1 //===-- llvm/CodeGen/MachineInstr.h - MachineInstr class --------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains the declaration of the MachineInstr class, which is the 11 // basic representation for all target dependent machine instructions used by 12 // the back end. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #ifndef LLVM_CODEGEN_MACHINEINSTR_H 17 #define LLVM_CODEGEN_MACHINEINSTR_H 18 19 #include "llvm/CodeGen/MachineOperand.h" 20 #include "llvm/MC/MCInstrDesc.h" 21 #include "llvm/Target/TargetOpcodes.h" 22 #include "llvm/ADT/ArrayRef.h" 23 #include "llvm/ADT/ilist.h" 24 #include "llvm/ADT/ilist_node.h" 25 #include "llvm/ADT/STLExtras.h" 26 #include "llvm/ADT/StringRef.h" 27 #include "llvm/ADT/DenseMapInfo.h" 28 #include "llvm/InlineAsm.h" 29 #include "llvm/Support/DebugLoc.h" 30 #include <vector> 31 32 namespace llvm { 33 34 template <typename T> class SmallVectorImpl; 35 class AliasAnalysis; 36 class TargetInstrInfo; 37 class TargetRegisterClass; 38 class TargetRegisterInfo; 39 class MachineFunction; 40 class MachineMemOperand; 41 42 //===----------------------------------------------------------------------===// 43 /// MachineInstr - Representation of each machine instruction. 44 /// 45 class MachineInstr : public ilist_node<MachineInstr> { 46 public: 47 typedef MachineMemOperand **mmo_iterator; 48 49 /// Flags to specify different kinds of comments to output in 50 /// assembly code. These flags carry semantic information not 51 /// otherwise easily derivable from the IR text. 52 /// 53 enum CommentFlag { 54 ReloadReuse = 0x1 55 }; 56 57 enum MIFlag { 58 NoFlags = 0, 59 FrameSetup = 1 << 0, // Instruction is used as a part of 60 // function frame setup code. 61 InsideBundle = 1 << 1 // Instruction is inside a bundle (not 62 // the first MI in a bundle) 63 }; 64 private: 65 const MCInstrDesc *MCID; // Instruction descriptor. 66 67 uint8_t Flags; // Various bits of additional 68 // information about machine 69 // instruction. 70 71 uint8_t AsmPrinterFlags; // Various bits of information used by 72 // the AsmPrinter to emit helpful 73 // comments. This is *not* semantic 74 // information. Do not use this for 75 // anything other than to convey comment 76 // information to AsmPrinter. 77 78 uint16_t NumMemRefs; // information on memory references 79 mmo_iterator MemRefs; 80 81 std::vector<MachineOperand> Operands; // the operands 82 MachineBasicBlock *Parent; // Pointer to the owning basic block. 83 DebugLoc debugLoc; // Source line information. 84 85 MachineInstr(const MachineInstr&); // DO NOT IMPLEMENT 86 void operator=(const MachineInstr&); // DO NOT IMPLEMENT 87 88 // Intrusive list support 89 friend struct ilist_traits<MachineInstr>; 90 friend struct ilist_traits<MachineBasicBlock>; 91 void setParent(MachineBasicBlock *P) { Parent = P; } 92 93 /// MachineInstr ctor - This constructor creates a copy of the given 94 /// MachineInstr in the given MachineFunction. 95 MachineInstr(MachineFunction &, const MachineInstr &); 96 97 /// MachineInstr ctor - This constructor creates a dummy MachineInstr with 98 /// MCID NULL and no operands. 99 MachineInstr(); 100 101 // The next two constructors have DebugLoc and non-DebugLoc versions; 102 // over time, the non-DebugLoc versions should be phased out and eventually 103 // removed. 104 105 /// MachineInstr ctor - This constructor creates a MachineInstr and adds the 106 /// implicit operands. It reserves space for the number of operands specified 107 /// by the MCInstrDesc. The version with a DebugLoc should be preferred. 108 explicit MachineInstr(const MCInstrDesc &MCID, bool NoImp = false); 109 110 /// MachineInstr ctor - Work exactly the same as the ctor above, except that 111 /// the MachineInstr is created and added to the end of the specified basic 112 /// block. The version with a DebugLoc should be preferred. 113 MachineInstr(MachineBasicBlock *MBB, const MCInstrDesc &MCID); 114 115 /// MachineInstr ctor - This constructor create a MachineInstr and add the 116 /// implicit operands. It reserves space for number of operands specified by 117 /// MCInstrDesc. An explicit DebugLoc is supplied. 118 explicit MachineInstr(const MCInstrDesc &MCID, const DebugLoc dl, 119 bool NoImp = false); 120 121 /// MachineInstr ctor - Work exactly the same as the ctor above, except that 122 /// the MachineInstr is created and added to the end of the specified basic 123 /// block. 124 MachineInstr(MachineBasicBlock *MBB, const DebugLoc dl, 125 const MCInstrDesc &MCID); 126 127 ~MachineInstr(); 128 129 // MachineInstrs are pool-allocated and owned by MachineFunction. 130 friend class MachineFunction; 131 132 public: 133 const MachineBasicBlock* getParent() const { return Parent; } 134 MachineBasicBlock* getParent() { return Parent; } 135 136 /// getAsmPrinterFlags - Return the asm printer flags bitvector. 137 /// 138 uint8_t getAsmPrinterFlags() const { return AsmPrinterFlags; } 139 140 /// clearAsmPrinterFlags - clear the AsmPrinter bitvector 141 /// 142 void clearAsmPrinterFlags() { AsmPrinterFlags = 0; } 143 144 /// getAsmPrinterFlag - Return whether an AsmPrinter flag is set. 145 /// 146 bool getAsmPrinterFlag(CommentFlag Flag) const { 147 return AsmPrinterFlags & Flag; 148 } 149 150 /// setAsmPrinterFlag - Set a flag for the AsmPrinter. 