• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Redistribution and use in source and binary forms, with or without
3 // modification, are permitted provided that the following conditions are
4 // met:
5 //
6 //     * Redistributions of source code must retain the above copyright
7 //       notice, this list of conditions and the following disclaimer.
8 //     * Redistributions in binary form must reproduce the above
9 //       copyright notice, this list of conditions and the following
10 //       disclaimer in the documentation and/or other materials provided
11 //       with the distribution.
12 //     * Neither the name of Google Inc. nor the names of its
13 //       contributors may be used to endorse or promote products derived
14 //       from this software without specific prior written permission.
15 //
16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 
28 #include "v8.h"
29 
30 #include "accessors.h"
31 #include "api.h"
32 #include "bootstrapper.h"
33 #include "codegen.h"
34 #include "compilation-cache.h"
35 #include "debug.h"
36 #include "deoptimizer.h"
37 #include "global-handles.h"
38 #include "heap-profiler.h"
39 #include "incremental-marking.h"
40 #include "liveobjectlist-inl.h"
41 #include "mark-compact.h"
42 #include "natives.h"
43 #include "objects-visiting.h"
44 #include "objects-visiting-inl.h"
45 #include "runtime-profiler.h"
46 #include "scopeinfo.h"
47 #include "snapshot.h"
48 #include "store-buffer.h"
49 #include "v8threads.h"
50 #include "vm-state-inl.h"
51 #if V8_TARGET_ARCH_ARM && !V8_INTERPRETED_REGEXP
52 #include "regexp-macro-assembler.h"
53 #include "arm/regexp-macro-assembler-arm.h"
54 #endif
55 #if V8_TARGET_ARCH_MIPS && !V8_INTERPRETED_REGEXP
56 #include "regexp-macro-assembler.h"
57 #include "mips/regexp-macro-assembler-mips.h"
58 #endif
59 
60 namespace v8 {
61 namespace internal {
62 
63 static LazyMutex gc_initializer_mutex = LAZY_MUTEX_INITIALIZER;
64 
65 
Heap()66 Heap::Heap()
67     : isolate_(NULL),
68 // semispace_size_ should be a power of 2 and old_generation_size_ should be
69 // a multiple of Page::kPageSize.
70 #if defined(V8_TARGET_ARCH_X64)
71 #define LUMP_OF_MEMORY (2 * MB)
72       code_range_size_(512*MB),
73 #else
74 #define LUMP_OF_MEMORY MB
75       code_range_size_(0),
76 #endif
77 #if defined(ANDROID)
78       reserved_semispace_size_(4 * Max(LUMP_OF_MEMORY, Page::kPageSize)),
79       max_semispace_size_(4 * Max(LUMP_OF_MEMORY, Page::kPageSize)),
80       initial_semispace_size_(Page::kPageSize),
81       max_old_generation_size_(192*MB),
82       max_executable_size_(max_old_generation_size_),
83 #else
84       reserved_semispace_size_(8 * Max(LUMP_OF_MEMORY, Page::kPageSize)),
85       max_semispace_size_(8 * Max(LUMP_OF_MEMORY, Page::kPageSize)),
86       initial_semispace_size_(Page::kPageSize),
87       max_old_generation_size_(700ul * LUMP_OF_MEMORY),
88       max_executable_size_(256l * LUMP_OF_MEMORY),
89 #endif
90 
91 // Variables set based on semispace_size_ and old_generation_size_ in
92 // ConfigureHeap (survived_since_last_expansion_, external_allocation_limit_)
93 // Will be 4 * reserved_semispace_size_ to ensure that young
94 // generation can be aligned to its size.
95       survived_since_last_expansion_(0),
96       sweep_generation_(0),
97       always_allocate_scope_depth_(0),
98       linear_allocation_scope_depth_(0),
99       contexts_disposed_(0),
100       global_ic_age_(0),
101       scan_on_scavenge_pages_(0),
102       new_space_(this),
103       old_pointer_space_(NULL),
104       old_data_space_(NULL),
105       code_space_(NULL),
106       map_space_(NULL),
107       cell_space_(NULL),
108       lo_space_(NULL),
109       gc_state_(NOT_IN_GC),
110       gc_post_processing_depth_(0),
111       ms_count_(0),
112       gc_count_(0),
113       remembered_unmapped_pages_index_(0),
114       unflattened_strings_length_(0),
115 #ifdef DEBUG
116       allocation_allowed_(true),
117       allocation_timeout_(0),
118       disallow_allocation_failure_(false),
119       debug_utils_(NULL),
120 #endif  // DEBUG
121       new_space_high_promotion_mode_active_(false),
122       old_gen_promotion_limit_(kMinimumPromotionLimit),
123       old_gen_allocation_limit_(kMinimumAllocationLimit),
124       old_gen_limit_factor_(1),
125       size_of_old_gen_at_last_old_space_gc_(0),
126       external_allocation_limit_(0),
127       amount_of_external_allocated_memory_(0),
128       amount_of_external_allocated_memory_at_last_global_gc_(0),
129       old_gen_exhausted_(false),
130       store_buffer_rebuilder_(store_buffer()),
131       hidden_symbol_(NULL),
132       global_gc_prologue_callback_(NULL),
133       global_gc_epilogue_callback_(NULL),
134       gc_safe_size_of_old_object_(NULL),
135       total_regexp_code_generated_(0),
136       tracer_(NULL),
137       young_survivors_after_last_gc_(0),
138       high_survival_rate_period_length_(0),
139       survival_rate_(0),
140       previous_survival_rate_trend_(Heap::STABLE),
141       survival_rate_trend_(Heap::STABLE),
142       max_gc_pause_(0),
143       max_alive_after_gc_(0),
144       min_in_mutator_(kMaxInt),
145       alive_after_last_gc_(0),
146       last_gc_end_timestamp_(0.0),
147       store_buffer_(this),
148       marking_(this),
149       incremental_marking_(this),
150       number_idle_notifications_(0),
151       last_idle_notification_gc_count_(0),
152       last_idle_notification_gc_count_init_(false),
153       mark_sweeps_since_idle_round_started_(0),
154       ms_count_at_last_idle_notification_(0),
155       gc_count_at_last_idle_gc_(0),
156       scavenges_since_last_idle_round_(kIdleScavengeThreshold),
157       promotion_queue_(this),
158       configured_(false),
159       chunks_queued_for_free_(NULL) {
160   // Allow build-time customization of the max semispace size. Building
161   // V8 with snapshots and a non-default max semispace size is much
162   // easier if you can define it as part of the build environment.
163 #if defined(V8_MAX_SEMISPACE_SIZE)
164   max_semispace_size_ = reserved_semispace_size_ = V8_MAX_SEMISPACE_SIZE;
165 #endif
166 
167   intptr_t max_virtual = OS::MaxVirtualMemory();
168 
169   if (max_virtual > 0) {
170     if (code_range_size_ > 0) {
171       // Reserve no more than 1/8 of the memory for the code range.
172       code_range_size_ = Min(code_range_size_, max_virtual >> 3);
173     }
174   }
175 
176   memset(roots_, 0, sizeof(roots_[0]) * kRootListLength);
177   global_contexts_list_ = NULL;
178   mark_compact_collector_.heap_ = this;
179   external_string_table_.heap_ = this;
180 }
181 
182 
Capacity()183 intptr_t Heap::Capacity() {
184   if (!HasBeenSetUp()) return 0;
185 
186   return new_space_.Capacity() +
187       old_pointer_space_->Capacity() +
188       old_data_space_->Capacity() +
189       code_space_->Capacity() +
190       map_space_->Capacity() +
191       cell_space_->Capacity();
192 }
193 
194 
CommittedMemory()195 intptr_t Heap::CommittedMemory() {
196   if (!HasBeenSetUp()) return 0;
197 
198   return new_space_.CommittedMemory() +
199       old_pointer_space_->CommittedMemory() +
200       old_data_space_->CommittedMemory() +
201       code_space_->CommittedMemory() +
202       map_space_->CommittedMemory() +
203       cell_space_->CommittedMemory() +
204       lo_space_->Size();
205 }
206 
CommittedMemoryExecutable()207 intptr_t Heap::CommittedMemoryExecutable() {
208   if (!HasBeenSetUp()) return 0;
209 
210   return isolate()->memory_allocator()->SizeExecutable();
211 }
212 
213 
Available()214 intptr_t Heap::Available() {
215   if (!HasBeenSetUp()) return 0;
216 
217   return new_space_.Available() +
218       old_pointer_space_->Available() +
219       old_data_space_->Available() +
220       code_space_->Available() +
221       map_space_->Available() +
222       cell_space_->Available();
223 }
224 
225 
HasBeenSetUp()226 bool Heap::HasBeenSetUp() {
227   return old_pointer_space_ != NULL &&
228          old_data_space_ != NULL &&
229          code_space_ != NULL &&
230          map_space_ != NULL &&
231          cell_space_ != NULL &&
232          lo_space_ != NULL;
233 }
234 
235 
GcSafeSizeOfOldObject(HeapObject * object)236 int Heap::GcSafeSizeOfOldObject(HeapObject* object) {
237   if (IntrusiveMarking::IsMarked(object)) {
238     return IntrusiveMarking::SizeOfMarkedObject(object);
239   }
240   return object->SizeFromMap(object->map());
241 }
242 
243 
SelectGarbageCollector(AllocationSpace space,const char ** reason)244 GarbageCollector Heap::SelectGarbageCollector(AllocationSpace space,
245                                               const char** reason) {
246   // Is global GC requested?
247   if (space != NEW_SPACE || FLAG_gc_global) {
248     isolate_->counters()->gc_compactor_caused_by_request()->Increment();
249     *reason = "GC in old space requested";
250     return MARK_COMPACTOR;
251   }
252 
253   // Is enough data promoted to justify a global GC?
254   if (OldGenerationPromotionLimitReached()) {
255     isolate_->counters()->gc_compactor_caused_by_promoted_data()->Increment();
256     *reason = "promotion limit reached";
257     return MARK_COMPACTOR;
258   }
259 
260   // Have allocation in OLD and LO failed?
261   if (old_gen_exhausted_) {
262     isolate_->counters()->
263         gc_compactor_caused_by_oldspace_exhaustion()->Increment();
264     *reason = "old generations exhausted";
265     return MARK_COMPACTOR;
266   }
267 
268   // Is there enough space left in OLD to guarantee that a scavenge can
269   // succeed?
270   //
271   // Note that MemoryAllocator->MaxAvailable() undercounts the memory available
272   // for object promotion. It counts only the bytes that the memory
273   // allocator has not yet allocated from the OS and assigned to any space,
274   // and does not count available bytes already in the old space or code
275   // space.  Undercounting is safe---we may get an unrequested full GC when
276   // a scavenge would have succeeded.
277   if (isolate_->memory_allocator()->MaxAvailable() <= new_space_.Size()) {
278     isolate_->counters()->
279         gc_compactor_caused_by_oldspace_exhaustion()->Increment();
280     *reason = "scavenge might not succeed";
281     return MARK_COMPACTOR;
282   }
283 
284   // Default
285   *reason = NULL;
286   return SCAVENGER;
287 }
288 
289 
290 // TODO(1238405): Combine the infrastructure for --heap-stats and
291 // --log-gc to avoid the complicated preprocessor and flag testing.
ReportStatisticsBeforeGC()292 void Heap::ReportStatisticsBeforeGC() {
293   // Heap::ReportHeapStatistics will also log NewSpace statistics when
294   // compiled --log-gc is set.  The following logic is used to avoid
295   // double logging.
296 #ifdef DEBUG
297   if (FLAG_heap_stats || FLAG_log_gc) new_space_.CollectStatistics();
298   if (FLAG_heap_stats) {
299     ReportHeapStatistics("Before GC");
300   } else if (FLAG_log_gc) {
301     new_space_.ReportStatistics();
302   }
303   if (FLAG_heap_stats || FLAG_log_gc) new_space_.ClearHistograms();
304 #else
305   if (FLAG_log_gc) {
306     new_space_.CollectStatistics();
307     new_space_.ReportStatistics();
308     new_space_.ClearHistograms();
309   }
310 #endif  // DEBUG
311 }
312 
313 
PrintShortHeapStatistics()314 void Heap::PrintShortHeapStatistics() {
315   if (!FLAG_trace_gc_verbose) return;
316   PrintF("Memory allocator,   used: %8" V8_PTR_PREFIX "d"
317              ", available: %8" V8_PTR_PREFIX "d\n",
318          isolate_->memory_allocator()->Size(),
319          isolate_->memory_allocator()->Available());
320   PrintF("New space,          used: %8" V8_PTR_PREFIX "d"
321              ", available: %8" V8_PTR_PREFIX "d\n",
322          Heap::new_space_.Size(),
323          new_space_.Available());
324   PrintF("Old pointers,       used: %8" V8_PTR_PREFIX "d"
325              ", available: %8" V8_PTR_PREFIX "d"
326              ", waste: %8" V8_PTR_PREFIX "d\n",
327          old_pointer_space_->Size(),
328          old_pointer_space_->Available(),
329          old_pointer_space_->Waste());
330   PrintF("Old data space,     used: %8" V8_PTR_PREFIX "d"
331              ", available: %8" V8_PTR_PREFIX "d"
332              ", waste: %8" V8_PTR_PREFIX "d\n",
333          old_data_space_->Size(),
334          old_data_space_->Available(),
335          old_data_space_->Waste());
336   PrintF("Code space,         used: %8" V8_PTR_PREFIX "d"
337              ", available: %8" V8_PTR_PREFIX "d"
338              ", waste: %8" V8_PTR_PREFIX "d\n",
339          code_space_->Size(),
340          code_space_->Available(),
341          code_space_->Waste());
342   PrintF("Map space,          used: %8" V8_PTR_PREFIX "d"
343              ", available: %8" V8_PTR_PREFIX "d"
344              ", waste: %8" V8_PTR_PREFIX "d\n",
345          map_space_->Size(),
346          map_space_->Available(),
347          map_space_->Waste());
348   PrintF("Cell space,         used: %8" V8_PTR_PREFIX "d"
349              ", available: %8" V8_PTR_PREFIX "d"
350              ", waste: %8" V8_PTR_PREFIX "d\n",
351          cell_space_->Size(),
352          cell_space_->Available(),
353          cell_space_->Waste());
354   PrintF("Large object space, used: %8" V8_PTR_PREFIX "d"
355              ", available: %8" V8_PTR_PREFIX "d\n",
356          lo_space_->Size(),
357          lo_space_->Available());
358 }
359 
360 
361 // TODO(1238405): Combine the infrastructure for --heap-stats and
362 // --log-gc to avoid the complicated preprocessor and flag testing.
ReportStatisticsAfterGC()363 void Heap::ReportStatisticsAfterGC() {
364   // Similar to the before GC, we use some complicated logic to ensure that
365   // NewSpace statistics are logged exactly once when --log-gc is turned on.
366 #if defined(DEBUG)
367   if (FLAG_heap_stats) {
368     new_space_.CollectStatistics();
369     ReportHeapStatistics("After GC");
370   } else if (FLAG_log_gc) {
371     new_space_.ReportStatistics();
372   }
373 #else
374   if (FLAG_log_gc) new_space_.ReportStatistics();
375 #endif  // DEBUG
376 }
377 
378 
GarbageCollectionPrologue()379 void Heap::GarbageCollectionPrologue() {
380   isolate_->transcendental_cache()->Clear();
381   ClearJSFunctionResultCaches();
382   gc_count_++;
383   unflattened_strings_length_ = 0;
384 #ifdef DEBUG
385   ASSERT(allocation_allowed_ && gc_state_ == NOT_IN_GC);
386   allow_allocation(false);
387 
388   if (FLAG_verify_heap) {
389     Verify();
390   }
391 
392   if (FLAG_gc_verbose) Print();
393 #endif  // DEBUG
394 
395 #if defined(DEBUG)
396   ReportStatisticsBeforeGC();
397 #endif  // DEBUG
398 
399   LiveObjectList::GCPrologue();
400   store_buffer()->GCPrologue();
401 }
402 
SizeOfObjects()403 intptr_t Heap::SizeOfObjects() {
404   intptr_t total = 0;
405   AllSpaces spaces;
406   for (Space* space = spaces.next(); space != NULL; space = spaces.next()) {
407     total += space->SizeOfObjects();
408   }
409   return total;
410 }
411 
GarbageCollectionEpilogue()412 void Heap::GarbageCollectionEpilogue() {
413   store_buffer()->GCEpilogue();
414   LiveObjectList::GCEpilogue();
415 #ifdef DEBUG
416   allow_allocation(true);
417   ZapFromSpace();
418 
419   if (FLAG_verify_heap) {
420     Verify();
421   }
422 
423   if (FLAG_print_global_handles) isolate_->global_handles()->Print();
424   if (FLAG_print_handles) PrintHandles();
425   if (FLAG_gc_verbose) Print();
426   if (FLAG_code_stats) ReportCodeStatistics("After GC");
427 #endif
428 
429   isolate_->counters()->alive_after_last_gc()->Set(
430       static_cast<int>(SizeOfObjects()));
431 
432   isolate_->counters()->symbol_table_capacity()->Set(
433       symbol_table()->Capacity());
434   isolate_->counters()->number_of_symbols()->Set(
435       symbol_table()->NumberOfElements());
436 #if defined(DEBUG)
437   ReportStatisticsAfterGC();
438 #endif  // DEBUG
439 #ifdef ENABLE_DEBUGGER_SUPPORT
440   isolate_->debug()->AfterGarbageCollection();
441 #endif  // ENABLE_DEBUGGER_SUPPORT
442 }
443 
444 
CollectAllGarbage(int flags,const char * gc_reason)445 void Heap::CollectAllGarbage(int flags, const char* gc_reason) {
446   // Since we are ignoring the return value, the exact choice of space does
447   // not matter, so long as we do not specify NEW_SPACE, which would not
448   // cause a full GC.
449   mark_compact_collector_.SetFlags(flags);
450   CollectGarbage(OLD_POINTER_SPACE, gc_reason);
451   mark_compact_collector_.SetFlags(kNoGCFlags);
452 }
453 
454 
CollectAllAvailableGarbage(const char * gc_reason)455 void Heap::CollectAllAvailableGarbage(const char* gc_reason) {
456   // Since we are ignoring the return value, the exact choice of space does
457   // not matter, so long as we do not specify NEW_SPACE, which would not
458   // cause a full GC.
459   // Major GC would invoke weak handle callbacks on weakly reachable
460   // handles, but won't collect weakly reachable objects until next
461   // major GC.  Therefore if we collect aggressively and weak handle callback
462   // has been invoked, we rerun major GC to release objects which become
463   // garbage.
464   // Note: as weak callbacks can execute arbitrary code, we cannot
465   // hope that eventually there will be no weak callbacks invocations.
466   // Therefore stop recollecting after several attempts.
467   mark_compact_collector()->SetFlags(kMakeHeapIterableMask |
468                                      kReduceMemoryFootprintMask);
469   isolate_->compilation_cache()->Clear();
470   const int kMaxNumberOfAttempts = 7;
471   for (int attempt = 0; attempt < kMaxNumberOfAttempts; attempt++) {
472     if (!CollectGarbage(OLD_POINTER_SPACE, MARK_COMPACTOR, gc_reason, NULL)) {
473       break;
474     }
475   }
476   mark_compact_collector()->SetFlags(kNoGCFlags);
477   new_space_.Shrink();
478   UncommitFromSpace();
479   Shrink();
480   incremental_marking()->UncommitMarkingDeque();
481 }
482 
483 
CollectGarbage(AllocationSpace space,GarbageCollector collector,const char * gc_reason,const char * collector_reason)484 bool Heap::CollectGarbage(AllocationSpace space,
485                           GarbageCollector collector,
486                           const char* gc_reason,
487                           const char* collector_reason) {
488   // The VM is in the GC state until exiting this function.
489   VMState state(isolate_, GC);
490 
491 #ifdef DEBUG
492   // Reset the allocation timeout to the GC interval, but make sure to
493   // allow at least a few allocations after a collection. The reason
494   // for this is that we have a lot of allocation sequences and we
495   // assume that a garbage collection will allow the subsequent
496   // allocation attempts to go through.
497   allocation_timeout_ = Max(6, FLAG_gc_interval);
498 #endif
499 
500   if (collector == SCAVENGER && !incremental_marking()->IsStopped()) {
501     if (FLAG_trace_incremental_marking) {
502       PrintF("[IncrementalMarking] Scavenge during marking.\n");
503     }
504   }
505 
506   if (collector == MARK_COMPACTOR &&
507       !mark_compact_collector()->abort_incremental_marking_ &&
508       !incremental_marking()->IsStopped() &&
509       !incremental_marking()->should_hurry() &&
510       FLAG_incremental_marking_steps) {
511     // Make progress in incremental marking.
512     const intptr_t kStepSizeWhenDelayedByScavenge = 1 * MB;
513     incremental_marking()->Step(kStepSizeWhenDelayedByScavenge,
514                                 IncrementalMarking::NO_GC_VIA_STACK_GUARD);
515     if (!incremental_marking()->IsComplete()) {
516       if (FLAG_trace_incremental_marking) {
517         PrintF("[IncrementalMarking] Delaying MarkSweep.\n");
518       }
519       collector = SCAVENGER;
520       collector_reason = "incremental marking delaying mark-sweep";
521     }
522   }
523 
524   bool next_gc_likely_to_collect_more = false;
525 
526   { GCTracer tracer(this, gc_reason, collector_reason);
527     GarbageCollectionPrologue();
528     // The GC count was incremented in the prologue.  Tell the tracer about
529     // it.
530     tracer.set_gc_count(gc_count_);
531 
532     // Tell the tracer which collector we've selected.
533     tracer.set_collector(collector);
534 
535     HistogramTimer* rate = (collector == SCAVENGER)
536         ? isolate_->counters()->gc_scavenger()
537         : isolate_->counters()->gc_compactor();
538     rate->Start();
539     next_gc_likely_to_collect_more =
540         PerformGarbageCollection(collector, &tracer);
541     rate->Stop();
542 
543     GarbageCollectionEpilogue();
544   }
545 
546   ASSERT(collector == SCAVENGER || incremental_marking()->IsStopped());
547   if (incremental_marking()->IsStopped()) {
548     if (incremental_marking()->WorthActivating() && NextGCIsLikelyToBeFull()) {
549       incremental_marking()->Start();
550     }
551   }
552 
553   return next_gc_likely_to_collect_more;
554 }
555 
556 
PerformScavenge()557 void Heap::PerformScavenge() {
558   GCTracer tracer(this, NULL, NULL);
559   if (incremental_marking()->IsStopped()) {
560     PerformGarbageCollection(SCAVENGER, &tracer);
561   } else {
562     PerformGarbageCollection(MARK_COMPACTOR, &tracer);
563   }
564 }
565 
566 
567 #ifdef DEBUG
568 // Helper class for verifying the symbol table.
569 class SymbolTableVerifier : public ObjectVisitor {
570  public:
VisitPointers(Object ** start,Object ** end)571   void VisitPointers(Object** start, Object** end) {
572     // Visit all HeapObject pointers in [start, end).
573     for (Object** p = start; p < end; p++) {
574       if ((*p)->IsHeapObject()) {
575         // Check that the symbol is actually a symbol.
576         ASSERT((*p)->IsTheHole() || (*p)->IsUndefined() || (*p)->IsSymbol());
577       }
578     }
579   }
580 };
581 #endif  // DEBUG
582 
583 
VerifySymbolTable()584 static void VerifySymbolTable() {
585 #ifdef DEBUG
586   SymbolTableVerifier verifier;
587   HEAP->symbol_table()->IterateElements(&verifier);
588 #endif  // DEBUG
589 }
590 
591 
AbortIncrementalMarkingAndCollectGarbage(Heap * heap,AllocationSpace space,const char * gc_reason=NULL)592 static bool AbortIncrementalMarkingAndCollectGarbage(
593     Heap* heap,
594     AllocationSpace space,
595     const char* gc_reason = NULL) {
596   heap->mark_compact_collector()->SetFlags(Heap::kAbortIncrementalMarkingMask);
597   bool result = heap->CollectGarbage(space, gc_reason);
598   heap->mark_compact_collector()->SetFlags(Heap::kNoGCFlags);
599   return result;
600 }
601 
602 
ReserveSpace(int new_space_size,int pointer_space_size,int data_space_size,int code_space_size,int map_space_size,int cell_space_size,int large_object_size)603 void Heap::ReserveSpace(
604     int new_space_size,
605     int pointer_space_size,
606     int data_space_size,
607     int code_space_size,
608     int map_space_size,
609     int cell_space_size,
610     int large_object_size) {
611   NewSpace* new_space = Heap::new_space();
612   PagedSpace* old_pointer_space = Heap::old_pointer_space();
613   PagedSpace* old_data_space = Heap::old_data_space();
614   PagedSpace* code_space = Heap::code_space();
615   PagedSpace* map_space = Heap::map_space();
616   PagedSpace* cell_space = Heap::cell_space();
617   LargeObjectSpace* lo_space = Heap::lo_space();
618   bool gc_performed = true;
619   int counter = 0;
620   static const int kThreshold = 20;
621   while (gc_performed && counter++ < kThreshold) {
622     gc_performed = false;
623     if (!new_space->ReserveSpace(new_space_size)) {
624       Heap::CollectGarbage(NEW_SPACE,
625                            "failed to reserve space in the new space");
626       gc_performed = true;
627     }
628     if (!old_pointer_space->ReserveSpace(pointer_space_size)) {
629       AbortIncrementalMarkingAndCollectGarbage(this, OLD_POINTER_SPACE,
630           "failed to reserve space in the old pointer space");
631       gc_performed = true;
632     }
633     if (!(old_data_space->ReserveSpace(data_space_size))) {
634       AbortIncrementalMarkingAndCollectGarbage(this, OLD_DATA_SPACE,
635           "failed to reserve space in the old data space");
636       gc_performed = true;
637     }
638     if (!(code_space->ReserveSpace(code_space_size))) {
639       AbortIncrementalMarkingAndCollectGarbage(this, CODE_SPACE,
640           "failed to reserve space in the code space");
641       gc_performed = true;
642     }
643     if (!(map_space->ReserveSpace(map_space_size))) {
644       AbortIncrementalMarkingAndCollectGarbage(this, MAP_SPACE,
645           "failed to reserve space in the map space");
646       gc_performed = true;
647     }
648     if (!(cell_space->ReserveSpace(cell_space_size))) {
649       AbortIncrementalMarkingAndCollectGarbage(this, CELL_SPACE,
650           "failed to reserve space in the cell space");
651       gc_performed = true;
652     }
653     // We add a slack-factor of 2 in order to have space for a series of
654     // large-object allocations that are only just larger than the page size.
655     large_object_size *= 2;
656     // The ReserveSpace method on the large object space checks how much
657     // we can expand the old generation.  This includes expansion caused by
658     // allocation in the other spaces.
659     large_object_size += cell_space_size + map_space_size + code_space_size +
660         data_space_size + pointer_space_size;
661     if (!(lo_space->ReserveSpace(large_object_size))) {
662       AbortIncrementalMarkingAndCollectGarbage(this, LO_SPACE,
663           "failed to reserve space in the large object space");
664       gc_performed = true;
665     }
666   }
667 
668   if (gc_performed) {
669     // Failed to reserve the space after several attempts.
670     V8::FatalProcessOutOfMemory("Heap::ReserveSpace");
671   }
672 }
673 
674 
EnsureFromSpaceIsCommitted()675 void Heap::EnsureFromSpaceIsCommitted() {
676   if (new_space_.CommitFromSpaceIfNeeded()) return;
677 
678   // Committing memory to from space failed.
679   // Try shrinking and try again.
680   Shrink();
681   if (new_space_.CommitFromSpaceIfNeeded()) return;
682 
683   // Committing memory to from space failed again.
684   // Memory is exhausted and we will die.
685   V8::FatalProcessOutOfMemory("Committing semi space failed.");
686 }
687 
688 
ClearJSFunctionResultCaches()689 void Heap::ClearJSFunctionResultCaches() {
690   if (isolate_->bootstrapper()->IsActive()) return;
691 
692   Object* context = global_contexts_list_;
693   while (!context->IsUndefined()) {
694     // Get the caches for this context. GC can happen when the context
695     // is not fully initialized, so the caches can be undefined.
696     Object* caches_or_undefined =
697         Context::cast(context)->get(Context::JSFUNCTION_RESULT_CACHES_INDEX);
698     if (!caches_or_undefined->IsUndefined()) {
699       FixedArray* caches = FixedArray::cast(caches_or_undefined);
700       // Clear the caches:
701       int length = caches->length();
702       for (int i = 0; i < length; i++) {
703         JSFunctionResultCache::cast(caches->get(i))->Clear();
704       }
705     }
706     // Get the next context:
707     context = Context::cast(context)->get(Context::NEXT_CONTEXT_LINK);
708   }
709 }
710 
711 
712 
ClearNormalizedMapCaches()713 void Heap::ClearNormalizedMapCaches() {
714   if (isolate_->bootstrapper()->IsActive() &&
715       !incremental_marking()->IsMarking()) {
716     return;
717   }
718 
719   Object* context = global_contexts_list_;
720   while (!context->IsUndefined()) {
721     // GC can happen when the context is not fully initialized,
722     // so the cache can be undefined.
723     Object* cache =
724         Context::cast(context)->get(Context::NORMALIZED_MAP_CACHE_INDEX);
725     if (!cache->IsUndefined()) {
726       NormalizedMapCache::cast(cache)->Clear();
727     }
728     context = Context::cast(context)->get(Context::NEXT_CONTEXT_LINK);
729   }
730 }
731 
732 
UpdateSurvivalRateTrend(int start_new_space_size)733 void Heap::UpdateSurvivalRateTrend(int start_new_space_size) {
734   double survival_rate =
735       (static_cast<double>(young_survivors_after_last_gc_) * 100) /
736       start_new_space_size;
737 
738   if (survival_rate > kYoungSurvivalRateHighThreshold) {
739     high_survival_rate_period_length_++;
740   } else {
741     high_survival_rate_period_length_ = 0;
742   }
743 
744   if (survival_rate < kYoungSurvivalRateLowThreshold) {
745     low_survival_rate_period_length_++;
746   } else {
747     low_survival_rate_period_length_ = 0;
748   }
749 
750   double survival_rate_diff = survival_rate_ - survival_rate;
751 
752   if (survival_rate_diff > kYoungSurvivalRateAllowedDeviation) {
753     set_survival_rate_trend(DECREASING);
754   } else if (survival_rate_diff < -kYoungSurvivalRateAllowedDeviation) {
755     set_survival_rate_trend(INCREASING);
756   } else {
757     set_survival_rate_trend(STABLE);
758   }
759 
760   survival_rate_ = survival_rate;
761 }
762 
PerformGarbageCollection(GarbageCollector collector,GCTracer * tracer)763 bool Heap::PerformGarbageCollection(GarbageCollector collector,
764                                     GCTracer* tracer) {
765   bool next_gc_likely_to_collect_more = false;
766 
767   if (collector != SCAVENGER) {
768     PROFILE(isolate_, CodeMovingGCEvent());
769   }
770 
771   if (FLAG_verify_heap) {
772     VerifySymbolTable();
773   }
774   if (collector == MARK_COMPACTOR && global_gc_prologue_callback_) {
775     ASSERT(!allocation_allowed_);
776     GCTracer::Scope scope(tracer, GCTracer::Scope::EXTERNAL);
777     global_gc_prologue_callback_();
778   }
779 
780   GCType gc_type =
781       collector == MARK_COMPACTOR ? kGCTypeMarkSweepCompact : kGCTypeScavenge;
782 
783   for (int i = 0; i < gc_prologue_callbacks_.length(); ++i) {
784     if (gc_type & gc_prologue_callbacks_[i].gc_type) {
785       gc_prologue_callbacks_[i].callback(gc_type, kNoGCCallbackFlags);
786     }
787   }
788 
789   EnsureFromSpaceIsCommitted();
790 
791   int start_new_space_size = Heap::new_space()->SizeAsInt();
792 
793   if (IsHighSurvivalRate()) {
794     // We speed up the incremental marker if it is running so that it
795     // does not fall behind the rate of promotion, which would cause a
796     // constantly growing old space.
