1 //===- SSAUpdater.cpp - Unstructured SSA Update Tool ----------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the SSAUpdater class.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #define DEBUG_TYPE "ssaupdater"
15 #include "llvm/Constants.h"
16 #include "llvm/Instructions.h"
17 #include "llvm/IntrinsicInst.h"
18 #include "llvm/ADT/DenseMap.h"
19 #include "llvm/ADT/TinyPtrVector.h"
20 #include "llvm/Analysis/InstructionSimplify.h"
21 #include "llvm/Support/AlignOf.h"
22 #include "llvm/Support/Allocator.h"
23 #include "llvm/Support/CFG.h"
24 #include "llvm/Support/Debug.h"
25 #include "llvm/Support/raw_ostream.h"
26 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
27 #include "llvm/Transforms/Utils/Local.h"
28 #include "llvm/Transforms/Utils/SSAUpdater.h"
29 #include "llvm/Transforms/Utils/SSAUpdaterImpl.h"
30
31 using namespace llvm;
32
33 typedef DenseMap<BasicBlock*, Value*> AvailableValsTy;
getAvailableVals(void * AV)34 static AvailableValsTy &getAvailableVals(void *AV) {
35 return *static_cast<AvailableValsTy*>(AV);
36 }
37
SSAUpdater(SmallVectorImpl<PHINode * > * NewPHI)38 SSAUpdater::SSAUpdater(SmallVectorImpl<PHINode*> *NewPHI)
39 : AV(0), ProtoType(0), ProtoName(), InsertedPHIs(NewPHI) {}
40
~SSAUpdater()41 SSAUpdater::~SSAUpdater() {
42 delete static_cast<AvailableValsTy*>(AV);
43 }
44
45 /// Initialize - Reset this object to get ready for a new set of SSA
46 /// updates with type 'Ty'. PHI nodes get a name based on 'Name'.
Initialize(Type * Ty,StringRef Name)47 void SSAUpdater::Initialize(Type *Ty, StringRef Name) {
48 if (AV == 0)
49 AV = new AvailableValsTy();
50 else
51 getAvailableVals(AV).clear();
52 ProtoType = Ty;
53 ProtoName = Name;
54 }
55
56 /// HasValueForBlock - Return true if the SSAUpdater already has a value for
57 /// the specified block.
HasValueForBlock(BasicBlock * BB) const58 bool SSAUpdater::HasValueForBlock(BasicBlock *BB) const {
59 return getAvailableVals(AV).count(BB);
60 }
61
62 /// AddAvailableValue - Indicate that a rewritten value is available in the
63 /// specified block with the specified value.
AddAvailableValue(BasicBlock * BB,Value * V)64 void SSAUpdater::AddAvailableValue(BasicBlock *BB, Value *V) {
65 assert(ProtoType != 0 && "Need to initialize SSAUpdater");
66 assert(ProtoType == V->getType() &&
67 "All rewritten values must have the same type");
68 getAvailableVals(AV)[BB] = V;
69 }
70
71 /// IsEquivalentPHI - Check if PHI has the same incoming value as specified
72 /// in ValueMapping for each predecessor block.
IsEquivalentPHI(PHINode * PHI,DenseMap<BasicBlock *,Value * > & ValueMapping)73 static bool IsEquivalentPHI(PHINode *PHI,
74 DenseMap<BasicBlock*, Value*> &ValueMapping) {
75 unsigned PHINumValues = PHI->getNumIncomingValues();
76 if (PHINumValues != ValueMapping.size())
77 return false;
78
79 // Scan the phi to see if it matches.
80 for (unsigned i = 0, e = PHINumValues; i != e; ++i)
81 if (ValueMapping[PHI->getIncomingBlock(i)] !=
82 PHI->getIncomingValue(i)) {
83 return false;
84 }
85
86 return true;
87 }
88
89 /// GetValueAtEndOfBlock - Construct SSA form, materializing a value that is
90 /// live at the end of the specified block.