151 /// 152 void setAsmPrinterFlag(CommentFlag Flag) { 153 AsmPrinterFlags |= (uint8_t)Flag; 154 } 155 156 /// clearAsmPrinterFlag - clear specific AsmPrinter flags 157 /// 158 void clearAsmPrinterFlag(CommentFlag Flag) { 159 AsmPrinterFlags &= ~Flag; 160 } 161 162 /// getFlags - Return the MI flags bitvector. 163 uint8_t getFlags() const { 164 return Flags; 165 } 166 167 /// getFlag - Return whether an MI flag is set. 168 bool getFlag(MIFlag Flag) const { 169 return Flags & Flag; 170 } 171 172 /// setFlag - Set a MI flag. 173 void setFlag(MIFlag Flag) { 174 Flags |= (uint8_t)Flag; 175 } 176 177 void setFlags(unsigned flags) { 178 Flags = flags; 179 } 180 181 /// clearFlag - Clear a MI flag. 182 void clearFlag(MIFlag Flag) { 183 Flags &= ~((uint8_t)Flag); 184 } 185 186 /// isInsideBundle - Return true if MI is in a bundle (but not the first MI 187 /// in a bundle). 188 /// 189 /// A bundle looks like this before it's finalized: 190 /// ---------------- 191 /// | MI | 192 /// ---------------- 193 /// | 194 /// ---------------- 195 /// | MI * | 196 /// ---------------- 197 /// | 198 /// ---------------- 199 /// | MI * | 200 /// ---------------- 201 /// In this case, the first MI starts a bundle but is not inside a bundle, the 202 /// next 2 MIs are considered "inside" the bundle. 203 /// 204 /// After a bundle is finalized, it looks like this: 205 /// ---------------- 206 /// | Bundle | 207 /// ---------------- 208 /// | 209 /// ---------------- 210 /// | MI * | 211 /// ---------------- 212 /// | 213 /// ---------------- 214 /// | MI * | 215 /// ---------------- 216 /// | 217 /// ---------------- 218 /// | MI * | 219 /// ---------------- 220 /// The first instruction has the special opcode "BUNDLE". It's not "inside" 221 /// a bundle, but the next three MIs are. 222 bool isInsideBundle() const { 223 return getFlag(InsideBundle); 224 } 225 226 /// setIsInsideBundle - Set InsideBundle bit. 227 /// 228 void setIsInsideBundle(bool Val = true) { 229 if (Val) 230 setFlag(InsideBundle); 231 else 232 clearFlag(InsideBundle); 233 } 234 235 /// isBundled - Return true if this instruction part of a bundle. This is true 236 /// if either itself or its following instruction is marked "InsideBundle". 237 bool isBundled() const; 238 239 /// getDebugLoc - Returns the debug location id of this MachineInstr. 240 /// 241 DebugLoc getDebugLoc() const { return debugLoc; } 242 243 /// emitError - Emit an error referring to the source location of this 244 /// instruction. This should only be used for inline assembly that is somehow 245 /// impossible to compile. Other errors should have been handled much 246 /// earlier. 247 /// 248 /// If this method returns, the caller should try to recover from the error. 249 /// 250 void emitError(StringRef Msg) const; 251 252 /// getDesc - Returns the target instruction descriptor of this 253 /// MachineInstr. 254 const MCInstrDesc &getDesc() const { return *MCID; } 255 256 /// getOpcode - Returns the opcode of this MachineInstr. 257 /// 258 int getOpcode() const { return MCID->Opcode; } 259 260 /// Access to explicit operands of the instruction. 261 /// 262 unsigned getNumOperands() const { return (unsigned)Operands.size(); } 263 264 const MachineOperand& getOperand(unsigned i) const { 265 assert(i < getNumOperands() && "getOperand() out of range!"); 266 return Operands[i]; 267 } 268 MachineOperand& getOperand(unsigned i) { 269 assert(i < getNumOperands() && "getOperand() out of range!"); 270 return Operands[i]; 271 } 272 273 /// getNumExplicitOperands - Returns the number of non-implicit operands. 274 /// 275 unsigned getNumExplicitOperands() const; 276 277 /// iterator/begin/end - Iterate over all operands of a machine instruction. 278 typedef std::vector<MachineOperand>::iterator mop_iterator; 279 typedef std::vector<MachineOperand>::const_iterator const_mop_iterator; 280 281 mop_iterator operands_begin() { return Operands.begin(); } 282 mop_iterator operands_end() { return Operands.end(); } 283 284 const_mop_iterator operands_begin() const { return Operands.begin(); } 285 const_mop_iterator operands_end() const { return Operands.end(); } 286 287 /// Access to memory operands of the instruction 288 mmo_iterator memoperands_begin() const { return MemRefs; } 289 mmo_iterator memoperands_end() const { return MemRefs + NumMemRefs; } 290 bool memoperands_empty() const { return NumMemRefs == 0; } 291 292 /// hasOneMemOperand - Return true if this instruction has exactly one 293 /// MachineMemOperand. 294 bool hasOneMemOperand() const { 295 return NumMemRefs == 1; 296 } 297 298 /// API for querying MachineInstr properties. They are the same as MCInstrDesc 299 /// queries but they are bundle aware. 300 301 enum QueryType { 302 IgnoreBundle, // Ignore bundles 303 AnyInBundle, // Return true if any instruction in bundle has property 304 AllInBundle // Return true if all instructions in bundle have property 305 }; 306 307 /// hasProperty - Return true if the instruction (or in the case of a bundle, 308 /// the instructions inside the bundle) has the specified property. 309 /// The first argument is the property being queried. 310 /// The second argument indicates whether the query should look inside 311 /// instruction bundles. 312 bool hasProperty(unsigned MCFlag, QueryType Type = AnyInBundle) const { 313 // Inline the fast path. 314 if (Type == IgnoreBundle || !isBundle()) 315 return getDesc().getFlags() & (1 << MCFlag); 316 317 // If we have a bundle, take the slow path. 318 return hasPropertyInBundle(1 << MCFlag, Type); 319 } 320 321 /// isVariadic - Return true if this instruction can have a variable number of 322 /// operands. In this case, the variable operands will be after the normal 323 /// operands but before the implicit definitions and uses (if any are 324 /// present). 