797     incremental_marking()->NotifyOfHighPromotionRate();
798   }
799 
800   if (collector == MARK_COMPACTOR) {
801     // Perform mark-sweep with optional compaction.
802     MarkCompact(tracer);
803     sweep_generation_++;
804     bool high_survival_rate_during_scavenges = IsHighSurvivalRate() &&
805         IsStableOrIncreasingSurvivalTrend();
806 
807     UpdateSurvivalRateTrend(start_new_space_size);
808 
809     size_of_old_gen_at_last_old_space_gc_ = PromotedSpaceSize();
810 
811     if (high_survival_rate_during_scavenges &&
812         IsStableOrIncreasingSurvivalTrend()) {
813       // Stable high survival rates of young objects both during partial and
814       // full collection indicate that mutator is either building or modifying
815       // a structure with a long lifetime.
816       // In this case we aggressively raise old generation memory limits to
817       // postpone subsequent mark-sweep collection and thus trade memory
818       // space for the mutation speed.
819       old_gen_limit_factor_ = 2;
820     } else {
821       old_gen_limit_factor_ = 1;
822     }
823 
824     old_gen_promotion_limit_ =
825         OldGenPromotionLimit(size_of_old_gen_at_last_old_space_gc_);
826     old_gen_allocation_limit_ =
827         OldGenAllocationLimit(size_of_old_gen_at_last_old_space_gc_);
828 
829     old_gen_exhausted_ = false;
830   } else {
831     tracer_ = tracer;
832     Scavenge();
833     tracer_ = NULL;
834 
835     UpdateSurvivalRateTrend(start_new_space_size);
836   }
837 
838   if (!new_space_high_promotion_mode_active_ &&
839       new_space_.Capacity() == new_space_.MaximumCapacity() &&
840       IsStableOrIncreasingSurvivalTrend() &&
841       IsHighSurvivalRate()) {
842     // Stable high survival rates even though young generation is at
843     // maximum capacity indicates that most objects will be promoted.
844     // To decrease scavenger pauses and final mark-sweep pauses, we
845     // have to limit maximal capacity of the young generation.
846     new_space_high_promotion_mode_active_ = true;
847     if (FLAG_trace_gc) {
848       PrintF("Limited new space size due to high promotion rate: %d MB\n",
849              new_space_.InitialCapacity() / MB);
850     }
851   } else if (new_space_high_promotion_mode_active_ &&
852       IsStableOrDecreasingSurvivalTrend() &&
853       IsLowSurvivalRate()) {
854     // Decreasing low survival rates might indicate that the above high
855     // promotion mode is over and we should allow the young generation
856     // to grow again.
857     new_space_high_promotion_mode_active_ = false;
858     if (FLAG_trace_gc) {
859       PrintF("Unlimited new space size due to low promotion rate: %d MB\n",
860              new_space_.MaximumCapacity() / MB);
861     }
862   }
863 
864   if (new_space_high_promotion_mode_active_ &&
865       new_space_.Capacity() > new_space_.InitialCapacity()) {
866     new_space_.Shrink();
867   }
868 
869   isolate_->counters()->objs_since_last_young()->Set(0);
870 
871   gc_post_processing_depth_++;
872   { DisableAssertNoAllocation allow_allocation;
873     GCTracer::Scope scope(tracer, GCTracer::Scope::EXTERNAL);
874     next_gc_likely_to_collect_more =
875         isolate_->global_handles()->PostGarbageCollectionProcessing(collector);
876   }
877   gc_post_processing_depth_--;
878 
879   // Update relocatables.
880   Relocatable::PostGarbageCollectionProcessing();
881 
882   if (collector == MARK_COMPACTOR) {
883     // Register the amount of external allocated memory.
884     amount_of_external_allocated_memory_at_last_global_gc_ =
885         amount_of_external_allocated_memory_;
886   }
887 
888   GCCallbackFlags callback_flags = kNoGCCallbackFlags;
889   for (int i = 0; i < gc_epilogue_callbacks_.length(); ++i) {
890     if (gc_type & gc_epilogue_callbacks_[i].gc_type) {
891       gc_epilogue_callbacks_[i].callback(gc_type, callback_flags);
892     }
893   }
894 
895   if (collector == MARK_COMPACTOR && global_gc_epilogue_callback_) {
896     ASSERT(!allocation_allowed_);
897     GCTracer::Scope scope(tracer, GCTracer::Scope::EXTERNAL);
898     global_gc_epilogue_callback_();
899   }
900   if (FLAG_verify_heap) {
901     VerifySymbolTable();
902   }
903 
904   return next_gc_likely_to_collect_more;
905 }
906 
907 
MarkCompact(GCTracer * tracer)908 void Heap::MarkCompact(GCTracer* tracer) {
909   gc_state_ = MARK_COMPACT;
910   LOG(isolate_, ResourceEvent("markcompact", "begin"));
911 
912   mark_compact_collector_.Prepare(tracer);
913 
914   ms_count_++;
915   tracer->set_full_gc_count(ms_count_);
916 
917   MarkCompactPrologue();
918 
919   mark_compact_collector_.CollectGarbage();
920 
921   LOG(isolate_, ResourceEvent("markcompact", "end"));
922 
923   gc_state_ = NOT_IN_GC;
924 
925   isolate_->counters()->objs_since_last_full()->Set(0);
926 
927   contexts_disposed_ = 0;
928 
929   isolate_->set_context_exit_happened(false);
930 }
931 
932 
MarkCompactPrologue()933 void Heap::MarkCompactPrologue() {
934   // At any old GC clear the keyed lookup cache to enable collection of unused
935   // maps.
936   isolate_->keyed_lookup_cache()->Clear();
937   isolate_->context_slot_cache()->Clear();
938   isolate_->descriptor_lookup_cache()->Clear();
939   StringSplitCache::Clear(string_split_cache());
940 
941   isolate_->compilation_cache()->MarkCompactPrologue();
942 
943   CompletelyClearInstanceofCache();
944 
945   FlushNumberStringCache();
946   if (FLAG_cleanup_code_caches_at_gc) {
947     polymorphic_code_cache()->set_cache(undefined_value());
948   }
949 
950   ClearNormalizedMapCaches();
951 }
952 
953 
FindCodeObject(Address a)954 Object* Heap::FindCodeObject(Address a) {
955   return isolate()->inner_pointer_to_code_cache()->
956       GcSafeFindCodeForInnerPointer(a);
957 }
958 
959 
960 // Helper class for copying HeapObjects
961 class ScavengeVisitor: public ObjectVisitor {
962  public:
ScavengeVisitor(Heap * heap)963   explicit ScavengeVisitor(Heap* heap) : heap_(heap) {}
964 
VisitPointer(Object ** p)965   void VisitPointer(Object** p) { ScavengePointer(p); }
966 
VisitPointers(Object ** start,Object ** end)967   void VisitPointers(Object** start, Object** end) {
968     // Copy all HeapObject pointers in [start, end)
969     for (Object** p = start; p < end; p++) ScavengePointer(p);
970   }
971 
972  private:
ScavengePointer(Object ** p)973   void ScavengePointer(Object** p) {
974     Object* object = *p;
975     if (!heap_->InNewSpace(object)) return;
976     Heap::ScavengeObject(reinterpret_cast<HeapObject**>(p),
977                          reinterpret_cast<HeapObject*>(object));
978   }
979 
980   Heap* heap_;
981 };
982 
983 
984 #ifdef DEBUG
985 // Visitor class to verify pointers in code or data space do not point into
986 // new space.
987 class VerifyNonPointerSpacePointersVisitor: public ObjectVisitor {
988  public:
VisitPointers(Object ** start,Object ** end)989   void VisitPointers(Object** start, Object**end) {
990     for (Object** current = start; current < end; current++) {
991       if ((*current)->IsHeapObject()) {
992         ASSERT(!HEAP->InNewSpace(HeapObject::cast(*current)));
993       }
994     }
995   }
996 };
997 
998 
VerifyNonPointerSpacePointers()999 static void VerifyNonPointerSpacePointers() {
1000   // Verify that there are no pointers to new space in spaces where we
1001   // do not expect them.
1002   VerifyNonPointerSpacePointersVisitor v;
1003   HeapObjectIterator code_it(HEAP->code_space());
1004   for (HeapObject* object = code_it.Next();
1005        object != NULL; object = code_it.Next())
1006     object->Iterate(&v);
1007 
1008   // The old data space was normally swept conservatively so that the iterator
1009   // doesn't work, so we normally skip the next bit.
1010   if (!HEAP->old_data_space()->was_swept_conservatively()) {
1011     HeapObjectIterator data_it(HEAP->old_data_space());
1012     for (HeapObject* object = data_it.Next();
1013          object != NULL; object = data_it.Next())
1014       object->Iterate(&v);
1015   }
1016 }
1017 #endif
1018 
1019 
CheckNewSpaceExpansionCriteria()1020 void Heap::CheckNewSpaceExpansionCriteria() {
1021   if (new_space_.Capacity() < new_space_.MaximumCapacity() &&
1022       survived_since_last_expansion_ > new_space_.Capacity() &&
1023       !new_space_high_promotion_mode_active_) {
1024     // Grow the size of new space if there is room to grow, enough data
1025     // has survived scavenge since the last expansion and we are not in
1026     // high promotion mode.
1027     new_space_.Grow();
1028     survived_since_last_expansion_ = 0;
1029   }
1030 }
1031 
1032 
IsUnscavengedHeapObject(Heap * heap,Object ** p)1033 static bool IsUnscavengedHeapObject(Heap* heap, Object** p) {
1034   return heap->InNewSpace(*p) &&
1035       !HeapObject::cast(*p)->map_word().IsForwardingAddress();
1036 }
1037 
1038 
ScavengeStoreBufferCallback(Heap * heap,MemoryChunk * page,StoreBufferEvent event)1039 void Heap::ScavengeStoreBufferCallback(
1040     Heap* heap,
1041     MemoryChunk* page,
1042     StoreBufferEvent event) {
1043   heap->store_buffer_rebuilder_.Callback(page, event);
1044 }
1045 
1046 
Callback(MemoryChunk * page,StoreBufferEvent event)1047 void StoreBufferRebuilder::Callback(MemoryChunk* page, StoreBufferEvent event) {
1048   if (event == kStoreBufferStartScanningPagesEvent) {
1049     start_of_current_page_ = NULL;
1050     current_page_ = NULL;
1051   } else if (event == kStoreBufferScanningPageEvent) {
1052     if (current_page_ != NULL) {
1053       // If this page already overflowed the store buffer during this iteration.
1054       if (current_page_->scan_on_scavenge()) {
1055         // Then we should wipe out the entries that have been added for it.
1056         store_buffer_->SetTop(start_of_current_page_);
1057       } else if (store_buffer_->Top() - start_of_current_page_ >=
1058                  (store_buffer_->Limit() - store_buffer_->Top()) >> 2) {
1059         // Did we find too many pointers in the previous page?  The heuristic is
1060         // that no page can take more then 1/5 the remaining slots in the store
1061         // buffer.
1062         current_page_->set_scan_on_scavenge(true);
1063         store_buffer_->SetTop(start_of_current_page_);
1064       } else {
1065         // In this case the page we scanned took a reasonable number of slots in
1066         // the store buffer.  It has now been rehabilitated and is no longer
1067         // marked scan_on_scavenge.
1068         ASSERT(!current_page_->scan_on_scavenge());
1069       }
1070     }
1071     start_of_current_page_ = store_buffer_->Top();
1072     current_page_ = page;
1073   } else if (event == kStoreBufferFullEvent) {
1074     // The current page overflowed the store buffer again.  Wipe out its entries
1075     // in the store buffer and mark it scan-on-scavenge again.  This may happen
1076     // several times while scanning.
1077     if (current_page_ == NULL) {
1078       // Store Buffer overflowed while scanning promoted objects.  These are not
1079       // in any particular page, though they are likely to be clustered by the
1080       // allocation routines.
1081       store_buffer_->EnsureSpace(StoreBuffer::kStoreBufferSize);
1082     } else {
1083       // Store Buffer overflowed while scanning a particular old space page for
1084       // pointers to new space.
1085       ASSERT(current_page_ == page);
1086       ASSERT(page != NULL);
1087       current_page_->set_scan_on_scavenge(true);
1088       ASSERT(start_of_current_page_ != store_buffer_->Top());
1089       store_buffer_->SetTop(start_of_current_page_);
1090     }
1091   } else {
1092     UNREACHABLE();
1093   }
1094 }
1095 
1096 
Initialize()1097 void PromotionQueue::Initialize() {
1098   // Assumes that a NewSpacePage exactly fits a number of promotion queue
1099   // entries (where each is a pair of intptr_t). This allows us to simplify
1100   // the test fpr when to switch pages.
1101   ASSERT((Page::kPageSize - MemoryChunk::kBodyOffset) % (2 * kPointerSize)
1102          == 0);
1103   limit_ = reinterpret_cast<intptr_t*>(heap_->new_space()->ToSpaceStart());
1104   front_ = rear_ =
1105       reinterpret_cast<intptr_t*>(heap_->new_space()->ToSpaceEnd());
1106   emergency_stack_ = NULL;
1107   guard_ = false;
1108 }
1109 
1110 
RelocateQueueHead()1111 void PromotionQueue::RelocateQueueHead() {
1112   ASSERT(emergency_stack_ == NULL);
1113 
1114   Page* p = Page::FromAllocationTop(reinterpret_cast<Address>(rear_));
1115   intptr_t* head_start = rear_;
1116   intptr_t* head_end =
1117       Min(front_, reinterpret_cast<intptr_t*>(p->area_end()));
1118 
1119   int entries_count =
1120       static_cast<int>(head_end - head_start) / kEntrySizeInWords;
1121 
1122   emergency_stack_ = new List<Entry>(2 * entries_count);
1123 
1124   while (head_start != head_end) {
1125     int size = static_cast<int>(*(head_start++));
1126     HeapObject* obj = reinterpret_cast<HeapObject*>(*(head_start++));
1127     emergency_stack_->Add(Entry(obj, size));
1128   }
1129   rear_ = head_end;
1130 }
1131 
1132 
Scavenge()1133 void Heap::Scavenge() {
1134 #ifdef DEBUG
1135   if (FLAG_verify_heap) VerifyNonPointerSpacePointers();
1136 #endif
1137 
1138   gc_state_ = SCAVENGE;
1139 
1140   // Implements Cheney's copying algorithm
1141   LOG(isolate_, ResourceEvent("scavenge", "begin"));
1142 
1143   // Clear descriptor cache.
1144   isolate_->descriptor_lookup_cache()->Clear();
1145 
1146   // Used for updating survived_since_last_expansion_ at function end.
1147   intptr_t survived_watermark = PromotedSpaceSizeOfObjects();
1148 
1149   CheckNewSpaceExpansionCriteria();
1150 
1151   SelectScavengingVisitorsTable();
1152 
1153   incremental_marking()->PrepareForScavenge();
1154 
1155   AdvanceSweepers(static_cast<int>(new_space_.Size()));
1156 
1157   // Flip the semispaces.  After flipping, to space is empty, from space has
1158   // live objects.
1159   new_space_.Flip();
1160   new_space_.ResetAllocationInfo();
1161 
1162   // We need to sweep newly copied objects which can be either in the
1163   // to space or promoted to the old generation.  For to-space
1164   // objects, we treat the bottom of the to space as a queue.  Newly
1165   // copied and unswept objects lie between a 'front' mark and the
1166   // allocation pointer.
1167   //
1168   // Promoted objects can go into various old-generation spaces, and
1169   // can be allocated internally in the spaces (from the free list).
1170   // We treat the top of the to space as a queue of addresses of
1171   // promoted objects.  The addresses of newly promoted and unswept
1172   // objects lie between a 'front' mark and a 'rear' mark that is
1173   // updated as a side effect of promoting an object.
1174   //
1175   // There is guaranteed to be enough room at the top of the to space
1176   // for the addresses of promoted objects: every object promoted
1177   // frees up its size in bytes from the top of the new space, and
1178   // objects are at least one pointer in size.
1179   Address new_space_front = new_space_.ToSpaceStart();
1180   promotion_queue_.Initialize();
1181 
1182 #ifdef DEBUG
1183   store_buffer()->Clean();
1184 #endif
1185 
1186   ScavengeVisitor scavenge_visitor(this);
1187   // Copy roots.
1188   IterateRoots(&scavenge_visitor, VISIT_ALL_IN_SCAVENGE);
1189 
1190   // Copy objects reachable from the old generation.
1191   {
1192     StoreBufferRebuildScope scope(this,
1193                                   store_buffer(),
1194                                   &ScavengeStoreBufferCallback);
1195     store_buffer()->IteratePointersToNewSpace(&ScavengeObject);
1196   }
1197 
1198   // Copy objects reachable from cells by scavenging cell values directly.
1199   HeapObjectIterator cell_iterator(cell_space_);
1200   for (HeapObject* cell = cell_iterator.Next();
1201        cell != NULL; cell = cell_iterator.Next()) {
1202     if (cell->IsJSGlobalPropertyCell()) {
1203       Address value_address =
1204           reinterpret_cast<Address>(cell) +
1205           (JSGlobalPropertyCell::kValueOffset - kHeapObjectTag);
1206       scavenge_visitor.VisitPointer(reinterpret_cast<Object**>(value_address));
1207     }
1208   }
1209 
1210   // Scavenge object reachable from the global contexts list directly.
1211   scavenge_visitor.VisitPointer(BitCast<Object**>(&global_contexts_list_));
1212 
1213   new_space_front = DoScavenge(&scavenge_visitor, new_space_front);
1214   isolate_->global_handles()->IdentifyNewSpaceWeakIndependentHandles(
1215       &IsUnscavengedHeapObject);
1216   isolate_->global_handles()->IterateNewSpaceWeakIndependentRoots(
1217       &scavenge_visitor);
1218   new_space_front = DoScavenge(&scavenge_visitor, new_space_front);
1219 
1220   UpdateNewSpaceReferencesInExternalStringTable(
1221       &UpdateNewSpaceReferenceInExternalStringTableEntry);
1222 
1223   promotion_queue_.Destroy();
1224 
1225   LiveObjectList::UpdateReferencesForScavengeGC();
1226   if (!FLAG_watch_ic_patching) {
1227     isolate()->runtime_profiler()->UpdateSamplesAfterScavenge();
1228   }
1229   incremental_marking()->UpdateMarkingDequeAfterScavenge();
1230 
1231   ASSERT(new_space_front == new_space_.top());
1232 
1233   // Set age mark.
1234   new_space_.set_age_mark(new_space_.top());
1235 
1236   new_space_.LowerInlineAllocationLimit(
1237       new_space_.inline_allocation_limit_step());
1238 
1239   // Update how much has survived scavenge.
1240   IncrementYoungSurvivorsCounter(static_cast<int>(
1241       (PromotedSpaceSizeOfObjects() - survived_watermark) + new_space_.Size()));
1242 
1243   LOG(isolate_, ResourceEvent("scavenge", "end"));
1244 
1245   gc_state_ = NOT_IN_GC;
1246 
1247   scavenges_since_last_idle_round_++;
1248 }
1249 
1250 
UpdateNewSpaceReferenceInExternalStringTableEntry(Heap * heap,Object ** p)1251 String* Heap::UpdateNewSpaceReferenceInExternalStringTableEntry(Heap* heap,
1252                                                                 Object** p) {
1253   MapWord first_word = HeapObject::cast(*p)->map_word();
1254 
1255   if (!first_word.IsForwardingAddress()) {
1256     // Unreachable external string can be finalized.
1257     heap->FinalizeExternalString(String::cast(*p));
1258     return NULL;
1259   }
1260 
1261   // String is still reachable.
1262   return String::cast(first_word.ToForwardingAddress());
1263 }
1264 
1265 
UpdateNewSpaceReferencesInExternalStringTable(ExternalStringTableUpdaterCallback updater_func)1266 void Heap::UpdateNewSpaceReferencesInExternalStringTable(
1267     ExternalStringTableUpdaterCallback updater_func) {
1268   if (FLAG_verify_heap) {
1269     external_string_table_.Verify();
1270   }
1271 
1272   if (external_string_table_.new_space_strings_.is_empty()) return;
1273 
1274   Object** start = &external_string_table_.new_space_strings_[0];
1275   Object** end = start + external_string_table_.new_space_strings_.length();
1276   Object** last = start;
1277 
1278   for (Object** p = start; p < end; ++p) {
1279     ASSERT(InFromSpace(*p));
1280     String* target = updater_func(this, p);
1281 
1282     if (target == NULL) continue;
1283 
1284     ASSERT(target->IsExternalString());
1285 
1286     if (InNewSpace(target)) {
1287       // String is still in new space.  Update the table entry.
1288       *last = target;
1289       ++last;
1290     } else {
1291       // String got promoted.  Move it to the old string list.
1292       external_string_table_.AddOldString(target);
1293     }
1294   }
1295 
1296   ASSERT(last <= end);
1297   external_string_table_.ShrinkNewStrings(static_cast<int>(last - start));
1298 }
1299 
1300 
UpdateReferencesInExternalStringTable(ExternalStringTableUpdaterCallback updater_func)1301 void Heap::UpdateReferencesInExternalStringTable(
1302     ExternalStringTableUpdaterCallback updater_func) {
1303 
1304   // Update old space string references.
1305   if (external_string_table_.old_space_strings_.length() > 0) {
1306     Object** start = &external_string_table_.old_space_strings_[0];
1307     Object** end = start + external_string_table_.old_space_strings_.length();
1308     for (Object** p = start; p < end; ++p) *p = updater_func(this, p);
1309   }
1310 
1311   UpdateNewSpaceReferencesInExternalStringTable(updater_func);
1312 }
1313 
1314 
ProcessFunctionWeakReferences(Heap * heap,Object * function,WeakObjectRetainer * retainer)1315 static Object* ProcessFunctionWeakReferences(Heap* heap,
1316                                              Object* function,
1317                                              WeakObjectRetainer* retainer) {
1318   Object* undefined = heap->undefined_value();
1319   Object* head = undefined;
1320   JSFunction* tail = NULL;
1321   Object* candidate = function;
1322   while (candidate != undefined) {
1323     // Check whether to keep the candidate in the list.
1324     JSFunction* candidate_function = reinterpret_cast<JSFunction*>(candidate);
1325     Object* retain = retainer->RetainAs(candidate);
1326     if (retain != NULL) {
1327       if (head == undefined) {
1328         // First element in the list.
1329         head = retain;
1330       } else {
1331         // Subsequent elements in the list.
1332         ASSERT(tail != NULL);
1333         tail->set_next_function_link(retain);
1334       }
1335       // Retained function is new tail.
1336       candidate_function = reinterpret_cast<JSFunction*>(retain);
1337       tail = candidate_function;
1338 
1339       ASSERT(retain->IsUndefined() || retain->IsJSFunction());
1340 
1341       if (retain == undefined) break;
1342     }
1343 
1344     // Move to next element in the list.
1345     candidate = candidate_function->next_function_link();
1346   }
1347 
1348   // Terminate the list if there is one or more elements.
1349   if (tail != NULL) {
1350     tail->set_next_function_link(undefined);
1351   }
1352 
1353   return head;
1354 }
1355 
1356 
ProcessWeakReferences(WeakObjectRetainer * retainer)1357 void Heap::ProcessWeakReferences(WeakObjectRetainer* retainer) {
1358   Object* undefined = undefined_value();
1359   Object* head = undefined;
1360   Context* tail = NULL;
1361   Object* candidate = global_contexts_list_;
1362   while (candidate != undefined) {
1363     // Check whether to keep the candidate in the list.
1364     Context* candidate_context = reinterpret_cast<Context*>(candidate);
1365     Object* retain = retainer->RetainAs(candidate);
1366     if (retain != NULL) {
1367       if (head == undefined) {
1368         // First element in the list.
1369         head = retain;
1370       } else {
1371         // Subsequent elements in the list.
1372         ASSERT(tail != NULL);
1373         tail->set_unchecked(this,
1374                             Context::NEXT_CONTEXT_LINK,
1375                             retain,
1376                             UPDATE_WRITE_BARRIER);
1377       }
1378       // Retained context is new tail.
1379       candidate_context = reinterpret_cast<Context*>(retain);
1380       tail = candidate_context;
1381 
1382       if (retain == undefined) break;
1383 
1384       // Process the weak list of optimized functions for the context.
1385       Object* function_list_head =
1386           ProcessFunctionWeakReferences(
1387               this,
1388               candidate_context->get(Context::OPTIMIZED_FUNCTIONS_LIST),
1389               retainer);
1390       candidate_context->set_unchecked(this,
1391                                        Context::OPTIMIZED_FUNCTIONS_LIST,
1392                                        function_list_head,
1393                                        UPDATE_WRITE_BARRIER);
1394     }
1395 
1396     // Move to next element in the list.
1397     candidate = candidate_context->get(Context::NEXT_CONTEXT_LINK);
1398   }
1399 
1400   // Terminate the list if there is one or more elements.
1401   if (tail != NULL) {
1402     tail->set_unchecked(this,
1403                         Context::NEXT_CONTEXT_LINK,
1404                         Heap::undefined_value(),
1405                         UPDATE_WRITE_BARRIER);
1406   }
1407 
1408   // Update the head of the list of contexts.
1409   global_contexts_list_ = head;
1410 }
1411 
1412 
VisitExternalResources(v8::ExternalResourceVisitor * visitor)1413 void Heap::VisitExternalResources(v8::ExternalResourceVisitor* visitor) {
1414   AssertNoAllocation no_allocation;
1415 
1416   class VisitorAdapter : public ObjectVisitor {
1417    public:
1418     explicit VisitorAdapter(v8::ExternalResourceVisitor* visitor)
1419         : visitor_(visitor) {}
1420     virtual void VisitPointers(Object** start, Object** end) {
1421       for (Object** p = start; p < end; p++) {
1422         if ((*p)->IsExternalString()) {
1423           visitor_->VisitExternalString(Utils::ToLocal(
1424               Handle<String>(String::cast(*p))));
1425         }
1426       }
1427     }
1428    private:
1429     v8::ExternalResourceVisitor* visitor_;
1430   } visitor_adapter(visitor);
1431   external_string_table_.Iterate(&visitor_adapter);
1432 }
1433 
1434 
1435 class NewSpaceScavenger : public StaticNewSpaceVisitor<NewSpaceScavenger> {
1436  public:
VisitPointer(Heap * heap,Object ** p)1437   static inline void VisitPointer(Heap* heap, Object** p) {
1438     Object* object = *p;
1439     if (!heap->InNewSpace(object)) return;
1440     Heap::ScavengeObject(reinterpret_cast<HeapObject**>(p),
1441                          reinterpret_cast<HeapObject*>(object));
1442   }
1443 };
1444 
1445 
DoScavenge(ObjectVisitor * scavenge_visitor,Address new_space_front)1446 Address Heap::DoScavenge(ObjectVisitor* scavenge_visitor,
1447                          Address new_space_front) {
1448   do {
1449     SemiSpace::AssertValidRange(new_space_front, new_space_.top());
1450     // The addresses new_space_front and new_space_.top() define a
1451     // queue of unprocessed copied objects.  Process them until the
1452     // queue is empty.
1453     while (new_space_front != new_space_.top()) {
1454       if (!NewSpacePage::IsAtEnd(new_space_front)) {
1455         HeapObject* object = HeapObject::FromAddress(new_space_front);
1456         new_space_front +=
1457           NewSpaceScavenger::IterateBody(object->map(), object);
1458       } else {
1459         new_space_front =
1460             NewSpacePage::FromLimit(new_space_front)->next_page()->area_start();
1461       }
1462     }
1463 
1464     // Promote and process all the to-be-promoted objects.
1465     {
1466       StoreBufferRebuildScope scope(this,
1467                                     store_buffer(),
1468                                     &ScavengeStoreBufferCallback);
1469       while (!promotion_queue()->is_empty()) {
1470         HeapObject* target;
1471         int size;
1472         promotion_queue()->remove(&target, &size);
1473 
1474         // Promoted object might be already partially visited
1475         // during old space pointer iteration. Thus we search specificly
1476         // for pointers to from semispace instead of looking for pointers
1477         // to new space.
1478         ASSERT(!target->IsMap());
1479         IterateAndMarkPointersToFromSpace(target->address(),
1480                                           target->address() + size,
1481                                           &ScavengeObject);
1482       }
1483     }
1484 
1485     // Take another spin if there are now unswept objects in new space
1486     // (there are currently no more unswept promoted objects).
1487   } while (new_space_front != new_space_.top());
1488 
1489   return new_space_front;
1490 }
1491 
1492 
1493 enum LoggingAndProfiling {
1494   LOGGING_AND_PROFILING_ENABLED,
1495   LOGGING_AND_PROFILING_DISABLED
1496 };
1497 
1498 
1499 enum MarksHandling { TRANSFER_MARKS, IGNORE_MARKS };
1500 
1501 
1502 template<MarksHandling marks_handling,
1503          LoggingAndProfiling logging_and_profiling_mode>
1504 class ScavengingVisitor : public StaticVisitorBase {
1505  public:
Initialize()1506   static void Initialize() {
1507     table_.Register(kVisitSeqAsciiString, &EvacuateSeqAsciiString);
1508     table_.Register(kVisitSeqTwoByteString, &EvacuateSeqTwoByteString);
1509     table_.Register(kVisitShortcutCandidate, &EvacuateShortcutCandidate);
1510     table_.Register(kVisitByteArray, &EvacuateByteArray);
1511     table_.Register(kVisitFixedArray, &EvacuateFixedArray);
1512     table_.Register(kVisitFixedDoubleArray, &EvacuateFixedDoubleArray);
1513 
1514     table_.Register(kVisitGlobalContext,
1515                     &ObjectEvacuationStrategy<POINTER_OBJECT>::
1516                         template VisitSpecialized<Context::kSize>);
1517 
1518     table_.Register(kVisitConsString,
1519                     &ObjectEvacuationStrategy<POINTER_OBJECT>::
1520                         template VisitSpecialized<ConsString::kSize>);
1521 
1522     table_.Register(kVisitSlicedString,
1523                     &ObjectEvacuationStrategy<POINTER_OBJECT>::
1524                         template VisitSpecialized<SlicedString::kSize>);
1525 
1526     table_.Register(kVisitSharedFunctionInfo,
1527                     &ObjectEvacuationStrategy<POINTER_OBJECT>::
1528                         template VisitSpecialized<SharedFunctionInfo::kSize>);
1529 
1530     table_.Register(kVisitJSWeakMap,
1531                     &ObjectEvacuationStrategy<POINTER_OBJECT>::
1532                     Visit);
1533 
1534     table_.Register(kVisitJSRegExp,
1535                     &ObjectEvacuationStrategy<POINTER_OBJECT>::
1536                     Visit);
1537 
1538     if (marks_handling == IGNORE_MARKS) {
1539       table_.Register(kVisitJSFunction,
1540                       &ObjectEvacuationStrategy<POINTER_OBJECT>::
1541                           template VisitSpecialized<JSFunction::kSize>);
1542     } else {
1543       table_.Register(kVisitJSFunction, &EvacuateJSFunction);
1544     }
1545 
1546     table_.RegisterSpecializations<ObjectEvacuationStrategy<DATA_OBJECT>,
1547                                    kVisitDataObject,
1548                                    kVisitDataObjectGeneric>();
1549 
1550     table_.RegisterSpecializations<ObjectEvacuationStrategy<POINTER_OBJECT>,
1551                                    kVisitJSObject,
1552                                    kVisitJSObjectGeneric>();
1553 
1554     table_.RegisterSpecializations<ObjectEvacuationStrategy<POINTER_OBJECT>,
1555                                    kVisitStruct,
1556                                    kVisitStructGeneric>();
1557   }
1558 
GetTable()1559   static VisitorDispatchTable<ScavengingCallback>* GetTable() {
1560     return &table_;
1561   }
1562 
1563  private:
1564   enum ObjectContents  { DATA_OBJECT, POINTER_OBJECT };
1565   enum SizeRestriction { SMALL, UNKNOWN_SIZE };
1566 
RecordCopiedObject(Heap * heap,HeapObject * obj)1567   static void RecordCopiedObject(Heap* heap, HeapObject* obj) {
1568     bool should_record = false;
1569 #ifdef DEBUG
1570     should_record = FLAG_heap_stats;
1571 #endif
1572     should_record = should_record || FLAG_log_gc;
1573     if (should_record) {
1574       if (heap->new_space()->Contains(obj)) {
1575         heap->new_space()->RecordAllocation(obj);
1576       } else {
1577         heap->new_space()->RecordPromotion(obj);
1578       }
1579     }
1580   }
1581 
1582   // Helper function used by CopyObject to copy a source object to an
1583   // allocated target object and update the forwarding pointer in the source
1584   // object.  Returns the target object.