GetValueAtEndOfBlock(BasicBlock * BB)91 Value *SSAUpdater::GetValueAtEndOfBlock(BasicBlock *BB) {
92 Value *Res = GetValueAtEndOfBlockInternal(BB);
93 return Res;
94 }
95
96 /// GetValueInMiddleOfBlock - Construct SSA form, materializing a value that
97 /// is live in the middle of the specified block.
98 ///
99 /// GetValueInMiddleOfBlock is the same as GetValueAtEndOfBlock except in one
100 /// important case: if there is a definition of the rewritten value after the
101 /// 'use' in BB. Consider code like this:
102 ///
103 /// X1 = ...
104 /// SomeBB:
105 /// use(X)
106 /// X2 = ...
107 /// br Cond, SomeBB, OutBB
108 ///
109 /// In this case, there are two values (X1 and X2) added to the AvailableVals
110 /// set by the client of the rewriter, and those values are both live out of
111 /// their respective blocks. However, the use of X happens in the *middle* of
112 /// a block. Because of this, we need to insert a new PHI node in SomeBB to
113 /// merge the appropriate values, and this value isn't live out of the block.
114 ///
GetValueInMiddleOfBlock(BasicBlock * BB)115 Value *SSAUpdater::GetValueInMiddleOfBlock(BasicBlock *BB) {
116 // If there is no definition of the renamed variable in this block, just use
117 // GetValueAtEndOfBlock to do our work.
118 if (!HasValueForBlock(BB))
119 return GetValueAtEndOfBlock(BB);
120
121 // Otherwise, we have the hard case. Get the live-in values for each
122 // predecessor.
123 SmallVector<std::pair<BasicBlock*, Value*>, 8> PredValues;
124 Value *SingularValue = 0;
125
126 // We can get our predecessor info by walking the pred_iterator list, but it
127 // is relatively slow. If we already have PHI nodes in this block, walk one
128 // of them to get the predecessor list instead.
129 if (PHINode *SomePhi = dyn_cast<PHINode>(BB->begin())) {
130 for (unsigned i = 0, e = SomePhi->getNumIncomingValues(); i != e; ++i) {
131 BasicBlock *PredBB = SomePhi->getIncomingBlock(i);
132 Value *PredVal = GetValueAtEndOfBlock(PredBB);
133 PredValues.push_back(std::make_pair(PredBB, PredVal));
134
135 // Compute SingularValue.
136 if (i == 0)
137 SingularValue = PredVal;
138 else if (PredVal != SingularValue)
139 SingularValue = 0;
140 }
141 } else {
142 bool isFirstPred = true;
143 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
144 BasicBlock *PredBB = *PI;
145 Value *PredVal = GetValueAtEndOfBlock(PredBB);
146 PredValues.push_back(std::make_pair(PredBB, PredVal));
147
148 // Compute SingularValue.
149 if (isFirstPred) {
150 SingularValue = PredVal;
151 isFirstPred = false;
152 } else if (PredVal != SingularValue)
153 SingularValue = 0;
154 }
155 }
156
157 // If there are no predecessors, just return undef.
158 if (PredValues.empty())
159 return UndefValue::get(ProtoType);
160
161 // Otherwise, if all the merged values are the same, just use it.
162 if (SingularValue != 0)
163 return SingularValue;
164
165 // Otherwise, we do need a PHI: check to see if we already have one available
166 // in this block that produces the right value.
167 if (isa<PHINode>(BB->begin())) {
168 DenseMap<BasicBlock*, Value*> ValueMapping(PredValues.begin(),
169 PredValues.end());
170 PHINode *SomePHI;
171 for (BasicBlock::iterator It = BB->begin();
172 (SomePHI = dyn_cast<PHINode>(It)); ++It) {
173 if (IsEquivalentPHI(SomePHI, ValueMapping))
174 return SomePHI;
175 }
176 }
177
178 // Ok, we have no way out, insert a new one now.
179 PHINode *InsertedPHI = PHINode::Create(ProtoType, PredValues.size(),
180 ProtoName, &BB->front());
181
182 // Fill in all the predecessors of the PHI.
183 for (unsigned i = 0, e = PredValues.size(); i != e; ++i)
184 InsertedPHI->addIncoming(PredValues[i].second, PredValues[i].first);
185
186 // See if the PHI node can be merged to a single value. This can happen in
187 // loop cases when we get a PHI of itself and one other value.