325 bool isVariadic(QueryType Type = IgnoreBundle) const { 326 return hasProperty(MCID::Variadic, Type); 327 } 328 329 /// hasOptionalDef - Set if this instruction has an optional definition, e.g. 330 /// ARM instructions which can set condition code if 's' bit is set. 331 bool hasOptionalDef(QueryType Type = IgnoreBundle) const { 332 return hasProperty(MCID::HasOptionalDef, Type); 333 } 334 335 /// isPseudo - Return true if this is a pseudo instruction that doesn't 336 /// correspond to a real machine instruction. 337 /// 338 bool isPseudo(QueryType Type = IgnoreBundle) const { 339 return hasProperty(MCID::Pseudo, Type); 340 } 341 342 bool isReturn(QueryType Type = AnyInBundle) const { 343 return hasProperty(MCID::Return, Type); 344 } 345 346 bool isCall(QueryType Type = AnyInBundle) const { 347 return hasProperty(MCID::Call, Type); 348 } 349 350 /// isBarrier - Returns true if the specified instruction stops control flow 351 /// from executing the instruction immediately following it. Examples include 352 /// unconditional branches and return instructions. 353 bool isBarrier(QueryType Type = AnyInBundle) const { 354 return hasProperty(MCID::Barrier, Type); 355 } 356 357 /// isTerminator - Returns true if this instruction part of the terminator for 358 /// a basic block. Typically this is things like return and branch 359 /// instructions. 360 /// 361 /// Various passes use this to insert code into the bottom of a basic block, 362 /// but before control flow occurs. 363 bool isTerminator(QueryType Type = AnyInBundle) const { 364 return hasProperty(MCID::Terminator, Type); 365 } 366 367 /// isBranch - Returns true if this is a conditional, unconditional, or 368 /// indirect branch. Predicates below can be used to discriminate between 369 /// these cases, and the TargetInstrInfo::AnalyzeBranch method can be used to 370 /// get more information. 371 bool isBranch(QueryType Type = AnyInBundle) const { 372 return hasProperty(MCID::Branch, Type); 373 } 374 375 /// isIndirectBranch - Return true if this is an indirect branch, such as a 376 /// branch through a register. 377 bool isIndirectBranch(QueryType Type = AnyInBundle) const { 378 return hasProperty(MCID::IndirectBranch, Type); 379 } 380 381 /// isConditionalBranch - Return true if this is a branch which may fall 382 /// through to the next instruction or may transfer control flow to some other 383 /// block. The TargetInstrInfo::AnalyzeBranch method can be used to get more 384 /// information about this branch. 385 bool isConditionalBranch(QueryType Type = AnyInBundle) const { 386 return isBranch(Type) & !isBarrier(Type) & !isIndirectBranch(Type); 387 } 388 389 /// isUnconditionalBranch - Return true if this is a branch which always 390 /// transfers control flow to some other block. The 391 /// TargetInstrInfo::AnalyzeBranch method can be used to get more information 392 /// about this branch. 393 bool isUnconditionalBranch(QueryType Type = AnyInBundle) const { 394 return isBranch(Type) & isBarrier(Type) & !isIndirectBranch(Type); 395 } 396 397 // isPredicable - Return true if this instruction has a predicate operand that 398 // controls execution. It may be set to 'always', or may be set to other 399 /// values. There are various methods in TargetInstrInfo that can be used to 400 /// control and modify the predicate in this instruction. 401 bool isPredicable(QueryType Type = AllInBundle) const { 402 // If it's a bundle than all bundled instructions must be predicable for this 403 // to return true. 404 return hasProperty(MCID::Predicable, Type); 405 } 406 407 /// isCompare - Return true if this instruction is a comparison. 408 bool isCompare(QueryType Type = IgnoreBundle) const { 409 return hasProperty(MCID::Compare, Type); 410 } 411 412 /// isMoveImmediate - Return true if this instruction is a move immediate 413 /// (including conditional moves) instruction. 414 bool isMoveImmediate(QueryType Type = IgnoreBundle) const { 415 return hasProperty(MCID::MoveImm, Type); 416 } 417 418 /// isBitcast - Return true if this instruction is a bitcast instruction. 419 /// 420 bool isBitcast(QueryType Type = IgnoreBundle) const { 421 return hasProperty(MCID::Bitcast, Type); 422 } 423 424 /// isSelect - Return true if this instruction is a select instruction. 425 /// 426 bool isSelect(QueryType Type = IgnoreBundle) const { 427 return hasProperty(MCID::Select, Type); 428 } 429 430 /// isNotDuplicable - Return true if this instruction cannot be safely 431 /// duplicated. For example, if the instruction has a unique labels attached 432 /// to it, duplicating it would cause multiple definition errors. 433 bool isNotDuplicable(QueryType Type = AnyInBundle) const { 434 return hasProperty(MCID::NotDuplicable, Type); 435 } 436 437 /// hasDelaySlot - Returns true if the specified instruction has a delay slot 438 /// which must be filled by the code generator. 439 bool hasDelaySlot(QueryType Type = AnyInBundle) const { 440 return hasProperty(MCID::DelaySlot, Type); 441 } 442 443 /// canFoldAsLoad - Return true for instructions that can be folded as 444 /// memory operands in other instructions. The most common use for this 445 /// is instructions that are simple loads from memory that don't modify 446 /// the loaded value in any way, but it can also be used for instructions 447 /// that can be expressed as constant-pool loads, such as V_SETALLONES 448 /// on x86, to allow them to be folded when it is beneficial. 