsigned loopDepth)845 LiveIntervals::getSpillWeight(bool isDef, bool isUse, unsigned loopDepth) {
846 // Limit the loop depth ridiculousness.
847 if (loopDepth > 200)
848 loopDepth = 200;
849
850 // The loop depth is used to roughly estimate the number of times the
851 // instruction is executed. Something like 10^d is simple, but will quickly
852 // overflow a float. This expression behaves like 10^d for small d, but is
853 // more tempered for large d. At d=200 we get 6.7e33 which leaves a bit of
854 // headroom before overflow.
855 // By the way, powf() might be unavailable here. For consistency,
856 // We may take pow(double,double).
857 float lc = std::pow(1 + (100.0 / (loopDepth + 10)), (double)loopDepth);
858
859 return (isDef + isUse) * lc;
860 }
861
addLiveRangeToEndOfBlock(unsigned reg,MachineInstr * startInst)862 LiveRange LiveIntervals::addLiveRangeToEndOfBlock(unsigned reg,
863 MachineInstr* startInst) {
864 LiveInterval& Interval = getOrCreateInterval(reg);
865 VNInfo* VN = Interval.getNextValue(
866 SlotIndex(getInstructionIndex(startInst).getRegSlot()),
867 getVNInfoAllocator());
868 LiveRange LR(
869 SlotIndex(getInstructionIndex(startInst).getRegSlot()),
870 getMBBEndIdx(startInst->getParent()), VN);
871 Interval.addRange(LR);
872
873 return LR;
874 }
875
876
877 //===----------------------------------------------------------------------===//
878 // Register mask functions
879 //===----------------------------------------------------------------------===//
880
checkRegMaskInterference(LiveInterval & LI,BitVector & UsableRegs)881 bool LiveIntervals::checkRegMaskInterference(LiveInterval &LI,
882 BitVector &UsableRegs) {
883 if (LI.empty())
884 return false;
885 LiveInterval::iterator LiveI = LI.begin(), LiveE = LI.end();
886
887 // Use a smaller arrays for local live ranges.
888 ArrayRef<SlotIndex> Slots;
889 ArrayRef<const uint32_t*> Bits;
890 if (MachineBasicBlock *MBB = intervalIsInOneMBB(LI)) {
891 Slots = getRegMaskSlotsInBlock(MBB->getNumber());
892 Bits = getRegMaskBitsInBlock(MBB->getNumber());
893 } else {
894 Slots = getRegMaskSlots();
895 Bits = getRegMaskBits();
896 }
897
898 // We are going to enumerate all the register mask slots contained in LI.
899 // Start with a binary search of RegMaskSlots to find a starting point.
900 ArrayRef<SlotIndex>::iterator SlotI =
901 std::lower_bound(Slots.begin(), Slots.end(), LiveI->start);
902 ArrayRef<SlotIndex>::iterator SlotE = Slots.end();
903
904 // No slots in range, LI begins after the last call.
905 if (SlotI == SlotE)
906 return false;
907
908 bool Found = false;
909 for (;;) {
910 assert(*SlotI >= LiveI->start);
911 // Loop over all slots overlapping this segment.
912 while (*SlotI < LiveI->end) {
913 // *SlotI overlaps LI. Collect mask bits.
914 if (!Found) {
915 // This is the first overlap. Initialize UsableRegs to all ones.
916 UsableRegs.clear();
917 UsableRegs.resize(TRI->getNumRegs(), true);
918 Found = true;
919 }
920 // Remove usable registers clobbered by this mask.
921 UsableRegs.clearBitsNotInMask(Bits[SlotI-Slots.begin()]);
922 if (++SlotI == SlotE)
923 return Found;
924 }
925 // *SlotI is beyond the current LI segment.
926 LiveI = LI.advanceTo(LiveI, *SlotI);
927 if (LiveI == LiveE)
928 return Found;
929 // Advance SlotI until it overlaps.
930 while (*SlotI < LiveI->start)
931 if (++SlotI == SlotE)
932 return Found;
933 }
934 }
935
936 //===----------------------------------------------------------------------===//
937 // IntervalUpdate class.
938 //===----------------------------------------------------------------------===//
939
940 // HMEditor is a toolkit used by handleMove to trim or extend live intervals.
