1 //===-- MachineBlockPlacement.cpp - Basic Block Code Layout optimization --===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements basic block placement transformations using the CFG
11 // structure and branch probability estimates.
12 //
13 // The pass strives to preserve the structure of the CFG (that is, retain
14 // a topological ordering of basic blocks) in the absence of a *strong* signal
15 // to the contrary from probabilities. However, within the CFG structure, it
16 // attempts to choose an ordering which favors placing more likely sequences of
17 // blocks adjacent to each other.
18 //
19 // The algorithm works from the inner-most loop within a function outward, and
20 // at each stage walks through the basic blocks, trying to coalesce them into
21 // sequential chains where allowed by the CFG (or demanded by heavy
22 // probabilities). Finally, it walks the blocks in topological order, and the
23 // first time it reaches a chain of basic blocks, it schedules them in the
24 // function in-order.
25 //
26 //===----------------------------------------------------------------------===//
27
28 #define DEBUG_TYPE "block-placement2"
29 #include "llvm/CodeGen/MachineBasicBlock.h"
30 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
31 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
32 #include "llvm/CodeGen/MachineFunction.h"
33 #include "llvm/CodeGen/MachineFunctionPass.h"
34 #include "llvm/CodeGen/MachineLoopInfo.h"
35 #include "llvm/CodeGen/MachineModuleInfo.h"
36 #include "llvm/CodeGen/Passes.h"
37 #include "llvm/Support/Allocator.h"
38 #include "llvm/Support/Debug.h"
39 #include "llvm/ADT/DenseMap.h"
40 #include "llvm/ADT/SmallPtrSet.h"
41 #include "llvm/ADT/SmallVector.h"
42 #include "llvm/ADT/Statistic.h"
43 #include "llvm/Target/TargetInstrInfo.h"
44 #include "llvm/Target/TargetLowering.h"
45 #include <algorithm>
46 using namespace llvm;
47
48 STATISTIC(NumCondBranches, "Number of conditional branches");
49 STATISTIC(NumUncondBranches, "Number of uncondittional branches");
50 STATISTIC(CondBranchTakenFreq,
51 "Potential frequency of taking conditional branches");
52 STATISTIC(UncondBranchTakenFreq,
53 "Potential frequency of taking unconditional branches");
54
55 namespace {
56 class BlockChain;
57 /// \brief Type for our function-wide basic block -> block chain mapping.
58 typedef DenseMap<MachineBasicBlock *, BlockChain *> BlockToChainMapType;
59 }
60
61 namespace {
62 /// \brief A chain of blocks which will be laid out contiguously.
63 ///
64 /// This is the datastructure representing a chain of consecutive blocks that
65 /// are profitable to layout together in order to maximize fallthrough
66 /// probabilities and code locality. We also can use a block chain to represent
67 /// a sequence of basic blocks which have some external (correctness)
68 /// requirement for sequential layout.
69 ///
70 /// Chains can be built around a single basic block and can be merged to grow
71 /// them. They participate in a block-to-chain mapping, which is updated
72 /// automatically as chains are merged together.
73 class BlockChain {
74 /// \brief The sequence of blocks belonging to this chain.
75 ///
76 /// This is the sequence of blocks for a particular chain. These will be laid
77 /// out in-order within the function.
78 SmallVector<MachineBasicBlock *, 4> Blocks;
79
80 /// \brief A handle to the function-wide basic block to block chain mapping.
81 ///
82 /// This is retained in each block chain to simplify the computation of child
83 /// block chains for SCC-formation and iteration. We store the edges to child
84 /// basic blocks, and map them back to their associated chains using this
85 /// structure.
86 BlockToChainMapType &BlockToChain;
87
88 public:
89 /// \brief Construct a new BlockChain.
90 ///
91 /// This builds a new block chain representing a single basic block in the
92 /// function. It also registers itself as the chain that block participates
93 /// in with the BlockToChain mapping.
BlockChain(BlockToChainMapType & BlockToChain,MachineBasicBlock * BB)94 BlockChain(BlockToChainMapType &BlockToChain, MachineBasicBlock *BB)
95 : Blocks(1, BB), BlockToChain(BlockToChain), LoopPredecessors(0) {
96 assert(BB && "Cannot create a chain with a null basic block");
97 BlockToChain[BB] = this;
98 }
99
100 /// \brief Iterator over blocks within the chain.
101 typedef SmallVectorImpl<MachineBasicBlock *>::iterator iterator;
102
103 /// \brief Beginning of blocks within the chain.
begin()104 iterator begin() { return Blocks.begin(); }
105
106 /// \brief End of blocks within the chain.
end()107 iterator end() { return Blocks.end(); }
108
109 /// \brief Merge a block chain into this one.
110 ///
111 /// This routine merges a block chain into this one. It takes care of forming
112 /// a contiguous sequence of basic blocks, updating the edge list, and
113 /// updating the block -> chain mapping. It does not free or tear down the
114 /// old chain, but the old chain's block list is no longer valid.
merge(MachineBasicBlock * BB,BlockChain * Chain)115 void merge(MachineBasicBlock *BB, BlockChain *Chain) {
116 assert(BB);
117 assert(!Blocks.empty());
118
119 // Fast path in case we don't have a chain already.
120 if (!Chain) {
121 assert(!BlockToChain[BB]);
122 Blocks.push_back(BB);
123 BlockToChain[BB] = this;
124 return;
125 }
126
127 assert(BB == *Chain->begin());
128 assert(Chain->begin() != Chain->end());
129
130 // Update the incoming blocks to point to this chain, and add them to the
131 // chain structure.
132 for (BlockChain::iterator BI = Chain->begin(), BE = Chain->end();
133 BI != BE; ++BI) {
134 Blocks.push_back(*BI);
135 assert(BlockToChain[*BI] == Chain && "Incoming blocks not in chain");
136 BlockToChain[*BI] = this;
137 }
138 }
139
140 #ifndef NDEBUG
141 /// \brief Dump the blocks in this chain.
dump()142 void dump() LLVM_ATTRIBUTE_USED {
143 for (iterator I = begin(), E = end(); I != E; ++I)
144 (*I)->dump();
145 }
146 #endif // NDEBUG
147
148 /// \brief Count of predecessors within the loop currently being processed.
149 ///
150 /// This count is updated at each loop we process to represent the number of
151 /// in-loop predecessors of this chain.
152 unsigned LoopPredecessors;
153 };
154 }
155
156 namespace {
157 class MachineBlockPlacement : public MachineFunctionPass {
158 /// \brief A typedef for a block filter set.
159 typedef SmallPtrSet<MachineBasicBlock *, 16> BlockFilterSet;
160
161 /// \brief A handle to the branch probability pass.
162 const MachineBranchProbabilityInfo *MBPI;
163
164 /// \brief A handle to the function-wide block frequency pass.
165 const MachineBlockFrequencyInfo *MBFI;
166
167 /// \brief A handle to the loop info.