449 /// This should only be set on instructions that return a value in their 450 /// only virtual register definition. 451 bool canFoldAsLoad(QueryType Type = IgnoreBundle) const { 452 return hasProperty(MCID::FoldableAsLoad, Type); 453 } 454 455 //===--------------------------------------------------------------------===// 456 // Side Effect Analysis 457 //===--------------------------------------------------------------------===// 458 459 /// mayLoad - Return true if this instruction could possibly read memory. 460 /// Instructions with this flag set are not necessarily simple load 461 /// instructions, they may load a value and modify it, for example. 462 bool mayLoad(QueryType Type = AnyInBundle) const { 463 return hasProperty(MCID::MayLoad, Type); 464 } 465 466 467 /// mayStore - Return true if this instruction could possibly modify memory. 468 /// Instructions with this flag set are not necessarily simple store 469 /// instructions, they may store a modified value based on their operands, or 470 /// may not actually modify anything, for example. 471 bool mayStore(QueryType Type = AnyInBundle) const { 472 return hasProperty(MCID::MayStore, Type); 473 } 474 475 //===--------------------------------------------------------------------===// 476 // Flags that indicate whether an instruction can be modified by a method. 477 //===--------------------------------------------------------------------===// 478 479 /// isCommutable - Return true if this may be a 2- or 3-address 480 /// instruction (of the form "X = op Y, Z, ..."), which produces the same 481 /// result if Y and Z are exchanged. If this flag is set, then the 482 /// TargetInstrInfo::commuteInstruction method may be used to hack on the 483 /// instruction. 484 /// 485 /// Note that this flag may be set on instructions that are only commutable 486 /// sometimes. In these cases, the call to commuteInstruction will fail. 487 /// Also note that some instructions require non-trivial modification to 488 /// commute them. 489 bool isCommutable(QueryType Type = IgnoreBundle) const { 490 return hasProperty(MCID::Commutable, Type); 491 } 492 493 /// isConvertibleTo3Addr - Return true if this is a 2-address instruction 494 /// which can be changed into a 3-address instruction if needed. Doing this 495 /// transformation can be profitable in the register allocator, because it 496 /// means that the instruction can use a 2-address form if possible, but 497 /// degrade into a less efficient form if the source and dest register cannot 498 /// be assigned to the same register. For example, this allows the x86 499 /// backend to turn a "shl reg, 3" instruction into an LEA instruction, which 500 /// is the same speed as the shift but has bigger code size. 501 /// 502 /// If this returns true, then the target must implement the 503 /// TargetInstrInfo::convertToThreeAddress method for this instruction, which 504 /// is allowed to fail if the transformation isn't valid for this specific 505 /// instruction (e.g. shl reg, 4 on x86). 506 /// 507 bool isConvertibleTo3Addr(QueryType Type = IgnoreBundle) const { 508 return hasProperty(MCID::ConvertibleTo3Addr, Type); 509 } 510 511 /// usesCustomInsertionHook - Return true if this instruction requires 512 /// custom insertion support when the DAG scheduler is inserting it into a 513 /// machine basic block. If this is true for the instruction, it basically 514 /// means that it is a pseudo instruction used at SelectionDAG time that is 515 /// expanded out into magic code by the target when MachineInstrs are formed. 516 /// 517 /// If this is true, the TargetLoweringInfo::InsertAtEndOfBasicBlock method 518 /// is used to insert this into the MachineBasicBlock. 519 bool usesCustomInsertionHook(QueryType Type = IgnoreBundle) const { 520 return hasProperty(MCID::UsesCustomInserter, Type); 521 } 522 523 /// hasPostISelHook - Return true if this instruction requires *adjustment* 524 /// after instruction selection by calling a target hook. For example, this 525 /// can be used to fill in ARM 's' optional operand depending on whether 526 /// the conditional flag register is used. 527 bool hasPostISelHook(QueryType Type = IgnoreBundle) const { 528 return hasProperty(MCID::HasPostISelHook, Type); 529 } 530 531 /// isRematerializable - Returns true if this instruction is a candidate for 532 /// remat. This flag is deprecated, please don't use it anymore. If this 533 /// flag is set, the isReallyTriviallyReMaterializable() method is called to 534 /// verify the instruction is really rematable. 535 bool isRematerializable(QueryType Type = AllInBundle) const { 536 // It's only possible to re-mat a bundle if all bundled instructions are 537 // re-materializable. 538 return hasProperty(MCID::Rematerializable, Type); 539 } 540 541 /// isAsCheapAsAMove - Returns true if this instruction has the same cost (or 542 /// less) than a move instruction. This is useful during certain types of 543 /// optimizations (e.g., remat during two-address conversion or machine licm) 544 /// where we would like to remat or hoist the instruction, but not if it costs 545 /// more than moving the instruction into the appropriate register. Note, we 546 /// are not marking copies from and to the same register class with this flag. 547 bool isAsCheapAsAMove(QueryType Type = AllInBundle) const { 548 // Only returns true for a bundle if all bundled instructions are cheap. 