941 class LiveIntervals::HMEditor {
942 private:
943 LiveIntervals& LIS;
944 const MachineRegisterInfo& MRI;
945 const TargetRegisterInfo& TRI;
946 SlotIndex NewIdx;
947
948 typedef std::pair<LiveInterval*, LiveRange*> IntRangePair;
949 typedef DenseSet<IntRangePair> RangeSet;
950
951 struct RegRanges {
952 LiveRange* Use;
953 LiveRange* EC;
954 LiveRange* Dead;
955 LiveRange* Def;
RegRangesLiveIntervals::HMEditor::RegRanges956 RegRanges() : Use(0), EC(0), Dead(0), Def(0) {}
957 };
958 typedef DenseMap<unsigned, RegRanges> BundleRanges;
959
960 public:
HMEditor(LiveIntervals & LIS,const MachineRegisterInfo & MRI,const TargetRegisterInfo & TRI,SlotIndex NewIdx)961 HMEditor(LiveIntervals& LIS, const MachineRegisterInfo& MRI,
962 const TargetRegisterInfo& TRI, SlotIndex NewIdx)
963 : LIS(LIS), MRI(MRI), TRI(TRI), NewIdx(NewIdx) {}
964
965 // Update intervals for all operands of MI from OldIdx to NewIdx.
966 // This assumes that MI used to be at OldIdx, and now resides at
967 // NewIdx.
moveAllRangesFrom(MachineInstr * MI,SlotIndex OldIdx)968 void moveAllRangesFrom(MachineInstr* MI, SlotIndex OldIdx) {
969 assert(NewIdx != OldIdx && "No-op move? That's a bit strange.");
970
971 // Collect the operands.
972 RangeSet Entering, Internal, Exiting;
973 bool hasRegMaskOp = false;
974 collectRanges(MI, Entering, Internal, Exiting, hasRegMaskOp, OldIdx);
975
976 // To keep the LiveRanges valid within an interval, move the ranges closest
977 // to the destination first. This prevents ranges from overlapping, to that
978 // APIs like removeRange still work.
979 if (NewIdx < OldIdx) {
980 moveAllEnteringFrom(OldIdx, Entering);
981 moveAllInternalFrom(OldIdx, Internal);
982 moveAllExitingFrom(OldIdx, Exiting);
983 }
984 else {
985 moveAllExitingFrom(OldIdx, Exiting);
986 moveAllInternalFrom(OldIdx, Internal);
987 moveAllEnteringFrom(OldIdx, Entering);
988 }
989
990 if (hasRegMaskOp)
991 updateRegMaskSlots(OldIdx);
992
993 #ifndef NDEBUG
994 LIValidator validator;
995 validator = std::for_each(Entering.begin(), Entering.end(), validator);
996 validator = std::for_each(Internal.begin(), Internal.end(), validator);
997 validator = std::for_each(Exiting.begin(), Exiting.end(), validator);
998 assert(validator.rangesOk() && "moveAllOperandsFrom broke liveness.");
999 #endif
1000
1001 }
1002
1003 // Update intervals for all operands of MI to refer to BundleStart's
1004 // SlotIndex.
moveAllRangesInto(MachineInstr * MI,MachineInstr * BundleStart)1005 void moveAllRangesInto(MachineInstr* MI, MachineInstr* BundleStart) {
1006 if (MI == BundleStart)
1007 return; // Bundling instr with itself - nothing to do.
1008
1009 SlotIndex OldIdx = LIS.getSlotIndexes()->getInstructionIndex(MI);
1010 assert(LIS.getSlotIndexes()->getInstructionFromIndex(OldIdx) == MI &&
1011 "SlotIndex <-> Instruction mapping broken for MI");
1012
1013 // Collect all ranges already in the bundle.