INLINE(static void MigrateObject (Heap * heap,HeapObject * source,HeapObject * target,int size))1585   INLINE(static void MigrateObject(Heap* heap,
1586                                    HeapObject* source,
1587                                    HeapObject* target,
1588                                    int size)) {
1589     // Copy the content of source to target.
1590     heap->CopyBlock(target->address(), source->address(), size);
1591 
1592     // Set the forwarding address.
1593     source->set_map_word(MapWord::FromForwardingAddress(target));
1594 
1595     if (logging_and_profiling_mode == LOGGING_AND_PROFILING_ENABLED) {
1596       // Update NewSpace stats if necessary.
1597       RecordCopiedObject(heap, target);
1598       HEAP_PROFILE(heap, ObjectMoveEvent(source->address(), target->address()));
1599       Isolate* isolate = heap->isolate();
1600       if (isolate->logger()->is_logging() ||
1601           CpuProfiler::is_profiling(isolate)) {
1602         if (target->IsSharedFunctionInfo()) {
1603           PROFILE(isolate, SharedFunctionInfoMoveEvent(
1604               source->address(), target->address()));
1605         }
1606       }
1607     }
1608 
1609     if (marks_handling == TRANSFER_MARKS) {
1610       if (Marking::TransferColor(source, target)) {
1611         MemoryChunk::IncrementLiveBytesFromGC(target->address(), size);
1612       }
1613     }
1614   }
1615 
1616   template<ObjectContents object_contents, SizeRestriction size_restriction>
EvacuateObject(Map * map,HeapObject ** slot,HeapObject * object,int object_size)1617   static inline void EvacuateObject(Map* map,
1618                                     HeapObject** slot,
1619                                     HeapObject* object,
1620                                     int object_size) {
1621     SLOW_ASSERT((size_restriction != SMALL) ||
1622                 (object_size <= Page::kMaxNonCodeHeapObjectSize));
1623     SLOW_ASSERT(object->Size() == object_size);
1624 
1625     Heap* heap = map->GetHeap();
1626     if (heap->ShouldBePromoted(object->address(), object_size)) {
1627       MaybeObject* maybe_result;
1628 
1629       if ((size_restriction != SMALL) &&
1630           (object_size > Page::kMaxNonCodeHeapObjectSize)) {
1631         maybe_result = heap->lo_space()->AllocateRaw(object_size,
1632                                                      NOT_EXECUTABLE);
1633       } else {
1634         if (object_contents == DATA_OBJECT) {
1635           maybe_result = heap->old_data_space()->AllocateRaw(object_size);
1636         } else {
1637           maybe_result = heap->old_pointer_space()->AllocateRaw(object_size);
1638         }
1639       }
1640 
1641       Object* result = NULL;  // Initialization to please compiler.
1642       if (maybe_result->ToObject(&result)) {
1643         HeapObject* target = HeapObject::cast(result);
1644 
1645         // Order is important: slot might be inside of the target if target
1646         // was allocated over a dead object and slot comes from the store
1647         // buffer.
1648         *slot = target;
1649         MigrateObject(heap, object, target, object_size);
1650 
1651         if (object_contents == POINTER_OBJECT) {
1652           heap->promotion_queue()->insert(target, object_size);
1653         }
1654 
1655         heap->tracer()->increment_promoted_objects_size(object_size);
1656         return;
1657       }
1658     }
1659     MaybeObject* allocation = heap->new_space()->AllocateRaw(object_size);
1660     heap->promotion_queue()->SetNewLimit(heap->new_space()->top());
1661     Object* result = allocation->ToObjectUnchecked();
1662     HeapObject* target = HeapObject::cast(result);
1663 
1664     // Order is important: slot might be inside of the target if target
1665     // was allocated over a dead object and slot comes from the store
1666     // buffer.
1667     *slot = target;
1668     MigrateObject(heap, object, target, object_size);
1669     return;
1670   }
1671 
1672 
EvacuateJSFunction(Map * map,HeapObject ** slot,HeapObject * object)1673   static inline void EvacuateJSFunction(Map* map,
1674                                         HeapObject** slot,
1675                                         HeapObject* object) {
1676     ObjectEvacuationStrategy<POINTER_OBJECT>::
1677         template VisitSpecialized<JSFunction::kSize>(map, slot, object);
1678 
1679     HeapObject* target = *slot;
1680     MarkBit mark_bit = Marking::MarkBitFrom(target);
1681     if (Marking::IsBlack(mark_bit)) {
1682       // This object is black and it might not be rescanned by marker.
1683       // We should explicitly record code entry slot for compaction because
1684       // promotion queue processing (IterateAndMarkPointersToFromSpace) will
1685       // miss it as it is not HeapObject-tagged.
1686       Address code_entry_slot =
1687           target->address() + JSFunction::kCodeEntryOffset;
1688       Code* code = Code::cast(Code::GetObjectFromEntryAddress(code_entry_slot));
1689       map->GetHeap()->mark_compact_collector()->
1690           RecordCodeEntrySlot(code_entry_slot, code);
1691     }
1692   }
1693 
1694 
EvacuateFixedArray(Map * map,HeapObject ** slot,HeapObject * object)1695   static inline void EvacuateFixedArray(Map* map,
1696                                         HeapObject** slot,
1697                                         HeapObject* object) {
1698     int object_size = FixedArray::BodyDescriptor::SizeOf(map, object);
1699     EvacuateObject<POINTER_OBJECT, UNKNOWN_SIZE>(map,
1700                                                  slot,
1701                                                  object,
1702                                                  object_size);
1703   }
1704 
1705 
EvacuateFixedDoubleArray(Map * map,HeapObject ** slot,HeapObject * object)1706   static inline void EvacuateFixedDoubleArray(Map* map,
1707                                               HeapObject** slot,
1708                                               HeapObject* object) {
1709     int length = reinterpret_cast<FixedDoubleArray*>(object)->length();
1710     int object_size = FixedDoubleArray::SizeFor(length);
1711     EvacuateObject<DATA_OBJECT, UNKNOWN_SIZE>(map,
1712                                               slot,
1713                                               object,
1714                                               object_size);
1715   }
1716 
1717 
EvacuateByteArray(Map * map,HeapObject ** slot,HeapObject * object)1718   static inline void EvacuateByteArray(Map* map,
1719                                        HeapObject** slot,
1720                                        HeapObject* object) {
1721     int object_size = reinterpret_cast<ByteArray*>(object)->ByteArraySize();
1722     EvacuateObject<DATA_OBJECT, UNKNOWN_SIZE>(map, slot, object, object_size);
1723   }
1724 
1725 
EvacuateSeqAsciiString(Map * map,HeapObject ** slot,HeapObject * object)1726   static inline void EvacuateSeqAsciiString(Map* map,
1727                                             HeapObject** slot,
1728                                             HeapObject* object) {
1729     int object_size = SeqAsciiString::cast(object)->
1730         SeqAsciiStringSize(map->instance_type());
1731     EvacuateObject<DATA_OBJECT, UNKNOWN_SIZE>(map, slot, object, object_size);
1732   }
1733 
1734 
EvacuateSeqTwoByteString(Map * map,HeapObject ** slot,HeapObject * object)1735   static inline void EvacuateSeqTwoByteString(Map* map,
1736                                               HeapObject** slot,
1737                                               HeapObject* object) {
1738     int object_size = SeqTwoByteString::cast(object)->
1739         SeqTwoByteStringSize(map->instance_type());
1740     EvacuateObject<DATA_OBJECT, UNKNOWN_SIZE>(map, slot, object, object_size);
1741   }
1742 
1743 
IsShortcutCandidate(int type)1744   static inline bool IsShortcutCandidate(int type) {
1745     return ((type & kShortcutTypeMask) == kShortcutTypeTag);
1746   }
1747 
EvacuateShortcutCandidate(Map * map,HeapObject ** slot,HeapObject * object)1748   static inline void EvacuateShortcutCandidate(Map* map,
1749                                                HeapObject** slot,
1750                                                HeapObject* object) {
1751     ASSERT(IsShortcutCandidate(map->instance_type()));
1752 
1753     Heap* heap = map->GetHeap();
1754 
1755     if (marks_handling == IGNORE_MARKS &&
1756         ConsString::cast(object)->unchecked_second() ==
1757         heap->empty_string()) {
1758       HeapObject* first =
1759           HeapObject::cast(ConsString::cast(object)->unchecked_first());
1760 
1761       *slot = first;
1762 
1763       if (!heap->InNewSpace(first)) {
1764         object->set_map_word(MapWord::FromForwardingAddress(first));
1765         return;
1766       }
1767 
1768       MapWord first_word = first->map_word();
1769       if (first_word.IsForwardingAddress()) {
1770         HeapObject* target = first_word.ToForwardingAddress();
1771 
1772         *slot = target;
1773         object->set_map_word(MapWord::FromForwardingAddress(target));
1774         return;
1775       }
1776 
1777       heap->DoScavengeObject(first->map(), slot, first);
1778       object->set_map_word(MapWord::FromForwardingAddress(*slot));
1779       return;
1780     }
1781 
1782     int object_size = ConsString::kSize;
1783     EvacuateObject<POINTER_OBJECT, SMALL>(map, slot, object, object_size);
1784   }
1785 
1786   template<ObjectContents object_contents>
1787   class ObjectEvacuationStrategy {
1788    public:
1789     template<int object_size>
VisitSpecialized(Map * map,HeapObject ** slot,HeapObject * object)1790     static inline void VisitSpecialized(Map* map,
1791                                         HeapObject** slot,
1792                                         HeapObject* object) {
1793       EvacuateObject<object_contents, SMALL>(map, slot, object, object_size);
1794     }
1795 
Visit(Map * map,HeapObject ** slot,HeapObject * object)1796     static inline void Visit(Map* map,
1797                              HeapObject** slot,
1798                              HeapObject* object) {
1799       int object_size = map->instance_size();
1800       EvacuateObject<object_contents, SMALL>(map, slot, object, object_size);
1801     }
1802   };
1803 
1804   static VisitorDispatchTable<ScavengingCallback> table_;
1805 };
1806 
1807 
1808 template<MarksHandling marks_handling,
1809          LoggingAndProfiling logging_and_profiling_mode>
1810 VisitorDispatchTable<ScavengingCallback>
1811     ScavengingVisitor<marks_handling, logging_and_profiling_mode>::table_;
1812 
1813 
InitializeScavengingVisitorsTables()1814 static void InitializeScavengingVisitorsTables() {
1815   ScavengingVisitor<TRANSFER_MARKS,
1816                     LOGGING_AND_PROFILING_DISABLED>::Initialize();
1817   ScavengingVisitor<IGNORE_MARKS, LOGGING_AND_PROFILING_DISABLED>::Initialize();
1818   ScavengingVisitor<TRANSFER_MARKS,
1819                     LOGGING_AND_PROFILING_ENABLED>::Initialize();
1820   ScavengingVisitor<IGNORE_MARKS, LOGGING_AND_PROFILING_ENABLED>::Initialize();
1821 }
1822 
1823 
SelectScavengingVisitorsTable()1824 void Heap::SelectScavengingVisitorsTable() {
1825   bool logging_and_profiling =
1826       isolate()->logger()->is_logging() ||
1827       CpuProfiler::is_profiling(isolate()) ||
1828       (isolate()->heap_profiler() != NULL &&
1829        isolate()->heap_profiler()->is_profiling());
1830 
1831   if (!incremental_marking()->IsMarking()) {
1832     if (!logging_and_profiling) {
1833       scavenging_visitors_table_.CopyFrom(
1834           ScavengingVisitor<IGNORE_MARKS,
1835                             LOGGING_AND_PROFILING_DISABLED>::GetTable());
1836     } else {
1837       scavenging_visitors_table_.CopyFrom(
1838           ScavengingVisitor<IGNORE_MARKS,
1839                             LOGGING_AND_PROFILING_ENABLED>::GetTable());
1840     }
1841   } else {
1842     if (!logging_and_profiling) {
1843       scavenging_visitors_table_.CopyFrom(
1844           ScavengingVisitor<TRANSFER_MARKS,
1845                             LOGGING_AND_PROFILING_DISABLED>::GetTable());
1846     } else {
1847       scavenging_visitors_table_.CopyFrom(
1848           ScavengingVisitor<TRANSFER_MARKS,
1849                             LOGGING_AND_PROFILING_ENABLED>::GetTable());
1850     }
1851 
1852     if (incremental_marking()->IsCompacting()) {
1853       // When compacting forbid short-circuiting of cons-strings.
1854       // Scavenging code relies on the fact that new space object
1855       // can't be evacuated into evacuation candidate but
1856       // short-circuiting violates this assumption.
1857       scavenging_visitors_table_.Register(
1858           StaticVisitorBase::kVisitShortcutCandidate,
1859           scavenging_visitors_table_.GetVisitorById(
1860               StaticVisitorBase::kVisitConsString));
1861     }
1862   }
1863 }
1864 
1865 
ScavengeObjectSlow(HeapObject ** p,HeapObject * object)1866 void Heap::ScavengeObjectSlow(HeapObject** p, HeapObject* object) {
1867   SLOW_ASSERT(HEAP->InFromSpace(object));
1868   MapWord first_word = object->map_word();
1869   SLOW_ASSERT(!first_word.IsForwardingAddress());
1870   Map* map = first_word.ToMap();
1871   map->GetHeap()->DoScavengeObject(map, p, object);
1872 }
1873 
1874 
AllocatePartialMap(InstanceType instance_type,int instance_size)1875 MaybeObject* Heap::AllocatePartialMap(InstanceType instance_type,
1876                                       int instance_size) {
1877   Object* result;
1878   { MaybeObject* maybe_result = AllocateRawMap();
1879     if (!maybe_result->ToObject(&result)) return maybe_result;
1880   }
1881 
1882   // Map::cast cannot be used due to uninitialized map field.
1883   reinterpret_cast<Map*>(result)->set_map(raw_unchecked_meta_map());
1884   reinterpret_cast<Map*>(result)->set_instance_type(instance_type);
1885   reinterpret_cast<Map*>(result)->set_instance_size(instance_size);
1886   reinterpret_cast<Map*>(result)->set_visitor_id(
1887         StaticVisitorBase::GetVisitorId(instance_type, instance_size));
1888   reinterpret_cast<Map*>(result)->set_inobject_properties(0);
1889   reinterpret_cast<Map*>(result)->set_pre_allocated_property_fields(0);
1890   reinterpret_cast<Map*>(result)->set_unused_property_fields(0);
1891   reinterpret_cast<Map*>(result)->set_bit_field(0);
1892   reinterpret_cast<Map*>(result)->set_bit_field2(0);
1893   return result;
1894 }
1895 
1896 
AllocateMap(InstanceType instance_type,int instance_size,ElementsKind elements_kind)1897 MaybeObject* Heap::AllocateMap(InstanceType instance_type,
1898                                int instance_size,
1899                                ElementsKind elements_kind) {
1900   Object* result;
1901   { MaybeObject* maybe_result = AllocateRawMap();
1902     if (!maybe_result->ToObject(&result)) return maybe_result;
1903   }
1904 
1905   Map* map = reinterpret_cast<Map*>(result);
1906   map->set_map_no_write_barrier(meta_map());
1907   map->set_instance_type(instance_type);
1908   map->set_visitor_id(
1909       StaticVisitorBase::GetVisitorId(instance_type, instance_size));
1910   map->set_prototype(null_value(), SKIP_WRITE_BARRIER);
1911   map->set_constructor(null_value(), SKIP_WRITE_BARRIER);
1912   map->set_instance_size(instance_size);
1913   map->set_inobject_properties(0);
1914   map->set_pre_allocated_property_fields(0);
1915   map->init_instance_descriptors();
1916   map->set_code_cache(empty_fixed_array(), SKIP_WRITE_BARRIER);
1917   map->set_prototype_transitions(empty_fixed_array(), SKIP_WRITE_BARRIER);
1918   map->set_unused_property_fields(0);
1919   map->set_bit_field(0);
1920   map->set_bit_field2(1 << Map::kIsExtensible);
1921   map->set_elements_kind(elements_kind);
1922 
1923   // If the map object is aligned fill the padding area with Smi 0 objects.
1924   if (Map::kPadStart < Map::kSize) {
1925     memset(reinterpret_cast<byte*>(map) + Map::kPadStart - kHeapObjectTag,
1926            0,
1927            Map::kSize - Map::kPadStart);
1928   }
1929   return map;
1930 }
1931 
1932 
AllocateCodeCache()1933 MaybeObject* Heap::AllocateCodeCache() {
1934   CodeCache* code_cache;
1935   { MaybeObject* maybe_code_cache = AllocateStruct(CODE_CACHE_TYPE);
1936     if (!maybe_code_cache->To(&code_cache)) return maybe_code_cache;
1937   }
1938   code_cache->set_default_cache(empty_fixed_array(), SKIP_WRITE_BARRIER);
1939   code_cache->set_normal_type_cache(undefined_value(), SKIP_WRITE_BARRIER);
1940   return code_cache;
1941 }
1942 
1943 
AllocatePolymorphicCodeCache()1944 MaybeObject* Heap::AllocatePolymorphicCodeCache() {
1945   return AllocateStruct(POLYMORPHIC_CODE_CACHE_TYPE);
1946 }
1947 
1948 
AllocateAccessorPair()1949 MaybeObject* Heap::AllocateAccessorPair() {
1950   AccessorPair* accessors;
1951   { MaybeObject* maybe_accessors = AllocateStruct(ACCESSOR_PAIR_TYPE);
1952     if (!maybe_accessors->To(&accessors)) return maybe_accessors;
1953   }
1954   accessors->set_getter(the_hole_value(), SKIP_WRITE_BARRIER);
1955   accessors->set_setter(the_hole_value(), SKIP_WRITE_BARRIER);
1956   return accessors;
1957 }
1958 
1959 
AllocateTypeFeedbackInfo()1960 MaybeObject* Heap::AllocateTypeFeedbackInfo() {
1961   TypeFeedbackInfo* info;
1962   { MaybeObject* maybe_info = AllocateStruct(TYPE_FEEDBACK_INFO_TYPE);
1963     if (!maybe_info->To(&info)) return maybe_info;
1964   }
1965   info->set_ic_total_count(0);
1966   info->set_ic_with_type_info_count(0);
1967   info->set_type_feedback_cells(TypeFeedbackCells::cast(empty_fixed_array()),
1968                                 SKIP_WRITE_BARRIER);
1969   return info;
1970 }
1971 
1972 
AllocateAliasedArgumentsEntry(int aliased_context_slot)1973 MaybeObject* Heap::AllocateAliasedArgumentsEntry(int aliased_context_slot) {
1974   AliasedArgumentsEntry* entry;
1975   { MaybeObject* maybe_entry = AllocateStruct(ALIASED_ARGUMENTS_ENTRY_TYPE);
1976     if (!maybe_entry->To(&entry)) return maybe_entry;
1977   }
1978   entry->set_aliased_context_slot(aliased_context_slot);
1979   return entry;
1980 }
1981 
1982 
1983 const Heap::StringTypeTable Heap::string_type_table[] = {
1984 #define STRING_TYPE_ELEMENT(type, size, name, camel_name)                      \
1985   {type, size, k##camel_name##MapRootIndex},
1986   STRING_TYPE_LIST(STRING_TYPE_ELEMENT)
1987 #undef STRING_TYPE_ELEMENT
1988 };
1989 
1990 
1991 const Heap::ConstantSymbolTable Heap::constant_symbol_table[] = {
1992 #define CONSTANT_SYMBOL_ELEMENT(name, contents)                                \
1993   {contents, k##name##RootIndex},
1994   SYMBOL_LIST(CONSTANT_SYMBOL_ELEMENT)
1995 #undef CONSTANT_SYMBOL_ELEMENT
1996 };
1997 
1998 
1999 const Heap::StructTable Heap::struct_table[] = {
2000 #define STRUCT_TABLE_ELEMENT(NAME, Name, name)                                 \
2001   { NAME##_TYPE, Name::kSize, k##Name##MapRootIndex },
2002   STRUCT_LIST(STRUCT_TABLE_ELEMENT)
2003 #undef STRUCT_TABLE_ELEMENT
2004 };
2005 
2006 
CreateInitialMaps()2007 bool Heap::CreateInitialMaps() {
2008   Object* obj;
2009   { MaybeObject* maybe_obj = AllocatePartialMap(MAP_TYPE, Map::kSize);
2010     if (!maybe_obj->ToObject(&obj)) return false;
2011   }
2012   // Map::cast cannot be used due to uninitialized map field.
2013   Map* new_meta_map = reinterpret_cast<Map*>(obj);
2014   set_meta_map(new_meta_map);
2015   new_meta_map->set_map(new_meta_map);
2016 
2017   { MaybeObject* maybe_obj =
2018         AllocatePartialMap(FIXED_ARRAY_TYPE, kVariableSizeSentinel);
2019     if (!maybe_obj->ToObject(&obj)) return false;
2020   }
2021   set_fixed_array_map(Map::cast(obj));
2022 
2023   { MaybeObject* maybe_obj = AllocatePartialMap(ODDBALL_TYPE, Oddball::kSize);
2024     if (!maybe_obj->ToObject(&obj)) return false;
2025   }
2026   set_oddball_map(Map::cast(obj));
2027 
2028   // Allocate the empty array.
2029   { MaybeObject* maybe_obj = AllocateEmptyFixedArray();
2030     if (!maybe_obj->ToObject(&obj)) return false;
2031   }
2032   set_empty_fixed_array(FixedArray::cast(obj));
2033 
2034   { MaybeObject* maybe_obj = Allocate(oddball_map(), OLD_POINTER_SPACE);
2035     if (!maybe_obj->ToObject(&obj)) return false;
2036   }
2037   set_null_value(Oddball::cast(obj));
2038   Oddball::cast(obj)->set_kind(Oddball::kNull);
2039 
2040   { MaybeObject* maybe_obj = Allocate(oddball_map(), OLD_POINTER_SPACE);
2041     if (!maybe_obj->ToObject(&obj)) return false;
2042   }
2043   set_undefined_value(Oddball::cast(obj));
2044   Oddball::cast(obj)->set_kind(Oddball::kUndefined);
2045   ASSERT(!InNewSpace(undefined_value()));
2046 
2047   // Allocate the empty descriptor array.
2048   { MaybeObject* maybe_obj = AllocateEmptyFixedArray();
2049     if (!maybe_obj->ToObject(&obj)) return false;
2050   }
2051   set_empty_descriptor_array(DescriptorArray::cast(obj));
2052 
2053   // Fix the instance_descriptors for the existing maps.
2054   meta_map()->init_instance_descriptors();
2055   meta_map()->set_code_cache(empty_fixed_array());
2056   meta_map()->set_prototype_transitions(empty_fixed_array());
2057 
2058   fixed_array_map()->init_instance_descriptors();
2059   fixed_array_map()->set_code_cache(empty_fixed_array());
2060   fixed_array_map()->set_prototype_transitions(empty_fixed_array());
2061 
2062   oddball_map()->init_instance_descriptors();
2063   oddball_map()->set_code_cache(empty_fixed_array());
2064   oddball_map()->set_prototype_transitions(empty_fixed_array());
2065 
2066   // Fix prototype object for existing maps.
2067   meta_map()->set_prototype(null_value());
2068   meta_map()->set_constructor(null_value());
2069 
2070   fixed_array_map()->set_prototype(null_value());
2071   fixed_array_map()->set_constructor(null_value());
2072 
2073   oddball_map()->set_prototype(null_value());
2074   oddball_map()->set_constructor(null_value());
2075 
2076   { MaybeObject* maybe_obj =
2077         AllocateMap(FIXED_ARRAY_TYPE, kVariableSizeSentinel);
2078     if (!maybe_obj->ToObject(&obj)) return false;
2079   }
2080   set_fixed_cow_array_map(Map::cast(obj));
2081   ASSERT(fixed_array_map() != fixed_cow_array_map());
2082 
2083   { MaybeObject* maybe_obj =
2084         AllocateMap(FIXED_ARRAY_TYPE, kVariableSizeSentinel);
2085     if (!maybe_obj->ToObject(&obj)) return false;
2086   }
2087   set_scope_info_map(Map::cast(obj));
2088 
2089   { MaybeObject* maybe_obj = AllocateMap(HEAP_NUMBER_TYPE, HeapNumber::kSize);
2090     if (!maybe_obj->ToObject(&obj)) return false;
2091   }
2092   set_heap_number_map(Map::cast(obj));
2093 
2094   { MaybeObject* maybe_obj = AllocateMap(FOREIGN_TYPE, Foreign::kSize);
2095     if (!maybe_obj->ToObject(&obj)) return false;
2096   }
2097   set_foreign_map(Map::cast(obj));
2098 
2099   for (unsigned i = 0; i < ARRAY_SIZE(string_type_table); i++) {
2100     const StringTypeTable& entry = string_type_table[i];
2101     { MaybeObject* maybe_obj = AllocateMap(entry.type, entry.size);
2102       if (!maybe_obj->ToObject(&obj)) return false;
2103     }
2104     roots_[entry.index] = Map::cast(obj);
2105   }
2106 
2107   { MaybeObject* maybe_obj = AllocateMap(STRING_TYPE, kVariableSizeSentinel);
2108     if (!maybe_obj->ToObject(&obj)) return false;
2109   }
2110   set_undetectable_string_map(Map::cast(obj));
2111   Map::cast(obj)->set_is_undetectable();
2112 
2113   { MaybeObject* maybe_obj =
2114         AllocateMap(ASCII_STRING_TYPE, kVariableSizeSentinel);
2115     if (!maybe_obj->ToObject(&obj)) return false;
2116   }
2117   set_undetectable_ascii_string_map(Map::cast(obj));
2118   Map::cast(obj)->set_is_undetectable();
2119 
2120   { MaybeObject* maybe_obj =
2121         AllocateMap(FIXED_DOUBLE_ARRAY_TYPE, kVariableSizeSentinel);
2122     if (!maybe_obj->ToObject(&obj)) return false;
2123   }
2124   set_fixed_double_array_map(Map::cast(obj));
2125 
2126   { MaybeObject* maybe_obj =
2127         AllocateMap(BYTE_ARRAY_TYPE, kVariableSizeSentinel);
2128     if (!maybe_obj->ToObject(&obj)) return false;
2129   }
2130   set_byte_array_map(Map::cast(obj));
2131 
2132   { MaybeObject* maybe_obj =
2133         AllocateMap(FREE_SPACE_TYPE, kVariableSizeSentinel);
2134     if (!maybe_obj->ToObject(&obj)) return false;
2135   }
2136   set_free_space_map(Map::cast(obj));
2137 
2138   { MaybeObject* maybe_obj = AllocateByteArray(0, TENURED);
2139     if (!maybe_obj->ToObject(&obj)) return false;
2140   }
2141   set_empty_byte_array(ByteArray::cast(obj));
2142 
2143   { MaybeObject* maybe_obj =
2144         AllocateMap(EXTERNAL_PIXEL_ARRAY_TYPE, ExternalArray::kAlignedSize);
2145     if (!maybe_obj->ToObject(&obj)) return false;
2146   }
2147   set_external_pixel_array_map(Map::cast(obj));
2148 
2149   { MaybeObject* maybe_obj = AllocateMap(EXTERNAL_BYTE_ARRAY_TYPE,
2150                                          ExternalArray::kAlignedSize);
2151     if (!maybe_obj->ToObject(&obj)) return false;
2152   }
2153   set_external_byte_array_map(Map::cast(obj));
2154 
2155   { MaybeObject* maybe_obj = AllocateMap(EXTERNAL_UNSIGNED_BYTE_ARRAY_TYPE,
2156                                          ExternalArray::kAlignedSize);
2157     if (!maybe_obj->ToObject(&obj)) return false;
2158   }
2159   set_external_unsigned_byte_array_map(Map::cast(obj));
2160 
2161   { MaybeObject* maybe_obj = AllocateMap(EXTERNAL_SHORT_ARRAY_TYPE,
2162                                          ExternalArray::kAlignedSize);
2163     if (!maybe_obj->ToObject(&obj)) return false;
2164   }
2165   set_external_short_array_map(Map::cast(obj));
2166 
2167   { MaybeObject* maybe_obj = AllocateMap(EXTERNAL_UNSIGNED_SHORT_ARRAY_TYPE,
2168                                          ExternalArray::kAlignedSize);
2169     if (!maybe_obj->ToObject(&obj)) return false;
2170   }
2171   set_external_unsigned_short_array_map(Map::cast(obj));
2172 
2173   { MaybeObject* maybe_obj = AllocateMap(EXTERNAL_INT_ARRAY_TYPE,
2174                                          ExternalArray::kAlignedSize);
2175     if (!maybe_obj->ToObject(&obj)) return false;
2176   }
2177   set_external_int_array_map(Map::cast(obj));
2178 
2179   { MaybeObject* maybe_obj = AllocateMap(EXTERNAL_UNSIGNED_INT_ARRAY_TYPE,
2180                                          ExternalArray::kAlignedSize);
2181     if (!maybe_obj->ToObject(&obj)) return false;
2182   }
2183   set_external_unsigned_int_array_map(Map::cast(obj));
2184 
2185   { MaybeObject* maybe_obj = AllocateMap(EXTERNAL_FLOAT_ARRAY_TYPE,
2186                                          ExternalArray::kAlignedSize);
2187     if (!maybe_obj->ToObject(&obj)) return false;
2188   }
2189   set_external_float_array_map(Map::cast(obj));
2190 
2191   { MaybeObject* maybe_obj =
2192         AllocateMap(FIXED_ARRAY_TYPE, kVariableSizeSentinel);
2193     if (!maybe_obj->ToObject(&obj)) return false;
2194   }
2195   set_non_strict_arguments_elements_map(Map::cast(obj));
2196 
2197   { MaybeObject* maybe_obj = AllocateMap(EXTERNAL_DOUBLE_ARRAY_TYPE,
2198                                          ExternalArray::kAlignedSize);
2199     if (!maybe_obj->ToObject(&obj)) return false;
2200   }
2201   set_external_double_array_map(Map::cast(obj));
2202 
2203   { MaybeObject* maybe_obj = AllocateMap(CODE_TYPE, kVariableSizeSentinel);
2204     if (!maybe_obj->ToObject(&obj)) return false;
2205   }
2206   set_code_map(Map::cast(obj));
2207 
2208   { MaybeObject* maybe_obj = AllocateMap(JS_GLOBAL_PROPERTY_CELL_TYPE,
2209                                          JSGlobalPropertyCell::kSize);
2210     if (!maybe_obj->ToObject(&obj)) return false;
2211   }
2212   set_global_property_cell_map(Map::cast(obj));
2213 
2214   { MaybeObject* maybe_obj = AllocateMap(FILLER_TYPE, kPointerSize);
2215     if (!maybe_obj->ToObject(&obj)) return false;
2216   }
2217   set_one_pointer_filler_map(Map::cast(obj));
2218 
2219   { MaybeObject* maybe_obj = AllocateMap(FILLER_TYPE, 2 * kPointerSize);
2220     if (!maybe_obj->ToObject(&obj)) return false;
2221   }
2222   set_two_pointer_filler_map(Map::cast(obj));
2223 
2224   for (unsigned i = 0; i < ARRAY_SIZE(struct_table); i++) {
2225     const StructTable& entry = struct_table[i];
2226     { MaybeObject* maybe_obj = AllocateMap(entry.type, entry.size);
2227       if (!maybe_obj->ToObject(&obj)) return false;
2228     }
2229     roots_[entry.index] = Map::cast(obj);
2230   }
2231 
2232   { MaybeObject* maybe_obj =
2233         AllocateMap(FIXED_ARRAY_TYPE, kVariableSizeSentinel);
2234     if (!maybe_obj->ToObject(&obj)) return false;
2235   }
2236   set_hash_table_map(Map::cast(obj));
2237 
2238   { MaybeObject* maybe_obj =
2239         AllocateMap(FIXED_ARRAY_TYPE, kVariableSizeSentinel);
2240     if (!maybe_obj->ToObject(&obj)) return false;
2241   }
2242   set_function_context_map(Map::cast(obj));
2243 
2244   { MaybeObject* maybe_obj =
2245         AllocateMap(FIXED_ARRAY_TYPE, kVariableSizeSentinel);
2246     if (!maybe_obj->ToObject(&obj)) return false;
2247   }
2248   set_catch_context_map(Map::cast(obj));
2249 
2250   { MaybeObject* maybe_obj =
2251         AllocateMap(FIXED_ARRAY_TYPE, kVariableSizeSentinel);
2252     if (!maybe_obj->ToObject(&obj)) return false;
2253   }
2254   set_with_context_map(Map::cast(obj));
2255 
2256   { MaybeObject* maybe_obj =
2257         AllocateMap(FIXED_ARRAY_TYPE, kVariableSizeSentinel);
2258     if (!maybe_obj->ToObject(&obj)) return false;
2259   }
2260   set_block_context_map(Map::cast(obj));
2261 
2262   { MaybeObject* maybe_obj =
2263         AllocateMap(FIXED_ARRAY_TYPE, kVariableSizeSentinel);
2264     if (!maybe_obj->ToObject(&obj)) return false;
2265   }
2266   set_module_context_map(Map::cast(obj));
2267 
2268   { MaybeObject* maybe_obj =
2269         AllocateMap(FIXED_ARRAY_TYPE, kVariableSizeSentinel);
2270     if (!maybe_obj->ToObject(&obj)) return false;
2271   }
2272   Map* global_context_map = Map::cast(obj);
2273   global_context_map->set_visitor_id(StaticVisitorBase::kVisitGlobalContext);
2274   set_global_context_map(global_context_map);
2275 
2276   { MaybeObject* maybe_obj = AllocateMap(SHARED_FUNCTION_INFO_TYPE,
2277                                          SharedFunctionInfo::kAlignedSize);
2278     if (!maybe_obj->ToObject(&obj)) return false;
2279   }
2280   set_shared_function_info_map(Map::cast(obj));
2281 
2282   { MaybeObject* maybe_obj = AllocateMap(JS_MESSAGE_OBJECT_TYPE,
2283                                          JSMessageObject::kSize);
2284     if (!maybe_obj->ToObject(&obj)) return false;
2285   }
2286   set_message_object_map(Map::cast(obj));
2287 
2288   ASSERT(!InNewSpace(empty_fixed_array()));
2289   return true;
2290 }
2291 
2292 
AllocateHeapNumber(double value,PretenureFlag pretenure)2293 MaybeObject* Heap::AllocateHeapNumber(double value, PretenureFlag pretenure) {
2294   // Statically ensure that it is safe to allocate heap numbers in paged
2295   // spaces.