168 const MachineLoopInfo *MLI;
169
170 /// \brief A handle to the target's instruction info.
171 const TargetInstrInfo *TII;
172
173 /// \brief A handle to the target's lowering info.
174 const TargetLowering *TLI;
175
176 /// \brief Allocator and owner of BlockChain structures.
177 ///
178 /// We build BlockChains lazily while processing the loop structure of
179 /// a function. To reduce malloc traffic, we allocate them using this
180 /// slab-like allocator, and destroy them after the pass completes. An
181 /// important guarantee is that this allocator produces stable pointers to
182 /// the chains.
183 SpecificBumpPtrAllocator<BlockChain> ChainAllocator;
184
185 /// \brief Function wide BasicBlock to BlockChain mapping.
186 ///
187 /// This mapping allows efficiently moving from any given basic block to the
188 /// BlockChain it participates in, if any. We use it to, among other things,
189 /// allow implicitly defining edges between chains as the existing edges
190 /// between basic blocks.
191 DenseMap<MachineBasicBlock *, BlockChain *> BlockToChain;
192
193 void markChainSuccessors(BlockChain &Chain,
194 MachineBasicBlock *LoopHeaderBB,
195 SmallVectorImpl<MachineBasicBlock *> &BlockWorkList,
196 const BlockFilterSet *BlockFilter = 0);
197 MachineBasicBlock *selectBestSuccessor(MachineBasicBlock *BB,
198 BlockChain &Chain,
199 const BlockFilterSet *BlockFilter);
200 MachineBasicBlock *selectBestCandidateBlock(
201 BlockChain &Chain, SmallVectorImpl<MachineBasicBlock *> &WorkList,
202 const BlockFilterSet *BlockFilter);
203 MachineBasicBlock *getFirstUnplacedBlock(
204 MachineFunction &F,
205 const BlockChain &PlacedChain,
206 MachineFunction::iterator &PrevUnplacedBlockIt,
207 const BlockFilterSet *BlockFilter);
208 void buildChain(MachineBasicBlock *BB, BlockChain &Chain,
209 SmallVectorImpl<MachineBasicBlock *> &BlockWorkList,
210 const BlockFilterSet *BlockFilter = 0);
211 MachineBasicBlock *findBestLoopTop(MachineLoop &L,
212 const BlockFilterSet &LoopBlockSet);
213 MachineBasicBlock *findBestLoopExit(MachineFunction &F,
214 MachineLoop &L,
215 const BlockFilterSet &LoopBlockSet);
216 void buildLoopChains(MachineFunction &F, MachineLoop &L);
217 void rotateLoop(BlockChain &LoopChain, MachineBasicBlock *ExitingBB,
218 const BlockFilterSet &LoopBlockSet);
219 void buildCFGChains(MachineFunction &F);
220
221 public:
222 static char ID; // Pass identification, replacement for typeid
MachineBlockPlacement()223 MachineBlockPlacement() : MachineFunctionPass(ID) {
224 initializeMachineBlockPlacementPass(*PassRegistry::getPassRegistry());
225 }
226
227 bool runOnMachineFunction(MachineFunction &F);
228
getAnalysisUsage(AnalysisUsage & AU) const229 void getAnalysisUsage(AnalysisUsage &AU) const {
230 AU.addRequired<MachineBranchProbabilityInfo>();
231 AU.addRequired<MachineBlockFrequencyInfo>();
232 AU.addRequired<MachineLoopInfo>();
233 MachineFunctionPass::getAnalysisUsage(AU);
234 }
235 };
236 }
237
238 char MachineBlockPlacement::ID = 0;
239 char &llvm::MachineBlockPlacementID = MachineBlockPlacement::ID;
240 INITIALIZE_PASS_BEGIN(MachineBlockPlacement, "block-placement2",
241 "Branch Probability Basic Block Placement", false, false)
INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)242 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)
243 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo)
244 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
245 INITIALIZE_PASS_END(MachineBlockPlacement, "block-placement2",
246 "Branch Probability Basic Block Placement", false, false)
247
248 #ifndef NDEBUG
249 /// \brief Helper to print the name of a MBB.
250 ///
251 /// Only used by debug logging.
252 static std::string getBlockName(MachineBasicBlock *BB) {
253 std::string Result;
254 raw_string_ostream OS(Result);
255 OS << "BB#" << BB->getNumber()
256 << " (derived from LLVM BB '" << BB->getName() << "')";
257 OS.flush();
258 return Result;
259 }
260
261 /// \brief Helper to print the number of a MBB.
262 ///
263 /// Only used by debug logging.
getBlockNum(MachineBasicBlock * BB)264 static std::string getBlockNum(MachineBasicBlock *BB) {
265 std::string Result;
266 raw_string_ostream OS(Result);
267 OS << "BB#" << BB->getNumber();
268 OS.flush();
269 return Result;
270 }
271 #endif
272
273 /// \brief Mark a chain's successors as having one fewer preds.
274 ///
275 /// When a chain is being merged into the "placed" chain, this routine will
276 /// quickly walk the successors of each block in the chain and mark them as
277 /// having one fewer active predecessor. It also adds any successors of this
278 /// chain which reach the zero-predecessor state to the worklist passed in.
markChainSuccessors(BlockChain & Chain,MachineBasicBlock * LoopHeaderBB,SmallVectorImpl<MachineBasicBlock * > & BlockWorkList,const BlockFilterSet * BlockFilter)279 void MachineBlockPlacement::markChainSuccessors(
280 BlockChain &Chain,
281 MachineBasicBlock *LoopHeaderBB,
282 SmallVectorImpl<MachineBasicBlock *> &BlockWorkList,
283 const BlockFilterSet *BlockFilter) {
284 // Walk all the blocks in this chain, marking their successors as having
285 // a predecessor placed.
286 for (BlockChain::iterator CBI = Chain.begin(), CBE = Chain.end();
287 CBI != CBE; ++CBI) {
288 // Add any successors for which this is the only un-placed in-loop
289 // predecessor to the worklist as a viable candidate for CFG-neutral
290 // placement. No subsequent placement of this block will violate the CFG
291 // shape, so we get to use heuristics to choose a favorable placement.
292 for (MachineBasicBlock::succ_iterator SI = (*CBI)->succ_begin(),
293 SE = (*CBI)->succ_end();
294 SI != SE; ++SI) {
295 if (BlockFilter && !BlockFilter->count(*SI))
296 continue;
297 BlockChain &SuccChain = *BlockToChain[*SI];
298 // Disregard edges within a fixed chain, or edges to the loop header.
299 if (&Chain == &SuccChain || *SI == LoopHeaderBB)
300 continue;
301
302 // This is a cross-chain edge that is within the loop, so decrement the
303 // loop predecessor count of the destination chain.
304 if (SuccChain.LoopPredecessors > 0 && --SuccChain.LoopPredecessors == 0)
305 BlockWorkList.push_back(*SuccChain.begin());
306 }
307 }
308 }
309
310 /// \brief Select the best successor for a block.