1014 MachineBasicBlock::instr_iterator BII(BundleStart);
1015 RangeSet Entering, Internal, Exiting;
1016 bool hasRegMaskOp = false;
1017 collectRanges(BII, Entering, Internal, Exiting, hasRegMaskOp, NewIdx);
1018 assert(!hasRegMaskOp && "Can't have RegMask operand in bundle.");
1019 for (++BII; &*BII == MI || BII->isInsideBundle(); ++BII) {
1020 if (&*BII == MI)
1021 continue;
1022 collectRanges(BII, Entering, Internal, Exiting, hasRegMaskOp, NewIdx);
1023 assert(!hasRegMaskOp && "Can't have RegMask operand in bundle.");
1024 }
1025
1026 BundleRanges BR = createBundleRanges(Entering, Internal, Exiting);
1027
1028 Entering.clear();
1029 Internal.clear();
1030 Exiting.clear();
1031 collectRanges(MI, Entering, Internal, Exiting, hasRegMaskOp, OldIdx);
1032 assert(!hasRegMaskOp && "Can't have RegMask operand in bundle.");
1033
1034 DEBUG(dbgs() << "Entering: " << Entering.size() << "\n");
1035 DEBUG(dbgs() << "Internal: " << Internal.size() << "\n");
1036 DEBUG(dbgs() << "Exiting: " << Exiting.size() << "\n");
1037
1038 moveAllEnteringFromInto(OldIdx, Entering, BR);
1039 moveAllInternalFromInto(OldIdx, Internal, BR);
1040 moveAllExitingFromInto(OldIdx, Exiting, BR);
1041
1042
1043 #ifndef NDEBUG
1044 LIValidator validator;
1045 validator = std::for_each(Entering.begin(), Entering.end(), validator);
1046 validator = std::for_each(Internal.begin(), Internal.end(), validator);
1047 validator = std::for_each(Exiting.begin(), Exiting.end(), validator);
1048 assert(validator.rangesOk() && "moveAllOperandsInto broke liveness.");
1049 #endif
1050 }
1051
1052 private:
1053
1054 #ifndef NDEBUG
1055 class LIValidator {
1056 private:
1057 DenseSet<const LiveInterval*> Checked, Bogus;
1058 public:
operator ()(const IntRangePair & P)1059 void operator()(const IntRangePair& P) {
1060 const LiveInterval* LI = P.first;
1061 if (Checked.count(LI))
1062 return;
1063 Checked.insert(LI);
1064 if (LI->empty())
1065 return;
1066 SlotIndex LastEnd = LI->begin()->start;
1067 for (LiveInterval::const_iterator LRI = LI->begin(), LRE = LI->end();
1068 LRI != LRE; ++LRI) {
1069 const LiveRange& LR = *LRI;
1070 if (LastEnd > LR.start || LR.start >= LR.end)
1071 Bogus.insert(LI);
1072 LastEnd = LR.end;
1073 }
1074 }
1075
rangesOk() const1076 bool rangesOk() const {
1077 return Bogus.empty();
1078 }
1079 };
1080 #endif
1081
1082 // Collect IntRangePairs for all operands of MI that may need fixing.
1083 // Treat's MI's index as OldIdx (regardless of what it is in SlotIndexes'
1084 // maps).
collectRanges(MachineInstr * MI,RangeSet & Entering,RangeSet & Internal,RangeSet & Exiting,bool & hasRegMaskOp,SlotIndex OldIdx)1085 void collectRanges(MachineInstr* MI, RangeSet& Entering, RangeSet& Internal,
1086 RangeSet& Exiting, bool& hasRegMaskOp, SlotIndex OldIdx) {
1087 hasRegMaskOp = false;
1088 for (MachineInstr::mop_iterator MOI = MI->operands_begin(),
1089 MOE = MI->operands_end();
1090 MOI != MOE; ++MOI) {
1091 const MachineOperand& MO = *MOI;
1092
1093 if (MO.isRegMask()) {
1094 hasRegMaskOp = true;
1095 continue;
1096 }
1097
1098 if (!MO.isReg() || MO.getReg() == 0)
1099 continue;
1100
1101 unsigned Reg = MO.getReg();
1102
1103 // TODO: Currently we're skipping uses that are reserved or have no
1104 // interval, but we're not updating their kills. This should be
1105 // fixed.
1106 if (TargetRegisterInfo::isPhysicalRegister(Reg) && LIS.isReserved(Reg))
1107 continue;
1108
1109 // Collect ranges for register units. These live ranges are computed on
1110 // demand, so just skip any that haven't been computed yet.
1111 if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
1112 for (MCRegUnitIterator Units(Reg, &TRI); Units.isValid(); ++Units)
1113 if (LiveInterval *LI = LIS.getCachedRegUnit(*Units))
1114 collectRanges(MO, LI, Entering, Internal, Exiting, OldIdx);
1115 } else {
1116 // Collect ranges for individual virtual registers.