549 // FIXME: This probably requires a target hook. 550 return hasProperty(MCID::CheapAsAMove, Type); 551 } 552 553 /// hasExtraSrcRegAllocReq - Returns true if this instruction source operands 554 /// have special register allocation requirements that are not captured by the 555 /// operand register classes. e.g. ARM::STRD's two source registers must be an 556 /// even / odd pair, ARM::STM registers have to be in ascending order. 557 /// Post-register allocation passes should not attempt to change allocations 558 /// for sources of instructions with this flag. 559 bool hasExtraSrcRegAllocReq(QueryType Type = AnyInBundle) const { 560 return hasProperty(MCID::ExtraSrcRegAllocReq, Type); 561 } 562 563 /// hasExtraDefRegAllocReq - Returns true if this instruction def operands 564 /// have special register allocation requirements that are not captured by the 565 /// operand register classes. e.g. ARM::LDRD's two def registers must be an 566 /// even / odd pair, ARM::LDM registers have to be in ascending order. 567 /// Post-register allocation passes should not attempt to change allocations 568 /// for definitions of instructions with this flag. 569 bool hasExtraDefRegAllocReq(QueryType Type = AnyInBundle) const { 570 return hasProperty(MCID::ExtraDefRegAllocReq, Type); 571 } 572 573 574 enum MICheckType { 575 CheckDefs, // Check all operands for equality 576 CheckKillDead, // Check all operands including kill / dead markers 577 IgnoreDefs, // Ignore all definitions 578 IgnoreVRegDefs // Ignore virtual register definitions 579 }; 580 581 /// isIdenticalTo - Return true if this instruction is identical to (same 582 /// opcode and same operands as) the specified instruction. 583 bool isIdenticalTo(const MachineInstr *Other, 584 MICheckType Check = CheckDefs) const; 585 586 /// removeFromParent - This method unlinks 'this' from the containing basic 587 /// block, and returns it, but does not delete it. 588 MachineInstr *removeFromParent(); 589 590 /// eraseFromParent - This method unlinks 'this' from the containing basic 591 /// block and deletes it. 592 void eraseFromParent(); 593 594 /// isLabel - Returns true if the MachineInstr represents a label. 595 /// 596 bool isLabel() const { 597 return getOpcode() == TargetOpcode::PROLOG_LABEL || 598 getOpcode() == TargetOpcode::EH_LABEL || 599 getOpcode() == TargetOpcode::GC_LABEL; 600 } 601 602 bool isPrologLabel() const { 603 return getOpcode() == TargetOpcode::PROLOG_LABEL; 604 } 605 bool isEHLabel() const { return getOpcode() == TargetOpcode::EH_LABEL; } 606 bool isGCLabel() const { return getOpcode() == TargetOpcode::GC_LABEL; } 607 bool isDebugValue() const { return getOpcode() == TargetOpcode::DBG_VALUE; } 608 609 bool isPHI() const { return getOpcode() == TargetOpcode::PHI; } 610 bool isKill() const { return getOpcode() == TargetOpcode::KILL; } 611 bool isImplicitDef() const { return getOpcode()==TargetOpcode::IMPLICIT_DEF; } 612 bool isInlineAsm() const { return getOpcode() == TargetOpcode::INLINEASM; } 613 bool isStackAligningInlineAsm() const; 614 InlineAsm::AsmDialect getInlineAsmDialect() const; 615 bool isInsertSubreg() const { 616 return getOpcode() == TargetOpcode::INSERT_SUBREG; 617 } 618 bool isSubregToReg() const { 619 return getOpcode() == TargetOpcode::SUBREG_TO_REG; 620 } 621 bool isRegSequence() const { 622 return getOpcode() == TargetOpcode::REG_SEQUENCE; 623 } 624 bool isBundle() const { 625 return getOpcode() == TargetOpcode::BUNDLE; 626 } 627 bool isCopy() const { 628 return getOpcode() == TargetOpcode::COPY; 629 } 630 bool isFullCopy() const { 631 return isCopy() && !getOperand(0).getSubReg() && !getOperand(1).getSubReg(); 632 } 633 634 /// isCopyLike - Return true if the instruction behaves like a copy. 635 /// This does not include native copy instructions. 636 bool isCopyLike() const { 637 return isCopy() || isSubregToReg(); 638 } 639 640 /// isIdentityCopy - Return true is the instruction is an identity copy. 641 bool isIdentityCopy() const { 642 return isCopy() && getOperand(0).getReg() == getOperand(1).getReg() && 643 getOperand(0).getSubReg() == getOperand(1).getSubReg(); 644 } 645 646 /// isTransient - Return true if this is a transient instruction that is 647 /// either very likely to be eliminated during register allocation (such as 648 /// copy-like instructions), or if this instruction doesn't have an 649 /// execution-time cost. 650 bool isTransient() const { 651 switch(getOpcode()) { 652 default: return false; 653 // Copy-like instructions are usually eliminated during register allocation. 654 case TargetOpcode::PHI: 655 case TargetOpcode::COPY: 656 case TargetOpcode::INSERT_SUBREG: 657 case TargetOpcode::SUBREG_TO_REG: 658 case TargetOpcode::REG_SEQUENCE: 659 // Pseudo-instructions that don't produce any real output. 660 case TargetOpcode::IMPLICIT_DEF: 661 case TargetOpcode::KILL: 662 case TargetOpcode::PROLOG_LABEL: 663 case TargetOpcode::EH_LABEL: 664 case TargetOpcode::GC_LABEL: 665 case TargetOpcode::DBG_VALUE: 666 return true; 667 } 668 } 669 670 /// getBundleSize - Return the number of instructions inside the MI bundle. 671 unsigned getBundleSize() const; 672 673 /// readsRegister - Return true if the MachineInstr reads the specified 674 /// register. If TargetRegisterInfo is passed, then it also checks if there 675 /// is a read of a super-register. 