2296   STATIC_ASSERT(HeapNumber::kSize <= Page::kNonCodeObjectAreaSize);
2297   AllocationSpace space = (pretenure == TENURED) ? OLD_DATA_SPACE : NEW_SPACE;
2298 
2299   Object* result;
2300   { MaybeObject* maybe_result =
2301         AllocateRaw(HeapNumber::kSize, space, OLD_DATA_SPACE);
2302     if (!maybe_result->ToObject(&result)) return maybe_result;
2303   }
2304 
2305   HeapObject::cast(result)->set_map_no_write_barrier(heap_number_map());
2306   HeapNumber::cast(result)->set_value(value);
2307   return result;
2308 }
2309 
2310 
AllocateHeapNumber(double value)2311 MaybeObject* Heap::AllocateHeapNumber(double value) {
2312   // Use general version, if we're forced to always allocate.
2313   if (always_allocate()) return AllocateHeapNumber(value, TENURED);
2314 
2315   // This version of AllocateHeapNumber is optimized for
2316   // allocation in new space.
2317   STATIC_ASSERT(HeapNumber::kSize <= Page::kMaxNonCodeHeapObjectSize);
2318   ASSERT(allocation_allowed_ && gc_state_ == NOT_IN_GC);
2319   Object* result;
2320   { MaybeObject* maybe_result = new_space_.AllocateRaw(HeapNumber::kSize);
2321     if (!maybe_result->ToObject(&result)) return maybe_result;
2322   }
2323   HeapObject::cast(result)->set_map_no_write_barrier(heap_number_map());
2324   HeapNumber::cast(result)->set_value(value);
2325   return result;
2326 }
2327 
2328 
AllocateJSGlobalPropertyCell(Object * value)2329 MaybeObject* Heap::AllocateJSGlobalPropertyCell(Object* value) {
2330   Object* result;
2331   { MaybeObject* maybe_result = AllocateRawCell();
2332     if (!maybe_result->ToObject(&result)) return maybe_result;
2333   }
2334   HeapObject::cast(result)->set_map_no_write_barrier(
2335       global_property_cell_map());
2336   JSGlobalPropertyCell::cast(result)->set_value(value);
2337   return result;
2338 }
2339 
2340 
CreateOddball(const char * to_string,Object * to_number,byte kind)2341 MaybeObject* Heap::CreateOddball(const char* to_string,
2342                                  Object* to_number,
2343                                  byte kind) {
2344   Object* result;
2345   { MaybeObject* maybe_result = Allocate(oddball_map(), OLD_POINTER_SPACE);
2346     if (!maybe_result->ToObject(&result)) return maybe_result;
2347   }
2348   return Oddball::cast(result)->Initialize(to_string, to_number, kind);
2349 }
2350 
2351 
CreateApiObjects()2352 bool Heap::CreateApiObjects() {
2353   Object* obj;
2354 
2355   { MaybeObject* maybe_obj = AllocateMap(JS_OBJECT_TYPE, JSObject::kHeaderSize);
2356     if (!maybe_obj->ToObject(&obj)) return false;
2357   }
2358   // Don't use Smi-only elements optimizations for objects with the neander
2359   // map. There are too many cases where element values are set directly with a
2360   // bottleneck to trap the Smi-only -> fast elements transition, and there
2361   // appears to be no benefit for optimize this case.
2362   Map* new_neander_map = Map::cast(obj);
2363   new_neander_map->set_elements_kind(FAST_ELEMENTS);
2364   set_neander_map(new_neander_map);
2365 
2366   { MaybeObject* maybe_obj = AllocateJSObjectFromMap(neander_map());
2367     if (!maybe_obj->ToObject(&obj)) return false;
2368   }
2369   Object* elements;
2370   { MaybeObject* maybe_elements = AllocateFixedArray(2);
2371     if (!maybe_elements->ToObject(&elements)) return false;
2372   }
2373   FixedArray::cast(elements)->set(0, Smi::FromInt(0));
2374   JSObject::cast(obj)->set_elements(FixedArray::cast(elements));
2375   set_message_listeners(JSObject::cast(obj));
2376 
2377   return true;
2378 }
2379 
2380 
CreateJSEntryStub()2381 void Heap::CreateJSEntryStub() {
2382   JSEntryStub stub;
2383   set_js_entry_code(*stub.GetCode());
2384 }
2385 
2386 
CreateJSConstructEntryStub()2387 void Heap::CreateJSConstructEntryStub() {
2388   JSConstructEntryStub stub;
2389   set_js_construct_entry_code(*stub.GetCode());
2390 }
2391 
2392 
CreateFixedStubs()2393 void Heap::CreateFixedStubs() {
2394   // Here we create roots for fixed stubs. They are needed at GC
2395   // for cooking and uncooking (check out frames.cc).
2396   // The eliminates the need for doing dictionary lookup in the
2397   // stub cache for these stubs.
2398   HandleScope scope;
2399   // gcc-4.4 has problem generating correct code of following snippet:
2400   // {  JSEntryStub stub;
2401   //    js_entry_code_ = *stub.GetCode();
2402   // }
2403   // {  JSConstructEntryStub stub;
2404   //    js_construct_entry_code_ = *stub.GetCode();
2405   // }
2406   // To workaround the problem, make separate functions without inlining.
2407   Heap::CreateJSEntryStub();
2408   Heap::CreateJSConstructEntryStub();
2409 
2410   // Create stubs that should be there, so we don't unexpectedly have to
2411   // create them if we need them during the creation of another stub.
2412   // Stub creation mixes raw pointers and handles in an unsafe manner so
2413   // we cannot create stubs while we are creating stubs.
2414   CodeStub::GenerateStubsAheadOfTime();
2415 }
2416 
2417 
CreateInitialObjects()2418 bool Heap::CreateInitialObjects() {
2419   Object* obj;
2420 
2421   // The -0 value must be set before NumberFromDouble works.
2422   { MaybeObject* maybe_obj = AllocateHeapNumber(-0.0, TENURED);
2423     if (!maybe_obj->ToObject(&obj)) return false;
2424   }
2425   set_minus_zero_value(HeapNumber::cast(obj));
2426   ASSERT(signbit(minus_zero_value()->Number()) != 0);
2427 
2428   { MaybeObject* maybe_obj = AllocateHeapNumber(OS::nan_value(), TENURED);
2429     if (!maybe_obj->ToObject(&obj)) return false;
2430   }
2431   set_nan_value(HeapNumber::cast(obj));
2432 
2433   { MaybeObject* maybe_obj = AllocateHeapNumber(V8_INFINITY, TENURED);
2434     if (!maybe_obj->ToObject(&obj)) return false;
2435   }
2436   set_infinity_value(HeapNumber::cast(obj));
2437 
2438   // The hole has not been created yet, but we want to put something
2439   // predictable in the gaps in the symbol table, so lets make that Smi zero.
2440   set_the_hole_value(reinterpret_cast<Oddball*>(Smi::FromInt(0)));
2441 
2442   // Allocate initial symbol table.
2443   { MaybeObject* maybe_obj = SymbolTable::Allocate(kInitialSymbolTableSize);
2444     if (!maybe_obj->ToObject(&obj)) return false;
2445   }
2446   // Don't use set_symbol_table() due to asserts.
2447   roots_[kSymbolTableRootIndex] = obj;
2448 
2449   // Finish initializing oddballs after creating symboltable.
2450   { MaybeObject* maybe_obj =
2451         undefined_value()->Initialize("undefined",
2452                                       nan_value(),
2453                                       Oddball::kUndefined);
2454     if (!maybe_obj->ToObject(&obj)) return false;
2455   }
2456 
2457   // Initialize the null_value.
2458   { MaybeObject* maybe_obj =
2459         null_value()->Initialize("null", Smi::FromInt(0), Oddball::kNull);
2460     if (!maybe_obj->ToObject(&obj)) return false;
2461   }
2462 
2463   { MaybeObject* maybe_obj = CreateOddball("true",
2464                                            Smi::FromInt(1),
2465                                            Oddball::kTrue);
2466     if (!maybe_obj->ToObject(&obj)) return false;
2467   }
2468   set_true_value(Oddball::cast(obj));
2469 
2470   { MaybeObject* maybe_obj = CreateOddball("false",
2471                                            Smi::FromInt(0),
2472                                            Oddball::kFalse);
2473     if (!maybe_obj->ToObject(&obj)) return false;
2474   }
2475   set_false_value(Oddball::cast(obj));
2476 
2477   { MaybeObject* maybe_obj = CreateOddball("hole",
2478                                            Smi::FromInt(-1),
2479                                            Oddball::kTheHole);
2480     if (!maybe_obj->ToObject(&obj)) return false;
2481   }
2482   set_the_hole_value(Oddball::cast(obj));
2483 
2484   { MaybeObject* maybe_obj = CreateOddball("arguments_marker",
2485                                            Smi::FromInt(-4),
2486                                            Oddball::kArgumentMarker);
2487     if (!maybe_obj->ToObject(&obj)) return false;
2488   }
2489   set_arguments_marker(Oddball::cast(obj));
2490 
2491   { MaybeObject* maybe_obj = CreateOddball("no_interceptor_result_sentinel",
2492                                            Smi::FromInt(-2),
2493                                            Oddball::kOther);
2494     if (!maybe_obj->ToObject(&obj)) return false;
2495   }
2496   set_no_interceptor_result_sentinel(obj);
2497 
2498   { MaybeObject* maybe_obj = CreateOddball("termination_exception",
2499                                            Smi::FromInt(-3),
2500                                            Oddball::kOther);
2501     if (!maybe_obj->ToObject(&obj)) return false;
2502   }
2503   set_termination_exception(obj);
2504 
2505   // Allocate the empty string.
2506   { MaybeObject* maybe_obj = AllocateRawAsciiString(0, TENURED);
2507     if (!maybe_obj->ToObject(&obj)) return false;
2508   }
2509   set_empty_string(String::cast(obj));
2510 
2511   for (unsigned i = 0; i < ARRAY_SIZE(constant_symbol_table); i++) {
2512     { MaybeObject* maybe_obj =
2513           LookupAsciiSymbol(constant_symbol_table[i].contents);
2514       if (!maybe_obj->ToObject(&obj)) return false;
2515     }
2516     roots_[constant_symbol_table[i].index] = String::cast(obj);
2517   }
2518 
2519   // Allocate the hidden symbol which is used to identify the hidden properties
2520   // in JSObjects. The hash code has a special value so that it will not match
2521   // the empty string when searching for the property. It cannot be part of the
2522   // loop above because it needs to be allocated manually with the special
2523   // hash code in place. The hash code for the hidden_symbol is zero to ensure
2524   // that it will always be at the first entry in property descriptors.
2525   { MaybeObject* maybe_obj =
2526         AllocateSymbol(CStrVector(""), 0, String::kZeroHash);
2527     if (!maybe_obj->ToObject(&obj)) return false;
2528   }
2529   hidden_symbol_ = String::cast(obj);
2530 
2531   // Allocate the foreign for __proto__.
2532   { MaybeObject* maybe_obj =
2533         AllocateForeign((Address) &Accessors::ObjectPrototype);
2534     if (!maybe_obj->ToObject(&obj)) return false;
2535   }
2536   set_prototype_accessors(Foreign::cast(obj));
2537 
2538   // Allocate the code_stubs dictionary. The initial size is set to avoid
2539   // expanding the dictionary during bootstrapping.
2540   { MaybeObject* maybe_obj = UnseededNumberDictionary::Allocate(128);
2541     if (!maybe_obj->ToObject(&obj)) return false;
2542   }
2543   set_code_stubs(UnseededNumberDictionary::cast(obj));
2544 
2545 
2546   // Allocate the non_monomorphic_cache used in stub-cache.cc. The initial size
2547   // is set to avoid expanding the dictionary during bootstrapping.
2548   { MaybeObject* maybe_obj = UnseededNumberDictionary::Allocate(64);
2549     if (!maybe_obj->ToObject(&obj)) return false;
2550   }
2551   set_non_monomorphic_cache(UnseededNumberDictionary::cast(obj));
2552 
2553   { MaybeObject* maybe_obj = AllocatePolymorphicCodeCache();
2554     if (!maybe_obj->ToObject(&obj)) return false;
2555   }
2556   set_polymorphic_code_cache(PolymorphicCodeCache::cast(obj));
2557 
2558   set_instanceof_cache_function(Smi::FromInt(0));
2559   set_instanceof_cache_map(Smi::FromInt(0));
2560   set_instanceof_cache_answer(Smi::FromInt(0));
2561 
2562   CreateFixedStubs();
2563 
2564   // Allocate the dictionary of intrinsic function names.
2565   { MaybeObject* maybe_obj = StringDictionary::Allocate(Runtime::kNumFunctions);
2566     if (!maybe_obj->ToObject(&obj)) return false;
2567   }
2568   { MaybeObject* maybe_obj = Runtime::InitializeIntrinsicFunctionNames(this,
2569                                                                        obj);
2570     if (!maybe_obj->ToObject(&obj)) return false;
2571   }
2572   set_intrinsic_function_names(StringDictionary::cast(obj));
2573 
2574   { MaybeObject* maybe_obj = AllocateInitialNumberStringCache();
2575     if (!maybe_obj->ToObject(&obj)) return false;
2576   }
2577   set_number_string_cache(FixedArray::cast(obj));
2578 
2579   // Allocate cache for single character ASCII strings.
2580   { MaybeObject* maybe_obj =
2581         AllocateFixedArray(String::kMaxAsciiCharCode + 1, TENURED);
2582     if (!maybe_obj->ToObject(&obj)) return false;
2583   }
2584   set_single_character_string_cache(FixedArray::cast(obj));
2585 
2586   // Allocate cache for string split.
2587   { MaybeObject* maybe_obj =
2588         AllocateFixedArray(StringSplitCache::kStringSplitCacheSize, TENURED);
2589     if (!maybe_obj->ToObject(&obj)) return false;
2590   }
2591   set_string_split_cache(FixedArray::cast(obj));
2592 
2593   // Allocate cache for external strings pointing to native source code.
2594   { MaybeObject* maybe_obj = AllocateFixedArray(Natives::GetBuiltinsCount());
2595     if (!maybe_obj->ToObject(&obj)) return false;
2596   }
2597   set_natives_source_cache(FixedArray::cast(obj));
2598 
2599   // Handling of script id generation is in FACTORY->NewScript.
2600   set_last_script_id(undefined_value());
2601 
2602   // Initialize keyed lookup cache.
2603   isolate_->keyed_lookup_cache()->Clear();
2604 
2605   // Initialize context slot cache.
2606   isolate_->context_slot_cache()->Clear();
2607 
2608   // Initialize descriptor cache.
2609   isolate_->descriptor_lookup_cache()->Clear();
2610 
2611   // Initialize compilation cache.
2612   isolate_->compilation_cache()->Clear();
2613 
2614   return true;
2615 }
2616 
2617 
Lookup(FixedArray * cache,String * string,String * pattern)2618 Object* StringSplitCache::Lookup(
2619     FixedArray* cache, String* string, String* pattern) {
2620   if (!string->IsSymbol() || !pattern->IsSymbol()) return Smi::FromInt(0);
2621   uint32_t hash = string->Hash();
2622   uint32_t index = ((hash & (kStringSplitCacheSize - 1)) &
2623       ~(kArrayEntriesPerCacheEntry - 1));
2624   if (cache->get(index + kStringOffset) == string &&
2625       cache->get(index + kPatternOffset) == pattern) {
2626     return cache->get(index + kArrayOffset);
2627   }
2628   index = ((index + kArrayEntriesPerCacheEntry) & (kStringSplitCacheSize - 1));
2629   if (cache->get(index + kStringOffset) == string &&
2630       cache->get(index + kPatternOffset) == pattern) {
2631     return cache->get(index + kArrayOffset);
2632   }
2633   return Smi::FromInt(0);
2634 }
2635 
2636 
Enter(Heap * heap,FixedArray * cache,String * string,String * pattern,FixedArray * array)2637 void StringSplitCache::Enter(Heap* heap,
2638                              FixedArray* cache,
2639                              String* string,
2640                              String* pattern,
2641                              FixedArray* array) {
2642   if (!string->IsSymbol() || !pattern->IsSymbol()) return;
2643   uint32_t hash = string->Hash();
2644   uint32_t index = ((hash & (kStringSplitCacheSize - 1)) &
2645       ~(kArrayEntriesPerCacheEntry - 1));
2646   if (cache->get(index + kStringOffset) == Smi::FromInt(0)) {
2647     cache->set(index + kStringOffset, string);
2648     cache->set(index + kPatternOffset, pattern);
2649     cache->set(index + kArrayOffset, array);
2650   } else {
2651     uint32_t index2 =
2652         ((index + kArrayEntriesPerCacheEntry) & (kStringSplitCacheSize - 1));
2653     if (cache->get(index2 + kStringOffset) == Smi::FromInt(0)) {
2654       cache->set(index2 + kStringOffset, string);
2655       cache->set(index2 + kPatternOffset, pattern);
2656       cache->set(index2 + kArrayOffset, array);
2657     } else {
2658       cache->set(index2 + kStringOffset, Smi::FromInt(0));
2659       cache->set(index2 + kPatternOffset, Smi::FromInt(0));
2660       cache->set(index2 + kArrayOffset, Smi::FromInt(0));
2661       cache->set(index + kStringOffset, string);
2662       cache->set(index + kPatternOffset, pattern);
2663       cache->set(index + kArrayOffset, array);
2664     }
2665   }
2666   if (array->length() < 100) {  // Limit how many new symbols we want to make.
2667     for (int i = 0; i < array->length(); i++) {
2668       String* str = String::cast(array->get(i));
2669       Object* symbol;
2670       MaybeObject* maybe_symbol = heap->LookupSymbol(str);
2671       if (maybe_symbol->ToObject(&symbol)) {
2672         array->set(i, symbol);
2673       }
2674     }
2675   }
2676   array->set_map_no_write_barrier(heap->fixed_cow_array_map());
2677 }
2678 
2679 
Clear(FixedArray * cache)2680 void StringSplitCache::Clear(FixedArray* cache) {
2681   for (int i = 0; i < kStringSplitCacheSize; i++) {
2682     cache->set(i, Smi::FromInt(0));
2683   }
2684 }
2685 
2686 
AllocateInitialNumberStringCache()2687 MaybeObject* Heap::AllocateInitialNumberStringCache() {
2688   MaybeObject* maybe_obj =
2689       AllocateFixedArray(kInitialNumberStringCacheSize * 2, TENURED);
2690   return maybe_obj;
2691 }
2692 
2693 
FullSizeNumberStringCacheLength()2694 int Heap::FullSizeNumberStringCacheLength() {
2695   // Compute the size of the number string cache based on the max newspace size.
2696   // The number string cache has a minimum size based on twice the initial cache
2697   // size to ensure that it is bigger after being made 'full size'.
2698   int number_string_cache_size = max_semispace_size_ / 512;
2699   number_string_cache_size = Max(kInitialNumberStringCacheSize * 2,
2700                                  Min(0x4000, number_string_cache_size));
2701   // There is a string and a number per entry so the length is twice the number
2702   // of entries.
2703   return number_string_cache_size * 2;
2704 }
2705 
2706 
AllocateFullSizeNumberStringCache()2707 void Heap::AllocateFullSizeNumberStringCache() {
2708   // The idea is to have a small number string cache in the snapshot to keep
2709   // boot-time memory usage down.  If we expand the number string cache already
2710   // while creating the snapshot then that didn't work out.
2711   ASSERT(!Serializer::enabled());
2712   MaybeObject* maybe_obj =
2713       AllocateFixedArray(FullSizeNumberStringCacheLength(), TENURED);
2714   Object* new_cache;
2715   if (maybe_obj->ToObject(&new_cache)) {
2716     // We don't bother to repopulate the cache with entries from the old cache.
2717     // It will be repopulated soon enough with new strings.
2718     set_number_string_cache(FixedArray::cast(new_cache));
2719   }
2720   // If allocation fails then we just return without doing anything.  It is only
2721   // a cache, so best effort is OK here.
2722 }
2723 
2724 
FlushNumberStringCache()2725 void Heap::FlushNumberStringCache() {
2726   // Flush the number to string cache.
2727   int len = number_string_cache()->length();
2728   for (int i = 0; i < len; i++) {
2729     number_string_cache()->set_undefined(this, i);
2730   }
2731 }
2732 
2733 
double_get_hash(double d)2734 static inline int double_get_hash(double d) {
2735   DoubleRepresentation rep(d);
2736   return static_cast<int>(rep.bits) ^ static_cast<int>(rep.bits >> 32);
2737 }
2738 
2739 
smi_get_hash(Smi * smi)2740 static inline int smi_get_hash(Smi* smi) {
2741   return smi->value();
2742 }
2743 
2744 
GetNumberStringCache(Object * number)2745 Object* Heap::GetNumberStringCache(Object* number) {
2746   int hash;
2747   int mask = (number_string_cache()->length() >> 1) - 1;
2748   if (number->IsSmi()) {
2749     hash = smi_get_hash(Smi::cast(number)) & mask;
2750   } else {
2751     hash = double_get_hash(number->Number()) & mask;
2752   }
2753   Object* key = number_string_cache()->get(hash * 2);
2754   if (key == number) {
2755     return String::cast(number_string_cache()->get(hash * 2 + 1));
2756   } else if (key->IsHeapNumber() &&
2757              number->IsHeapNumber() &&
2758              key->Number() == number->Number()) {
2759     return String::cast(number_string_cache()->get(hash * 2 + 1));
2760   }
2761   return undefined_value();
2762 }
2763 
2764 
SetNumberStringCache(Object * number,String * string)2765 void Heap::SetNumberStringCache(Object* number, String* string) {
2766   int hash;
2767   int mask = (number_string_cache()->length() >> 1) - 1;
2768   if (number->IsSmi()) {
2769     hash = smi_get_hash(Smi::cast(number)) & mask;
2770   } else {
2771     hash = double_get_hash(number->Number()) & mask;
2772   }
2773   if (number_string_cache()->get(hash * 2) != undefined_value() &&
2774       number_string_cache()->length() != FullSizeNumberStringCacheLength()) {
2775     // The first time we have a hash collision, we move to the full sized
2776     // number string cache.
2777     AllocateFullSizeNumberStringCache();
2778     return;
2779   }
2780   number_string_cache()->set(hash * 2, number);
2781   number_string_cache()->set(hash * 2 + 1, string);
2782 }
2783 
2784 
NumberToString(Object * number,bool check_number_string_cache)2785 MaybeObject* Heap::NumberToString(Object* number,
2786                                   bool check_number_string_cache) {
2787   isolate_->counters()->number_to_string_runtime()->Increment();
2788   if (check_number_string_cache) {
2789     Object* cached = GetNumberStringCache(number);
2790     if (cached != undefined_value()) {
2791       return cached;
2792     }
2793   }
2794 
2795   char arr[100];
2796   Vector<char> buffer(arr, ARRAY_SIZE(arr));
2797   const char* str;
2798   if (number->IsSmi()) {
2799     int num = Smi::cast(number)->value();
2800     str = IntToCString(num, buffer);
2801   } else {
2802     double num = HeapNumber::cast(number)->value();
2803     str = DoubleToCString(num, buffer);
2804   }
2805 
2806   Object* js_string;
2807   MaybeObject* maybe_js_string = AllocateStringFromAscii(CStrVector(str));
2808   if (maybe_js_string->ToObject(&js_string)) {
2809     SetNumberStringCache(number, String::cast(js_string));
2810   }
2811   return maybe_js_string;
2812 }
2813 
2814 
Uint32ToString(uint32_t value,bool check_number_string_cache)2815 MaybeObject* Heap::Uint32ToString(uint32_t value,
2816                                   bool check_number_string_cache) {
2817   Object* number;
2818   MaybeObject* maybe = NumberFromUint32(value);
2819   if (!maybe->To<Object>(&number)) return maybe;
2820   return NumberToString(number, check_number_string_cache);
2821 }
2822 
2823 
MapForExternalArrayType(ExternalArrayType array_type)2824 Map* Heap::MapForExternalArrayType(ExternalArrayType array_type) {
2825   return Map::cast(roots_[RootIndexForExternalArrayType(array_type)]);
2826 }
2827 
2828 
RootIndexForExternalArrayType(ExternalArrayType array_type)2829 Heap::RootListIndex Heap::RootIndexForExternalArrayType(
2830     ExternalArrayType array_type) {
2831   switch (array_type) {
2832     case kExternalByteArray:
2833       return kExternalByteArrayMapRootIndex;
2834     case kExternalUnsignedByteArray:
2835       return kExternalUnsignedByteArrayMapRootIndex;
2836     case kExternalShortArray:
2837       return kExternalShortArrayMapRootIndex;
2838     case kExternalUnsignedShortArray:
2839       return kExternalUnsignedShortArrayMapRootIndex;
2840     case kExternalIntArray:
2841       return kExternalIntArrayMapRootIndex;
2842     case kExternalUnsignedIntArray:
2843       return kExternalUnsignedIntArrayMapRootIndex;
2844     case kExternalFloatArray:
2845       return kExternalFloatArrayMapRootIndex;
2846     case kExternalDoubleArray:
2847       return kExternalDoubleArrayMapRootIndex;
2848     case kExternalPixelArray:
2849       return kExternalPixelArrayMapRootIndex;
2850     default:
2851       UNREACHABLE();
2852       return kUndefinedValueRootIndex;
2853   }
2854 }
2855 
2856 
NumberFromDouble(double value,PretenureFlag pretenure)2857 MaybeObject* Heap::NumberFromDouble(double value, PretenureFlag pretenure) {
2858   // We need to distinguish the minus zero value and this cannot be
2859   // done after conversion to int. Doing this by comparing bit
2860   // patterns is faster than using fpclassify() et al.
2861   static const DoubleRepresentation minus_zero(-0.0);
2862 
2863   DoubleRepresentation rep(value);
2864   if (rep.bits == minus_zero.bits) {
2865     return AllocateHeapNumber(-0.0, pretenure);
2866   }
2867 
2868   int int_value = FastD2I(value);
2869   if (value == int_value && Smi::IsValid(int_value)) {
2870     return Smi::FromInt(int_value);
2871   }
2872 
2873   // Materialize the value in the heap.
2874   return AllocateHeapNumber(value, pretenure);
2875 }
2876 
2877 
AllocateForeign(Address address,PretenureFlag pretenure)2878 MaybeObject* Heap::AllocateForeign(Address address, PretenureFlag pretenure) {
2879   // Statically ensure that it is safe to allocate foreigns in paged spaces.
2880   STATIC_ASSERT(Foreign::kSize <= Page::kMaxNonCodeHeapObjectSize);
2881   AllocationSpace space = (pretenure == TENURED) ? OLD_DATA_SPACE : NEW_SPACE;
2882   Foreign* result;
2883   MaybeObject* maybe_result = Allocate(foreign_map(), space);
2884   if (!maybe_result->To(&result)) return maybe_result;
2885   result->set_foreign_address(address);
2886   return result;
2887 }
2888 
2889 
AllocateSharedFunctionInfo(Object * name)2890 MaybeObject* Heap::AllocateSharedFunctionInfo(Object* name) {
2891   SharedFunctionInfo* share;
2892   MaybeObject* maybe = Allocate(shared_function_info_map(), OLD_POINTER_SPACE);
2893   if (!maybe->To<SharedFunctionInfo>(&share)) return maybe;
2894 
2895   // Set pointer fields.
2896   share->set_name(name);
2897   Code* illegal = isolate_->builtins()->builtin(Builtins::kIllegal);
2898   share->set_code(illegal);
2899   share->set_scope_info(ScopeInfo::Empty());
2900   Code* construct_stub =
2901       isolate_->builtins()->builtin(Builtins::kJSConstructStubGeneric);
2902   share->set_construct_stub(construct_stub);
2903   share->set_instance_class_name(Object_symbol());
2904   share->set_function_data(undefined_value(), SKIP_WRITE_BARRIER);
2905   share->set_script(undefined_value(), SKIP_WRITE_BARRIER);
2906   share->set_debug_info(undefined_value(), SKIP_WRITE_BARRIER);
2907   share->set_inferred_name(empty_string(), SKIP_WRITE_BARRIER);
2908   share->set_initial_map(undefined_value(), SKIP_WRITE_BARRIER);
2909   share->set_this_property_assignments(undefined_value(), SKIP_WRITE_BARRIER);
2910   share->set_ast_node_count(0);
2911   share->set_deopt_counter(FLAG_deopt_every_n_times);
2912   share->set_ic_age(0);
2913 
2914   // Set integer fields (smi or int, depending on the architecture).
2915   share->set_length(0);
2916   share->set_formal_parameter_count(0);
2917   share->set_expected_nof_properties(0);
2918   share->set_num_literals(0);
2919   share->set_start_position_and_type(0);
2920   share->set_end_position(0);
2921   share->set_function_token_position(0);
2922   // All compiler hints default to false or 0.