1117 collectRanges(MO, &LIS.getInterval(Reg),
1118 Entering, Internal, Exiting, OldIdx);
1119 }
1120 }
1121 }
1122
collectRanges(const MachineOperand & MO,LiveInterval * LI,RangeSet & Entering,RangeSet & Internal,RangeSet & Exiting,SlotIndex OldIdx)1123 void collectRanges(const MachineOperand &MO, LiveInterval *LI,
1124 RangeSet &Entering, RangeSet &Internal, RangeSet &Exiting,
1125 SlotIndex OldIdx) {
1126 if (MO.readsReg()) {
1127 LiveRange* LR = LI->getLiveRangeContaining(OldIdx);
1128 if (LR != 0)
1129 Entering.insert(std::make_pair(LI, LR));
1130 }
1131 if (MO.isDef()) {
1132 LiveRange* LR = LI->getLiveRangeContaining(OldIdx.getRegSlot());
1133 assert(LR != 0 && "No live range for def?");
1134 if (LR->end > OldIdx.getDeadSlot())
1135 Exiting.insert(std::make_pair(LI, LR));
1136 else
1137 Internal.insert(std::make_pair(LI, LR));
1138 }
1139 }
1140
createBundleRanges(RangeSet & Entering,RangeSet & Internal,RangeSet & Exiting)1141 BundleRanges createBundleRanges(RangeSet& Entering,
1142 RangeSet& Internal,
1143 RangeSet& Exiting) {
1144 BundleRanges BR;
1145
1146 for (RangeSet::iterator EI = Entering.begin(), EE = Entering.end();
1147 EI != EE; ++EI) {
1148 LiveInterval* LI = EI->first;
1149 LiveRange* LR = EI->second;
1150 BR[LI->reg].Use = LR;
1151 }
1152
1153 for (RangeSet::iterator II = Internal.begin(), IE = Internal.end();
1154 II != IE; ++II) {
1155 LiveInterval* LI = II->first;
1156 LiveRange* LR = II->second;
1157 if (LR->end.isDead()) {
1158 BR[LI->reg].Dead = LR;
1159 } else {
1160 BR[LI->reg].EC = LR;
1161 }
1162 }
1163
1164 for (RangeSet::iterator EI = Exiting.begin(), EE = Exiting.end();
1165 EI != EE; ++EI) {
1166 LiveInterval* LI = EI->first;
1167 LiveRange* LR = EI->second;
1168 BR[LI->reg].Def = LR;
1169 }
1170
1171 return BR;
1172 }
1173
moveKillFlags(unsigned reg,SlotIndex OldIdx,SlotIndex newKillIdx)1174 void moveKillFlags(unsigned reg, SlotIndex OldIdx, SlotIndex newKillIdx) {
1175 MachineInstr* OldKillMI = LIS.getInstructionFromIndex(OldIdx);
1176 if (!OldKillMI->killsRegister(reg))
1177 return; // Bail out if we don't have kill flags on the old register.
1178 MachineInstr* NewKillMI = LIS.getInstructionFromIndex(newKillIdx);
1179 assert(OldKillMI->killsRegister(reg) && "Old 'kill' instr isn't a kill.");
1180 assert(!NewKillMI->killsRegister(reg) &&
1181 "New kill instr is already a kill.");
1182 OldKillMI->clearRegisterKills(reg, &TRI);
1183 NewKillMI->addRegisterKilled(reg, &TRI);
1184 }
1185
updateRegMaskSlots(SlotIndex OldIdx)1186 void updateRegMaskSlots(SlotIndex OldIdx) {
1187 SmallVectorImpl<SlotIndex>::iterator RI =
1188 std::lower_bound(LIS.RegMaskSlots.begin(), LIS.RegMaskSlots.end(),
1189 OldIdx);
1190 assert(*RI == OldIdx && "No RegMask at OldIdx.");
1191 *RI = NewIdx;
1192 assert(*prior(RI) < *RI && *RI < *next(RI) &&
1193 "RegSlots out of order. Did you move one call across another?");
1194 }
1195
1196 // Return the last use of reg between NewIdx and OldIdx.