188 if (Value *V = SimplifyInstruction(InsertedPHI)) {
189 InsertedPHI->eraseFromParent();
190 return V;
191 }
192
193 // Set the DebugLoc of the inserted PHI, if available.
194 DebugLoc DL;
195 if (const Instruction *I = BB->getFirstNonPHI())
196 DL = I->getDebugLoc();
197 InsertedPHI->setDebugLoc(DL);
198
199 // If the client wants to know about all new instructions, tell it.
200 if (InsertedPHIs) InsertedPHIs->push_back(InsertedPHI);
201
202 DEBUG(dbgs() << " Inserted PHI: " << *InsertedPHI << "\n");
203 return InsertedPHI;
204 }
205
206 /// RewriteUse - Rewrite a use of the symbolic value. This handles PHI nodes,
207 /// which use their value in the corresponding predecessor.
RewriteUse(Use & U)208 void SSAUpdater::RewriteUse(Use &U) {
209 Instruction *User = cast<Instruction>(U.getUser());
210
211 Value *V;
212 if (PHINode *UserPN = dyn_cast<PHINode>(User))
213 V = GetValueAtEndOfBlock(UserPN->getIncomingBlock(U));
214 else
215 V = GetValueInMiddleOfBlock(User->getParent());
216
217 // Notify that users of the existing value that it is being replaced.
218 Value *OldVal = U.get();
219 if (OldVal != V && OldVal->hasValueHandle())
220 ValueHandleBase::ValueIsRAUWd(OldVal, V);
221
222 U.set(V);
223 }
224
225 /// RewriteUseAfterInsertions - Rewrite a use, just like RewriteUse. However,
226 /// this version of the method can rewrite uses in the same block as a
227 /// definition, because it assumes that all uses of a value are below any
228 /// inserted values.
RewriteUseAfterInsertions(Use & U)229 void SSAUpdater::RewriteUseAfterInsertions(Use &U) {
230 Instruction *User = cast<Instruction>(U.getUser());
231
232 Value *V;
233 if (PHINode *UserPN = dyn_cast<PHINode>(User))
234 V = GetValueAtEndOfBlock(UserPN->getIncomingBlock(U));
235 else
236 V = GetValueAtEndOfBlock(User->getParent());
237
238 U.set(V);
239 }
240
241 /// SSAUpdaterTraits<SSAUpdater> - Traits for the SSAUpdaterImpl template,
242 /// specialized for SSAUpdater.
243 namespace llvm {
244 template<>
245 class SSAUpdaterTraits<SSAUpdater> {
246 public:
247 typedef BasicBlock BlkT;
248 typedef Value *ValT;
249 typedef PHINode PhiT;
250
251 typedef succ_iterator BlkSucc_iterator;
BlkSucc_begin(BlkT * BB)252 static BlkSucc_iterator BlkSucc_begin(BlkT *BB) { return succ_begin(BB); }
BlkSucc_end(BlkT * BB)253 static BlkSucc_iterator BlkSucc_end(BlkT *BB) { return succ_end(BB); }
254
255 class PHI_iterator {
256 private:
257 PHINode *PHI;
258 unsigned idx;
259
260 public:
PHI_iterator(PHINode * P)261 explicit PHI_iterator(PHINode *P) // begin iterator
262 : PHI(P), idx(0) {}
PHI_iterator(PHINode * P,bool)263 PHI_iterator(PHINode *P, bool) // end iterator
264 : PHI(P), idx(PHI->getNumIncomingValues()) {}
265
operator ++()266 PHI_iterator &operator++() { ++idx; return *this; }
operator ==(const PHI_iterator & x) const267 bool operator==(const PHI_iterator& x) const { return idx == x.idx; }
operator !=(const PHI_iterator & x) const268 bool operator!=(const PHI_iterator& x) const { return !operator==(x); }
getIncomingValue()269 Value *getIncomingValue() { return PHI->getIncomingValue(idx); }
getIncomingBlock()270 BasicBlock *getIncomingBlock() { return PHI->getIncomingBlock(idx); }
271 };
272
PHI_begin(PhiT * PHI)273 static PHI_iterator PHI_begin(PhiT *PHI) { return PHI_iterator(PHI); }
PHI_end(PhiT * PHI)274 static PHI_iterator PHI_end(PhiT *PHI) {
275 return PHI_iterator(PHI, true);
276 }
277
278 /// FindPredecessorBlocks - Put the predecessors of Info->BB into the Preds
279 /// vector, set Info->NumPreds, and allocate space in Info->Preds.