2923   share->set_compiler_hints(0);
2924   share->set_this_property_assignments_count(0);
2925   share->set_opt_count(0);
2926 
2927   return share;
2928 }
2929 
2930 
AllocateJSMessageObject(String * type,JSArray * arguments,int start_position,int end_position,Object * script,Object * stack_trace,Object * stack_frames)2931 MaybeObject* Heap::AllocateJSMessageObject(String* type,
2932                                            JSArray* arguments,
2933                                            int start_position,
2934                                            int end_position,
2935                                            Object* script,
2936                                            Object* stack_trace,
2937                                            Object* stack_frames) {
2938   Object* result;
2939   { MaybeObject* maybe_result = Allocate(message_object_map(), NEW_SPACE);
2940     if (!maybe_result->ToObject(&result)) return maybe_result;
2941   }
2942   JSMessageObject* message = JSMessageObject::cast(result);
2943   message->set_properties(Heap::empty_fixed_array(), SKIP_WRITE_BARRIER);
2944   message->set_elements(Heap::empty_fixed_array(), SKIP_WRITE_BARRIER);
2945   message->set_type(type);
2946   message->set_arguments(arguments);
2947   message->set_start_position(start_position);
2948   message->set_end_position(end_position);
2949   message->set_script(script);
2950   message->set_stack_trace(stack_trace);
2951   message->set_stack_frames(stack_frames);
2952   return result;
2953 }
2954 
2955 
2956 
2957 // Returns true for a character in a range.  Both limits are inclusive.
Between(uint32_t character,uint32_t from,uint32_t to)2958 static inline bool Between(uint32_t character, uint32_t from, uint32_t to) {
2959   // This makes uses of the the unsigned wraparound.
2960   return character - from <= to - from;
2961 }
2962 
2963 
MakeOrFindTwoCharacterString(Heap * heap,uint32_t c1,uint32_t c2)2964 MUST_USE_RESULT static inline MaybeObject* MakeOrFindTwoCharacterString(
2965     Heap* heap,
2966     uint32_t c1,
2967     uint32_t c2) {
2968   String* symbol;
2969   // Numeric strings have a different hash algorithm not known by
2970   // LookupTwoCharsSymbolIfExists, so we skip this step for such strings.
2971   if ((!Between(c1, '0', '9') || !Between(c2, '0', '9')) &&
2972       heap->symbol_table()->LookupTwoCharsSymbolIfExists(c1, c2, &symbol)) {
2973     return symbol;
2974   // Now we know the length is 2, we might as well make use of that fact
2975   // when building the new string.
2976   } else if ((c1 | c2) <= String::kMaxAsciiCharCodeU) {  // We can do this
2977     ASSERT(IsPowerOf2(String::kMaxAsciiCharCodeU + 1));  // because of this.
2978     Object* result;
2979     { MaybeObject* maybe_result = heap->AllocateRawAsciiString(2);
2980       if (!maybe_result->ToObject(&result)) return maybe_result;
2981     }
2982     char* dest = SeqAsciiString::cast(result)->GetChars();
2983     dest[0] = c1;
2984     dest[1] = c2;
2985     return result;
2986   } else {
2987     Object* result;
2988     { MaybeObject* maybe_result = heap->AllocateRawTwoByteString(2);
2989       if (!maybe_result->ToObject(&result)) return maybe_result;
2990     }
2991     uc16* dest = SeqTwoByteString::cast(result)->GetChars();
2992     dest[0] = c1;
2993     dest[1] = c2;
2994     return result;
2995   }
2996 }
2997 
2998 
AllocateConsString(String * first,String * second)2999 MaybeObject* Heap::AllocateConsString(String* first, String* second) {
3000   int first_length = first->length();
3001   if (first_length == 0) {
3002     return second;
3003   }
3004 
3005   int second_length = second->length();
3006   if (second_length == 0) {
3007     return first;
3008   }
3009 
3010   int length = first_length + second_length;
3011 
3012   // Optimization for 2-byte strings often used as keys in a decompression
3013   // dictionary.  Check whether we already have the string in the symbol
3014   // table to prevent creation of many unneccesary strings.
3015   if (length == 2) {
3016     unsigned c1 = first->Get(0);
3017     unsigned c2 = second->Get(0);
3018     return MakeOrFindTwoCharacterString(this, c1, c2);
3019   }
3020 
3021   bool first_is_ascii = first->IsAsciiRepresentation();
3022   bool second_is_ascii = second->IsAsciiRepresentation();
3023   bool is_ascii = first_is_ascii && second_is_ascii;
3024 
3025   // Make sure that an out of memory exception is thrown if the length
3026   // of the new cons string is too large.
3027   if (length > String::kMaxLength || length < 0) {
3028     isolate()->context()->mark_out_of_memory();
3029     return Failure::OutOfMemoryException();
3030   }
3031 
3032   bool is_ascii_data_in_two_byte_string = false;
3033   if (!is_ascii) {
3034     // At least one of the strings uses two-byte representation so we
3035     // can't use the fast case code for short ASCII strings below, but
3036     // we can try to save memory if all chars actually fit in ASCII.
3037     is_ascii_data_in_two_byte_string =
3038         first->HasOnlyAsciiChars() && second->HasOnlyAsciiChars();
3039     if (is_ascii_data_in_two_byte_string) {
3040       isolate_->counters()->string_add_runtime_ext_to_ascii()->Increment();
3041     }
3042   }
3043 
3044   // If the resulting string is small make a flat string.
3045   if (length < ConsString::kMinLength) {
3046     // Note that neither of the two inputs can be a slice because:
3047     STATIC_ASSERT(ConsString::kMinLength <= SlicedString::kMinLength);
3048     ASSERT(first->IsFlat());
3049     ASSERT(second->IsFlat());
3050     if (is_ascii) {
3051       Object* result;
3052       { MaybeObject* maybe_result = AllocateRawAsciiString(length);
3053         if (!maybe_result->ToObject(&result)) return maybe_result;
3054       }
3055       // Copy the characters into the new object.
3056       char* dest = SeqAsciiString::cast(result)->GetChars();
3057       // Copy first part.
3058       const char* src;
3059       if (first->IsExternalString()) {
3060         src = ExternalAsciiString::cast(first)->GetChars();
3061       } else {
3062         src = SeqAsciiString::cast(first)->GetChars();
3063       }
3064       for (int i = 0; i < first_length; i++) *dest++ = src[i];
3065       // Copy second part.
3066       if (second->IsExternalString()) {
3067         src = ExternalAsciiString::cast(second)->GetChars();
3068       } else {
3069         src = SeqAsciiString::cast(second)->GetChars();
3070       }
3071       for (int i = 0; i < second_length; i++) *dest++ = src[i];
3072       return result;
3073     } else {
3074       if (is_ascii_data_in_two_byte_string) {
3075         Object* result;
3076         { MaybeObject* maybe_result = AllocateRawAsciiString(length);
3077           if (!maybe_result->ToObject(&result)) return maybe_result;
3078         }
3079         // Copy the characters into the new object.
3080         char* dest = SeqAsciiString::cast(result)->GetChars();
3081         String::WriteToFlat(first, dest, 0, first_length);
3082         String::WriteToFlat(second, dest + first_length, 0, second_length);
3083         isolate_->counters()->string_add_runtime_ext_to_ascii()->Increment();
3084         return result;
3085       }
3086 
3087       Object* result;
3088       { MaybeObject* maybe_result = AllocateRawTwoByteString(length);
3089         if (!maybe_result->ToObject(&result)) return maybe_result;
3090       }
3091       // Copy the characters into the new object.
3092       uc16* dest = SeqTwoByteString::cast(result)->GetChars();
3093       String::WriteToFlat(first, dest, 0, first_length);
3094       String::WriteToFlat(second, dest + first_length, 0, second_length);
3095       return result;
3096     }
3097   }
3098 
3099   Map* map = (is_ascii || is_ascii_data_in_two_byte_string) ?
3100       cons_ascii_string_map() : cons_string_map();
3101 
3102   Object* result;
3103   { MaybeObject* maybe_result = Allocate(map, NEW_SPACE);
3104     if (!maybe_result->ToObject(&result)) return maybe_result;
3105   }
3106 
3107   AssertNoAllocation no_gc;
3108   ConsString* cons_string = ConsString::cast(result);
3109   WriteBarrierMode mode = cons_string->GetWriteBarrierMode(no_gc);
3110   cons_string->set_length(length);
3111   cons_string->set_hash_field(String::kEmptyHashField);
3112   cons_string->set_first(first, mode);
3113   cons_string->set_second(second, mode);
3114   return result;
3115 }
3116 
3117 
AllocateSubString(String * buffer,int start,int end,PretenureFlag pretenure)3118 MaybeObject* Heap::AllocateSubString(String* buffer,
3119                                      int start,
3120                                      int end,
3121                                      PretenureFlag pretenure) {
3122   int length = end - start;
3123   if (length <= 0) {
3124     return empty_string();
3125   } else if (length == 1) {
3126     return LookupSingleCharacterStringFromCode(buffer->Get(start));
3127   } else if (length == 2) {
3128     // Optimization for 2-byte strings often used as keys in a decompression
3129     // dictionary.  Check whether we already have the string in the symbol
3130     // table to prevent creation of many unneccesary strings.
3131     unsigned c1 = buffer->Get(start);
3132     unsigned c2 = buffer->Get(start + 1);
3133     return MakeOrFindTwoCharacterString(this, c1, c2);
3134   }
3135 
3136   // Make an attempt to flatten the buffer to reduce access time.
3137   buffer = buffer->TryFlattenGetString();
3138 
3139   if (!FLAG_string_slices ||
3140       !buffer->IsFlat() ||
3141       length < SlicedString::kMinLength ||
3142       pretenure == TENURED) {
3143     Object* result;
3144     // WriteToFlat takes care of the case when an indirect string has a
3145     // different encoding from its underlying string.  These encodings may
3146     // differ because of externalization.
3147     bool is_ascii = buffer->IsAsciiRepresentation();
3148     { MaybeObject* maybe_result = is_ascii
3149                                   ? AllocateRawAsciiString(length, pretenure)
3150                                   : AllocateRawTwoByteString(length, pretenure);
3151       if (!maybe_result->ToObject(&result)) return maybe_result;
3152     }
3153     String* string_result = String::cast(result);
3154     // Copy the characters into the new object.
3155     if (is_ascii) {
3156       ASSERT(string_result->IsAsciiRepresentation());
3157       char* dest = SeqAsciiString::cast(string_result)->GetChars();
3158       String::WriteToFlat(buffer, dest, start, end);
3159     } else {
3160       ASSERT(string_result->IsTwoByteRepresentation());
3161       uc16* dest = SeqTwoByteString::cast(string_result)->GetChars();
3162       String::WriteToFlat(buffer, dest, start, end);
3163     }
3164     return result;
3165   }
3166 
3167   ASSERT(buffer->IsFlat());
3168 #if DEBUG
3169   if (FLAG_verify_heap) {
3170     buffer->StringVerify();
3171   }
3172 #endif
3173 
3174   Object* result;
3175   // When slicing an indirect string we use its encoding for a newly created
3176   // slice and don't check the encoding of the underlying string.  This is safe
3177   // even if the encodings are different because of externalization.  If an
3178   // indirect ASCII string is pointing to a two-byte string, the two-byte char
3179   // codes of the underlying string must still fit into ASCII (because
3180   // externalization must not change char codes).
3181   { Map* map = buffer->IsAsciiRepresentation()
3182                  ? sliced_ascii_string_map()
3183                  : sliced_string_map();
3184     MaybeObject* maybe_result = Allocate(map, NEW_SPACE);
3185     if (!maybe_result->ToObject(&result)) return maybe_result;
3186   }
3187 
3188   AssertNoAllocation no_gc;
3189   SlicedString* sliced_string = SlicedString::cast(result);
3190   sliced_string->set_length(length);
3191   sliced_string->set_hash_field(String::kEmptyHashField);
3192   if (buffer->IsConsString()) {
3193     ConsString* cons = ConsString::cast(buffer);
3194     ASSERT(cons->second()->length() == 0);
3195     sliced_string->set_parent(cons->first());
3196     sliced_string->set_offset(start);
3197   } else if (buffer->IsSlicedString()) {
3198     // Prevent nesting sliced strings.
3199     SlicedString* parent_slice = SlicedString::cast(buffer);
3200     sliced_string->set_parent(parent_slice->parent());
3201     sliced_string->set_offset(start + parent_slice->offset());
3202   } else {
3203     sliced_string->set_parent(buffer);
3204     sliced_string->set_offset(start);
3205   }
3206   ASSERT(sliced_string->parent()->IsSeqString() ||
3207          sliced_string->parent()->IsExternalString());
3208   return result;
3209 }
3210 
3211 
AllocateExternalStringFromAscii(const ExternalAsciiString::Resource * resource)3212 MaybeObject* Heap::AllocateExternalStringFromAscii(
3213     const ExternalAsciiString::Resource* resource) {
3214   size_t length = resource->length();
3215   if (length > static_cast<size_t>(String::kMaxLength)) {
3216     isolate()->context()->mark_out_of_memory();
3217     return Failure::OutOfMemoryException();
3218   }
3219 
3220   Map* map = external_ascii_string_map();
3221   Object* result;
3222   { MaybeObject* maybe_result = Allocate(map, NEW_SPACE);
3223     if (!maybe_result->ToObject(&result)) return maybe_result;
3224   }
3225 
3226   ExternalAsciiString* external_string = ExternalAsciiString::cast(result);
3227   external_string->set_length(static_cast<int>(length));
3228   external_string->set_hash_field(String::kEmptyHashField);
3229   external_string->set_resource(resource);
3230 
3231   return result;
3232 }
3233 
3234 
AllocateExternalStringFromTwoByte(const ExternalTwoByteString::Resource * resource)3235 MaybeObject* Heap::AllocateExternalStringFromTwoByte(
3236     const ExternalTwoByteString::Resource* resource) {
3237   size_t length = resource->length();
3238   if (length > static_cast<size_t>(String::kMaxLength)) {
3239     isolate()->context()->mark_out_of_memory();
3240     return Failure::OutOfMemoryException();
3241   }
3242 
3243   // For small strings we check whether the resource contains only
3244   // ASCII characters.  If yes, we use a different string map.
3245   static const size_t kAsciiCheckLengthLimit = 32;
3246   bool is_ascii = length <= kAsciiCheckLengthLimit &&
3247       String::IsAscii(resource->data(), static_cast<int>(length));
3248   Map* map = is_ascii ?
3249       external_string_with_ascii_data_map() : external_string_map();
3250   Object* result;
3251   { MaybeObject* maybe_result = Allocate(map, NEW_SPACE);
3252     if (!maybe_result->ToObject(&result)) return maybe_result;
3253   }
3254 
3255   ExternalTwoByteString* external_string = ExternalTwoByteString::cast(result);
3256   external_string->set_length(static_cast<int>(length));
3257   external_string->set_hash_field(String::kEmptyHashField);
3258   external_string->set_resource(resource);
3259 
3260   return result;
3261 }
3262 
3263 
LookupSingleCharacterStringFromCode(uint16_t code)3264 MaybeObject* Heap::LookupSingleCharacterStringFromCode(uint16_t code) {
3265   if (code <= String::kMaxAsciiCharCode) {
3266     Object* value = single_character_string_cache()->get(code);
3267     if (value != undefined_value()) return value;
3268 
3269     char buffer[1];
3270     buffer[0] = static_cast<char>(code);
3271     Object* result;
3272     MaybeObject* maybe_result = LookupSymbol(Vector<const char>(buffer, 1));
3273 
3274     if (!maybe_result->ToObject(&result)) return maybe_result;
3275     single_character_string_cache()->set(code, result);
3276     return result;
3277   }
3278 
3279   Object* result;
3280   { MaybeObject* maybe_result = AllocateRawTwoByteString(1);
3281     if (!maybe_result->ToObject(&result)) return maybe_result;
3282   }
3283   String* answer = String::cast(result);
3284   answer->Set(0, code);
3285   return answer;
3286 }
3287 
3288 
AllocateByteArray(int length,PretenureFlag pretenure)3289 MaybeObject* Heap::AllocateByteArray(int length, PretenureFlag pretenure) {
3290   if (length < 0 || length > ByteArray::kMaxLength) {
3291     return Failure::OutOfMemoryException();
3292   }
3293   if (pretenure == NOT_TENURED) {
3294     return AllocateByteArray(length);
3295   }
3296   int size = ByteArray::SizeFor(length);
3297   Object* result;
3298   { MaybeObject* maybe_result = (size <= Page::kMaxNonCodeHeapObjectSize)
3299                    ? old_data_space_->AllocateRaw(size)
3300                    : lo_space_->AllocateRaw(size, NOT_EXECUTABLE);
3301     if (!maybe_result->ToObject(&result)) return maybe_result;
3302   }
3303 
3304   reinterpret_cast<ByteArray*>(result)->set_map_no_write_barrier(
3305       byte_array_map());
3306   reinterpret_cast<ByteArray*>(result)->set_length(length);
3307   return result;
3308 }
3309 
3310 
AllocateByteArray(int length)3311 MaybeObject* Heap::AllocateByteArray(int length) {
3312   if (length < 0 || length > ByteArray::kMaxLength) {
3313     return Failure::OutOfMemoryException();
3314   }
3315   int size = ByteArray::SizeFor(length);
3316   AllocationSpace space =
3317       (size > Page::kMaxNonCodeHeapObjectSize) ? LO_SPACE : NEW_SPACE;
3318   Object* result;
3319   { MaybeObject* maybe_result = AllocateRaw(size, space, OLD_DATA_SPACE);
3320     if (!maybe_result->ToObject(&result)) return maybe_result;
3321   }
3322 
3323   reinterpret_cast<ByteArray*>(result)->set_map_no_write_barrier(
3324       byte_array_map());
3325   reinterpret_cast<ByteArray*>(result)->set_length(length);
3326   return result;
3327 }
3328 
3329 
CreateFillerObjectAt(Address addr,int size)3330 void Heap::CreateFillerObjectAt(Address addr, int size) {
3331   if (size == 0) return;
3332   HeapObject* filler = HeapObject::FromAddress(addr);
3333   if (size == kPointerSize) {
3334     filler->set_map_no_write_barrier(one_pointer_filler_map());
3335   } else if (size == 2 * kPointerSize) {
3336     filler->set_map_no_write_barrier(two_pointer_filler_map());
3337   } else {
3338     filler->set_map_no_write_barrier(free_space_map());
3339     FreeSpace::cast(filler)->set_size(size);
3340   }
3341 }
3342 
3343 
AllocateExternalArray(int length,ExternalArrayType array_type,void * external_pointer,PretenureFlag pretenure)3344 MaybeObject* Heap::AllocateExternalArray(int length,
3345                                          ExternalArrayType array_type,
3346                                          void* external_pointer,
3347                                          PretenureFlag pretenure) {
3348   AllocationSpace space = (pretenure == TENURED) ? OLD_DATA_SPACE : NEW_SPACE;
3349   Object* result;
3350   { MaybeObject* maybe_result = AllocateRaw(ExternalArray::kAlignedSize,
3351                                             space,
3352                                             OLD_DATA_SPACE);
3353     if (!maybe_result->ToObject(&result)) return maybe_result;
3354   }
3355 
3356   reinterpret_cast<ExternalArray*>(result)->set_map_no_write_barrier(
3357       MapForExternalArrayType(array_type));
3358   reinterpret_cast<ExternalArray*>(result)->set_length(length);
3359   reinterpret_cast<ExternalArray*>(result)->set_external_pointer(
3360       external_pointer);
3361 
3362   return result;
3363 }
3364 
3365 
CreateCode(const CodeDesc & desc,Code::Flags flags,Handle<Object> self_reference,bool immovable)3366 MaybeObject* Heap::CreateCode(const CodeDesc& desc,
3367                               Code::Flags flags,
3368                               Handle<Object> self_reference,
3369                               bool immovable) {
3370   // Allocate ByteArray before the Code object, so that we do not risk
3371   // leaving uninitialized Code object (and breaking the heap).
3372   ByteArray* reloc_info;
3373   MaybeObject* maybe_reloc_info = AllocateByteArray(desc.reloc_size, TENURED);
3374   if (!maybe_reloc_info->To(&reloc_info)) return maybe_reloc_info;
3375 
3376   // Compute size.
3377   int body_size = RoundUp(desc.instr_size, kObjectAlignment);
3378   int obj_size = Code::SizeFor(body_size);
3379   ASSERT(IsAligned(static_cast<intptr_t>(obj_size), kCodeAlignment));
3380   MaybeObject* maybe_result;
3381   // Large code objects and code objects which should stay at a fixed address
3382   // are allocated in large object space.
3383   if (obj_size > code_space()->AreaSize() || immovable) {
3384     maybe_result = lo_space_->AllocateRaw(obj_size, EXECUTABLE);
3385   } else {
3386     maybe_result = code_space_->AllocateRaw(obj_size);
3387   }
3388 
3389   Object* result;
3390   if (!maybe_result->ToObject(&result)) return maybe_result;
3391 
3392   // Initialize the object
3393   HeapObject::cast(result)->set_map_no_write_barrier(code_map());
3394   Code* code = Code::cast(result);
3395   ASSERT(!isolate_->code_range()->exists() ||
3396       isolate_->code_range()->contains(code->address()));
3397   code->set_instruction_size(desc.instr_size);
3398   code->set_relocation_info(reloc_info);
3399   code->set_flags(flags);
3400   if (code->is_call_stub() || code->is_keyed_call_stub()) {
3401     code->set_check_type(RECEIVER_MAP_CHECK);
3402   }
3403   code->set_deoptimization_data(empty_fixed_array(), SKIP_WRITE_BARRIER);
3404   code->set_type_feedback_info(undefined_value(), SKIP_WRITE_BARRIER);
3405   code->set_handler_table(empty_fixed_array(), SKIP_WRITE_BARRIER);
3406   code->set_gc_metadata(Smi::FromInt(0));
3407   code->set_ic_age(global_ic_age_);
3408   // Allow self references to created code object by patching the handle to
3409   // point to the newly allocated Code object.
3410   if (!self_reference.is_null()) {
3411     *(self_reference.location()) = code;
3412   }
3413   // Migrate generated code.
3414   // The generated code can contain Object** values (typically from handles)
3415   // that are dereferenced during the copy to point directly to the actual heap
3416   // objects. These pointers can include references to the code object itself,
3417   // through the self_reference parameter.
3418   code->CopyFrom(desc);
3419 
3420 #ifdef DEBUG
3421   if (FLAG_verify_heap) {
3422     code->Verify();
3423   }
3424 #endif
3425   return code;
3426 }
3427 
3428 
CopyCode(Code * code)3429 MaybeObject* Heap::CopyCode(Code* code) {
3430   // Allocate an object the same size as the code object.
3431   int obj_size = code->Size();
3432   MaybeObject* maybe_result;
3433   if (obj_size > code_space()->AreaSize()) {
3434     maybe_result = lo_space_->AllocateRaw(obj_size, EXECUTABLE);
3435   } else {
3436     maybe_result = code_space_->AllocateRaw(obj_size);
3437   }
3438 
3439   Object* result;
3440   if (!maybe_result->ToObject(&result)) return maybe_result;
3441 
3442   // Copy code object.
3443   Address old_addr = code->address();
3444   Address new_addr = reinterpret_cast<HeapObject*>(result)->address();
3445   CopyBlock(new_addr, old_addr, obj_size);
3446   // Relocate the copy.
3447   Code* new_code = Code::cast(result);
3448   ASSERT(!isolate_->code_range()->exists() ||
3449       isolate_->code_range()->contains(code->address()));
3450   new_code->Relocate(new_addr - old_addr);
3451   return new_code;
3452 }
3453 
3454 
CopyCode(Code * code,Vector<byte> reloc_info)3455 MaybeObject* Heap::CopyCode(Code* code, Vector<byte> reloc_info) {
3456   // Allocate ByteArray before the Code object, so that we do not risk
3457   // leaving uninitialized Code object (and breaking the heap).
3458   Object* reloc_info_array;
3459   { MaybeObject* maybe_reloc_info_array =
3460         AllocateByteArray(reloc_info.length(), TENURED);
3461     if (!maybe_reloc_info_array->ToObject(&reloc_info_array)) {
3462       return maybe_reloc_info_array;
3463     }
3464   }
3465 
3466   int new_body_size = RoundUp(code->instruction_size(), kObjectAlignment);
3467 
3468   int new_obj_size = Code::SizeFor(new_body_size);
3469 
3470   Address old_addr = code->address();
3471 
3472   size_t relocation_offset =
3473       static_cast<size_t>(code->instruction_end() - old_addr);
3474 
3475   MaybeObject* maybe_result;
3476   if (new_obj_size > code_space()->AreaSize()) {
3477     maybe_result = lo_space_->AllocateRaw(new_obj_size, EXECUTABLE);
3478   } else {
3479     maybe_result = code_space_->AllocateRaw(new_obj_size);
3480   }
3481 
3482   Object* result;
3483   if (!maybe_result->ToObject(&result)) return maybe_result;
3484 
3485   // Copy code object.
3486   Address new_addr = reinterpret_cast<HeapObject*>(result)->address();
3487 
3488   // Copy header and instructions.
3489   memcpy(new_addr, old_addr, relocation_offset);
3490 
3491   Code* new_code = Code::cast(result);
3492   new_code->set_relocation_info(ByteArray::cast(reloc_info_array));
3493 
3494   // Copy patched rinfo.
3495   memcpy(new_code->relocation_start(), reloc_info.start(), reloc_info.length());
3496 
3497   // Relocate the copy.
3498   ASSERT(!isolate_->code_range()->exists() ||
3499       isolate_->code_range()->contains(code->address()));
3500   new_code->Relocate(new_addr - old_addr);
3501 
3502 #ifdef DEBUG
3503   if (FLAG_verify_heap) {
3504     code->Verify();
3505   }
3506 #endif
3507   return new_code;
3508 }
3509 
3510 
Allocate(Map * map,AllocationSpace space)3511 MaybeObject* Heap::Allocate(Map* map, AllocationSpace space) {
3512   ASSERT(gc_state_ == NOT_IN_GC);
3513   ASSERT(map->instance_type() != MAP_TYPE);
3514   // If allocation failures are disallowed, we may allocate in a different
3515   // space when new space is full and the object is not a large object.
3516   AllocationSpace retry_space =
3517       (space != NEW_SPACE) ? space : TargetSpaceId(map->instance_type());
3518   Object* result;
3519   { MaybeObject* maybe_result =
3520         AllocateRaw(map->instance_size(), space, retry_space);
3521     if (!maybe_result->ToObject(&result)) return maybe_result;
3522   }
3523   // No need for write barrier since object is white and map is in old space.
3524   HeapObject::cast(result)->set_map_no_write_barrier(map);
3525   return result;
3526 }
3527 
3528 
InitializeFunction(JSFunction * function,SharedFunctionInfo * shared,Object * prototype)3529 void Heap::InitializeFunction(JSFunction* function,
3530                               SharedFunctionInfo* shared,
3531                               Object* prototype) {
3532   ASSERT(!prototype->IsMap());
3533   function->initialize_properties();
3534   function->initialize_elements();
3535   function->set_shared(shared);
3536   function->set_code(shared->code());
3537   function->set_prototype_or_initial_map(prototype);
3538   function->set_context(undefined_value());
3539   function->set_literals_or_bindings(empty_fixed_array());
3540   function->set_next_function_link(undefined_value());
3541 }
3542 
3543 
AllocateFunctionPrototype(JSFunction * function)3544 MaybeObject* Heap::AllocateFunctionPrototype(JSFunction* function) {
3545   // Allocate the prototype.  Make sure to use the object function
3546   // from the function's context, since the function can be from a
3547   // different context.
3548   JSFunction* object_function =
3549       function->context()->global_context()->object_function();
3550 
3551   // Each function prototype gets a copy of the object function map.
3552   // This avoid unwanted sharing of maps between prototypes of different
3553   // constructors.
3554   Map* new_map;
3555   ASSERT(object_function->has_initial_map());
3556   { MaybeObject* maybe_map =
3557         object_function->initial_map()->CopyDropTransitions();
3558     if (!maybe_map->To<Map>(&new_map)) return maybe_map;
3559   }
3560   Object* prototype;
3561   { MaybeObject* maybe_prototype = AllocateJSObjectFromMap(new_map);
3562     if (!maybe_prototype->ToObject(&prototype)) return maybe_prototype;
3563   }
3564   // When creating the prototype for the function we must set its
3565   // constructor to the function.
3566   Object* result;
3567   { MaybeObject* maybe_result =
3568         JSObject::cast(prototype)->SetLocalPropertyIgnoreAttributes(
3569             constructor_symbol(), function, DONT_ENUM);
3570     if (!maybe_result->ToObject(&result)) return maybe_result;
3571   }
3572   return prototype;
3573 }
3574 
3575 
AllocateFunction(Map * function_map,SharedFunctionInfo * shared,Object * prototype,PretenureFlag pretenure)3576 MaybeObject* Heap::AllocateFunction(Map* function_map,
3577                                     SharedFunctionInfo* shared,
3578                                     Object* prototype,
3579                                     PretenureFlag pretenure) {
3580   AllocationSpace space =
3581       (pretenure == TENURED) ? OLD_POINTER_SPACE : NEW_SPACE;
3582   Object* result;
3583   { MaybeObject* maybe_result = Allocate(function_map, space);
3584     if (!maybe_result->ToObject(&result)) return maybe_result;
3585   }
3586   InitializeFunction(JSFunction::cast(result), shared, prototype);
3587   return result;
3588 }
3589 
3590 
AllocateArgumentsObject(Object * callee,int length)3591 MaybeObject* Heap::AllocateArgumentsObject(Object* callee, int length) {
3592   // To get fast allocation and map sharing for arguments objects we
3593   // allocate them based on an arguments boilerplate.
3594 
3595   JSObject* boilerplate;
3596   int arguments_object_size;
3597   bool strict_mode_callee = callee->IsJSFunction() &&
3598       !JSFunction::cast(callee)->shared()->is_classic_mode();
3599   if (strict_mode_callee) {
3600     boilerplate =
3601         isolate()->context()->global_context()->
3602             strict_mode_arguments_boilerplate();
3603     arguments_object_size = kArgumentsObjectSizeStrict;
3604   } else {
3605     boilerplate =
3606         isolate()->context()->global_context()->arguments_boilerplate();
3607     arguments_object_size = kArgumentsObjectSize;
3608   }
3609 
3610   // This calls Copy directly rather than using Heap::AllocateRaw so we
3611   // duplicate the check here.
3612   ASSERT(allocation_allowed_ && gc_state_ == NOT_IN_GC);
3613 
3614   // Check that the size of the boilerplate matches our
3615   // expectations. The ArgumentsAccessStub::GenerateNewObject relies
3616   // on the size being a known constant.
3617   ASSERT(arguments_object_size == boilerplate->map()->instance_size());
3618 
3619   // Do the allocation.
3620   Object* result;
3621   { MaybeObject* maybe_result =
3622         AllocateRaw(arguments_object_size, NEW_SPACE, OLD_POINTER_SPACE);
3623     if (!maybe_result->ToObject(&result)) return maybe_result;
3624   }
3625 
3626   // Copy the content. The arguments boilerplate doesn't have any
3627   // fields that point to new space so it's safe to skip the write
3628   // barrier here.
3629   CopyBlock(HeapObject::cast(result)->address(),
3630             boilerplate->address(),
3631             JSObject::kHeaderSize);
3632 
3633   // Set the length property.
3634   JSObject::cast(result)->InObjectPropertyAtPut(kArgumentsLengthIndex,
3635                                                 Smi::FromInt(length),
3636                                                 SKIP_WRITE_BARRIER);
3637   // Set the callee property for non-strict mode arguments object only.
3638   if (!strict_mode_callee) {
3639     JSObject::cast(result)->InObjectPropertyAtPut(kArgumentsCalleeIndex,
3640                                                   callee);
3641   }
3642 
3643   // Check the state of the object
3644   ASSERT(JSObject::cast(result)->HasFastProperties());
3645   ASSERT(JSObject::cast(result)->HasFastElements());
3646 
3647   return result;
3648 }
3649 
3650 
HasDuplicates(DescriptorArray * descriptors)3651 static bool HasDuplicates(DescriptorArray* descriptors) {
3652   int count = descriptors->number_of_descriptors();
3653   if (count > 1) {
3654     String* prev_key = descriptors->GetKey(0);
3655     for (int i = 1; i != count; i++) {
3656       String* current_key = descriptors->GetKey(i);
3657       if (prev_key == current_key) return true;
3658       prev_key = current_key;
3659     }
3660   }
3661   return false;
3662 }
3663 
3664 
AllocateInitialMap(JSFunction * fun)3665 MaybeObject* Heap::AllocateInitialMap(JSFunction* fun) {
3666   ASSERT(!fun->has_initial_map());
3667 
3668   // First create a new map with the size and number of in-object properties
3669   // suggested by the function.