findLastUseBefore(unsigned Reg,SlotIndex OldIdx)1197 SlotIndex findLastUseBefore(unsigned Reg, SlotIndex OldIdx) {
1198 SlotIndex LastUse = NewIdx;
1199 for (MachineRegisterInfo::use_nodbg_iterator
1200 UI = MRI.use_nodbg_begin(Reg),
1201 UE = MRI.use_nodbg_end();
1202 UI != UE; UI.skipInstruction()) {
1203 const MachineInstr* MI = &*UI;
1204 SlotIndex InstSlot = LIS.getSlotIndexes()->getInstructionIndex(MI);
1205 if (InstSlot > LastUse && InstSlot < OldIdx)
1206 LastUse = InstSlot;
1207 }
1208 return LastUse;
1209 }
1210
moveEnteringUpFrom(SlotIndex OldIdx,IntRangePair & P)1211 void moveEnteringUpFrom(SlotIndex OldIdx, IntRangePair& P) {
1212 LiveInterval* LI = P.first;
1213 LiveRange* LR = P.second;
1214 bool LiveThrough = LR->end > OldIdx.getRegSlot();
1215 if (LiveThrough)
1216 return;
1217 SlotIndex LastUse = findLastUseBefore(LI->reg, OldIdx);
1218 if (LastUse != NewIdx)
1219 moveKillFlags(LI->reg, NewIdx, LastUse);
1220 LR->end = LastUse.getRegSlot(LR->end.isEarlyClobber());
1221 }
1222
moveEnteringDownFrom(SlotIndex OldIdx,IntRangePair & P)1223 void moveEnteringDownFrom(SlotIndex OldIdx, IntRangePair& P) {
1224 LiveInterval* LI = P.first;
1225 LiveRange* LR = P.second;
1226 // Extend the LiveRange if NewIdx is past the end.
1227 if (NewIdx > LR->end) {
1228 // Move kill flags if OldIdx was not originally the end
1229 // (otherwise LR->end points to an invalid slot).
1230 if (LR->end.getRegSlot() != OldIdx.getRegSlot()) {
1231 assert(LR->end > OldIdx && "LiveRange does not cover original slot");
1232 moveKillFlags(LI->reg, LR->end, NewIdx);
1233 }
1234 LR->end = NewIdx.getRegSlot(LR->end.isEarlyClobber());
1235 }
1236 }
1237
moveAllEnteringFrom(SlotIndex OldIdx,RangeSet & Entering)1238 void moveAllEnteringFrom(SlotIndex OldIdx, RangeSet& Entering) {
1239 bool GoingUp = NewIdx < OldIdx;
1240
1241 if (GoingUp) {
1242 for (RangeSet::iterator EI = Entering.begin(), EE = Entering.end();
1243 EI != EE; ++EI)
1244 moveEnteringUpFrom(OldIdx, *EI);
1245 } else {
1246 for (RangeSet::iterator EI = Entering.begin(), EE = Entering.end();
1247 EI != EE; ++EI)
1248 moveEnteringDownFrom(OldIdx, *EI);
1249 }
1250 }
1251
moveInternalFrom(SlotIndex OldIdx,IntRangePair & P)1252 void moveInternalFrom(SlotIndex OldIdx, IntRangePair& P) {
1253 LiveInterval* LI = P.first;
1254 LiveRange* LR = P.second;
1255 assert(OldIdx < LR->start && LR->start < OldIdx.getDeadSlot() &&
1256 LR->end <= OldIdx.getDeadSlot() &&
1257 "Range should be internal to OldIdx.");
1258 LiveRange Tmp(*LR);
1259 Tmp.start = NewIdx.getRegSlot(LR->start.isEarlyClobber());
1260 Tmp.valno->def = Tmp.start;
1261 Tmp.end = LR->end.isDead() ? NewIdx.getDeadSlot() : NewIdx.getRegSlot();
1262 LI->removeRange(*LR);
1263 LI->addRange(Tmp);
1264 }
1265
moveAllInternalFrom(SlotIndex OldIdx,RangeSet & Internal)1266 void moveAllInternalFrom(SlotIndex OldIdx, RangeSet& Internal) {
1267 for (RangeSet::iterator II = Internal.begin(), IE = Internal.end();
1268 II != IE; ++II)
1269 moveInternalFrom(OldIdx, *II);
1270 }
1271
moveExitingFrom(SlotIndex OldIdx,IntRangePair & P)1272 void moveExitingFrom(SlotIndex OldIdx, IntRangePair& P) {
1273 LiveRange* LR = P.second;
1274 assert(OldIdx < LR->start && LR->start < OldIdx.getDeadSlot() &&
1275 "Range should start in OldIdx.");
1276 assert(LR->end > OldIdx.getDeadSlot() && "Range should exit OldIdx.");