FindPredecessorBlocks(BasicBlock * BB,SmallVectorImpl<BasicBlock * > * Preds)280 static void FindPredecessorBlocks(BasicBlock *BB,
281 SmallVectorImpl<BasicBlock*> *Preds) {
282 // We can get our predecessor info by walking the pred_iterator list,
283 // but it is relatively slow. If we already have PHI nodes in this
284 // block, walk one of them to get the predecessor list instead.
285 if (PHINode *SomePhi = dyn_cast<PHINode>(BB->begin())) {
286 for (unsigned PI = 0, E = SomePhi->getNumIncomingValues(); PI != E; ++PI)
287 Preds->push_back(SomePhi->getIncomingBlock(PI));
288 } else {
289 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
290 Preds->push_back(*PI);
291 }
292 }
293
294 /// GetUndefVal - Get an undefined value of the same type as the value
295 /// being handled.
GetUndefVal(BasicBlock * BB,SSAUpdater * Updater)296 static Value *GetUndefVal(BasicBlock *BB, SSAUpdater *Updater) {
297 return UndefValue::get(Updater->ProtoType);
298 }
299
300 /// CreateEmptyPHI - Create a new PHI instruction in the specified block.
301 /// Reserve space for the operands but do not fill them in yet.
CreateEmptyPHI(BasicBlock * BB,unsigned NumPreds,SSAUpdater * Updater)302 static Value *CreateEmptyPHI(BasicBlock *BB, unsigned NumPreds,
303 SSAUpdater *Updater) {
304 PHINode *PHI = PHINode::Create(Updater->ProtoType, NumPreds,
305 Updater->ProtoName, &BB->front());
306 return PHI;
307 }
308
309 /// AddPHIOperand - Add the specified value as an operand of the PHI for
310 /// the specified predecessor block.
AddPHIOperand(PHINode * PHI,Value * Val,BasicBlock * Pred)311 static void AddPHIOperand(PHINode *PHI, Value *Val, BasicBlock *Pred) {
312 PHI->addIncoming(Val, Pred);
313 }
314
315 /// InstrIsPHI - Check if an instruction is a PHI.
316 ///
InstrIsPHI(Instruction * I)317 static PHINode *InstrIsPHI(Instruction *I) {
318 return dyn_cast<PHINode>(I);
319 }
320
321 /// ValueIsPHI - Check if a value is a PHI.
322 ///
ValueIsPHI(Value * Val,SSAUpdater * Updater)323 static PHINode *ValueIsPHI(Value *Val, SSAUpdater *Updater) {
324 return dyn_cast<PHINode>(Val);
325 }
326
327 /// ValueIsNewPHI - Like ValueIsPHI but also check if the PHI has no source
328 /// operands, i.e., it was just added.
ValueIsNewPHI(Value * Val,SSAUpdater * Updater)329 static PHINode *ValueIsNewPHI(Value *Val, SSAUpdater *Updater) {
330 PHINode *PHI = ValueIsPHI(Val, Updater);
331 if (PHI && PHI->getNumIncomingValues() == 0)
332 return PHI;
333 return 0;
334 }
335
336 /// GetPHIValue - For the specified PHI instruction, return the value
337 /// that it defines.
GetPHIValue(PHINode * PHI)338 static Value *GetPHIValue(PHINode *PHI) {
339 return PHI;
340 }
341 };
342
343 } // End llvm namespace
344
345 /// GetValueAtEndOfBlockInternal - Check to see if AvailableVals has an entry
346 /// for the specified BB and if so, return it. If not, construct SSA form by
347 /// first calculating the required placement of PHIs and then inserting new
348 /// PHIs where needed.