311 ///
312 /// This looks across all successors of a particular block and attempts to
313 /// select the "best" one to be the layout successor. It only considers direct
314 /// successors which also pass the block filter. It will attempt to avoid
315 /// breaking CFG structure, but cave and break such structures in the case of
316 /// very hot successor edges.
317 ///
318 /// \returns The best successor block found, or null if none are viable.
selectBestSuccessor(MachineBasicBlock * BB,BlockChain & Chain,const BlockFilterSet * BlockFilter)319 MachineBasicBlock *MachineBlockPlacement::selectBestSuccessor(
320 MachineBasicBlock *BB, BlockChain &Chain,
321 const BlockFilterSet *BlockFilter) {
322 const BranchProbability HotProb(4, 5); // 80%
323
324 MachineBasicBlock *BestSucc = 0;
325 // FIXME: Due to the performance of the probability and weight routines in
326 // the MBPI analysis, we manually compute probabilities using the edge
327 // weights. This is suboptimal as it means that the somewhat subtle
328 // definition of edge weight semantics is encoded here as well. We should
329 // improve the MBPI interface to efficiently support query patterns such as
330 // this.
331 uint32_t BestWeight = 0;
332 uint32_t WeightScale = 0;
333 uint32_t SumWeight = MBPI->getSumForBlock(BB, WeightScale);
334 DEBUG(dbgs() << "Attempting merge from: " << getBlockName(BB) << "\n");
335 for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(),
336 SE = BB->succ_end();
337 SI != SE; ++SI) {
338 if (BlockFilter && !BlockFilter->count(*SI))
339 continue;
340 BlockChain &SuccChain = *BlockToChain[*SI];
341 if (&SuccChain == &Chain) {
342 DEBUG(dbgs() << " " << getBlockName(*SI) << " -> Already merged!\n");
343 continue;
344 }
345 if (*SI != *SuccChain.begin()) {
346 DEBUG(dbgs() << " " << getBlockName(*SI) << " -> Mid chain!\n");
347 continue;
348 }
349
350 uint32_t SuccWeight = MBPI->getEdgeWeight(BB, *SI);
351 BranchProbability SuccProb(SuccWeight / WeightScale, SumWeight);
352
353 // Only consider successors which are either "hot", or wouldn't violate
354 // any CFG constraints.
355 if (SuccChain.LoopPredecessors != 0) {
356 if (SuccProb < HotProb) {
357 DEBUG(dbgs() << " " << getBlockName(*SI) << " -> CFG conflict\n");
358 continue;
359 }
360
361 // Make sure that a hot successor doesn't have a globally more important
362 // predecessor.
363 BlockFrequency CandidateEdgeFreq
364 = MBFI->getBlockFreq(BB) * SuccProb * HotProb.getCompl();
365 bool BadCFGConflict = false;
366 for (MachineBasicBlock::pred_iterator PI = (*SI)->pred_begin(),
367 PE = (*SI)->pred_end();
368 PI != PE; ++PI) {
369 if (*PI == *SI || (BlockFilter && !BlockFilter->count(*PI)) ||
370 BlockToChain[*PI] == &Chain)
371 continue;
372 BlockFrequency PredEdgeFreq
373 = MBFI->getBlockFreq(*PI) * MBPI->getEdgeProbability(*PI, *SI);
374 if (PredEdgeFreq >= CandidateEdgeFreq) {
375 BadCFGConflict = true;
376 break;
377 }
378 }
379 if (BadCFGConflict) {
380 DEBUG(dbgs() << " " << getBlockName(*SI)
381 << " -> non-cold CFG conflict\n");
382 continue;
383 }
384 }
385
386 DEBUG(dbgs() << " " << getBlockName(*SI) << " -> " << SuccProb
387 << " (prob)"
388 << (SuccChain.LoopPredecessors != 0 ? " (CFG break)" : "")
389 << "\n");
390 if (BestSucc && BestWeight >= SuccWeight)
391 continue;
392 BestSucc = *SI;
393 BestWeight = SuccWeight;
394 }
395 return BestSucc;
396 }
397
398 namespace {
399 /// \brief Predicate struct to detect blocks already placed.
400 class IsBlockPlaced {
401 const BlockChain &PlacedChain;
402 const BlockToChainMapType &BlockToChain;
403
404 public:
IsBlockPlaced(const BlockChain & PlacedChain,const BlockToChainMapType & BlockToChain)405 IsBlockPlaced(const BlockChain &PlacedChain,
406 const BlockToChainMapType &BlockToChain)
407 : PlacedChain(PlacedChain), BlockToChain(BlockToChain) {}
408
operator ()(MachineBasicBlock * BB) const409 bool operator()(MachineBasicBlock *BB) const {
410 return BlockToChain.lookup(BB) == &PlacedChain;
411 }
412 };
413 }
414
415 /// \brief Select the best block from a worklist.
416 ///
417 /// This looks through the provided worklist as a list of candidate basic
418 /// blocks and select the most profitable one to place. The definition of
419 /// profitable only really makes sense in the context of a loop. This returns
420 /// the most frequently visited block in the worklist, which in the case of
421 /// a loop, is the one most desirable to be physically close to the rest of the
422 /// loop body in order to improve icache behavior.
423 ///
424 /// \returns The best block found, or null if none are viable.
selectBestCandidateBlock(BlockChain & Chain,SmallVectorImpl<MachineBasicBlock * > & WorkList,const BlockFilterSet * BlockFilter)425 MachineBasicBlock *MachineBlockPlacement::selectBestCandidateBlock(
426 BlockChain &Chain, SmallVectorImpl<MachineBasicBlock *> &WorkList,
427 const BlockFilterSet *BlockFilter) {
428 // Once we need to walk the worklist looking for a candidate, cleanup the
429 // worklist of already placed entries.
430 // FIXME: If this shows up on profiles, it could be folded (at the cost of
431 // some code complexity) into the loop below.
432 WorkList.erase(std::remove_if(WorkList.begin(), WorkList.end(),
433 IsBlockPlaced(Chain, BlockToChain)),
434 WorkList.end());
435
436 MachineBasicBlock *BestBlock = 0;
437 BlockFrequency BestFreq;
438 for (SmallVectorImpl<MachineBasicBlock *>::iterator WBI = WorkList.begin(),
439 WBE = WorkList.end();
440 WBI != WBE; ++WBI) {
441 BlockChain &SuccChain = *BlockToChain[*WBI];
442 if (&SuccChain == &Chain) {
443 DEBUG(dbgs() << " " << getBlockName(*WBI)
444 << " -> Already merged!\n");
445 continue;
446 }
447 assert(SuccChain.LoopPredecessors == 0 && "Found CFG-violating block");
448
449 BlockFrequency CandidateFreq = MBFI->getBlockFreq(*WBI);
450 DEBUG(dbgs() << " " << getBlockName(*WBI) << " -> " << CandidateFreq
451 << " (freq)\n");
452 if (BestBlock && BestFreq >= CandidateFreq)
453 continue;
454 BestBlock = *WBI;
455 BestFreq = CandidateFreq;
456 }
457 return BestBlock;
458 }
459
460 /// \brief Retrieve the first unplaced basic block.