1277 SlotIndex NewStart = NewIdx.getRegSlot(LR->start.isEarlyClobber());
1278 LR->start = NewStart;
1279 LR->valno->def = NewStart;
1280 }
1281
moveAllExitingFrom(SlotIndex OldIdx,RangeSet & Exiting)1282 void moveAllExitingFrom(SlotIndex OldIdx, RangeSet& Exiting) {
1283 for (RangeSet::iterator EI = Exiting.begin(), EE = Exiting.end();
1284 EI != EE; ++EI)
1285 moveExitingFrom(OldIdx, *EI);
1286 }
1287
moveEnteringUpFromInto(SlotIndex OldIdx,IntRangePair & P,BundleRanges & BR)1288 void moveEnteringUpFromInto(SlotIndex OldIdx, IntRangePair& P,
1289 BundleRanges& BR) {
1290 LiveInterval* LI = P.first;
1291 LiveRange* LR = P.second;
1292 bool LiveThrough = LR->end > OldIdx.getRegSlot();
1293 if (LiveThrough) {
1294 assert((LR->start < NewIdx || BR[LI->reg].Def == LR) &&
1295 "Def in bundle should be def range.");
1296 assert((BR[LI->reg].Use == 0 || BR[LI->reg].Use == LR) &&
1297 "If bundle has use for this reg it should be LR.");
1298 BR[LI->reg].Use = LR;
1299 return;
1300 }
1301
1302 SlotIndex LastUse = findLastUseBefore(LI->reg, OldIdx);
1303 moveKillFlags(LI->reg, OldIdx, LastUse);
1304
1305 if (LR->start < NewIdx) {
1306 // Becoming a new entering range.
1307 assert(BR[LI->reg].Dead == 0 && BR[LI->reg].Def == 0 &&
1308 "Bundle shouldn't be re-defining reg mid-range.");
1309 assert((BR[LI->reg].Use == 0 || BR[LI->reg].Use == LR) &&
1310 "Bundle shouldn't have different use range for same reg.");
1311 LR->end = LastUse.getRegSlot();
1312 BR[LI->reg].Use = LR;
1313 } else {
1314 // Becoming a new Dead-def.
1315 assert(LR->start == NewIdx.getRegSlot(LR->start.isEarlyClobber()) &&
1316 "Live range starting at unexpected slot.");
1317 assert(BR[LI->reg].Def == LR && "Reg should have def range.");
1318 assert(BR[LI->reg].Dead == 0 &&
1319 "Can't have def and dead def of same reg in a bundle.");
1320 LR->end = LastUse.getDeadSlot();
1321 BR[LI->reg].Dead = BR[LI->reg].Def;
1322 BR[LI->reg].Def = 0;
1323 }
1324 }
1325
moveEnteringDownFromInto(SlotIndex OldIdx,IntRangePair & P,BundleRanges & BR)1326 void moveEnteringDownFromInto(SlotIndex OldIdx, IntRangePair& P,
1327 BundleRanges& BR) {
1328 LiveInterval* LI = P.first;
1329 LiveRange* LR = P.second;
1330 if (NewIdx > LR->end) {
1331 // Range extended to bundle. Add to bundle uses.
1332 // Note: Currently adds kill flags to bundle start.
1333 assert(BR[LI->reg].Use == 0 &&
1334 "Bundle already has use range for reg.");
1335 moveKillFlags(LI->reg, LR->end, NewIdx);
1336 LR->end = NewIdx.getRegSlot();
1337 BR[LI->reg].Use = LR;
1338 } else {
1339 assert(BR[LI->reg].Use != 0 &&
1340 "Bundle should already have a use range for reg.");
1341 }
1342 }
1343
moveAllEnteringFromInto(SlotIndex OldIdx,RangeSet & Entering,BundleRanges & BR)1344 void moveAllEnteringFromInto(SlotIndex OldIdx, RangeSet& Entering,
1345 BundleRanges& BR) {
1346 bool GoingUp = NewIdx < OldIdx;
1347
1348 if (GoingUp) {
1349 for (RangeSet::iterator EI = Entering.begin(), EE = Entering.end();
1350 EI != EE; ++EI)
1351 moveEnteringUpFromInto(OldIdx, *EI, BR);
1352 } else {
1353 for (RangeSet::iterator EI = Entering.begin(), EE = Entering.end();
1354 EI != EE; ++EI)
1355 moveEnteringDownFromInto(OldIdx, *EI, BR);
1356 }
1357 }
1358
moveInternalFromInto(SlotIndex OldIdx,IntRangePair & P,BundleRanges & BR)1359 void moveInternalFromInto(SlotIndex OldIdx, IntRangePair& P,
1360 BundleRanges& BR) {
1361 // TODO: Sane rules for moving ranges into bundles.