676 /// This does not count partial redefines of virtual registers as reads: 677 /// %reg1024:6 = OP. 678 bool readsRegister(unsigned Reg, const TargetRegisterInfo *TRI = NULL) const { 679 return findRegisterUseOperandIdx(Reg, false, TRI) != -1; 680 } 681 682 /// readsVirtualRegister - Return true if the MachineInstr reads the specified 683 /// virtual register. Take into account that a partial define is a 684 /// read-modify-write operation. 685 bool readsVirtualRegister(unsigned Reg) const { 686 return readsWritesVirtualRegister(Reg).first; 687 } 688 689 /// readsWritesVirtualRegister - Return a pair of bools (reads, writes) 690 /// indicating if this instruction reads or writes Reg. This also considers 691 /// partial defines. 692 /// If Ops is not null, all operand indices for Reg are added. 693 std::pair<bool,bool> readsWritesVirtualRegister(unsigned Reg, 694 SmallVectorImpl<unsigned> *Ops = 0) const; 695 696 /// killsRegister - Return true if the MachineInstr kills the specified 697 /// register. If TargetRegisterInfo is passed, then it also checks if there is 698 /// a kill of a super-register. 699 bool killsRegister(unsigned Reg, const TargetRegisterInfo *TRI = NULL) const { 700 return findRegisterUseOperandIdx(Reg, true, TRI) != -1; 701 } 702 703 /// definesRegister - Return true if the MachineInstr fully defines the 704 /// specified register. If TargetRegisterInfo is passed, then it also checks 705 /// if there is a def of a super-register. 706 /// NOTE: It's ignoring subreg indices on virtual registers. 707 bool definesRegister(unsigned Reg, const TargetRegisterInfo *TRI=NULL) const { 708 return findRegisterDefOperandIdx(Reg, false, false, TRI) != -1; 709 } 710 711 /// modifiesRegister - Return true if the MachineInstr modifies (fully define 712 /// or partially define) the specified register. 713 /// NOTE: It's ignoring subreg indices on virtual registers. 714 bool modifiesRegister(unsigned Reg, const TargetRegisterInfo *TRI) const { 715 return findRegisterDefOperandIdx(Reg, false, true, TRI) != -1; 716 } 717 718 /// registerDefIsDead - Returns true if the register is dead in this machine 719 /// instruction. If TargetRegisterInfo is passed, then it also checks 720 /// if there is a dead def of a super-register. 721 bool registerDefIsDead(unsigned Reg, 722 const TargetRegisterInfo *TRI = NULL) const { 723 return findRegisterDefOperandIdx(Reg, true, false, TRI) != -1; 724 } 725 726 /// findRegisterUseOperandIdx() - Returns the operand index that is a use of 727 /// the specific register or -1 if it is not found. It further tightens 728 /// the search criteria to a use that kills the register if isKill is true. 729 int findRegisterUseOperandIdx(unsigned Reg, bool isKill = false, 730 const TargetRegisterInfo *TRI = NULL) const; 731 732 /// findRegisterUseOperand - Wrapper for findRegisterUseOperandIdx, it returns 733 /// a pointer to the MachineOperand rather than an index. 734 MachineOperand *findRegisterUseOperand(unsigned Reg, bool isKill = false, 735 const TargetRegisterInfo *TRI = NULL) { 736 int Idx = findRegisterUseOperandIdx(Reg, isKill, TRI); 737 return (Idx == -1) ? NULL : &getOperand(Idx); 738 } 739 740 /// findRegisterDefOperandIdx() - Returns the operand index that is a def of 741 /// the specified register or -1 if it is not found. If isDead is true, defs 742 /// that are not dead are skipped. If Overlap is true, then it also looks for 743 /// defs that merely overlap the specified register. If TargetRegisterInfo is 744 /// non-null, then it also checks if there is a def of a super-register. 745 /// This may also return a register mask operand when Overlap is true. 746 int findRegisterDefOperandIdx(unsigned Reg, 747 bool isDead = false, bool Overlap = false, 748 const TargetRegisterInfo *TRI = NULL) const; 749 750 /// findRegisterDefOperand - Wrapper for findRegisterDefOperandIdx, it returns 751 /// a pointer to the MachineOperand rather than an index. 752 MachineOperand *findRegisterDefOperand(unsigned Reg, bool isDead = false, 753 const TargetRegisterInfo *TRI = NULL) { 754 int Idx = findRegisterDefOperandIdx(Reg, isDead, false, TRI); 755 return (Idx == -1) ? NULL : &getOperand(Idx); 756 } 757 758 /// findFirstPredOperandIdx() - Find the index of the first operand in the 759 /// operand list that is used to represent the predicate. It returns -1 if 760 /// none is found. 761 int findFirstPredOperandIdx() const; 762 763 /// findInlineAsmFlagIdx() - Find the index of the flag word operand that 764 /// corresponds to operand OpIdx on an inline asm instruction. Returns -1 if 765 /// getOperand(OpIdx) does not belong to an inline asm operand group. 766 /// 767 /// If GroupNo is not NULL, it will receive the number of the operand group 768 /// containing OpIdx. 769 /// 770 /// The flag operand is an immediate that can be decoded with methods like 771 /// InlineAsm::hasRegClassConstraint(). 772 /// 773 int findInlineAsmFlagIdx(unsigned OpIdx, unsigned *GroupNo = 0) const; 774 775 /// getRegClassConstraint - Compute the static register class constraint for 776 /// operand OpIdx. For normal instructions, this is derived from the 777 /// MCInstrDesc. For inline assembly it is derived from the flag words. 778 /// 779 /// Returns NULL if the static register classs constraint cannot be 780 /// determined. 