461 ///
462 /// This routine is called when we are unable to use the CFG to walk through
463 /// all of the basic blocks and form a chain due to unnatural loops in the CFG.
464 /// We walk through the function's blocks in order, starting from the
465 /// LastUnplacedBlockIt. We update this iterator on each call to avoid
466 /// re-scanning the entire sequence on repeated calls to this routine.
getFirstUnplacedBlock(MachineFunction & F,const BlockChain & PlacedChain,MachineFunction::iterator & PrevUnplacedBlockIt,const BlockFilterSet * BlockFilter)467 MachineBasicBlock *MachineBlockPlacement::getFirstUnplacedBlock(
468 MachineFunction &F, const BlockChain &PlacedChain,
469 MachineFunction::iterator &PrevUnplacedBlockIt,
470 const BlockFilterSet *BlockFilter) {
471 for (MachineFunction::iterator I = PrevUnplacedBlockIt, E = F.end(); I != E;
472 ++I) {
473 if (BlockFilter && !BlockFilter->count(I))
474 continue;
475 if (BlockToChain[I] != &PlacedChain) {
476 PrevUnplacedBlockIt = I;
477 // Now select the head of the chain to which the unplaced block belongs
478 // as the block to place. This will force the entire chain to be placed,
479 // and satisfies the requirements of merging chains.
480 return *BlockToChain[I]->begin();
481 }
482 }
483 return 0;
484 }
485
buildChain(MachineBasicBlock * BB,BlockChain & Chain,SmallVectorImpl<MachineBasicBlock * > & BlockWorkList,const BlockFilterSet * BlockFilter)486 void MachineBlockPlacement::buildChain(
487 MachineBasicBlock *BB,
488 BlockChain &Chain,
489 SmallVectorImpl<MachineBasicBlock *> &BlockWorkList,
490 const BlockFilterSet *BlockFilter) {
491 assert(BB);
492 assert(BlockToChain[BB] == &Chain);
493 MachineFunction &F = *BB->getParent();
494 MachineFunction::iterator PrevUnplacedBlockIt = F.begin();
495
496 MachineBasicBlock *LoopHeaderBB = BB;
497 markChainSuccessors(Chain, LoopHeaderBB, BlockWorkList, BlockFilter);
498 BB = *llvm::prior(Chain.end());
499 for (;;) {
500 assert(BB);
501 assert(BlockToChain[BB] == &Chain);
502 assert(*llvm::prior(Chain.end()) == BB);
503 MachineBasicBlock *BestSucc = 0;
504
505 // Look for the best viable successor if there is one to place immediately
506 // after this block.
507 BestSucc = selectBestSuccessor(BB, Chain, BlockFilter);
508
509 // If an immediate successor isn't available, look for the best viable
510 // block among those we've identified as not violating the loop's CFG at
511 // this point. This won't be a fallthrough, but it will increase locality.
512 if (!BestSucc)
513 BestSucc = selectBestCandidateBlock(Chain, BlockWorkList, BlockFilter);
514
515 if (!BestSucc) {
516 BestSucc = getFirstUnplacedBlock(F, Chain, PrevUnplacedBlockIt,
517 BlockFilter);
518 if (!BestSucc)
519 break;
520
521 DEBUG(dbgs() << "Unnatural loop CFG detected, forcibly merging the "
522 "layout successor until the CFG reduces\n");
523 }
524
525 // Place this block, updating the datastructures to reflect its placement.
526 BlockChain &SuccChain = *BlockToChain[BestSucc];
527 // Zero out LoopPredecessors for the successor we're about to merge in case
528 // we selected a successor that didn't fit naturally into the CFG.
529 SuccChain.LoopPredecessors = 0;
530 DEBUG(dbgs() << "Merging from " << getBlockNum(BB)
531 << " to " << getBlockNum(BestSucc) << "\n");
532 markChainSuccessors(SuccChain, LoopHeaderBB, BlockWorkList, BlockFilter);
533 Chain.merge(BestSucc, &SuccChain);
534 BB = *llvm::prior(Chain.end());
535 }
536
537 DEBUG(dbgs() << "Finished forming chain for header block "
538 << getBlockNum(*Chain.begin()) << "\n");
539 }
540
541 /// \brief Find the best loop top block for layout.
542 ///
543 /// Look for a block which is strictly better than the loop header for laying
544 /// out at the top of the loop. This looks for one and only one pattern:
545 /// a latch block with no conditional exit. This block will cause a conditional
546 /// jump around it or will be the bottom of the loop if we lay it out in place,
547 /// but if it it doesn't end up at the bottom of the loop for any reason,
548 /// rotation alone won't fix it. Because such a block will always result in an
549 /// unconditional jump (for the backedge) rotating it in front of the loop
550 /// header is always profitable.
551 MachineBasicBlock *
findBestLoopTop(MachineLoop & L,const BlockFilterSet & LoopBlockSet)552 MachineBlockPlacement::findBestLoopTop(MachineLoop &L,
553 const BlockFilterSet &LoopBlockSet) {
554 // Check that the header hasn't been fused with a preheader block due to
555 // crazy branches. If it has, we need to start with the header at the top to
556 // prevent pulling the preheader into the loop body.
557 BlockChain &HeaderChain = *BlockToChain[L.getHeader()];
558 if (!LoopBlockSet.count(*HeaderChain.begin()))
559 return L.getHeader();
560
561 DEBUG(dbgs() << "Finding best loop top for: "
562 << getBlockName(L.getHeader()) << "\n");
563
564 BlockFrequency BestPredFreq;
565 MachineBasicBlock *BestPred = 0;
566 for (MachineBasicBlock::pred_iterator PI = L.getHeader()->pred_begin(),
567 PE = L.getHeader()->pred_end();
568 PI != PE; ++PI) {
569 MachineBasicBlock *Pred = *PI;
570 if (!LoopBlockSet.count(Pred))
571 continue;
572 DEBUG(dbgs() << " header pred: " << getBlockName(Pred) << ", "
573 << Pred->succ_size() << " successors, "
574 << MBFI->getBlockFreq(Pred) << " freq\n");
575 if (Pred->succ_size() > 1)
576 continue;
577
578 BlockFrequency PredFreq = MBFI->getBlockFreq(Pred);
579 if (!BestPred || PredFreq > BestPredFreq ||
580 (!(PredFreq < BestPredFreq) &&
581 Pred->isLayoutSuccessor(L.getHeader()))) {
582 BestPred = Pred;
583 BestPredFreq = PredFreq;
584 }
585 }
586
587 // If no direct predecessor is fine, just use the loop header.
588 if (!BestPred)
589 return L.getHeader();
590
591 // Walk backwards through any straight line of predecessors.