1362 }
1363
moveAllInternalFromInto(SlotIndex OldIdx,RangeSet & Internal,BundleRanges & BR)1364 void moveAllInternalFromInto(SlotIndex OldIdx, RangeSet& Internal,
1365 BundleRanges& BR) {
1366 for (RangeSet::iterator II = Internal.begin(), IE = Internal.end();
1367 II != IE; ++II)
1368 moveInternalFromInto(OldIdx, *II, BR);
1369 }
1370
moveExitingFromInto(SlotIndex OldIdx,IntRangePair & P,BundleRanges & BR)1371 void moveExitingFromInto(SlotIndex OldIdx, IntRangePair& P,
1372 BundleRanges& BR) {
1373 LiveInterval* LI = P.first;
1374 LiveRange* LR = P.second;
1375
1376 assert(LR->start.isRegister() &&
1377 "Don't know how to merge exiting ECs into bundles yet.");
1378
1379 if (LR->end > NewIdx.getDeadSlot()) {
1380 // This range is becoming an exiting range on the bundle.
1381 // If there was an old dead-def of this reg, delete it.
1382 if (BR[LI->reg].Dead != 0) {
1383 LI->removeRange(*BR[LI->reg].Dead);
1384 BR[LI->reg].Dead = 0;
1385 }
1386 assert(BR[LI->reg].Def == 0 &&
1387 "Can't have two defs for the same variable exiting a bundle.");
1388 LR->start = NewIdx.getRegSlot();
1389 LR->valno->def = LR->start;
1390 BR[LI->reg].Def = LR;
1391 } else {
1392 // This range is becoming internal to the bundle.
1393 assert(LR->end == NewIdx.getRegSlot() &&
1394 "Can't bundle def whose kill is before the bundle");
1395 if (BR[LI->reg].Dead || BR[LI->reg].Def) {
1396 // Already have a def for this. Just delete range.
1397 LI->removeRange(*LR);
1398 } else {
1399 // Make range dead, record.
1400 LR->end = NewIdx.getDeadSlot();
1401 BR[LI->reg].Dead = LR;
1402 assert(BR[LI->reg].Use == LR &&
1403 "Range becoming dead should currently be use.");
1404 }
1405 // In both cases the range is no longer a use on the bundle.
1406 BR[LI->reg].Use = 0;
1407 }
1408 }
1409
moveAllExitingFromInto(SlotIndex OldIdx,RangeSet & Exiting,BundleRanges & BR)1410 void moveAllExitingFromInto(SlotIndex OldIdx, RangeSet& Exiting,
1411 BundleRanges& BR) {
1412 for (RangeSet::iterator EI = Exiting.begin(), EE = Exiting.end();
1413 EI != EE; ++EI)
1414 moveExitingFromInto(OldIdx, *EI, BR);
1415 }
1416
1417 };
1418
handleMove(MachineInstr * MI)1419 void LiveIntervals::handleMove(MachineInstr* MI) {
1420 SlotIndex OldIndex = Indexes->getInstructionIndex(MI);
1421 Indexes->removeMachineInstrFromMaps(MI);
1422 SlotIndex NewIndex = MI->isInsideBundle() ?
1423 Indexes->getInstructionIndex(MI) :
1424 Indexes->insertMachineInstrInMaps(MI);
1425 assert(getMBBStartIdx(MI->getParent()) <= OldIndex &&
1426 OldIndex < getMBBEndIdx(MI->getParent()) &&
1427 "Cannot handle moves across basic block boundaries.");
1428 assert(!MI->isBundled() && "Can't handle bundled instructions yet.");
1429
1430 HMEditor HME(*this, *MRI, *TRI, NewIndex);
1431 HME.moveAllRangesFrom(MI, OldIndex);
1432 }
1433
handleMoveIntoBundle(MachineInstr * MI,MachineInstr * BundleStart)1434 void LiveIntervals::handleMoveIntoBundle(MachineInstr* MI,
1435 MachineInstr* BundleStart) {
1436 SlotIndex NewIndex = Indexes->getInstructionIndex(BundleStart);
1437 HMEditor HME(*this, *MRI, *TRI, NewIndex);
1438 HME.moveAllRangesInto(MI, BundleStart);
1439 }
1440