781 /// 782 const TargetRegisterClass* 783 getRegClassConstraint(unsigned OpIdx, 784 const TargetInstrInfo *TII, 785 const TargetRegisterInfo *TRI) const; 786 787 /// tieOperands - Add a tie between the register operands at DefIdx and 788 /// UseIdx. The tie will cause the register allocator to ensure that the two 789 /// operands are assigned the same physical register. 790 /// 791 /// Tied operands are managed automatically for explicit operands in the 792 /// MCInstrDesc. This method is for exceptional cases like inline asm. 793 void tieOperands(unsigned DefIdx, unsigned UseIdx); 794 795 /// findTiedOperandIdx - Given the index of a tied register operand, find the 796 /// operand it is tied to. Defs are tied to uses and vice versa. Returns the 797 /// index of the tied operand which must exist. 798 unsigned findTiedOperandIdx(unsigned OpIdx) const; 799 800 /// isRegTiedToUseOperand - Given the index of a register def operand, 801 /// check if the register def is tied to a source operand, due to either 802 /// two-address elimination or inline assembly constraints. Returns the 803 /// first tied use operand index by reference if UseOpIdx is not null. 804 bool isRegTiedToUseOperand(unsigned DefOpIdx, unsigned *UseOpIdx = 0) const { 805 const MachineOperand &MO = getOperand(DefOpIdx); 806 if (!MO.isReg() || !MO.isDef() || !MO.isTied()) 807 return false; 808 if (UseOpIdx) 809 *UseOpIdx = findTiedOperandIdx(DefOpIdx); 810 return true; 811 } 812 813 /// isRegTiedToDefOperand - Return true if the use operand of the specified 814 /// index is tied to an def operand. It also returns the def operand index by 815 /// reference if DefOpIdx is not null. 816 bool isRegTiedToDefOperand(unsigned UseOpIdx, unsigned *DefOpIdx = 0) const { 817 const MachineOperand &MO = getOperand(UseOpIdx); 818 if (!MO.isReg() || !MO.isUse() || !MO.isTied()) 819 return false; 820 if (DefOpIdx) 821 *DefOpIdx = findTiedOperandIdx(UseOpIdx); 822 return true; 823 } 824 825 /// clearKillInfo - Clears kill flags on all operands. 826 /// 827 void clearKillInfo(); 828 829 /// copyKillDeadInfo - Copies kill / dead operand properties from MI. 830 /// 831 void copyKillDeadInfo(const MachineInstr *MI); 832 833 /// copyPredicates - Copies predicate operand(s) from MI. 834 void copyPredicates(const MachineInstr *MI); 835 836 /// substituteRegister - Replace all occurrences of FromReg with ToReg:SubIdx, 837 /// properly composing subreg indices where necessary. 838 void substituteRegister(unsigned FromReg, unsigned ToReg, unsigned SubIdx, 839 const TargetRegisterInfo &RegInfo); 840 841 /// addRegisterKilled - We have determined MI kills a register. Look for the 842 /// operand that uses it and mark it as IsKill. If AddIfNotFound is true, 843 /// add a implicit operand if it's not found. Returns true if the operand 844 /// exists / is added. 845 bool addRegisterKilled(unsigned IncomingReg, 846 const TargetRegisterInfo *RegInfo, 847 bool AddIfNotFound = false); 848 849 /// clearRegisterKills - Clear all kill flags affecting Reg. If RegInfo is 850 /// provided, this includes super-register kills. 851 void clearRegisterKills(unsigned Reg, const TargetRegisterInfo *RegInfo); 852 853 /// addRegisterDead - We have determined MI defined a register without a use. 854 /// Look for the operand that defines it and mark it as IsDead. If 855 /// AddIfNotFound is true, add a implicit operand if it's not found. Returns 856 /// true if the operand exists / is added. 857 bool addRegisterDead(unsigned IncomingReg, const TargetRegisterInfo *RegInfo, 858 bool AddIfNotFound = false); 859 860 /// addRegisterDefined - We have determined MI defines a register. Make sure 861 /// there is an operand defining Reg. 862 void addRegisterDefined(unsigned IncomingReg, 863 const TargetRegisterInfo *RegInfo = 0); 864 865 /// setPhysRegsDeadExcept - Mark every physreg used by this instruction as 866 /// dead except those in the UsedRegs list. 867 /// 868 /// On instructions with register mask operands, also add implicit-def 869 /// operands for all registers in UsedRegs. 870 void setPhysRegsDeadExcept(ArrayRef<unsigned> UsedRegs, 871 const TargetRegisterInfo &TRI); 872 873 /// isSafeToMove - Return true if it is safe to move this instruction. If 874 /// SawStore is set to true, it means that there is a store (or call) between 875 /// the instruction's location and its intended destination. 876 bool isSafeToMove(const TargetInstrInfo *TII, AliasAnalysis *AA, 877 bool &SawStore) const; 878 879 /// isSafeToReMat - Return true if it's safe to rematerialize the specified 880 /// instruction which defined the specified register instead of copying it. 881 bool isSafeToReMat(const TargetInstrInfo *TII, AliasAnalysis *AA, 882 unsigned DstReg) const; 883 884 /// hasOrderedMemoryRef - Return true if this instruction may have an ordered 885 /// or volatile memory reference, or if the information describing the memory 886 /// reference is not available. Return false if it is known to have no 887 /// ordered or volatile memory references. 888 bool hasOrderedMemoryRef() const; 889 890 /// isInvariantLoad - Return true if this instruction is loading from a 891 /// location whose value is invariant across the function. For example, 892 /// loading a value from the constant pool or from the argument area of 893 /// a function if it does not change. This should only return true of *all* 894 /// loads the instruction does are invariant (if it does multiple loads). 