592 while (BestPred->pred_size() == 1 &&
593 (*BestPred->pred_begin())->succ_size() == 1 &&
594 *BestPred->pred_begin() != L.getHeader())
595 BestPred = *BestPred->pred_begin();
596
597 DEBUG(dbgs() << " final top: " << getBlockName(BestPred) << "\n");
598 return BestPred;
599 }
600
601
602 /// \brief Find the best loop exiting block for layout.
603 ///
604 /// This routine implements the logic to analyze the loop looking for the best
605 /// block to layout at the top of the loop. Typically this is done to maximize
606 /// fallthrough opportunities.
607 MachineBasicBlock *
findBestLoopExit(MachineFunction & F,MachineLoop & L,const BlockFilterSet & LoopBlockSet)608 MachineBlockPlacement::findBestLoopExit(MachineFunction &F,
609 MachineLoop &L,
610 const BlockFilterSet &LoopBlockSet) {
611 // We don't want to layout the loop linearly in all cases. If the loop header
612 // is just a normal basic block in the loop, we want to look for what block
613 // within the loop is the best one to layout at the top. However, if the loop
614 // header has be pre-merged into a chain due to predecessors not having
615 // analyzable branches, *and* the predecessor it is merged with is *not* part
616 // of the loop, rotating the header into the middle of the loop will create
617 // a non-contiguous range of blocks which is Very Bad. So start with the
618 // header and only rotate if safe.
619 BlockChain &HeaderChain = *BlockToChain[L.getHeader()];
620 if (!LoopBlockSet.count(*HeaderChain.begin()))
621 return 0;
622
623 BlockFrequency BestExitEdgeFreq;
624 unsigned BestExitLoopDepth = 0;
625 MachineBasicBlock *ExitingBB = 0;
626 // If there are exits to outer loops, loop rotation can severely limit
627 // fallthrough opportunites unless it selects such an exit. Keep a set of
628 // blocks where rotating to exit with that block will reach an outer loop.
629 SmallPtrSet<MachineBasicBlock *, 4> BlocksExitingToOuterLoop;
630
631 DEBUG(dbgs() << "Finding best loop exit for: "
632 << getBlockName(L.getHeader()) << "\n");
633 for (MachineLoop::block_iterator I = L.block_begin(),
634 E = L.block_end();
635 I != E; ++I) {
636 BlockChain &Chain = *BlockToChain[*I];
637 // Ensure that this block is at the end of a chain; otherwise it could be
638 // mid-way through an inner loop or a successor of an analyzable branch.
639 if (*I != *llvm::prior(Chain.end()))
640 continue;
641
642 // Now walk the successors. We need to establish whether this has a viable
643 // exiting successor and whether it has a viable non-exiting successor.
644 // We store the old exiting state and restore it if a viable looping
645 // successor isn't found.
646 MachineBasicBlock *OldExitingBB = ExitingBB;
647 BlockFrequency OldBestExitEdgeFreq = BestExitEdgeFreq;
648 bool HasLoopingSucc = false;
649 // FIXME: Due to the performance of the probability and weight routines in
650 // the MBPI analysis, we use the internal weights and manually compute the
651 // probabilities to avoid quadratic behavior.
652 uint32_t WeightScale = 0;
653 uint32_t SumWeight = MBPI->getSumForBlock(*I, WeightScale);
654 for (MachineBasicBlock::succ_iterator SI = (*I)->succ_begin(),
655 SE = (*I)->succ_end();
656 SI != SE; ++SI) {
657 if ((*SI)->isLandingPad())
658 continue;
659 if (*SI == *I)
660 continue;
661 BlockChain &SuccChain = *BlockToChain[*SI];
662 // Don't split chains, either this chain or the successor's chain.
663 if (&Chain == &SuccChain) {
664 DEBUG(dbgs() << " exiting: " << getBlockName(*I) << " -> "
665 << getBlockName(*SI) << " (chain conflict)\n");
666 continue;
667 }
668
669 uint32_t SuccWeight = MBPI->getEdgeWeight(*I, *SI);
670 if (LoopBlockSet.count(*SI)) {
671 DEBUG(dbgs() << " looping: " << getBlockName(*I) << " -> "
672 << getBlockName(*SI) << " (" << SuccWeight << ")\n");
673 HasLoopingSucc = true;
674 continue;
675 }
676
677 unsigned SuccLoopDepth = 0;
678 if (MachineLoop *ExitLoop = MLI->getLoopFor(*SI)) {
679 SuccLoopDepth = ExitLoop->getLoopDepth();
680 if (ExitLoop->contains(&L))
681 BlocksExitingToOuterLoop.insert(*I);
682 }
683
684 BranchProbability SuccProb(SuccWeight / WeightScale, SumWeight);
685 BlockFrequency ExitEdgeFreq = MBFI->getBlockFreq(*I) * SuccProb;
686 DEBUG(dbgs() << " exiting: " << getBlockName(*I) << " -> "
687 << getBlockName(*SI) << " [L:" << SuccLoopDepth
688 << "] (" << ExitEdgeFreq << ")\n");
689 // Note that we slightly bias this toward an existing layout successor to
690 // retain incoming order in the absence of better information.
691 // FIXME: Should we bias this more strongly? It's pretty weak.
692 if (!ExitingBB || BestExitLoopDepth < SuccLoopDepth ||
693 ExitEdgeFreq > BestExitEdgeFreq ||
694 ((*I)->isLayoutSuccessor(*SI) &&
695 !(ExitEdgeFreq < BestExitEdgeFreq))) {
696 BestExitEdgeFreq = ExitEdgeFreq;
697 ExitingBB = *I;
698 }
699 }
700
701 // Restore the old exiting state, no viable looping successor was found.
702 if (!HasLoopingSucc) {
703 ExitingBB = OldExitingBB;
704 BestExitEdgeFreq = OldBestExitEdgeFreq;
705 continue;
706 }
707 }
708 // Without a candidate exiting block or with only a single block in the
709 // loop, just use the loop header to layout the loop.
710 if (!ExitingBB || L.getNumBlocks() == 1)
711 return 0;
712
713 // Also, if we have exit blocks which lead to outer loops but didn't select
714 // one of them as the exiting block we are rotating toward, disable loop
715 // rotation altogether.
716 if (!BlocksExitingToOuterLoop.empty() &&
717 !BlocksExitingToOuterLoop.count(ExitingBB))
718 return 0;
719
720 DEBUG(dbgs() << " Best exiting block: " << getBlockName(ExitingBB) << "\n");
721 return ExitingBB;
722 }
723
724 /// \brief Attempt to rotate an exiting block to the bottom of the loop.