GetValueAtEndOfBlockInternal(BasicBlock * BB)349 Value *SSAUpdater::GetValueAtEndOfBlockInternal(BasicBlock *BB) {
350 AvailableValsTy &AvailableVals = getAvailableVals(AV);
351 if (Value *V = AvailableVals[BB])
352 return V;
353
354 SSAUpdaterImpl<SSAUpdater> Impl(this, &AvailableVals, InsertedPHIs);
355 return Impl.GetValue(BB);
356 }
357
358 //===----------------------------------------------------------------------===//
359 // LoadAndStorePromoter Implementation
360 //===----------------------------------------------------------------------===//
361
362 LoadAndStorePromoter::
LoadAndStorePromoter(const SmallVectorImpl<Instruction * > & Insts,SSAUpdater & S,StringRef BaseName)363 LoadAndStorePromoter(const SmallVectorImpl<Instruction*> &Insts,
364 SSAUpdater &S, StringRef BaseName) : SSA(S) {
365 if (Insts.empty()) return;
366
367 Value *SomeVal;
368 if (LoadInst *LI = dyn_cast<LoadInst>(Insts[0]))
369 SomeVal = LI;
370 else
371 SomeVal = cast<StoreInst>(Insts[0])->getOperand(0);
372
373 if (BaseName.empty())
374 BaseName = SomeVal->getName();
375 SSA.Initialize(SomeVal->getType(), BaseName);
376 }
377
378
379 void LoadAndStorePromoter::
run(const SmallVectorImpl<Instruction * > & Insts) const380 run(const SmallVectorImpl<Instruction*> &Insts) const {
381
382 // First step: bucket up uses of the alloca by the block they occur in.
383 // This is important because we have to handle multiple defs/uses in a block
384 // ourselves: SSAUpdater is purely for cross-block references.
385 DenseMap<BasicBlock*, TinyPtrVector<Instruction*> > UsesByBlock;
386
387 for (unsigned i = 0, e = Insts.size(); i != e; ++i) {
388 Instruction *User = Insts[i];
389 UsesByBlock[User->getParent()].push_back(User);
390 }
391
392 // Okay, now we can iterate over all the blocks in the function with uses,
393 // processing them. Keep track of which loads are loading a live-in value.
394 // Walk the uses in the use-list order to be determinstic.
395 SmallVector<LoadInst*, 32> LiveInLoads;
396 DenseMap<Value*, Value*> ReplacedLoads;
397
398 for (unsigned i = 0, e = Insts.size(); i != e; ++i) {
399 Instruction *User = Insts[i];
400 BasicBlock *BB = User->getParent();
401 TinyPtrVector<Instruction*> &BlockUses = UsesByBlock[BB];
402
403 // If this block has already been processed, ignore this repeat use.
404 if (BlockUses.empty()) continue;
405
406 // Okay, this is the first use in the block. If this block just has a
407 // single user in it, we can rewrite it trivially.
408 if (BlockUses.size() == 1) {
409 // If it is a store, it is a trivial def of the value in the block.
410 if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
411 updateDebugInfo(SI);
412 SSA.AddAvailableValue(BB, SI->getOperand(0));
413 } else
414 // Otherwise it is a load, queue it to rewrite as a live-in load.
415 LiveInLoads.push_back(cast<LoadInst>(User));
416 BlockUses.clear();
417 continue;
418 }
419
420 // Otherwise, check to see if this block is all loads.
421 bool HasStore = false;
422 for (unsigned i = 0, e = BlockUses.size(); i != e; ++i) {
423 if (isa<StoreInst>(BlockUses[i])) {
424 HasStore = true;
425 break;
426 }
427 }
428
429 // If so, we can queue them all as live in loads. We don't have an
430 // efficient way to tell which on is first in the block and don't want to
431 // scan large blocks, so just add all loads as live ins.
432 if (!HasStore) {
433 for (unsigned i = 0, e = BlockUses.size(); i != e; ++i)
434 LiveInLoads.push_back(cast<LoadInst>(BlockUses[i]));
435 BlockUses.clear();
436 continue;
437 }
438
439 // Otherwise, we have mixed loads and stores (or just a bunch of stores).