895 bool isInvariantLoad(AliasAnalysis *AA) const; 896 897 /// isConstantValuePHI - If the specified instruction is a PHI that always 898 /// merges together the same virtual register, return the register, otherwise 899 /// return 0. 900 unsigned isConstantValuePHI() const; 901 902 /// hasUnmodeledSideEffects - Return true if this instruction has side 903 /// effects that are not modeled by mayLoad / mayStore, etc. 904 /// For all instructions, the property is encoded in MCInstrDesc::Flags 905 /// (see MCInstrDesc::hasUnmodeledSideEffects(). The only exception is 906 /// INLINEASM instruction, in which case the side effect property is encoded 907 /// in one of its operands (see InlineAsm::Extra_HasSideEffect). 908 /// 909 bool hasUnmodeledSideEffects() const; 910 911 /// allDefsAreDead - Return true if all the defs of this instruction are dead. 912 /// 913 bool allDefsAreDead() const; 914 915 /// copyImplicitOps - Copy implicit register operands from specified 916 /// instruction to this instruction. 917 void copyImplicitOps(const MachineInstr *MI); 918 919 // 920 // Debugging support 921 // 922 void print(raw_ostream &OS, const TargetMachine *TM = 0) const; 923 void dump() const; 924 925 //===--------------------------------------------------------------------===// 926 // Accessors used to build up machine instructions. 927 928 /// addOperand - Add the specified operand to the instruction. If it is an 929 /// implicit operand, it is added to the end of the operand list. If it is 930 /// an explicit operand it is added at the end of the explicit operand list 931 /// (before the first implicit operand). 932 void addOperand(const MachineOperand &Op); 933 934 /// setDesc - Replace the instruction descriptor (thus opcode) of 935 /// the current instruction with a new one. 936 /// 937 void setDesc(const MCInstrDesc &tid) { MCID = &tid; } 938 939 /// setDebugLoc - Replace current source information with new such. 940 /// Avoid using this, the constructor argument is preferable. 941 /// 942 void setDebugLoc(const DebugLoc dl) { debugLoc = dl; } 943 944 /// RemoveOperand - Erase an operand from an instruction, leaving it with one 945 /// fewer operand than it started with. 946 /// 947 void RemoveOperand(unsigned i); 948 949 /// addMemOperand - Add a MachineMemOperand to the machine instruction. 950 /// This function should be used only occasionally. The setMemRefs function 951 /// is the primary method for setting up a MachineInstr's MemRefs list. 952 void addMemOperand(MachineFunction &MF, MachineMemOperand *MO); 953 954 /// setMemRefs - Assign this MachineInstr's memory reference descriptor 955 /// list. This does not transfer ownership. 956 void setMemRefs(mmo_iterator NewMemRefs, mmo_iterator NewMemRefsEnd) { 957 MemRefs = NewMemRefs; 958 NumMemRefs = NewMemRefsEnd - NewMemRefs; 959 } 960 961 private: 962 /// getRegInfo - If this instruction is embedded into a MachineFunction, 963 /// return the MachineRegisterInfo object for the current function, otherwise 964 /// return null. 965 MachineRegisterInfo *getRegInfo(); 966 967 /// untieRegOperand - Break any tie involving OpIdx. 968 void untieRegOperand(unsigned OpIdx) { 969 MachineOperand &MO = getOperand(OpIdx); 970 if (MO.isReg() && MO.isTied()) { 971 getOperand(findTiedOperandIdx(OpIdx)).TiedTo = 0; 972 MO.TiedTo = 0; 973 } 974 } 975 976 /// addImplicitDefUseOperands - Add all implicit def and use operands to 977 /// this instruction. 978 void addImplicitDefUseOperands(); 979 980 /// RemoveRegOperandsFromUseLists - Unlink all of the register operands in 981 /// this instruction from their respective use lists. This requires that the 982 /// operands already be on their use lists. 983 void RemoveRegOperandsFromUseLists(MachineRegisterInfo&); 984 985 /// AddRegOperandsToUseLists - Add all of the register operands in 986 /// this instruction from their respective use lists. This requires that the 987 /// operands not be on their use lists yet. 988 void AddRegOperandsToUseLists(MachineRegisterInfo&); 989 990 /// hasPropertyInBundle - Slow path for hasProperty when we're dealing with a 991 /// bundle. 992 bool hasPropertyInBundle(unsigned Mask, QueryType Type) const; 993 }; 994 995 /// MachineInstrExpressionTrait - Special DenseMapInfo traits to compare 996 /// MachineInstr* by *value* of the instruction rather than by pointer value. 997 /// The hashing and equality testing functions ignore definitions so this is 998 /// useful for CSE, etc. 999 struct MachineInstrExpressionTrait : DenseMapInfo<MachineInstr*> { 1000 static inline MachineInstr *getEmptyKey() { 1001 return 0; 1002 } 1003 1004 static inline MachineInstr *getTombstoneKey() { 1005 return reinterpret_cast<MachineInstr*>(-1); 1006 } 1007 1008 static unsigned getHashValue(const MachineInstr* const &MI); 1009 1010 static bool isEqual(const MachineInstr* const &LHS, 1011 const MachineInstr* const &RHS) { 1012 if (RHS == getEmptyKey() || RHS == getTombstoneKey() || 1013 LHS == getEmptyKey() || LHS == getTombstoneKey()) 1014 return LHS == RHS; 1015 return LHS->isIdenticalTo(RHS, MachineInstr::IgnoreVRegDefs); 1016 } 1017 }; 1018 1019 //===----------------------------------------------------------------------===// 1020 // Debugging Support 1021 1022 inline raw_ostream& operator<<(raw_ostream &OS, const MachineInstr &MI) { 1023 MI.print(OS); 1024 return OS; 1025 } 1026 1027 } // End llvm namespace 1028 1029 #endif 1030