725 ///
726 /// Once we have built a chain, try to rotate it to line up the hot exit block
727 /// with fallthrough out of the loop if doing so doesn't introduce unnecessary
728 /// branches. For example, if the loop has fallthrough into its header and out
729 /// of its bottom already, don't rotate it.
rotateLoop(BlockChain & LoopChain,MachineBasicBlock * ExitingBB,const BlockFilterSet & LoopBlockSet)730 void MachineBlockPlacement::rotateLoop(BlockChain &LoopChain,
731 MachineBasicBlock *ExitingBB,
732 const BlockFilterSet &LoopBlockSet) {
733 if (!ExitingBB)
734 return;
735
736 MachineBasicBlock *Top = *LoopChain.begin();
737 bool ViableTopFallthrough = false;
738 for (MachineBasicBlock::pred_iterator PI = Top->pred_begin(),
739 PE = Top->pred_end();
740 PI != PE; ++PI) {
741 BlockChain *PredChain = BlockToChain[*PI];
742 if (!LoopBlockSet.count(*PI) &&
743 (!PredChain || *PI == *llvm::prior(PredChain->end()))) {
744 ViableTopFallthrough = true;
745 break;
746 }
747 }
748
749 // If the header has viable fallthrough, check whether the current loop
750 // bottom is a viable exiting block. If so, bail out as rotating will
751 // introduce an unnecessary branch.
752 if (ViableTopFallthrough) {
753 MachineBasicBlock *Bottom = *llvm::prior(LoopChain.end());
754 for (MachineBasicBlock::succ_iterator SI = Bottom->succ_begin(),
755 SE = Bottom->succ_end();
756 SI != SE; ++SI) {
757 BlockChain *SuccChain = BlockToChain[*SI];
758 if (!LoopBlockSet.count(*SI) &&
759 (!SuccChain || *SI == *SuccChain->begin()))
760 return;
761 }
762 }
763
764 BlockChain::iterator ExitIt = std::find(LoopChain.begin(), LoopChain.end(),
765 ExitingBB);
766 if (ExitIt == LoopChain.end())
767 return;
768
769 std::rotate(LoopChain.begin(), llvm::next(ExitIt), LoopChain.end());
770 }
771
772 /// \brief Forms basic block chains from the natural loop structures.
773 ///
774 /// These chains are designed to preserve the existing *structure* of the code
775 /// as much as possible. We can then stitch the chains together in a way which
776 /// both preserves the topological structure and minimizes taken conditional
777 /// branches.
buildLoopChains(MachineFunction & F,MachineLoop & L)778 void MachineBlockPlacement::buildLoopChains(MachineFunction &F,
779 MachineLoop &L) {
780 // First recurse through any nested loops, building chains for those inner
781 // loops.
782 for (MachineLoop::iterator LI = L.begin(), LE = L.end(); LI != LE; ++LI)
783 buildLoopChains(F, **LI);
784
785 SmallVector<MachineBasicBlock *, 16> BlockWorkList;
786 BlockFilterSet LoopBlockSet(L.block_begin(), L.block_end());
787
788 // First check to see if there is an obviously preferable top block for the
789 // loop. This will default to the header, but may end up as one of the
790 // predecessors to the header if there is one which will result in strictly
791 // fewer branches in the loop body.
792 MachineBasicBlock *LoopTop = findBestLoopTop(L, LoopBlockSet);
793
794 // If we selected just the header for the loop top, look for a potentially
795 // profitable exit block in the event that rotating the loop can eliminate
796 // branches by placing an exit edge at the bottom.
797 MachineBasicBlock *ExitingBB = 0;
798 if (LoopTop == L.getHeader())
799 ExitingBB = findBestLoopExit(F, L, LoopBlockSet);
800
801 BlockChain &LoopChain = *BlockToChain[LoopTop];
802
803 // FIXME: This is a really lame way of walking the chains in the loop: we
804 // walk the blocks, and use a set to prevent visiting a particular chain
805 // twice.
806 SmallPtrSet<BlockChain *, 4> UpdatedPreds;
807 assert(LoopChain.LoopPredecessors == 0);
808 UpdatedPreds.insert(&LoopChain);
809 for (MachineLoop::block_iterator BI = L.block_begin(),
810 BE = L.block_end();
811 BI != BE; ++BI) {
812 BlockChain &Chain = *BlockToChain[*BI];
813 if (!UpdatedPreds.insert(&Chain))
814 continue;
815
816 assert(Chain.LoopPredecessors == 0);
817 for (BlockChain::iterator BCI = Chain.begin(), BCE = Chain.end();
818 BCI != BCE; ++BCI) {
819 assert(BlockToChain[*BCI] == &Chain);
820 for (MachineBasicBlock::pred_iterator PI = (*BCI)->pred_begin(),
821 PE = (*BCI)->pred_end();
822 PI != PE; ++PI) {
823 if (BlockToChain[*PI] == &Chain || !LoopBlockSet.count(*PI))
824 continue;
825 ++Chain.LoopPredecessors;
826 }
827 }
828
829 if (Chain.LoopPredecessors == 0)
830 BlockWorkList.push_back(*Chain.begin());
831 }
832
833 buildChain(LoopTop, LoopChain, BlockWorkList, &LoopBlockSet);
834 rotateLoop(LoopChain, ExitingBB, LoopBlockSet);
835
836 DEBUG({
837 // Crash at the end so we get all of the debugging output first.
838 bool BadLoop = false;
839 if (LoopChain.LoopPredecessors) {
840 BadLoop = true;
841 dbgs() << "Loop chain contains a block without its preds placed!\n"
842 << " Loop header: " << getBlockName(*L.block_begin()) << "\n"
843 << " Chain header: " << getBlockName(*LoopChain.begin()) << "\n";
844 }
845 for (BlockChain::iterator BCI = LoopChain.begin(), BCE = LoopChain.end();
846 BCI != BCE; ++BCI) {
847 dbgs() << " ... " << getBlockName(*BCI) << "\n";
848 if (!LoopBlockSet.erase(*BCI)) {
849 // We don't mark the loop as bad here because there are real situations
850 // where this can occur. For example, with an unanalyzable fallthrough
851 // from a loop block to a non-loop block or vice versa.
852 dbgs() << "Loop chain contains a block not contained by the loop!\n"
853 << " Loop header: " << getBlockName(*L.block_begin()) << "\n"
854 << " Chain header: " << getBlockName(*LoopChain.begin()) << "\n"
855 << " Bad block: " << getBlockName(*BCI) << "\n";
856 }
857 }
858
859 if (!LoopBlockSet.empty()) {
860 BadLoop = true;
861 for (BlockFilterSet::iterator LBI = LoopBlockSet.begin(),
862 LBE = LoopBlockSet.end();
863 LBI != LBE; ++LBI)
864 dbgs() << "Loop contains blocks never placed into a chain!\n"
865 << " Loop header: " << getBlockName(*L.block_begin()) << "\n"
866 << " Chain header: " << getBlockName(*LoopChain.begin()) << "\n"
867 << " Bad block: " << getBlockName(*LBI) << "\n";
868 }
869 assert(!BadLoop && "Detected problems with the placement of this loop.");
870 });
871 }
872
buildCFGChains(MachineFunction & F)873 void MachineBlockPlacement::buildCFGChains(MachineFunction &F) {
874 // Ensure that every BB in the function has an associated chain to simplify
875 // the assumptions of the remaining algorithm.