440 // Since SSAUpdater is purely for cross-block values, we need to determine
441 // the order of these instructions in the block. If the first use in the
442 // block is a load, then it uses the live in value. The last store defines
443 // the live out value. We handle this by doing a linear scan of the block.
444 Value *StoredValue = 0;
445 for (BasicBlock::iterator II = BB->begin(), E = BB->end(); II != E; ++II) {
446 if (LoadInst *L = dyn_cast<LoadInst>(II)) {
447 // If this is a load from an unrelated pointer, ignore it.
448 if (!isInstInList(L, Insts)) continue;
449
450 // If we haven't seen a store yet, this is a live in use, otherwise
451 // use the stored value.
452 if (StoredValue) {
453 replaceLoadWithValue(L, StoredValue);
454 L->replaceAllUsesWith(StoredValue);
455 ReplacedLoads[L] = StoredValue;
456 } else {
457 LiveInLoads.push_back(L);
458 }
459 continue;
460 }
461
462 if (StoreInst *SI = dyn_cast<StoreInst>(II)) {
463 // If this is a store to an unrelated pointer, ignore it.
464 if (!isInstInList(SI, Insts)) continue;
465 updateDebugInfo(SI);
466
467 // Remember that this is the active value in the block.
468 StoredValue = SI->getOperand(0);
469 }
470 }
471
472 // The last stored value that happened is the live-out for the block.
473 assert(StoredValue && "Already checked that there is a store in block");
474 SSA.AddAvailableValue(BB, StoredValue);
475 BlockUses.clear();
476 }
477
478 // Okay, now we rewrite all loads that use live-in values in the loop,
479 // inserting PHI nodes as necessary.
480 for (unsigned i = 0, e = LiveInLoads.size(); i != e; ++i) {
481 LoadInst *ALoad = LiveInLoads[i];
482 Value *NewVal = SSA.GetValueInMiddleOfBlock(ALoad->getParent());
483 replaceLoadWithValue(ALoad, NewVal);
484
485 // Avoid assertions in unreachable code.
486 if (NewVal == ALoad) NewVal = UndefValue::get(NewVal->getType());
487 ALoad->replaceAllUsesWith(NewVal);
488 ReplacedLoads[ALoad] = NewVal;
489 }
490
491 // Allow the client to do stuff before we start nuking things.
492 doExtraRewritesBeforeFinalDeletion();
493
494 // Now that everything is rewritten, delete the old instructions from the
495 // function. They should all be dead now.
496 for (unsigned i = 0, e = Insts.size(); i != e; ++i) {
497 Instruction *User = Insts[i];
498
499 // If this is a load that still has uses, then the load must have been added
500 // as a live value in the SSAUpdate data structure for a block (e.g. because
501 // the loaded value was stored later). In this case, we need to recursively
502 // propagate the updates until we get to the real value.
503 if (!User->use_empty()) {
504 Value *NewVal = ReplacedLoads[User];
505 assert(NewVal && "not a replaced load?");
506
507 // Propagate down to the ultimate replacee. The intermediately loads
508 // could theoretically already have been deleted, so we don't want to
509 // dereference the Value*'s.
510 DenseMap<Value*, Value*>::iterator RLI = ReplacedLoads.find(NewVal);
511 while (RLI != ReplacedLoads.end()) {
512 NewVal = RLI->second;
513 RLI = ReplacedLoads.find(NewVal);
514 }
515
516 replaceLoadWithValue(cast<LoadInst>(User), NewVal);
517 User->replaceAllUsesWith(NewVal);
518 }
519
520 instructionDeleted(User);
521 User->eraseFromParent();
522 }
523 }
524
525 bool
isInstInList(Instruction * I,const SmallVectorImpl<Instruction * > & Insts) const526 LoadAndStorePromoter::isInstInList(Instruction *I,
527 const SmallVectorImpl<Instruction*> &Insts)
528 const {
529 return std::find(Insts.begin(), Insts.end(), I) != Insts.end();
530 }
531