3670   int instance_size = fun->shared()->CalculateInstanceSize();
3671   int in_object_properties = fun->shared()->CalculateInObjectProperties();
3672   Object* map_obj;
3673   { MaybeObject* maybe_map_obj = AllocateMap(JS_OBJECT_TYPE, instance_size);
3674     if (!maybe_map_obj->ToObject(&map_obj)) return maybe_map_obj;
3675   }
3676 
3677   // Fetch or allocate prototype.
3678   Object* prototype;
3679   if (fun->has_instance_prototype()) {
3680     prototype = fun->instance_prototype();
3681   } else {
3682     { MaybeObject* maybe_prototype = AllocateFunctionPrototype(fun);
3683       if (!maybe_prototype->ToObject(&prototype)) return maybe_prototype;
3684     }
3685   }
3686   Map* map = Map::cast(map_obj);
3687   map->set_inobject_properties(in_object_properties);
3688   map->set_unused_property_fields(in_object_properties);
3689   map->set_prototype(prototype);
3690   ASSERT(map->has_fast_elements());
3691 
3692   // If the function has only simple this property assignments add
3693   // field descriptors for these to the initial map as the object
3694   // cannot be constructed without having these properties.  Guard by
3695   // the inline_new flag so we only change the map if we generate a
3696   // specialized construct stub.
3697   ASSERT(in_object_properties <= Map::kMaxPreAllocatedPropertyFields);
3698   if (fun->shared()->CanGenerateInlineConstructor(prototype)) {
3699     int count = fun->shared()->this_property_assignments_count();
3700     if (count > in_object_properties) {
3701       // Inline constructor can only handle inobject properties.
3702       fun->shared()->ForbidInlineConstructor();
3703     } else {
3704       DescriptorArray* descriptors;
3705       { MaybeObject* maybe_descriptors_obj = DescriptorArray::Allocate(count);
3706         if (!maybe_descriptors_obj->To<DescriptorArray>(&descriptors)) {
3707           return maybe_descriptors_obj;
3708         }
3709       }
3710       DescriptorArray::WhitenessWitness witness(descriptors);
3711       for (int i = 0; i < count; i++) {
3712         String* name = fun->shared()->GetThisPropertyAssignmentName(i);
3713         ASSERT(name->IsSymbol());
3714         FieldDescriptor field(name, i, NONE);
3715         field.SetEnumerationIndex(i);
3716         descriptors->Set(i, &field, witness);
3717       }
3718       descriptors->SetNextEnumerationIndex(count);
3719       descriptors->SortUnchecked(witness);
3720 
3721       // The descriptors may contain duplicates because the compiler does not
3722       // guarantee the uniqueness of property names (it would have required
3723       // quadratic time). Once the descriptors are sorted we can check for
3724       // duplicates in linear time.
3725       if (HasDuplicates(descriptors)) {
3726         fun->shared()->ForbidInlineConstructor();
3727       } else {
3728         map->set_instance_descriptors(descriptors);
3729         map->set_pre_allocated_property_fields(count);
3730         map->set_unused_property_fields(in_object_properties - count);
3731       }
3732     }
3733   }
3734 
3735   fun->shared()->StartInobjectSlackTracking(map);
3736 
3737   return map;
3738 }
3739 
3740 
InitializeJSObjectFromMap(JSObject * obj,FixedArray * properties,Map * map)3741 void Heap::InitializeJSObjectFromMap(JSObject* obj,
3742                                      FixedArray* properties,
3743                                      Map* map) {
3744   obj->set_properties(properties);
3745   obj->initialize_elements();
3746   // TODO(1240798): Initialize the object's body using valid initial values
3747   // according to the object's initial map.  For example, if the map's
3748   // instance type is JS_ARRAY_TYPE, the length field should be initialized
3749   // to a number (e.g. Smi::FromInt(0)) and the elements initialized to a
3750   // fixed array (e.g. Heap::empty_fixed_array()).  Currently, the object
3751   // verification code has to cope with (temporarily) invalid objects.  See
3752   // for example, JSArray::JSArrayVerify).
3753   Object* filler;
3754   // We cannot always fill with one_pointer_filler_map because objects
3755   // created from API functions expect their internal fields to be initialized
3756   // with undefined_value.
3757   // Pre-allocated fields need to be initialized with undefined_value as well
3758   // so that object accesses before the constructor completes (e.g. in the
3759   // debugger) will not cause a crash.
3760   if (map->constructor()->IsJSFunction() &&
3761       JSFunction::cast(map->constructor())->shared()->
3762           IsInobjectSlackTrackingInProgress()) {
3763     // We might want to shrink the object later.
3764     ASSERT(obj->GetInternalFieldCount() == 0);
3765     filler = Heap::one_pointer_filler_map();
3766   } else {
3767     filler = Heap::undefined_value();
3768   }
3769   obj->InitializeBody(map, Heap::undefined_value(), filler);
3770 }
3771 
3772 
AllocateJSObjectFromMap(Map * map,PretenureFlag pretenure)3773 MaybeObject* Heap::AllocateJSObjectFromMap(Map* map, PretenureFlag pretenure) {
3774   // JSFunctions should be allocated using AllocateFunction to be
3775   // properly initialized.
3776   ASSERT(map->instance_type() != JS_FUNCTION_TYPE);
3777 
3778   // Both types of global objects should be allocated using
3779   // AllocateGlobalObject to be properly initialized.
3780   ASSERT(map->instance_type() != JS_GLOBAL_OBJECT_TYPE);
3781   ASSERT(map->instance_type() != JS_BUILTINS_OBJECT_TYPE);
3782 
3783   // Allocate the backing storage for the properties.
3784   int prop_size =
3785       map->pre_allocated_property_fields() +
3786       map->unused_property_fields() -
3787       map->inobject_properties();
3788   ASSERT(prop_size >= 0);
3789   Object* properties;
3790   { MaybeObject* maybe_properties = AllocateFixedArray(prop_size, pretenure);
3791     if (!maybe_properties->ToObject(&properties)) return maybe_properties;
3792   }
3793 
3794   // Allocate the JSObject.
3795   AllocationSpace space =
3796       (pretenure == TENURED) ? OLD_POINTER_SPACE : NEW_SPACE;
3797   if (map->instance_size() > Page::kMaxNonCodeHeapObjectSize) space = LO_SPACE;
3798   Object* obj;
3799   { MaybeObject* maybe_obj = Allocate(map, space);
3800     if (!maybe_obj->ToObject(&obj)) return maybe_obj;
3801   }
3802 
3803   // Initialize the JSObject.
3804   InitializeJSObjectFromMap(JSObject::cast(obj),
3805                             FixedArray::cast(properties),
3806                             map);
3807   ASSERT(JSObject::cast(obj)->HasFastSmiOnlyElements() ||
3808          JSObject::cast(obj)->HasFastElements());
3809   return obj;
3810 }
3811 
3812 
AllocateJSObject(JSFunction * constructor,PretenureFlag pretenure)3813 MaybeObject* Heap::AllocateJSObject(JSFunction* constructor,
3814                                     PretenureFlag pretenure) {
3815   // Allocate the initial map if absent.
3816   if (!constructor->has_initial_map()) {
3817     Object* initial_map;
3818     { MaybeObject* maybe_initial_map = AllocateInitialMap(constructor);
3819       if (!maybe_initial_map->ToObject(&initial_map)) return maybe_initial_map;
3820     }
3821     constructor->set_initial_map(Map::cast(initial_map));
3822     Map::cast(initial_map)->set_constructor(constructor);
3823   }
3824   // Allocate the object based on the constructors initial map.
3825   MaybeObject* result = AllocateJSObjectFromMap(
3826       constructor->initial_map(), pretenure);
3827 #ifdef DEBUG
3828   // Make sure result is NOT a global object if valid.
3829   Object* non_failure;
3830   ASSERT(!result->ToObject(&non_failure) || !non_failure->IsGlobalObject());
3831 #endif
3832   return result;
3833 }
3834 
3835 
AllocateJSArrayAndStorage(ElementsKind elements_kind,int length,int capacity,ArrayStorageAllocationMode mode,PretenureFlag pretenure)3836 MaybeObject* Heap::AllocateJSArrayAndStorage(
3837     ElementsKind elements_kind,
3838     int length,
3839     int capacity,
3840     ArrayStorageAllocationMode mode,
3841     PretenureFlag pretenure) {
3842   ASSERT(capacity >= length);
3843   MaybeObject* maybe_array = AllocateJSArray(elements_kind, pretenure);
3844   JSArray* array;
3845   if (!maybe_array->To(&array)) return maybe_array;
3846 
3847   if (capacity == 0) {
3848     array->set_length(Smi::FromInt(0));
3849     array->set_elements(empty_fixed_array());
3850     return array;
3851   }
3852 
3853   FixedArrayBase* elms;
3854   MaybeObject* maybe_elms = NULL;
3855   if (elements_kind == FAST_DOUBLE_ELEMENTS) {
3856     if (mode == DONT_INITIALIZE_ARRAY_ELEMENTS) {
3857       maybe_elms = AllocateUninitializedFixedDoubleArray(capacity);
3858     } else {
3859       ASSERT(mode == INITIALIZE_ARRAY_ELEMENTS_WITH_HOLE);
3860       maybe_elms = AllocateFixedDoubleArrayWithHoles(capacity);
3861     }
3862   } else {
3863     ASSERT(elements_kind == FAST_ELEMENTS ||
3864            elements_kind == FAST_SMI_ONLY_ELEMENTS);
3865     if (mode == DONT_INITIALIZE_ARRAY_ELEMENTS) {
3866       maybe_elms = AllocateUninitializedFixedArray(capacity);
3867     } else {
3868       ASSERT(mode == INITIALIZE_ARRAY_ELEMENTS_WITH_HOLE);
3869       maybe_elms = AllocateFixedArrayWithHoles(capacity);
3870     }
3871   }
3872   if (!maybe_elms->To(&elms)) return maybe_elms;
3873 
3874   array->set_elements(elms);
3875   array->set_length(Smi::FromInt(length));
3876   return array;
3877 }
3878 
3879 
AllocateJSArrayWithElements(FixedArrayBase * elements,ElementsKind elements_kind,PretenureFlag pretenure)3880 MaybeObject* Heap::AllocateJSArrayWithElements(
3881     FixedArrayBase* elements,
3882     ElementsKind elements_kind,
3883     PretenureFlag pretenure) {
3884   MaybeObject* maybe_array = AllocateJSArray(elements_kind, pretenure);
3885   JSArray* array;
3886   if (!maybe_array->To(&array)) return maybe_array;
3887 
3888   array->set_elements(elements);
3889   array->set_length(Smi::FromInt(elements->length()));
3890   return array;
3891 }
3892 
3893 
AllocateJSProxy(Object * handler,Object * prototype)3894 MaybeObject* Heap::AllocateJSProxy(Object* handler, Object* prototype) {
3895   // Allocate map.
3896   // TODO(rossberg): Once we optimize proxies, think about a scheme to share
3897   // maps. Will probably depend on the identity of the handler object, too.
3898   Map* map;
3899   MaybeObject* maybe_map_obj = AllocateMap(JS_PROXY_TYPE, JSProxy::kSize);
3900   if (!maybe_map_obj->To<Map>(&map)) return maybe_map_obj;
3901   map->set_prototype(prototype);
3902 
3903   // Allocate the proxy object.
3904   JSProxy* result;
3905   MaybeObject* maybe_result = Allocate(map, NEW_SPACE);
3906   if (!maybe_result->To<JSProxy>(&result)) return maybe_result;
3907   result->InitializeBody(map->instance_size(), Smi::FromInt(0));
3908   result->set_handler(handler);
3909   result->set_hash(undefined_value(), SKIP_WRITE_BARRIER);
3910   return result;
3911 }
3912 
3913 
AllocateJSFunctionProxy(Object * handler,Object * call_trap,Object * construct_trap,Object * prototype)3914 MaybeObject* Heap::AllocateJSFunctionProxy(Object* handler,
3915                                            Object* call_trap,
3916                                            Object* construct_trap,
3917                                            Object* prototype) {
3918   // Allocate map.
3919   // TODO(rossberg): Once we optimize proxies, think about a scheme to share
3920   // maps. Will probably depend on the identity of the handler object, too.
3921   Map* map;
3922   MaybeObject* maybe_map_obj =
3923       AllocateMap(JS_FUNCTION_PROXY_TYPE, JSFunctionProxy::kSize);
3924   if (!maybe_map_obj->To<Map>(&map)) return maybe_map_obj;
3925   map->set_prototype(prototype);
3926 
3927   // Allocate the proxy object.
3928   JSFunctionProxy* result;
3929   MaybeObject* maybe_result = Allocate(map, NEW_SPACE);
3930   if (!maybe_result->To<JSFunctionProxy>(&result)) return maybe_result;
3931   result->InitializeBody(map->instance_size(), Smi::FromInt(0));
3932   result->set_handler(handler);
3933   result->set_hash(undefined_value(), SKIP_WRITE_BARRIER);
3934   result->set_call_trap(call_trap);
3935   result->set_construct_trap(construct_trap);
3936   return result;
3937 }
3938 
3939 
AllocateGlobalObject(JSFunction * constructor)3940 MaybeObject* Heap::AllocateGlobalObject(JSFunction* constructor) {
3941   ASSERT(constructor->has_initial_map());
3942   Map* map = constructor->initial_map();
3943 
3944   // Make sure no field properties are described in the initial map.
3945   // This guarantees us that normalizing the properties does not
3946   // require us to change property values to JSGlobalPropertyCells.
3947   ASSERT(map->NextFreePropertyIndex() == 0);
3948 
3949   // Make sure we don't have a ton of pre-allocated slots in the
3950   // global objects. They will be unused once we normalize the object.
3951   ASSERT(map->unused_property_fields() == 0);
3952   ASSERT(map->inobject_properties() == 0);
3953 
3954   // Initial size of the backing store to avoid resize of the storage during
3955   // bootstrapping. The size differs between the JS global object ad the
3956   // builtins object.
3957   int initial_size = map->instance_type() == JS_GLOBAL_OBJECT_TYPE ? 64 : 512;
3958 
3959   // Allocate a dictionary object for backing storage.
3960   Object* obj;
3961   { MaybeObject* maybe_obj =
3962         StringDictionary::Allocate(
3963             map->NumberOfDescribedProperties() * 2 + initial_size);
3964     if (!maybe_obj->ToObject(&obj)) return maybe_obj;
3965   }
3966   StringDictionary* dictionary = StringDictionary::cast(obj);
3967 
3968   // The global object might be created from an object template with accessors.
3969   // Fill these accessors into the dictionary.
3970   DescriptorArray* descs = map->instance_descriptors();
3971   for (int i = 0; i < descs->number_of_descriptors(); i++) {
3972     PropertyDetails details(descs->GetDetails(i));
3973     ASSERT(details.type() == CALLBACKS);  // Only accessors are expected.
3974     PropertyDetails d =
3975         PropertyDetails(details.attributes(), CALLBACKS, details.index());
3976     Object* value = descs->GetCallbacksObject(i);
3977     { MaybeObject* maybe_value = AllocateJSGlobalPropertyCell(value);
3978       if (!maybe_value->ToObject(&value)) return maybe_value;
3979     }
3980 
3981     Object* result;
3982     { MaybeObject* maybe_result = dictionary->Add(descs->GetKey(i), value, d);
3983       if (!maybe_result->ToObject(&result)) return maybe_result;
3984     }
3985     dictionary = StringDictionary::cast(result);
3986   }
3987 
3988   // Allocate the global object and initialize it with the backing store.
3989   { MaybeObject* maybe_obj = Allocate(map, OLD_POINTER_SPACE);
3990     if (!maybe_obj->ToObject(&obj)) return maybe_obj;
3991   }
3992   JSObject* global = JSObject::cast(obj);
3993   InitializeJSObjectFromMap(global, dictionary, map);
3994 
3995   // Create a new map for the global object.
3996   { MaybeObject* maybe_obj = map->CopyDropDescriptors();
3997     if (!maybe_obj->ToObject(&obj)) return maybe_obj;
3998   }
3999   Map* new_map = Map::cast(obj);
4000 
4001   // Set up the global object as a normalized object.
4002   global->set_map(new_map);
4003   global->map()->clear_instance_descriptors();
4004   global->set_properties(dictionary);
4005 
4006   // Make sure result is a global object with properties in dictionary.
4007   ASSERT(global->IsGlobalObject());
4008   ASSERT(!global->HasFastProperties());
4009   return global;
4010 }
4011 
4012 
CopyJSObject(JSObject * source)4013 MaybeObject* Heap::CopyJSObject(JSObject* source) {
4014   // Never used to copy functions.  If functions need to be copied we
4015   // have to be careful to clear the literals array.
4016   SLOW_ASSERT(!source->IsJSFunction());
4017 
4018   // Make the clone.
4019   Map* map = source->map();
4020   int object_size = map->instance_size();
4021   Object* clone;
4022 
4023   WriteBarrierMode wb_mode = UPDATE_WRITE_BARRIER;
4024 
4025   // If we're forced to always allocate, we use the general allocation
4026   // functions which may leave us with an object in old space.
4027   if (always_allocate()) {
4028     { MaybeObject* maybe_clone =
4029           AllocateRaw(object_size, NEW_SPACE, OLD_POINTER_SPACE);
4030       if (!maybe_clone->ToObject(&clone)) return maybe_clone;
4031     }
4032     Address clone_address = HeapObject::cast(clone)->address();
4033     CopyBlock(clone_address,
4034               source->address(),
4035               object_size);
4036     // Update write barrier for all fields that lie beyond the header.
4037     RecordWrites(clone_address,
4038                  JSObject::kHeaderSize,
4039                  (object_size - JSObject::kHeaderSize) / kPointerSize);
4040   } else {
4041     wb_mode = SKIP_WRITE_BARRIER;
4042     { MaybeObject* maybe_clone = new_space_.AllocateRaw(object_size);
4043       if (!maybe_clone->ToObject(&clone)) return maybe_clone;
4044     }
4045     SLOW_ASSERT(InNewSpace(clone));
4046     // Since we know the clone is allocated in new space, we can copy
4047     // the contents without worrying about updating the write barrier.
4048     CopyBlock(HeapObject::cast(clone)->address(),
4049               source->address(),
4050               object_size);
4051   }
4052 
4053   SLOW_ASSERT(
4054       JSObject::cast(clone)->GetElementsKind() == source->GetElementsKind());
4055   FixedArrayBase* elements = FixedArrayBase::cast(source->elements());
4056   FixedArray* properties = FixedArray::cast(source->properties());
4057   // Update elements if necessary.
4058   if (elements->length() > 0) {
4059     Object* elem;
4060     { MaybeObject* maybe_elem;
4061       if (elements->map() == fixed_cow_array_map()) {
4062         maybe_elem = FixedArray::cast(elements);
4063       } else if (source->HasFastDoubleElements()) {
4064         maybe_elem = CopyFixedDoubleArray(FixedDoubleArray::cast(elements));
4065       } else {
4066         maybe_elem = CopyFixedArray(FixedArray::cast(elements));
4067       }
4068       if (!maybe_elem->ToObject(&elem)) return maybe_elem;
4069     }
4070     JSObject::cast(clone)->set_elements(FixedArrayBase::cast(elem), wb_mode);
4071   }
4072   // Update properties if necessary.
4073   if (properties->length() > 0) {
4074     Object* prop;
4075     { MaybeObject* maybe_prop = CopyFixedArray(properties);
4076       if (!maybe_prop->ToObject(&prop)) return maybe_prop;
4077     }
4078     JSObject::cast(clone)->set_properties(FixedArray::cast(prop), wb_mode);
4079   }
4080   // Return the new clone.
4081   return clone;
4082 }
4083 
4084 
ReinitializeJSReceiver(JSReceiver * object,InstanceType type,int size)4085 MaybeObject* Heap::ReinitializeJSReceiver(
4086     JSReceiver* object, InstanceType type, int size) {
4087   ASSERT(type >= FIRST_JS_OBJECT_TYPE);
4088 
4089   // Allocate fresh map.
4090   // TODO(rossberg): Once we optimize proxies, cache these maps.
4091   Map* map;
4092   MaybeObject* maybe = AllocateMap(type, size);
4093   if (!maybe->To<Map>(&map)) return maybe;
4094 
4095   // Check that the receiver has at least the size of the fresh object.
4096   int size_difference = object->map()->instance_size() - map->instance_size();
4097   ASSERT(size_difference >= 0);
4098 
4099   map->set_prototype(object->map()->prototype());
4100 
4101   // Allocate the backing storage for the properties.
4102   int prop_size = map->unused_property_fields() - map->inobject_properties();
4103   Object* properties;
4104   maybe = AllocateFixedArray(prop_size, TENURED);
4105   if (!maybe->ToObject(&properties)) return maybe;
4106 
4107   // Functions require some allocation, which might fail here.
4108   SharedFunctionInfo* shared = NULL;
4109   if (type == JS_FUNCTION_TYPE) {
4110     String* name;
4111     maybe = LookupAsciiSymbol("<freezing call trap>");
4112     if (!maybe->To<String>(&name)) return maybe;
4113     maybe = AllocateSharedFunctionInfo(name);
4114     if (!maybe->To<SharedFunctionInfo>(&shared)) return maybe;
4115   }
4116 
4117   // Because of possible retries of this function after failure,
4118   // we must NOT fail after this point, where we have changed the type!
4119 
4120   // Reset the map for the object.
4121   object->set_map(map);
4122   JSObject* jsobj = JSObject::cast(object);
4123 
4124   // Reinitialize the object from the constructor map.
4125   InitializeJSObjectFromMap(jsobj, FixedArray::cast(properties), map);
4126 
4127   // Functions require some minimal initialization.
4128   if (type == JS_FUNCTION_TYPE) {
4129     map->set_function_with_prototype(true);
4130     InitializeFunction(JSFunction::cast(object), shared, the_hole_value());
4131     JSFunction::cast(object)->set_context(
4132         isolate()->context()->global_context());
4133   }
4134 
4135   // Put in filler if the new object is smaller than the old.
4136   if (size_difference > 0) {
4137     CreateFillerObjectAt(
4138         object->address() + map->instance_size(), size_difference);
4139   }
4140 
4141   return object;
4142 }
4143 
4144 
ReinitializeJSGlobalProxy(JSFunction * constructor,JSGlobalProxy * object)4145 MaybeObject* Heap::ReinitializeJSGlobalProxy(JSFunction* constructor,
4146                                              JSGlobalProxy* object) {
4147   ASSERT(constructor->has_initial_map());
4148   Map* map = constructor->initial_map();
4149 
4150   // Check that the already allocated object has the same size and type as
4151   // objects allocated using the constructor.
4152   ASSERT(map->instance_size() == object->map()->instance_size());
4153   ASSERT(map->instance_type() == object->map()->instance_type());
4154 
4155   // Allocate the backing storage for the properties.
4156   int prop_size = map->unused_property_fields() - map->inobject_properties();
4157   Object* properties;
4158   { MaybeObject* maybe_properties = AllocateFixedArray(prop_size, TENURED);
4159     if (!maybe_properties->ToObject(&properties)) return maybe_properties;
4160   }
4161 
4162   // Reset the map for the object.
4163   object->set_map(constructor->initial_map());
4164 
4165   // Reinitialize the object from the constructor map.
4166   InitializeJSObjectFromMap(object, FixedArray::cast(properties), map);
4167   return object;
4168 }
4169 
4170 
AllocateStringFromAscii(Vector<const char> string,PretenureFlag pretenure)4171 MaybeObject* Heap::AllocateStringFromAscii(Vector<const char> string,
4172                                            PretenureFlag pretenure) {
4173   if (string.length() == 1) {
4174     return Heap::LookupSingleCharacterStringFromCode(string[0]);
4175   }
4176   Object* result;
4177   { MaybeObject* maybe_result =
4178         AllocateRawAsciiString(string.length(), pretenure);
4179     if (!maybe_result->ToObject(&result)) return maybe_result;
4180   }
4181 
4182   // Copy the characters into the new object.
4183   SeqAsciiString* string_result = SeqAsciiString::cast(result);
4184   for (int i = 0; i < string.length(); i++) {
4185     string_result->SeqAsciiStringSet(i, string[i]);
4186   }
4187   return result;
4188 }
4189 
4190 
AllocateStringFromUtf8Slow(Vector<const char> string,PretenureFlag pretenure)4191 MaybeObject* Heap::AllocateStringFromUtf8Slow(Vector<const char> string,
4192                                               PretenureFlag pretenure) {
4193   // Count the number of characters in the UTF-8 string and check if
4194   // it is an ASCII string.
4195   Access<UnicodeCache::Utf8Decoder>
4196       decoder(isolate_->unicode_cache()->utf8_decoder());
4197   decoder->Reset(string.start(), string.length());
4198   int chars = 0;
4199   while (decoder->has_more()) {
4200     uint32_t r = decoder->GetNext();
4201     if (r <= unibrow::Utf16::kMaxNonSurrogateCharCode) {
4202       chars++;
4203     } else {
4204       chars += 2;
4205     }
4206   }
4207 
4208   Object* result;
4209   { MaybeObject* maybe_result = AllocateRawTwoByteString(chars, pretenure);
4210     if (!maybe_result->ToObject(&result)) return maybe_result;
4211   }
4212 
4213   // Convert and copy the characters into the new object.
4214   String* string_result = String::cast(result);
4215   decoder->Reset(string.start(), string.length());
4216   int i = 0;
4217   while (i < chars) {
4218     uint32_t r = decoder->GetNext();
4219     if (r > unibrow::Utf16::kMaxNonSurrogateCharCode) {
4220       string_result->Set(i++, unibrow::Utf16::LeadSurrogate(r));
4221       string_result->Set(i++, unibrow::Utf16::TrailSurrogate(r));
4222     } else {
4223       string_result->Set(i++, r);
4224     }
4225   }
4226   return result;
4227 }
4228 
4229 
AllocateStringFromTwoByte(Vector<const uc16> string,PretenureFlag pretenure)4230 MaybeObject* Heap::AllocateStringFromTwoByte(Vector<const uc16> string,
4231                                              PretenureFlag pretenure) {
4232   // Check if the string is an ASCII string.
4233   MaybeObject* maybe_result;
4234   if (String::IsAscii(string.start(), string.length())) {
4235     maybe_result = AllocateRawAsciiString(string.length(), pretenure);
4236   } else {  // It's not an ASCII string.
4237     maybe_result = AllocateRawTwoByteString(string.length(), pretenure);
4238   }
4239   Object* result;
4240   if (!maybe_result->ToObject(&result)) return maybe_result;
4241 
4242   // Copy the characters into the new object, which may be either ASCII or
4243   // UTF-16.
4244   String* string_result = String::cast(result);
4245   for (int i = 0; i < string.length(); i++) {
4246     string_result->Set(i, string[i]);
4247   }
4248   return result;
4249 }
4250 
4251 
SymbolMapForString(String * string)4252 Map* Heap::SymbolMapForString(String* string) {
4253   // If the string is in new space it cannot be used as a symbol.
4254   if (InNewSpace(string)) return NULL;
4255 
4256   // Find the corresponding symbol map for strings.
4257   switch (string->map()->instance_type()) {
4258     case STRING_TYPE: return symbol_map();
4259     case ASCII_STRING_TYPE: return ascii_symbol_map();
4260     case CONS_STRING_TYPE: return cons_symbol_map();
4261     case CONS_ASCII_STRING_TYPE: return cons_ascii_symbol_map();
4262     case EXTERNAL_STRING_TYPE: return external_symbol_map();
4263     case EXTERNAL_ASCII_STRING_TYPE: return external_ascii_symbol_map();
4264     case EXTERNAL_STRING_WITH_ASCII_DATA_TYPE:
4265       return external_symbol_with_ascii_data_map();
4266     case SHORT_EXTERNAL_STRING_TYPE: return short_external_symbol_map();
4267     case SHORT_EXTERNAL_ASCII_STRING_TYPE:
4268       return short_external_ascii_symbol_map();
4269     case SHORT_EXTERNAL_STRING_WITH_ASCII_DATA_TYPE:
4270       return short_external_symbol_with_ascii_data_map();
4271     default: return NULL;  // No match found.
4272   }
4273 }
4274 
4275 
AllocateInternalSymbol(unibrow::CharacterStream * buffer,int chars,uint32_t hash_field)4276 MaybeObject* Heap::AllocateInternalSymbol(unibrow::CharacterStream* buffer,
4277                                           int chars,
4278                                           uint32_t hash_field) {
4279   ASSERT(chars >= 0);
4280   // Ensure the chars matches the number of characters in the buffer.
4281   ASSERT(static_cast<unsigned>(chars) == buffer->Utf16Length());
4282   // Determine whether the string is ASCII.
4283   bool is_ascii = true;
4284   while (buffer->has_more()) {
4285     if (buffer->GetNext() > unibrow::Utf8::kMaxOneByteChar) {
4286       is_ascii = false;
4287       break;
4288     }
4289   }
4290   buffer->Rewind();
4291 
4292   // Compute map and object size.
4293   int size;
4294   Map* map;
4295 
4296   if (is_ascii) {
4297     if (chars > SeqAsciiString::kMaxLength) {
4298       return Failure::OutOfMemoryException();
4299     }
4300     map = ascii_symbol_map();
4301     size = SeqAsciiString::SizeFor(chars);
4302   } else {
4303     if (chars > SeqTwoByteString::kMaxLength) {
4304       return Failure::OutOfMemoryException();
4305     }
4306     map = symbol_map();
4307     size = SeqTwoByteString::SizeFor(chars);
4308   }
4309 
4310   // Allocate string.
4311   Object* result;
4312   { MaybeObject* maybe_result = (size > Page::kMaxNonCodeHeapObjectSize)
4313                    ? lo_space_->AllocateRaw(size, NOT_EXECUTABLE)
4314                    : old_data_space_->AllocateRaw(size);
4315     if (!maybe_result->ToObject(&result)) return maybe_result;
4316   }
4317 
4318   reinterpret_cast<HeapObject*>(result)->set_map_no_write_barrier(map);
4319   // Set length and hash fields of the allocated string.
4320   String* answer = String::cast(result);
4321   answer->set_length(chars);
4322   answer->set_hash_field(hash_field);
4323 
4324   ASSERT_EQ(size, answer->Size());
4325 
4326   // Fill in the characters.
4327   int i = 0;
4328   while (i < chars) {
4329     uint32_t character = buffer->GetNext();
4330     if (character > unibrow::Utf16::kMaxNonSurrogateCharCode) {
4331       answer->Set(i++, unibrow::Utf16::LeadSurrogate(character));
4332       answer->Set(i++, unibrow::Utf16::TrailSurrogate(character));
4333     } else {
4334       answer->Set(i++, character);
4335     }
4336   }
4337   return answer;
4338 }
4339 
4340 
AllocateRawAsciiString(int length,PretenureFlag pretenure)4341 MaybeObject* Heap::AllocateRawAsciiString(int length, PretenureFlag pretenure) {
4342   if (length < 0 || length > SeqAsciiString::kMaxLength) {
4343     return Failure::OutOfMemoryException();
4344   }
4345 
4346   int size = SeqAsciiString::SizeFor(length);
4347   ASSERT(size <= SeqAsciiString::kMaxSize);
4348 
4349   AllocationSpace space = (pretenure == TENURED) ? OLD_DATA_SPACE : NEW_SPACE;
4350   AllocationSpace retry_space = OLD_DATA_SPACE;
4351 
4352   if (space == NEW_SPACE) {
4353     if (size > kMaxObjectSizeInNewSpace) {
4354       // Allocate in large object space, retry space will be ignored.
4355       space = LO_SPACE;
4356     } else if (size > Page::kMaxNonCodeHeapObjectSize) {
4357       // Allocate in new space, retry in large object space.