876 SmallVector<MachineOperand, 4> Cond; // For AnalyzeBranch.
877 for (MachineFunction::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI) {
878 MachineBasicBlock *BB = FI;
879 BlockChain *Chain
880 = new (ChainAllocator.Allocate()) BlockChain(BlockToChain, BB);
881 // Also, merge any blocks which we cannot reason about and must preserve
882 // the exact fallthrough behavior for.
883 for (;;) {
884 Cond.clear();
885 MachineBasicBlock *TBB = 0, *FBB = 0; // For AnalyzeBranch.
886 if (!TII->AnalyzeBranch(*BB, TBB, FBB, Cond) || !FI->canFallThrough())
887 break;
888
889 MachineFunction::iterator NextFI(llvm::next(FI));
890 MachineBasicBlock *NextBB = NextFI;
891 // Ensure that the layout successor is a viable block, as we know that
892 // fallthrough is a possibility.
893 assert(NextFI != FE && "Can't fallthrough past the last block.");
894 DEBUG(dbgs() << "Pre-merging due to unanalyzable fallthrough: "
895 << getBlockName(BB) << " -> " << getBlockName(NextBB)
896 << "\n");
897 Chain->merge(NextBB, 0);
898 FI = NextFI;
899 BB = NextBB;
900 }
901 }
902
903 // Build any loop-based chains.
904 for (MachineLoopInfo::iterator LI = MLI->begin(), LE = MLI->end(); LI != LE;
905 ++LI)
906 buildLoopChains(F, **LI);
907
908 SmallVector<MachineBasicBlock *, 16> BlockWorkList;
909
910 SmallPtrSet<BlockChain *, 4> UpdatedPreds;
911 for (MachineFunction::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI) {
912 MachineBasicBlock *BB = &*FI;
913 BlockChain &Chain = *BlockToChain[BB];
914 if (!UpdatedPreds.insert(&Chain))
915 continue;
916
917 assert(Chain.LoopPredecessors == 0);
918 for (BlockChain::iterator BCI = Chain.begin(), BCE = Chain.end();
919 BCI != BCE; ++BCI) {
920 assert(BlockToChain[*BCI] == &Chain);
921 for (MachineBasicBlock::pred_iterator PI = (*BCI)->pred_begin(),
922 PE = (*BCI)->pred_end();
923 PI != PE; ++PI) {
924 if (BlockToChain[*PI] == &Chain)
925 continue;
926 ++Chain.LoopPredecessors;
927 }
928 }
929
930 if (Chain.LoopPredecessors == 0)
931 BlockWorkList.push_back(*Chain.begin());
932 }
933
934 BlockChain &FunctionChain = *BlockToChain[&F.front()];
935 buildChain(&F.front(), FunctionChain, BlockWorkList);
936
937 typedef SmallPtrSet<MachineBasicBlock *, 16> FunctionBlockSetType;
938 DEBUG({
939 // Crash at the end so we get all of the debugging output first.
940 bool BadFunc = false;
941 FunctionBlockSetType FunctionBlockSet;
942 for (MachineFunction::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI)
943 FunctionBlockSet.insert(FI);
944
945 for (BlockChain::iterator BCI = FunctionChain.begin(),
946 BCE = FunctionChain.end();
947 BCI != BCE; ++BCI)
948 if (!FunctionBlockSet.erase(*BCI)) {
949 BadFunc = true;
950 dbgs() << "Function chain contains a block not in the function!\n"
951 << " Bad block: " << getBlockName(*BCI) << "\n";
952 }
953
954 if (!FunctionBlockSet.empty()) {
955 BadFunc = true;
956 for (FunctionBlockSetType::iterator FBI = FunctionBlockSet.begin(),
957 FBE = FunctionBlockSet.end();
958 FBI != FBE; ++FBI)
959 dbgs() << "Function contains blocks never placed into a chain!\n"
960 << " Bad block: " << getBlockName(*FBI) << "\n";
961 }
962 assert(!BadFunc && "Detected problems with the block placement.");
963 });
964
965 // Splice the blocks into place.
966 MachineFunction::iterator InsertPos = F.begin();
967 for (BlockChain::iterator BI = FunctionChain.begin(),
968 BE = FunctionChain.end();
969 BI != BE; ++BI) {
970 DEBUG(dbgs() << (BI == FunctionChain.begin() ? "Placing chain "
971 : " ... ")
972 << getBlockName(*BI) << "\n");
973 if (InsertPos != MachineFunction::iterator(*BI))
974 F.splice(InsertPos, *BI);
975 else
976 ++InsertPos;
977
978 // Update the terminator of the previous block.
979 if (BI == FunctionChain.begin())
980 continue;
981 MachineBasicBlock *PrevBB = llvm::prior(MachineFunction::iterator(*BI));
982
983 // FIXME: It would be awesome of updateTerminator would just return rather
984 // than assert when the branch cannot be analyzed in order to remove this
985 // boiler plate.
986 Cond.clear();
987 MachineBasicBlock *TBB = 0, *FBB = 0; // For AnalyzeBranch.
988 if (!TII->AnalyzeBranch(*PrevBB, TBB, FBB, Cond)) {
989 // If PrevBB has a two-way branch, try to re-order the branches
990 // such that we branch to the successor with higher weight first.
991 if (TBB && !Cond.empty() && FBB &&
992 MBPI->getEdgeWeight(PrevBB, FBB) > MBPI->getEdgeWeight(PrevBB, TBB) &&
993 !TII->ReverseBranchCondition(Cond)) {
994 DEBUG(dbgs() << "Reverse order of the two branches: "
995 << getBlockName(PrevBB) << "\n");
996 DEBUG(dbgs() << " Edge weight: " << MBPI->getEdgeWeight(PrevBB, FBB)
997 << " vs " << MBPI->getEdgeWeight(PrevBB, TBB) << "\n");
998 DebugLoc dl; // FIXME: this is nowhere
999 TII->RemoveBranch(*PrevBB);
1000 TII->InsertBranch(*PrevBB, FBB, TBB, Cond, dl);
1001 }
1002 PrevBB->updateTerminator();
1003 }
1004 }
1005
1006 // Fixup the last block.
1007 Cond.clear();
1008 MachineBasicBlock *TBB = 0, *FBB = 0; // For AnalyzeBranch.
1009 if (!TII->AnalyzeBranch(F.back(), TBB, FBB, Cond))
1010 F.back().updateTerminator();
1011
1012 // Walk through the backedges of the function now that we have fully laid out
1013 // the basic blocks and align the destination of each backedge. We don't rely
1014 // exclusively on the loop info here so that we can align backedges in
1015 // unnatural CFGs and backedges that were introduced purely because of the
1016 // loop rotations done during this layout pass.
1017 if (F.getFunction()->hasFnAttr(Attribute::OptimizeForSize))
1018 return;
1019 unsigned Align = TLI->getPrefLoopAlignment();
1020 if (!Align)
1021 return; // Don't care about loop alignment.
1022 if (FunctionChain.begin() == FunctionChain.end())
1023 return; // Empty chain.
1024
1025 const BranchProbability ColdProb(1, 5); // 20%
1026 BlockFrequency EntryFreq = MBFI->getBlockFreq(F.begin());
1027 BlockFrequency WeightedEntryFreq = EntryFreq * ColdProb;
1028 for (BlockChain::iterator BI = llvm::next(FunctionChain.begin()),
1029 BE = FunctionChain.end();
1030 BI != BE; ++BI) {
1031 // Don't align non-looping basic blocks. These are unlikely to execute
1032 // enough times to matter in practice. Note that we'll still handle
1033 // unnatural CFGs inside of a natural outer loop (the common case) and
1034 // rotated loops.
1035 MachineLoop *L = MLI->getLoopFor(*BI);
1036 if (!L)
1037 continue;
1038
1039 // If the block is cold relative to the function entry don't waste space
1040 // aligning it.
1041 BlockFrequency Freq = MBFI->getBlockFreq(*BI);
1042 if (Freq < WeightedEntryFreq)
1043 continue;
1044
1045 // If the block is cold relative to its loop header, don't align it
1046 // regardless of what edges into the block exist.
1047 MachineBasicBlock *LoopHeader = L->getHeader();
1048 BlockFrequency LoopHeaderFreq = MBFI->getBlockFreq(LoopHeader);
1049 if (Freq < (LoopHeaderFreq * ColdProb))
1050 continue;
1051
1052 // Check for the existence of a non-layout predecessor which would benefit
1053 // from aligning this block.
1054 MachineBasicBlock *LayoutPred = *llvm::prior(BI);
1055
1056 // Force alignment if all the predecessors are jumps. We already checked
1057 // that the block isn't cold above.
1058 if (!LayoutPred->isSuccessor(*BI)) {
1059 (*BI)->setAlignment(Align);
1060 continue;
1061 }
1062
1063 // Align this block if the layout predecessor's edge into this block is
1064 // cold relative to the block. When this is true, othe predecessors make up
1065 // all of the hot entries into the block and thus alignment is likely to be
1066 // important.
1067 BranchProbability LayoutProb = MBPI->getEdgeProbability(LayoutPred, *BI);
1068 BlockFrequency LayoutEdgeFreq = MBFI->getBlockFreq(LayoutPred) * LayoutProb;
1069 if (LayoutEdgeFreq <= (Freq * ColdProb))
1070 (*BI)->setAlignment(Align);
1071 }
1072 }
1073
runOnMachineFunction(MachineFunction & F)1074 bool MachineBlockPlacement::runOnMachineFunction(MachineFunction &F) {
1075 // Check for single-block functions and skip them.
1076 if (llvm::next(F.begin()) == F.end())
1077 return false;
1078
1079 MBPI = &getAnalysis<MachineBranchProbabilityInfo>();
1080 MBFI = &getAnalysis<MachineBlockFrequencyInfo>();
1081 MLI = &getAnalysis<MachineLoopInfo>();
1082 TII = F.getTarget().getInstrInfo();
1083 TLI = F.getTarget().getTargetLowering();
1084 assert(BlockToChain.empty());
1085
1086 buildCFGChains(F);
1087
1088 BlockToChain.clear();
1089 ChainAllocator.DestroyAll();
1090
1091 // We always return true as we have no way to track whether the final order
1092 // differs from the original order.
1093 return true;
1094 }
1095
1096 namespace {
1097 /// \brief A pass to compute block placement statistics.
1098 ///
1099 /// A separate pass to compute interesting statistics for evaluating block
1100 /// placement. This is separate from the actual placement pass so that they can
1101 /// be computed in the absence of any placement transformations or when using
1102 /// alternative placement strategies.
1103 class MachineBlockPlacementStats : public MachineFunctionPass {
1104 /// \brief A handle to the branch probability pass.
1105 const MachineBranchProbabilityInfo *MBPI;
1106
1107 /// \brief A handle to the function-wide block frequency pass.
1108 const MachineBlockFrequencyInfo *MBFI;
1109
1110 public:
1111 static char ID; // Pass identification, replacement for typeid
MachineBlockPlacementStats()1112 MachineBlockPlacementStats() : MachineFunctionPass(ID) {
1113 initializeMachineBlockPlacementStatsPass(*PassRegistry::getPassRegistry());
1114 }
1115
1116 bool runOnMachineFunction(MachineFunction &F);
1117
getAnalysisUsage(AnalysisUsage & AU) const1118 void getAnalysisUsage(AnalysisUsage &AU) const {
1119 AU.addRequired<MachineBranchProbabilityInfo>();
1120 AU.addRequired<MachineBlockFrequencyInfo>();
1121 AU.setPreservesAll();
1122 MachineFunctionPass::getAnalysisUsage(AU);
1123 }
1124 };
1125 }
1126
1127 char MachineBlockPlacementStats::ID = 0;
1128 char &llvm::MachineBlockPlacementStatsID = MachineBlockPlacementStats::ID;
1129 INITIALIZE_PASS_BEGIN(MachineBlockPlacementStats, "block-placement-stats",
1130 "Basic Block Placement Stats", false, false)
INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)1131 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)
1132 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo)
1133 INITIALIZE_PASS_END(MachineBlockPlacementStats, "block-placement-stats",
1134 "Basic Block Placement Stats", false, false)
1135
1136 bool MachineBlockPlacementStats::runOnMachineFunction(MachineFunction &F) {
1137 // Check for single-block functions and skip them.
1138 if (llvm::next(F.begin()) == F.end())
1139 return false;
1140
1141 MBPI = &getAnalysis<MachineBranchProbabilityInfo>();
1142 MBFI = &getAnalysis<MachineBlockFrequencyInfo>();
1143
1144 for (MachineFunction::iterator I = F.begin(), E = F.end(); I != E; ++I) {
1145 BlockFrequency BlockFreq = MBFI->getBlockFreq(I);
1146 Statistic &NumBranches = (I->succ_size() > 1) ? NumCondBranches
1147 : NumUncondBranches;
1148 Statistic &BranchTakenFreq = (I->succ_size() > 1) ? CondBranchTakenFreq
1149 : UncondBranchTakenFreq;
1150 for (MachineBasicBlock::succ_iterator SI = I->succ_begin(),
1151 SE = I->succ_end();
1152 SI != SE; ++SI) {
1153 // Skip if this successor is a fallthrough.
1154 if (I->isLayoutSuccessor(*SI))
1155 continue;
1156
1157 BlockFrequency EdgeFreq = BlockFreq * MBPI->getEdgeProbability(I, *SI);
1158 ++NumBranches;
1159 BranchTakenFreq += EdgeFreq.getFrequency();
1160 }
1161 }
1162
1163 return false;
1164 }
1165
1166