4358       retry_space = LO_SPACE;
4359     }
4360   } else if (space == OLD_DATA_SPACE &&
4361              size > Page::kMaxNonCodeHeapObjectSize) {
4362     space = LO_SPACE;
4363   }
4364   Object* result;
4365   { MaybeObject* maybe_result = AllocateRaw(size, space, retry_space);
4366     if (!maybe_result->ToObject(&result)) return maybe_result;
4367   }
4368 
4369   // Partially initialize the object.
4370   HeapObject::cast(result)->set_map_no_write_barrier(ascii_string_map());
4371   String::cast(result)->set_length(length);
4372   String::cast(result)->set_hash_field(String::kEmptyHashField);
4373   ASSERT_EQ(size, HeapObject::cast(result)->Size());
4374   return result;
4375 }
4376 
4377 
AllocateRawTwoByteString(int length,PretenureFlag pretenure)4378 MaybeObject* Heap::AllocateRawTwoByteString(int length,
4379                                             PretenureFlag pretenure) {
4380   if (length < 0 || length > SeqTwoByteString::kMaxLength) {
4381     return Failure::OutOfMemoryException();
4382   }
4383   int size = SeqTwoByteString::SizeFor(length);
4384   ASSERT(size <= SeqTwoByteString::kMaxSize);
4385   AllocationSpace space = (pretenure == TENURED) ? OLD_DATA_SPACE : NEW_SPACE;
4386   AllocationSpace retry_space = OLD_DATA_SPACE;
4387 
4388   if (space == NEW_SPACE) {
4389     if (size > kMaxObjectSizeInNewSpace) {
4390       // Allocate in large object space, retry space will be ignored.
4391       space = LO_SPACE;
4392     } else if (size > Page::kMaxNonCodeHeapObjectSize) {
4393       // Allocate in new space, retry in large object space.
4394       retry_space = LO_SPACE;
4395     }
4396   } else if (space == OLD_DATA_SPACE &&
4397              size > Page::kMaxNonCodeHeapObjectSize) {
4398     space = LO_SPACE;
4399   }
4400   Object* result;
4401   { MaybeObject* maybe_result = AllocateRaw(size, space, retry_space);
4402     if (!maybe_result->ToObject(&result)) return maybe_result;
4403   }
4404 
4405   // Partially initialize the object.
4406   HeapObject::cast(result)->set_map_no_write_barrier(string_map());
4407   String::cast(result)->set_length(length);
4408   String::cast(result)->set_hash_field(String::kEmptyHashField);
4409   ASSERT_EQ(size, HeapObject::cast(result)->Size());
4410   return result;
4411 }
4412 
4413 
AllocateJSArray(ElementsKind elements_kind,PretenureFlag pretenure)4414 MaybeObject* Heap::AllocateJSArray(
4415     ElementsKind elements_kind,
4416     PretenureFlag pretenure) {
4417   Context* global_context = isolate()->context()->global_context();
4418   JSFunction* array_function = global_context->array_function();
4419   Map* map = array_function->initial_map();
4420   if (elements_kind == FAST_DOUBLE_ELEMENTS) {
4421     map = Map::cast(global_context->double_js_array_map());
4422   } else if (elements_kind == FAST_ELEMENTS || !FLAG_smi_only_arrays) {
4423     map = Map::cast(global_context->object_js_array_map());
4424   } else {
4425     ASSERT(elements_kind == FAST_SMI_ONLY_ELEMENTS);
4426     ASSERT(map == global_context->smi_js_array_map());
4427   }
4428 
4429   return AllocateJSObjectFromMap(map, pretenure);
4430 }
4431 
4432 
AllocateEmptyFixedArray()4433 MaybeObject* Heap::AllocateEmptyFixedArray() {
4434   int size = FixedArray::SizeFor(0);
4435   Object* result;
4436   { MaybeObject* maybe_result =
4437         AllocateRaw(size, OLD_DATA_SPACE, OLD_DATA_SPACE);
4438     if (!maybe_result->ToObject(&result)) return maybe_result;
4439   }
4440   // Initialize the object.
4441   reinterpret_cast<FixedArray*>(result)->set_map_no_write_barrier(
4442       fixed_array_map());
4443   reinterpret_cast<FixedArray*>(result)->set_length(0);
4444   return result;
4445 }
4446 
4447 
AllocateRawFixedArray(int length)4448 MaybeObject* Heap::AllocateRawFixedArray(int length) {
4449   if (length < 0 || length > FixedArray::kMaxLength) {
4450     return Failure::OutOfMemoryException();
4451   }
4452   ASSERT(length > 0);
4453   // Use the general function if we're forced to always allocate.
4454   if (always_allocate()) return AllocateFixedArray(length, TENURED);
4455   // Allocate the raw data for a fixed array.
4456   int size = FixedArray::SizeFor(length);
4457   return size <= kMaxObjectSizeInNewSpace
4458       ? new_space_.AllocateRaw(size)
4459       : lo_space_->AllocateRaw(size, NOT_EXECUTABLE);
4460 }
4461 
4462 
CopyFixedArrayWithMap(FixedArray * src,Map * map)4463 MaybeObject* Heap::CopyFixedArrayWithMap(FixedArray* src, Map* map) {
4464   int len = src->length();
4465   Object* obj;
4466   { MaybeObject* maybe_obj = AllocateRawFixedArray(len);
4467     if (!maybe_obj->ToObject(&obj)) return maybe_obj;
4468   }
4469   if (InNewSpace(obj)) {
4470     HeapObject* dst = HeapObject::cast(obj);
4471     dst->set_map_no_write_barrier(map);
4472     CopyBlock(dst->address() + kPointerSize,
4473               src->address() + kPointerSize,
4474               FixedArray::SizeFor(len) - kPointerSize);
4475     return obj;
4476   }
4477   HeapObject::cast(obj)->set_map_no_write_barrier(map);
4478   FixedArray* result = FixedArray::cast(obj);
4479   result->set_length(len);
4480 
4481   // Copy the content
4482   AssertNoAllocation no_gc;
4483   WriteBarrierMode mode = result->GetWriteBarrierMode(no_gc);
4484   for (int i = 0; i < len; i++) result->set(i, src->get(i), mode);
4485   return result;
4486 }
4487 
4488 
CopyFixedDoubleArrayWithMap(FixedDoubleArray * src,Map * map)4489 MaybeObject* Heap::CopyFixedDoubleArrayWithMap(FixedDoubleArray* src,
4490                                                Map* map) {
4491   int len = src->length();
4492   Object* obj;
4493   { MaybeObject* maybe_obj = AllocateRawFixedDoubleArray(len, NOT_TENURED);
4494     if (!maybe_obj->ToObject(&obj)) return maybe_obj;
4495   }
4496   HeapObject* dst = HeapObject::cast(obj);
4497   dst->set_map_no_write_barrier(map);
4498   CopyBlock(
4499       dst->address() + FixedDoubleArray::kLengthOffset,
4500       src->address() + FixedDoubleArray::kLengthOffset,
4501       FixedDoubleArray::SizeFor(len) - FixedDoubleArray::kLengthOffset);
4502   return obj;
4503 }
4504 
4505 
AllocateFixedArray(int length)4506 MaybeObject* Heap::AllocateFixedArray(int length) {
4507   ASSERT(length >= 0);
4508   if (length == 0) return empty_fixed_array();
4509   Object* result;
4510   { MaybeObject* maybe_result = AllocateRawFixedArray(length);
4511     if (!maybe_result->ToObject(&result)) return maybe_result;
4512   }
4513   // Initialize header.
4514   FixedArray* array = reinterpret_cast<FixedArray*>(result);
4515   array->set_map_no_write_barrier(fixed_array_map());
4516   array->set_length(length);
4517   // Initialize body.
4518   ASSERT(!InNewSpace(undefined_value()));
4519   MemsetPointer(array->data_start(), undefined_value(), length);
4520   return result;
4521 }
4522 
4523 
AllocateRawFixedArray(int length,PretenureFlag pretenure)4524 MaybeObject* Heap::AllocateRawFixedArray(int length, PretenureFlag pretenure) {
4525   if (length < 0 || length > FixedArray::kMaxLength) {
4526     return Failure::OutOfMemoryException();
4527   }
4528 
4529   AllocationSpace space =
4530       (pretenure == TENURED) ? OLD_POINTER_SPACE : NEW_SPACE;
4531   int size = FixedArray::SizeFor(length);
4532   if (space == NEW_SPACE && size > kMaxObjectSizeInNewSpace) {
4533     // Too big for new space.
4534     space = LO_SPACE;
4535   } else if (space == OLD_POINTER_SPACE &&
4536              size > Page::kMaxNonCodeHeapObjectSize) {
4537     // Too big for old pointer space.
4538     space = LO_SPACE;
4539   }
4540 
4541   AllocationSpace retry_space =
4542       (size <= Page::kMaxNonCodeHeapObjectSize) ? OLD_POINTER_SPACE : LO_SPACE;
4543 
4544   return AllocateRaw(size, space, retry_space);
4545 }
4546 
4547 
AllocateFixedArrayWithFiller(Heap * heap,int length,PretenureFlag pretenure,Object * filler)4548 MUST_USE_RESULT static MaybeObject* AllocateFixedArrayWithFiller(
4549     Heap* heap,
4550     int length,
4551     PretenureFlag pretenure,
4552     Object* filler) {
4553   ASSERT(length >= 0);
4554   ASSERT(heap->empty_fixed_array()->IsFixedArray());
4555   if (length == 0) return heap->empty_fixed_array();
4556 
4557   ASSERT(!heap->InNewSpace(filler));
4558   Object* result;
4559   { MaybeObject* maybe_result = heap->AllocateRawFixedArray(length, pretenure);
4560     if (!maybe_result->ToObject(&result)) return maybe_result;
4561   }
4562 
4563   HeapObject::cast(result)->set_map_no_write_barrier(heap->fixed_array_map());
4564   FixedArray* array = FixedArray::cast(result);
4565   array->set_length(length);
4566   MemsetPointer(array->data_start(), filler, length);
4567   return array;
4568 }
4569 
4570 
AllocateFixedArray(int length,PretenureFlag pretenure)4571 MaybeObject* Heap::AllocateFixedArray(int length, PretenureFlag pretenure) {
4572   return AllocateFixedArrayWithFiller(this,
4573                                       length,
4574                                       pretenure,
4575                                       undefined_value());
4576 }
4577 
4578 
AllocateFixedArrayWithHoles(int length,PretenureFlag pretenure)4579 MaybeObject* Heap::AllocateFixedArrayWithHoles(int length,
4580                                                PretenureFlag pretenure) {
4581   return AllocateFixedArrayWithFiller(this,
4582                                       length,
4583                                       pretenure,
4584                                       the_hole_value());
4585 }
4586 
4587 
AllocateUninitializedFixedArray(int length)4588 MaybeObject* Heap::AllocateUninitializedFixedArray(int length) {
4589   if (length == 0) return empty_fixed_array();
4590 
4591   Object* obj;
4592   { MaybeObject* maybe_obj = AllocateRawFixedArray(length);
4593     if (!maybe_obj->ToObject(&obj)) return maybe_obj;
4594   }
4595 
4596   reinterpret_cast<FixedArray*>(obj)->set_map_no_write_barrier(
4597       fixed_array_map());
4598   FixedArray::cast(obj)->set_length(length);
4599   return obj;
4600 }
4601 
4602 
AllocateEmptyFixedDoubleArray()4603 MaybeObject* Heap::AllocateEmptyFixedDoubleArray() {
4604   int size = FixedDoubleArray::SizeFor(0);
4605   Object* result;
4606   { MaybeObject* maybe_result =
4607         AllocateRaw(size, OLD_DATA_SPACE, OLD_DATA_SPACE);
4608     if (!maybe_result->ToObject(&result)) return maybe_result;
4609   }
4610   // Initialize the object.
4611   reinterpret_cast<FixedDoubleArray*>(result)->set_map_no_write_barrier(
4612       fixed_double_array_map());
4613   reinterpret_cast<FixedDoubleArray*>(result)->set_length(0);
4614   return result;
4615 }
4616 
4617 
AllocateUninitializedFixedDoubleArray(int length,PretenureFlag pretenure)4618 MaybeObject* Heap::AllocateUninitializedFixedDoubleArray(
4619     int length,
4620     PretenureFlag pretenure) {
4621   if (length == 0) return empty_fixed_array();
4622 
4623   Object* elements_object;
4624   MaybeObject* maybe_obj = AllocateRawFixedDoubleArray(length, pretenure);
4625   if (!maybe_obj->ToObject(&elements_object)) return maybe_obj;
4626   FixedDoubleArray* elements =
4627       reinterpret_cast<FixedDoubleArray*>(elements_object);
4628 
4629   elements->set_map_no_write_barrier(fixed_double_array_map());
4630   elements->set_length(length);
4631   return elements;
4632 }
4633 
4634 
AllocateFixedDoubleArrayWithHoles(int length,PretenureFlag pretenure)4635 MaybeObject* Heap::AllocateFixedDoubleArrayWithHoles(
4636     int length,
4637     PretenureFlag pretenure) {
4638   if (length == 0) return empty_fixed_array();
4639 
4640   Object* elements_object;
4641   MaybeObject* maybe_obj = AllocateRawFixedDoubleArray(length, pretenure);
4642   if (!maybe_obj->ToObject(&elements_object)) return maybe_obj;
4643   FixedDoubleArray* elements =
4644       reinterpret_cast<FixedDoubleArray*>(elements_object);
4645 
4646   for (int i = 0; i < length; ++i) {
4647     elements->set_the_hole(i);
4648   }
4649 
4650   elements->set_map_no_write_barrier(fixed_double_array_map());
4651   elements->set_length(length);
4652   return elements;
4653 }
4654 
4655 
AllocateRawFixedDoubleArray(int length,PretenureFlag pretenure)4656 MaybeObject* Heap::AllocateRawFixedDoubleArray(int length,
4657                                                PretenureFlag pretenure) {
4658   if (length < 0 || length > FixedDoubleArray::kMaxLength) {
4659     return Failure::OutOfMemoryException();
4660   }
4661 
4662   AllocationSpace space =
4663       (pretenure == TENURED) ? OLD_DATA_SPACE : NEW_SPACE;
4664   int size = FixedDoubleArray::SizeFor(length);
4665   if (space == NEW_SPACE && size > kMaxObjectSizeInNewSpace) {
4666     // Too big for new space.
4667     space = LO_SPACE;
4668   } else if (space == OLD_DATA_SPACE &&
4669              size > Page::kMaxNonCodeHeapObjectSize) {
4670     // Too big for old data space.
4671     space = LO_SPACE;
4672   }
4673 
4674   AllocationSpace retry_space =
4675       (size <= Page::kMaxNonCodeHeapObjectSize) ? OLD_DATA_SPACE : LO_SPACE;
4676 
4677   return AllocateRaw(size, space, retry_space);
4678 }
4679 
4680 
AllocateHashTable(int length,PretenureFlag pretenure)4681 MaybeObject* Heap::AllocateHashTable(int length, PretenureFlag pretenure) {
4682   Object* result;
4683   { MaybeObject* maybe_result = AllocateFixedArray(length, pretenure);
4684     if (!maybe_result->ToObject(&result)) return maybe_result;
4685   }
4686   reinterpret_cast<HeapObject*>(result)->set_map_no_write_barrier(
4687       hash_table_map());
4688   ASSERT(result->IsHashTable());
4689   return result;
4690 }
4691 
4692 
AllocateGlobalContext()4693 MaybeObject* Heap::AllocateGlobalContext() {
4694   Object* result;
4695   { MaybeObject* maybe_result =
4696         AllocateFixedArray(Context::GLOBAL_CONTEXT_SLOTS);
4697     if (!maybe_result->ToObject(&result)) return maybe_result;
4698   }
4699   Context* context = reinterpret_cast<Context*>(result);
4700   context->set_map_no_write_barrier(global_context_map());
4701   context->set_smi_js_array_map(undefined_value());
4702   context->set_double_js_array_map(undefined_value());
4703   context->set_object_js_array_map(undefined_value());
4704   ASSERT(context->IsGlobalContext());
4705   ASSERT(result->IsContext());
4706   return result;
4707 }
4708 
4709 
AllocateFunctionContext(int length,JSFunction * function)4710 MaybeObject* Heap::AllocateFunctionContext(int length, JSFunction* function) {
4711   ASSERT(length >= Context::MIN_CONTEXT_SLOTS);
4712   Object* result;
4713   { MaybeObject* maybe_result = AllocateFixedArray(length);
4714     if (!maybe_result->ToObject(&result)) return maybe_result;
4715   }
4716   Context* context = reinterpret_cast<Context*>(result);
4717   context->set_map_no_write_barrier(function_context_map());
4718   context->set_closure(function);
4719   context->set_previous(function->context());
4720   context->set_extension(NULL);
4721   context->set_global(function->context()->global());
4722   return context;
4723 }
4724 
4725 
AllocateCatchContext(JSFunction * function,Context * previous,String * name,Object * thrown_object)4726 MaybeObject* Heap::AllocateCatchContext(JSFunction* function,
4727                                         Context* previous,
4728                                         String* name,
4729                                         Object* thrown_object) {
4730   STATIC_ASSERT(Context::MIN_CONTEXT_SLOTS == Context::THROWN_OBJECT_INDEX);
4731   Object* result;
4732   { MaybeObject* maybe_result =
4733         AllocateFixedArray(Context::MIN_CONTEXT_SLOTS + 1);
4734     if (!maybe_result->ToObject(&result)) return maybe_result;
4735   }
4736   Context* context = reinterpret_cast<Context*>(result);
4737   context->set_map_no_write_barrier(catch_context_map());
4738   context->set_closure(function);
4739   context->set_previous(previous);
4740   context->set_extension(name);
4741   context->set_global(previous->global());
4742   context->set(Context::THROWN_OBJECT_INDEX, thrown_object);
4743   return context;
4744 }
4745 
4746 
AllocateWithContext(JSFunction * function,Context * previous,JSObject * extension)4747 MaybeObject* Heap::AllocateWithContext(JSFunction* function,
4748                                        Context* previous,
4749                                        JSObject* extension) {
4750   Object* result;
4751   { MaybeObject* maybe_result = AllocateFixedArray(Context::MIN_CONTEXT_SLOTS);
4752     if (!maybe_result->ToObject(&result)) return maybe_result;
4753   }
4754   Context* context = reinterpret_cast<Context*>(result);
4755   context->set_map_no_write_barrier(with_context_map());
4756   context->set_closure(function);
4757   context->set_previous(previous);
4758   context->set_extension(extension);
4759   context->set_global(previous->global());
4760   return context;
4761 }
4762 
4763 
AllocateBlockContext(JSFunction * function,Context * previous,ScopeInfo * scope_info)4764 MaybeObject* Heap::AllocateBlockContext(JSFunction* function,
4765                                         Context* previous,
4766                                         ScopeInfo* scope_info) {
4767   Object* result;
4768   { MaybeObject* maybe_result =
4769         AllocateFixedArrayWithHoles(scope_info->ContextLength());
4770     if (!maybe_result->ToObject(&result)) return maybe_result;
4771   }
4772   Context* context = reinterpret_cast<Context*>(result);
4773   context->set_map_no_write_barrier(block_context_map());
4774   context->set_closure(function);
4775   context->set_previous(previous);
4776   context->set_extension(scope_info);
4777   context->set_global(previous->global());
4778   return context;
4779 }
4780 
4781 
AllocateScopeInfo(int length)4782 MaybeObject* Heap::AllocateScopeInfo(int length) {
4783   FixedArray* scope_info;
4784   MaybeObject* maybe_scope_info = AllocateFixedArray(length, TENURED);
4785   if (!maybe_scope_info->To(&scope_info)) return maybe_scope_info;
4786   scope_info->set_map_no_write_barrier(scope_info_map());
4787   return scope_info;
4788 }
4789 
4790 
AllocateStruct(InstanceType type)4791 MaybeObject* Heap::AllocateStruct(InstanceType type) {
4792   Map* map;
4793   switch (type) {
4794 #define MAKE_CASE(NAME, Name, name) \
4795     case NAME##_TYPE: map = name##_map(); break;
4796 STRUCT_LIST(MAKE_CASE)
4797 #undef MAKE_CASE
4798     default:
4799       UNREACHABLE();
4800       return Failure::InternalError();
4801   }
4802   int size = map->instance_size();
4803   AllocationSpace space =
4804       (size > Page::kMaxNonCodeHeapObjectSize) ? LO_SPACE : OLD_POINTER_SPACE;
4805   Object* result;
4806   { MaybeObject* maybe_result = Allocate(map, space);
4807     if (!maybe_result->ToObject(&result)) return maybe_result;
4808   }
4809   Struct::cast(result)->InitializeBody(size);
4810   return result;
4811 }
4812 
4813 
IsHeapIterable()4814 bool Heap::IsHeapIterable() {
4815   return (!old_pointer_space()->was_swept_conservatively() &&
4816           !old_data_space()->was_swept_conservatively());
4817 }
4818 
4819 
EnsureHeapIsIterable()4820 void Heap::EnsureHeapIsIterable() {
4821   ASSERT(IsAllocationAllowed());
4822   if (!IsHeapIterable()) {
4823     CollectAllGarbage(kMakeHeapIterableMask, "Heap::EnsureHeapIsIterable");
4824   }
4825   ASSERT(IsHeapIterable());
4826 }
4827 
4828 
AdvanceIdleIncrementalMarking(intptr_t step_size)4829 void Heap::AdvanceIdleIncrementalMarking(intptr_t step_size) {
4830   incremental_marking()->Step(step_size,
4831                               IncrementalMarking::NO_GC_VIA_STACK_GUARD);
4832 
4833   if (incremental_marking()->IsComplete()) {
4834     bool uncommit = false;
4835     if (gc_count_at_last_idle_gc_ == gc_count_) {
4836       // No GC since the last full GC, the mutator is probably not active.
4837       isolate_->compilation_cache()->Clear();
4838       uncommit = true;
4839     }
4840     CollectAllGarbage(kNoGCFlags, "idle notification: finalize incremental");
4841     gc_count_at_last_idle_gc_ = gc_count_;
4842     if (uncommit) {
4843       new_space_.Shrink();
4844       UncommitFromSpace();
4845     }
4846   }
4847 }
4848 
4849 
IdleNotification(int hint)4850 bool Heap::IdleNotification(int hint) {
4851   const int kMaxHint = 1000;
4852   intptr_t size_factor = Min(Max(hint, 30), kMaxHint) / 10;
4853   // The size factor is in range [3..100].
4854   intptr_t step_size = size_factor * IncrementalMarking::kAllocatedThreshold;
4855 
4856   if (contexts_disposed_ > 0) {
4857     if (hint >= kMaxHint) {
4858       // The embedder is requesting a lot of GC work after context disposal,
4859       // we age inline caches so that they don't keep objects from
4860       // the old context alive.
4861       AgeInlineCaches();
4862     }
4863     int mark_sweep_time = Min(TimeMarkSweepWouldTakeInMs(), 1000);
4864     if (hint >= mark_sweep_time && !FLAG_expose_gc &&
4865         incremental_marking()->IsStopped()) {
4866       HistogramTimerScope scope(isolate_->counters()->gc_context());
4867       CollectAllGarbage(kReduceMemoryFootprintMask,
4868                         "idle notification: contexts disposed");
4869     } else {
4870       AdvanceIdleIncrementalMarking(step_size);
4871       contexts_disposed_ = 0;
4872     }
4873     // Make sure that we have no pending context disposals.
4874     // Take into account that we might have decided to delay full collection
4875     // because incremental marking is in progress.
4876     ASSERT((contexts_disposed_ == 0) || !incremental_marking()->IsStopped());
4877     return false;
4878   }
4879 
4880   if (hint >= kMaxHint || !FLAG_incremental_marking ||
4881       FLAG_expose_gc || Serializer::enabled()) {
4882     return IdleGlobalGC();
4883   }
4884 
4885   // By doing small chunks of GC work in each IdleNotification,
4886   // perform a round of incremental GCs and after that wait until
4887   // the mutator creates enough garbage to justify a new round.
4888   // An incremental GC progresses as follows:
4889   // 1. many incremental marking steps,
4890   // 2. one old space mark-sweep-compact,
4891   // 3. many lazy sweep steps.
4892   // Use mark-sweep-compact events to count incremental GCs in a round.
4893 
4894 
4895   if (incremental_marking()->IsStopped()) {
4896     if (!IsSweepingComplete() &&
4897         !AdvanceSweepers(static_cast<int>(step_size))) {
4898       return false;
4899     }
4900   }
4901 
4902   if (mark_sweeps_since_idle_round_started_ >= kMaxMarkSweepsInIdleRound) {
4903     if (EnoughGarbageSinceLastIdleRound()) {
4904       StartIdleRound();
4905     } else {
4906       return true;
4907     }
4908   }
4909 
4910   int new_mark_sweeps = ms_count_ - ms_count_at_last_idle_notification_;
4911   mark_sweeps_since_idle_round_started_ += new_mark_sweeps;
4912   ms_count_at_last_idle_notification_ = ms_count_;
4913 
4914   if (mark_sweeps_since_idle_round_started_ >= kMaxMarkSweepsInIdleRound) {
4915     FinishIdleRound();
4916     return true;
4917   }
4918 
4919   if (incremental_marking()->IsStopped()) {
4920     if (!WorthStartingGCWhenIdle()) {
4921       FinishIdleRound();
4922       return true;
4923     }
4924     incremental_marking()->Start();
4925   }
4926 
4927   AdvanceIdleIncrementalMarking(step_size);
4928   return false;
4929 }
4930 
4931 
IdleGlobalGC()4932 bool Heap::IdleGlobalGC() {
4933   static const int kIdlesBeforeScavenge = 4;
4934   static const int kIdlesBeforeMarkSweep = 7;
4935   static const int kIdlesBeforeMarkCompact = 8;
4936   static const int kMaxIdleCount = kIdlesBeforeMarkCompact + 1;
4937   static const unsigned int kGCsBetweenCleanup = 4;
4938 
4939   if (!last_idle_notification_gc_count_init_) {
4940     last_idle_notification_gc_count_ = gc_count_;
4941     last_idle_notification_gc_count_init_ = true;
4942   }
4943 
4944   bool uncommit = true;
4945   bool finished = false;
4946 
4947   // Reset the number of idle notifications received when a number of
4948   // GCs have taken place. This allows another round of cleanup based
4949   // on idle notifications if enough work has been carried out to
4950   // provoke a number of garbage collections.
4951   if (gc_count_ - last_idle_notification_gc_count_ < kGCsBetweenCleanup) {
4952     number_idle_notifications_ =
4953         Min(number_idle_notifications_ + 1, kMaxIdleCount);
4954   } else {
4955     number_idle_notifications_ = 0;
4956     last_idle_notification_gc_count_ = gc_count_;
4957   }
4958 
4959   if (number_idle_notifications_ == kIdlesBeforeScavenge) {
4960     CollectGarbage(NEW_SPACE, "idle notification");
4961     new_space_.Shrink();
4962     last_idle_notification_gc_count_ = gc_count_;
4963   } else if (number_idle_notifications_ == kIdlesBeforeMarkSweep) {
4964     // Before doing the mark-sweep collections we clear the
4965     // compilation cache to avoid hanging on to source code and
4966     // generated code for cached functions.
4967     isolate_->compilation_cache()->Clear();
4968 
4969     CollectAllGarbage(kReduceMemoryFootprintMask, "idle notification");
4970     new_space_.Shrink();
4971     last_idle_notification_gc_count_ = gc_count_;
4972 
4973   } else if (number_idle_notifications_ == kIdlesBeforeMarkCompact) {
4974     CollectAllGarbage(kReduceMemoryFootprintMask, "idle notification");
4975     new_space_.Shrink();
4976     last_idle_notification_gc_count_ = gc_count_;
4977     number_idle_notifications_ = 0;
4978     finished = true;
4979   } else if (number_idle_notifications_ > kIdlesBeforeMarkCompact) {
4980     // If we have received more than kIdlesBeforeMarkCompact idle
4981     // notifications we do not perform any cleanup because we don't
4982     // expect to gain much by doing so.
4983     finished = true;
4984   }
4985 
4986   if (uncommit) UncommitFromSpace();
4987 
4988   return finished;
4989 }
4990 
4991 
4992 #ifdef DEBUG
4993 
Print()4994 void Heap::Print() {
4995   if (!HasBeenSetUp()) return;
4996   isolate()->PrintStack();
4997   AllSpaces spaces;
4998   for (Space* space = spaces.next(); space != NULL; space = spaces.next())
4999     space->Print();
5000 }
5001 
5002 
ReportCodeStatistics(const char * title)5003 void Heap::ReportCodeStatistics(const char* title) {
5004   PrintF(">>>>>> Code Stats (%s) >>>>>>\n", title);
5005   PagedSpace::ResetCodeStatistics();
5006   // We do not look for code in new space, map space, or old space.  If code
5007   // somehow ends up in those spaces, we would miss it here.
5008   code_space_->CollectCodeStatistics();
5009   lo_space_->CollectCodeStatistics();
5010   PagedSpace::ReportCodeStatistics();
5011 }
5012 
5013 
5014 // This function expects that NewSpace's allocated objects histogram is
5015 // populated (via a call to CollectStatistics or else as a side effect of a
5016 // just-completed scavenge collection).
ReportHeapStatistics(const char * title)5017 void Heap::ReportHeapStatistics(const char* title) {
5018   USE(title);
5019   PrintF(">>>>>> =============== %s (%d) =============== >>>>>>\n",
5020          title, gc_count_);
5021   PrintF("old_gen_promotion_limit_ %" V8_PTR_PREFIX "d\n",
5022          old_gen_promotion_limit_);
5023   PrintF("old_gen_allocation_limit_ %" V8_PTR_PREFIX "d\n",
5024          old_gen_allocation_limit_);
5025   PrintF("old_gen_limit_factor_ %d\n", old_gen_limit_factor_);
5026 
5027   PrintF("\n");
5028   PrintF("Number of handles : %d\n", HandleScope::NumberOfHandles());
5029   isolate_->global_handles()->PrintStats();
5030   PrintF("\n");
5031 
5032   PrintF("Heap statistics : ");
5033   isolate_->memory_allocator()->ReportStatistics();
5034   PrintF("To space : ");
5035   new_space_.ReportStatistics();
5036   PrintF("Old pointer space : ");
5037   old_pointer_space_->ReportStatistics();
5038   PrintF("Old data space : ");
5039   old_data_space_->ReportStatistics();
5040   PrintF("Code space : ");
5041   code_space_->ReportStatistics();
5042   PrintF("Map space : ");
5043   map_space_->ReportStatistics();
5044   PrintF("Cell space : ");
5045   cell_space_->ReportStatistics();
5046   PrintF("Large object space : ");
5047   lo_space_->ReportStatistics();
5048   PrintF(">>>>>> ========================================= >>>>>>\n");
5049 }
5050 
5051 #endif  // DEBUG
5052 
Contains(HeapObject * value)5053 bool Heap::Contains(HeapObject* value) {
5054   return Contains(value->address());
5055 }
5056 
5057 
Contains(Address addr)5058 bool Heap::Contains(Address addr) {
5059   if (OS::IsOutsideAllocatedSpace(addr)) return false;
5060   return HasBeenSetUp() &&
5061     (new_space_.ToSpaceContains(addr) ||
5062      old_pointer_space_->Contains(addr) ||
5063      old_data_space_->Contains(addr) ||
5064      code_space_->Contains(addr) ||
5065      map_space_->Contains(addr) ||
5066      cell_space_->Contains(addr) ||
5067      lo_space_->SlowContains(addr));
5068 }
5069 
5070 
InSpace(HeapObject * value,AllocationSpace space)5071 bool Heap::InSpace(HeapObject* value, AllocationSpace space) {
5072   return InSpace(value->address(), space);
5073 }
5074 
5075 
InSpace(Address addr,AllocationSpace space)5076 bool Heap::InSpace(Address addr, AllocationSpace space) {
5077   if (OS::IsOutsideAllocatedSpace(addr)) return false;
5078   if (!HasBeenSetUp()) return false;
5079 
5080   switch (space) {
5081     case NEW_SPACE:
5082       return new_space_.ToSpaceContains(addr);
5083     case OLD_POINTER_SPACE:
5084       return old_pointer_space_->Contains(addr);
5085     case OLD_DATA_SPACE:
5086       return old_data_space_->Contains(addr);
5087     case CODE_SPACE:
5088       return code_space_->Contains(addr);
5089     case MAP_SPACE:
5090       return map_space_->Contains(addr);
5091     case CELL_SPACE:
5092       return cell_space_->Contains(addr);
5093     case LO_SPACE:
5094       return lo_space_->SlowContains(addr);
5095   }
5096 
5097   return false;
5098 }
5099 
5100 
5101 #ifdef DEBUG
Verify()5102 void Heap::Verify() {
5103   ASSERT(HasBeenSetUp());
5104 
5105   store_buffer()->Verify();
5106 
5107   VerifyPointersVisitor visitor;
5108   IterateRoots(&visitor, VISIT_ONLY_STRONG);
5109 
5110   new_space_.Verify();
5111 
5112   old_pointer_space_->Verify(&visitor);
5113   map_space_->Verify(&visitor);
5114 
5115   VerifyPointersVisitor no_dirty_regions_visitor;
5116   old_data_space_->Verify(&no_dirty_regions_visitor);
5117   code_space_->Verify(&no_dirty_regions_visitor);
5118   cell_space_->Verify(&no_dirty_regions_visitor);
5119 
5120   lo_space_->Verify();
5121 
5122   VerifyNoAccessorPairSharing();
5123 }
5124 
5125 
VerifyNoAccessorPairSharing()5126 void Heap::VerifyNoAccessorPairSharing() {
5127   // Verification is done in 2 phases: First we mark all AccessorPairs, checking
5128   // that we mark only unmarked pairs, then we clear all marks, restoring the
5129   // initial state. We use the Smi tag of the AccessorPair's getter as the
5130   // marking bit, because we can never see a Smi as the getter.
5131   for (int phase = 0; phase < 2; phase++) {
5132     HeapObjectIterator iter(map_space());
5133     for (HeapObject* obj = iter.Next(); obj != NULL; obj = iter.Next()) {
5134       if (obj->IsMap()) {
5135         DescriptorArray* descs = Map::cast(obj)->instance_descriptors();
5136         for (int i = 0; i < descs->number_of_descriptors(); i++) {
5137           if (descs->GetType(i) == CALLBACKS &&
5138               descs->GetValue(i)->IsAccessorPair()) {
5139             AccessorPair* accessors = AccessorPair::cast(descs->GetValue(i));
5140             uintptr_t before = reinterpret_cast<intptr_t>(accessors->getter());
5141             uintptr_t after = (phase == 0) ?
5142                 ((before & ~kSmiTagMask) | kSmiTag) :
5143                 ((before & ~kHeapObjectTag) | kHeapObjectTag);
5144             CHECK(before != after);
5145             accessors->set_getter(reinterpret_cast<Object*>(after));
5146           }
5147         }
5148       }
5149     }
5150   }
5151 }
5152 #endif  // DEBUG
5153 
5154 
LookupSymbol(Vector<const char> string)5155 MaybeObject* Heap::LookupSymbol(Vector<const char> string) {
5156   Object* symbol = NULL;
5157   Object* new_table;
5158   { MaybeObject* maybe_new_table =
5159         symbol_table()->LookupSymbol(string, &symbol);
5160     if (!maybe_new_table->ToObject(&new_table)) return maybe_new_table;
5161   }
5162   // Can't use set_symbol_table because SymbolTable::cast knows that
5163   // SymbolTable is a singleton and checks for identity.
5164   roots_[kSymbolTableRootIndex] = new_table;
5165   ASSERT(symbol != NULL);
5166   return symbol;
5167 }
5168 
5169 
LookupAsciiSymbol(Vector<const char> string)5170 MaybeObject* Heap::LookupAsciiSymbol(Vector<const char> string) {
5171   Object* symbol = NULL;
5172   Object* new_table;
5173   { MaybeObject* maybe_new_table =
5174         symbol_table()->LookupAsciiSymbol(string, &symbol);
5175     if (!maybe_new_table->ToObject(&new_table)) return maybe_new_table;
5176   }
5177   // Can't use set_symbol_table because SymbolTable::cast knows that
5178   // SymbolTable is a singleton and checks for identity.
5179   roots_[kSymbolTableRootIndex] = new_table;
5180   ASSERT(symbol != NULL);
5181   return symbol;
5182 }
5183 
5184 
LookupAsciiSymbol(Handle<SeqAsciiString> string,int from,int length)5185 MaybeObject* Heap::LookupAsciiSymbol(Handle<SeqAsciiString> string,
5186                                      int from,
5187                                      int length) {
5188   Object* symbol = NULL;
5189   Object* new_table;
5190   { MaybeObject* maybe_new_table =
5191         symbol_table()->LookupSubStringAsciiSymbol(string,
5192                                                    from,
5193                                                    length,
5194                                                    &symbol);
5195     if (!maybe_new_table->ToObject(&new_table)) return maybe_new_table;
5196   }
5197   // Can't use set_symbol_table because SymbolTable::cast knows that
5198   // SymbolTable is a singleton and checks for identity.
5199   roots_[kSymbolTableRootIndex] = new_table;
5200   ASSERT(symbol != NULL);
5201   return symbol;
5202 }
5203 
5204 
LookupTwoByteSymbol(Vector<const uc16> string)5205 MaybeObject* Heap::LookupTwoByteSymbol(Vector<const uc16> string) {
5206   Object* symbol = NULL;
5207   Object* new_table;
5208   { MaybeObject* maybe_new_table =
5209         symbol_table()->LookupTwoByteSymbol(string, &symbol);
5210     if (!maybe_new_table->ToObject(&new_table)) return maybe_new_table;
5211   }
5212   // Can't use set_symbol_table because SymbolTable::cast knows that
5213   // SymbolTable is a singleton and checks for identity.
5214   roots_[kSymbolTableRootIndex] = new_table;
5215   ASSERT(symbol != NULL);
5216   return symbol;
5217 }
5218 
5219 
LookupSymbol(String * string)5220 MaybeObject* Heap::LookupSymbol(String* string) {
5221   if (string->IsSymbol()) return string;
5222   Object* symbol = NULL;
5223   Object* new_table;
5224   { MaybeObject* maybe_new_table =
5225         symbol_table()->LookupString(string, &symbol);
5226     if (!maybe_new_table->ToObject(&new_table)) return maybe_new_table;
5227   }
5228   // Can't use set_symbol_table because SymbolTable::cast knows that
5229   // SymbolTable is a singleton and checks for identity.
5230   roots_[kSymbolTableRootIndex] = new_table;
5231   ASSERT(symbol != NULL);
5232   return symbol;
5233 }
5234 
5235 
LookupSymbolIfExists(String * string,String ** symbol)5236 bool Heap::LookupSymbolIfExists(String* string, String** symbol) {
5237   if (string->IsSymbol()) {
5238     *symbol = string;
5239     return true;
5240   }
5241   return symbol_table()->LookupSymbolIfExists(string, symbol);
5242 }
5243 
5244 
5245 #ifdef DEBUG
ZapFromSpace()5246 void Heap::ZapFromSpace() {
5247   NewSpacePageIterator it(new_space_.FromSpaceStart(),
5248                           new_space_.FromSpaceEnd());
5249   while (it.has_next()) {
5250     NewSpacePage* page = it.next();
5251     for (Address cursor = page->area_start(), limit = page->area_end();
5252          cursor < limit;
5253          cursor += kPointerSize) {
5254       Memory::Address_at(cursor) = kFromSpaceZapValue;
5255     }
5256   }
5257 }
5258 #endif  // DEBUG
5259 
5260 
IterateAndMarkPointersToFromSpace(Address start,Address end,ObjectSlotCallback callback)5261 void Heap::IterateAndMarkPointersToFromSpace(Address start,
5262                                              Address end,
5263                                              ObjectSlotCallback callback) {
5264   Address slot_address = start;
5265 
5266   // We are not collecting slots on new space objects during mutation
5267   // thus we have to scan for pointers to evacuation candidates when we
5268   // promote objects. But we should not record any slots in non-black
5269   // objects. Grey object's slots would be rescanned.
5270   // White object might not survive until the end of collection
5271   // it would be a violation of the invariant to record it's slots.
5272   bool record_slots = false;
5273   if (incremental_marking()->IsCompacting()) {
5274     MarkBit mark_bit = Marking::MarkBitFrom(HeapObject::FromAddress(start));
5275     record_slots = Marking::IsBlack(mark_bit);
5276   }
5277 
5278   while (slot_address < end) {
5279     Object** slot = reinterpret_cast<Object**>(slot_address);
5280     Object* object = *slot;
5281     // If the store buffer becomes overfull we mark pages as being exempt from
5282     // the store buffer.  These pages are scanned to find pointers that point
5283     // to the new space.  In that case we may hit newly promoted objects and
5284     // fix the pointers before the promotion queue gets to them.  Thus the 'if'.
5285     if (object->IsHeapObject()) {
5286       if (Heap::InFromSpace(object)) {
5287         callback(reinterpret_cast<HeapObject**>(slot),
5288                  HeapObject::cast(object));
5289         Object* new_object = *slot;
5290         if (InNewSpace(new_object)) {
5291           SLOW_ASSERT(Heap::InToSpace(new_object));
5292           SLOW_ASSERT(new_object->IsHeapObject());
5293           store_buffer_.EnterDirectlyIntoStoreBuffer(
5294               reinterpret_cast<Address>(slot));
5295         }
5296         SLOW_ASSERT(!MarkCompactCollector::IsOnEvacuationCandidate(new_object));
5297       } else if (record_slots &&
5298                  MarkCompactCollector::IsOnEvacuationCandidate(object)) {
5299         mark_compact_collector()->RecordSlot(slot, slot, object);
5300       }
5301     }
5302     slot_address += kPointerSize;
5303   }
5304 }
5305 
5306 
5307 #ifdef DEBUG
5308 typedef bool (*CheckStoreBufferFilter)(Object** addr);
5309 
5310 
IsAMapPointerAddress(Object ** addr)5311 bool IsAMapPointerAddress(Object** addr) {
5312   uintptr_t a = reinterpret_cast<uintptr_t>(addr);
5313   int mod = a % Map::kSize;
5314   return mod >= Map::kPointerFieldsBeginOffset &&
5315          mod < Map::kPointerFieldsEndOffset;
5316 }
5317 
5318 
EverythingsAPointer(Object ** addr)5319 bool EverythingsAPointer(Object** addr) {
5320   return true;
5321 }
5322 
5323 
CheckStoreBuffer(Heap * heap,Object ** current,Object ** limit,Object **** store_buffer_position,Object *** store_buffer_top,CheckStoreBufferFilter filter,Address special_garbage_start,Address special_garbage_end)5324 static void CheckStoreBuffer(Heap* heap,
5325                              Object** current,
5326                              Object** limit,
5327                              Object**** store_buffer_position,
5328                              Object*** store_buffer_top,
5329                              CheckStoreBufferFilter filter,
5330                              Address special_garbage_start,
5331                              Address special_garbage_end) {
5332   Map* free_space_map = heap->free_space_map();
5333   for ( ; current < limit; current++) {
5334     Object* o = *current;
5335     Address current_address = reinterpret_cast<Address>(current);
5336     // Skip free space.
5337     if (o == free_space_map) {
5338       Address current_address = reinterpret_cast<Address>(current);
5339       FreeSpace* free_space =
5340           FreeSpace::cast(HeapObject::FromAddress(current_address));
5341       int skip = free_space->Size();
5342       ASSERT(current_address + skip <= reinterpret_cast<Address>(limit));
5343       ASSERT(skip > 0);
5344       current_address += skip - kPointerSize;
5345       current = reinterpret_cast<Object**>(current_address);
5346       continue;
5347     }
5348     // Skip the current linear allocation space between top and limit which is
5349     // unmarked with the free space map, but can contain junk.
5350     if (current_address == special_garbage_start &&
5351         special_garbage_end != special_garbage_start) {
5352       current_address = special_garbage_end - kPointerSize;
5353       current = reinterpret_cast<Object**>(current_address);
5354       continue;
5355     }
5356     if (!(*filter)(current)) continue;
5357     ASSERT(current_address < special_garbage_start ||
5358            current_address >= special_garbage_end);
5359     ASSERT(reinterpret_cast<uintptr_t>(o) != kFreeListZapValue);
5360     // We have to check that the pointer does not point into new space
5361     // without trying to cast it to a heap object since the hash field of
5362     // a string can contain values like 1 and 3 which are tagged null
5363     // pointers.
5364     if (!heap->InNewSpace(o)) continue;
5365     while (**store_buffer_position < current &&
5366            *store_buffer_position < store_buffer_top) {
5367       (*store_buffer_position)++;
5368     }
5369     if (**store_buffer_position != current ||
5370         *store_buffer_position == store_buffer_top) {
5371       Object** obj_start = current;
5372       while (!(*obj_start)->IsMap()) obj_start--;
5373       UNREACHABLE();
5374     }
5375   }
5376 }
5377 
5378 
5379 // Check that the store buffer contains all intergenerational pointers by
5380 // scanning a page and ensuring that all pointers to young space are in the
5381 // store buffer.
OldPointerSpaceCheckStoreBuffer()5382 void Heap::OldPointerSpaceCheckStoreBuffer() {
5383   OldSpace* space = old_pointer_space();
5384   PageIterator pages(space);
5385 
5386   store_buffer()->SortUniq();
5387 
5388   while (pages.has_next()) {
5389     Page* page = pages.next();
5390     Object** current = reinterpret_cast<Object**>(page->area_start());
5391 
5392     Address end = page->area_end();
5393 
5394     Object*** store_buffer_position = store_buffer()->Start();
5395     Object*** store_buffer_top = store_buffer()->Top();
5396 
5397     Object** limit = reinterpret_cast<Object**>(end);
5398     CheckStoreBuffer(this,
5399                      current,
5400                      limit,
5401                      &store_buffer_position,
5402                      store_buffer_top,
5403                      &EverythingsAPointer,
5404                      space->top(),
5405                      space->limit());
5406   }
5407 }
5408 
5409 
MapSpaceCheckStoreBuffer()5410 void Heap::MapSpaceCheckStoreBuffer() {
5411   MapSpace* space = map_space();
5412   PageIterator pages(space);
5413 
5414   store_buffer()->SortUniq();
5415 
5416   while (pages.has_next()) {
5417     Page* page = pages.next();
5418     Object** current = reinterpret_cast<Object**>(page->area_start());
5419 
5420     Address end = page->area_end();
5421 
5422     Object*** store_buffer_position = store_buffer()->Start();
5423     Object*** store_buffer_top = store_buffer()->Top();
5424 
5425     Object** limit = reinterpret_cast<Object**>(end);
5426     CheckStoreBuffer(this,
5427                      current,
5428                      limit,
5429                      &store_buffer_position,
5430                      store_buffer_top,
5431                      &IsAMapPointerAddress,
5432                      space->top(),
5433                      space->limit());
5434   }
5435 }
5436 
5437 
LargeObjectSpaceCheckStoreBuffer()5438 void Heap::LargeObjectSpaceCheckStoreBuffer() {
5439   LargeObjectIterator it(lo_space());
5440   for (HeapObject* object = it.Next(); object != NULL; object = it.Next()) {
5441     // We only have code, sequential strings, or fixed arrays in large
5442     // object space, and only fixed arrays can possibly contain pointers to
5443     // the young generation.
5444     if (object->IsFixedArray()) {
5445       Object*** store_buffer_position = store_buffer()->Start();
5446       Object*** store_buffer_top = store_buffer()->Top();
5447       Object** current = reinterpret_cast<Object**>(object->address());
5448       Object** limit =
5449           reinterpret_cast<Object**>(object->address() + object->Size());
5450       CheckStoreBuffer(this,
5451                        current,
5452                        limit,
5453                        &store_buffer_position,
5454                        store_buffer_top,
5455                        &EverythingsAPointer,
5456                        NULL,
5457                        NULL);
5458     }
5459   }
5460 }
5461 #endif
5462 
5463 
IterateRoots(ObjectVisitor * v,VisitMode mode)5464 void Heap::IterateRoots(ObjectVisitor* v, VisitMode mode) {
5465   IterateStrongRoots(v, mode);
5466   IterateWeakRoots(v, mode);
5467 }
5468 
5469 
IterateWeakRoots(ObjectVisitor * v,VisitMode mode)5470 void Heap::IterateWeakRoots(ObjectVisitor* v, VisitMode mode) {
5471   v->VisitPointer(reinterpret_cast<Object**>(&roots_[kSymbolTableRootIndex]));
5472   v->Synchronize(VisitorSynchronization::kSymbolTable);
5473   if (mode != VISIT_ALL_IN_SCAVENGE &&
5474       mode != VISIT_ALL_IN_SWEEP_NEWSPACE) {
5475     // Scavenge collections have special processing for this.
5476     external_string_table_.Iterate(v);
5477   }
5478   v->Synchronize(VisitorSynchronization::kExternalStringsTable);
5479 }
5480 
5481 
IterateStrongRoots(ObjectVisitor * v,VisitMode mode)5482 void Heap::IterateStrongRoots(ObjectVisitor* v, VisitMode mode) {
5483   v->VisitPointers(&roots_[0], &roots_[kStrongRootListLength]);
5484   v->Synchronize(VisitorSynchronization::kStrongRootList);
5485 
5486   v->VisitPointer(BitCast<Object**>(&hidden_symbol_));
5487   v->Synchronize(VisitorSynchronization::kSymbol);
5488 
5489   isolate_->bootstrapper()->Iterate(v);
5490   v->Synchronize(VisitorSynchronization::kBootstrapper);
5491   isolate_->Iterate(v);
5492   v->Synchronize(VisitorSynchronization::kTop);
5493   Relocatable::Iterate(v);
5494   v->Synchronize(VisitorSynchronization::kRelocatable);
5495 
5496 #ifdef ENABLE_DEBUGGER_SUPPORT
5497   isolate_->debug()->Iterate(v);
5498   if (isolate_->deoptimizer_data() != NULL) {
5499     isolate_->deoptimizer_data()->Iterate(v);
5500   }
5501 #endif
5502   v->Synchronize(VisitorSynchronization::kDebug);
5503   isolate_->compilation_cache()->Iterate(v);
5504   v->Synchronize(VisitorSynchronization::kCompilationCache);
5505 
5506   // Iterate over local handles in handle scopes.
5507   isolate_->handle_scope_implementer()->Iterate(v);
5508   v->Synchronize(VisitorSynchronization::kHandleScope);
5509 
5510   // Iterate over the builtin code objects and code stubs in the
5511   // heap. Note that it is not necessary to iterate over code objects
5512   // on scavenge collections.
5513   if (mode != VISIT_ALL_IN_SCAVENGE) {
5514     isolate_->builtins()->IterateBuiltins(v);
5515   }
5516   v->Synchronize(VisitorSynchronization::kBuiltins);
5517 
5518   // Iterate over global handles.
5519   switch (mode) {
5520     case VISIT_ONLY_STRONG:
5521       isolate_->global_handles()->IterateStrongRoots(v);
5522       break;
5523     case VISIT_ALL_IN_SCAVENGE:
5524       isolate_->global_handles()->IterateNewSpaceStrongAndDependentRoots(v);
5525       break;
5526     case VISIT_ALL_IN_SWEEP_NEWSPACE:
5527     case VISIT_ALL:
5528       isolate_->global_handles()->IterateAllRoots(v);
5529       break;
5530   }
5531   v->Synchronize(VisitorSynchronization::kGlobalHandles);
5532 
5533   // Iterate over pointers being held by inactive threads.
5534   isolate_->thread_manager()->Iterate(v);
5535   v->Synchronize(VisitorSynchronization::kThreadManager);
5536 
5537   // Iterate over the pointers the Serialization/Deserialization code is
5538   // holding.
5539   // During garbage collection this keeps the partial snapshot cache alive.
5540   // During deserialization of the startup snapshot this creates the partial
5541   // snapshot cache and deserializes the objects it refers to.  During
5542   // serialization this does nothing, since the partial snapshot cache is
5543   // empty.  However the next thing we do is create the partial snapshot,
5544   // filling up the partial snapshot cache with objects it needs as we go.
5545   SerializerDeserializer::Iterate(v);
5546   // We don't do a v->Synchronize call here, because in debug mode that will
5547   // output a flag to the snapshot.  However at this point the serializer and
5548   // deserializer are deliberately a little unsynchronized (see above) so the
5549   // checking of the sync flag in the snapshot would fail.
5550 }
5551 
5552 
5553 // TODO(1236194): Since the heap size is configurable on the command line
5554 // and through the API, we should gracefully handle the case that the heap
5555 // size is not big enough to fit all the initial objects.
ConfigureHeap(int max_semispace_size,intptr_t max_old_gen_size,intptr_t max_executable_size)5556 bool Heap::ConfigureHeap(int max_semispace_size,
5557                          intptr_t max_old_gen_size,
5558                          intptr_t max_executable_size) {
5559   if (HasBeenSetUp()) return false;
5560 
5561   if (max_semispace_size > 0) {
5562     if (max_semispace_size < Page::kPageSize) {
5563       max_semispace_size = Page::kPageSize;
5564       if (FLAG_trace_gc) {
5565         PrintF("Max semispace size cannot be less than %dkbytes\n",
5566                Page::kPageSize >> 10);
5567       }
5568     }
5569     max_semispace_size_ = max_semispace_size;
5570   }
5571 
5572   if (Snapshot::IsEnabled()) {
5573     // If we are using a snapshot we always reserve the default amount
5574     // of memory for each semispace because code in the snapshot has
5575     // write-barrier code that relies on the size and alignment of new
5576     // space.  We therefore cannot use a larger max semispace size
5577     // than the default reserved semispace size.
5578     if (max_semispace_size_ > reserved_semispace_size_) {
5579       max_semispace_size_ = reserved_semispace_size_;
5580       if (FLAG_trace_gc) {
5581         PrintF("Max semispace size cannot be more than %dkbytes\n",
5582                reserved_semispace_size_ >> 10);
5583       }
5584     }
5585   } else {
5586     // If we are not using snapshots we reserve space for the actual
5587     // max semispace size.
5588     reserved_semispace_size_ = max_semispace_size_;
5589   }
5590 
5591   if (max_old_gen_size > 0) max_old_generation_size_ = max_old_gen_size;
5592   if (max_executable_size > 0) {
5593     max_executable_size_ = RoundUp(max_executable_size, Page::kPageSize);
5594   }
5595 
5596   // The max executable size must be less than or equal to the max old
5597   // generation size.
5598   if (max_executable_size_ > max_old_generation_size_) {
5599     max_executable_size_ = max_old_generation_size_;
5600   }
5601 
5602   // The new space size must be a power of two to support single-bit testing
5603   // for containment.
5604   max_semispace_size_ = RoundUpToPowerOf2(max_semispace_size_);
5605   reserved_semispace_size_ = RoundUpToPowerOf2(reserved_semispace_size_);
5606   initial_semispace_size_ = Min(initial_semispace_size_, max_semispace_size_);
5607   external_allocation_limit_ = 10 * max_semispace_size_;
5608 
5609   // The old generation is paged and needs at least one page for each space.
5610   int paged_space_count = LAST_PAGED_SPACE - FIRST_PAGED_SPACE + 1;
5611   max_old_generation_size_ = Max(static_cast<intptr_t>(paged_space_count *
5612                                                        Page::kPageSize),
5613                                  RoundUp(max_old_generation_size_,
5614                                          Page::kPageSize));
5615 
5616   configured_ = true;
5617   return true;
5618 }
5619 
5620 
ConfigureHeapDefault()5621 bool Heap::ConfigureHeapDefault() {
5622   return ConfigureHeap(static_cast<intptr_t>(FLAG_max_new_space_size / 2) * KB,
5623                        static_cast<intptr_t>(FLAG_max_old_space_size) * MB,
5624                        static_cast<intptr_t>(FLAG_max_executable_size) * MB);
5625 }
5626 
5627 
RecordStats(HeapStats * stats,bool take_snapshot)5628 void Heap::RecordStats(HeapStats* stats, bool take_snapshot) {
5629   *stats->start_marker = HeapStats::kStartMarker;
5630   *stats->end_marker = HeapStats::kEndMarker;
5631   *stats->new_space_size = new_space_.SizeAsInt();
5632   *stats->new_space_capacity = static_cast<int>(new_space_.Capacity());
5633   *stats->old_pointer_space_size = old_pointer_space_->SizeOfObjects();
5634   *stats->old_pointer_space_capacity = old_pointer_space_->Capacity();
5635   *stats->old_data_space_size = old_data_space_->SizeOfObjects();
5636   *stats->old_data_space_capacity = old_data_space_->Capacity();
5637   *stats->code_space_size = code_space_->SizeOfObjects();
5638   *stats->code_space_capacity = code_space_->Capacity();
5639   *stats->map_space_size = map_space_->SizeOfObjects();
5640   *stats->map_space_capacity = map_space_->Capacity();
5641   *stats->cell_space_size = cell_space_->SizeOfObjects();
5642   *stats->cell_space_capacity = cell_space_->Capacity();
5643   *stats->lo_space_size = lo_space_->Size();
5644   isolate_->global_handles()->RecordStats(stats);
5645   *stats->memory_allocator_size = isolate()->memory_allocator()->Size();
5646   *stats->memory_allocator_capacity =
5647       isolate()->memory_allocator()->Size() +
5648       isolate()->memory_allocator()->Available();
5649   *stats->os_error = OS::GetLastError();
5650       isolate()->memory_allocator()->Available();
5651   if (take_snapshot) {
5652     HeapIterator iterator;
5653     for (HeapObject* obj = iterator.next();
5654          obj != NULL;
5655          obj = iterator.next()) {
5656       InstanceType type = obj->map()->instance_type();
5657       ASSERT(0 <= type && type <= LAST_TYPE);
5658       stats->objects_per_type[type]++;
5659       stats->size_per_type[type] += obj->Size();
5660     }
5661   }
5662 }
5663 
5664 
PromotedSpaceSize()5665 intptr_t Heap::PromotedSpaceSize() {
5666   return old_pointer_space_->Size()
5667       + old_data_space_->Size()
5668       + code_space_->Size()
5669       + map_space_->Size()
5670       + cell_space_->Size()
5671       + lo_space_->Size();
5672 }
5673 
5674 
PromotedSpaceSizeOfObjects()5675 intptr_t Heap::PromotedSpaceSizeOfObjects() {
5676   return old_pointer_space_->SizeOfObjects()
5677       + old_data_space_->SizeOfObjects()
5678       + code_space_->SizeOfObjects()
5679       + map_space_->SizeOfObjects()
5680       + cell_space_->SizeOfObjects()
5681       + lo_space_->SizeOfObjects();
5682 }
5683 
5684 
PromotedExternalMemorySize()5685 int Heap::PromotedExternalMemorySize() {
5686   if (amount_of_external_allocated_memory_
5687       <= amount_of_external_allocated_memory_at_last_global_gc_) return 0;
5688   return amount_of_external_allocated_memory_
5689       - amount_of_external_allocated_memory_at_last_global_gc_;
5690 }
5691 
5692 #ifdef DEBUG
5693 
5694 // Tags 0, 1, and 3 are used. Use 2 for marking visited HeapObject.
5695 static const int kMarkTag = 2;
5696 
5697 
5698 class HeapDebugUtils {
5699  public:
HeapDebugUtils(Heap * heap)5700   explicit HeapDebugUtils(Heap* heap)
5701     : search_for_any_global_(false),
5702       search_target_(NULL),
5703       found_target_(false),
5704       object_stack_(20),
5705       heap_(heap) {
5706   }
5707 
5708   class MarkObjectVisitor : public ObjectVisitor {
5709    public:
MarkObjectVisitor(HeapDebugUtils * utils)5710     explicit MarkObjectVisitor(HeapDebugUtils* utils) : utils_(utils) { }
5711 
VisitPointers(Object ** start,Object ** end)5712     void VisitPointers(Object** start, Object** end) {
5713       // Copy all HeapObject pointers in [start, end)
5714       for (Object** p = start; p < end; p++) {
5715         if ((*p)->IsHeapObject())
5716           utils_->MarkObjectRecursively(p);
5717       }
5718     }
5719 
5720     HeapDebugUtils* utils_;
5721   };
5722 
MarkObjectRecursively(Object ** p)5723   void MarkObjectRecursively(Object** p) {
5724     if (!(*p)->IsHeapObject()) return;
5725 
5726     HeapObject* obj = HeapObject::cast(*p);
5727 
5728     Object* map = obj->map();
5729 
5730     if (!map->IsHeapObject()) return;  // visited before
5731 
5732     if (found_target_) return;  // stop if target found
5733     object_stack_.Add(obj);
5734     if ((search_for_any_global_ && obj->IsJSGlobalObject()) ||
5735         (!search_for_any_global_ && (obj == search_target_))) {
5736       found_target_ = true;
5737       return;
5738     }
5739 
5740     // not visited yet
5741     Map* map_p = reinterpret_cast<Map*>(HeapObject::cast(map));
5742 
5743     Address map_addr = map_p->address();
5744 
5745     obj->set_map_no_write_barrier(reinterpret_cast<Map*>(map_addr + kMarkTag));
5746 
5747     MarkObjectRecursively(&map);
5748 
5749     MarkObjectVisitor mark_visitor(this);
5750 
5751     obj->IterateBody(map_p->instance_type(), obj->SizeFromMap(map_p),
5752                      &mark_visitor);
5753 
5754     if (!found_target_)  // don't pop if found the target
5755       object_stack_.RemoveLast();
5756   }
5757 
5758 
5759   class UnmarkObjectVisitor : public ObjectVisitor {
5760    public:
UnmarkObjectVisitor(HeapDebugUtils * utils)5761     explicit UnmarkObjectVisitor(HeapDebugUtils* utils) : utils_(utils) { }
5762 
VisitPointers(Object ** start,Object ** end)5763     void VisitPointers(Object** start, Object** end) {
5764       // Copy all HeapObject pointers in [start, end)
5765       for (Object** p = start; p < end; p++) {
5766         if ((*p)->IsHeapObject())
5767           utils_->UnmarkObjectRecursively(p);
5768       }
5769     }
5770 
5771     HeapDebugUtils* utils_;
5772   };
5773 
5774 
UnmarkObjectRecursively(Object ** p)5775   void UnmarkObjectRecursively(Object** p) {
5776     if (!(*p)->IsHeapObject()) return;
5777 
5778     HeapObject* obj = HeapObject::cast(*p);
5779 
5780     Object* map = obj->map();
5781 
5782     if (map->IsHeapObject()) return;  // unmarked already
5783 
5784     Address map_addr = reinterpret_cast<Address>(map);
5785 
5786     map_addr -= kMarkTag;
5787 
5788     ASSERT_TAG_ALIGNED(map_addr);
5789 
5790     HeapObject* map_p = HeapObject::FromAddress(map_addr);
5791 
5792     obj->set_map_no_write_barrier(reinterpret_cast<Map*>(map_p));
5793 
5794     UnmarkObjectRecursively(reinterpret_cast<Object**>(&map_p));
5795 
5796     UnmarkObjectVisitor unmark_visitor(this);
5797 
5798     obj->IterateBody(Map::cast(map_p)->instance_type(),
5799                      obj->SizeFromMap(Map::cast(map_p)),
5800                      &unmark_visitor);
5801   }
5802 
5803 
MarkRootObjectRecursively(Object ** root)5804   void MarkRootObjectRecursively(Object** root) {
5805     if (search_for_any_global_) {
5806       ASSERT(search_target_ == NULL);
5807     } else {
5808       ASSERT(search_target_->IsHeapObject());
5809     }
5810     found_target_ = false;
5811     object_stack_.Clear();
5812 
5813     MarkObjectRecursively(root);
5814     UnmarkObjectRecursively(root);
5815 
5816     if (found_target_) {
5817       PrintF("=====================================\n");
5818       PrintF("====        Path to object       ====\n");
5819       PrintF("=====================================\n\n");
5820 
5821       ASSERT(!object_stack_.is_empty());
5822       for (int i = 0; i < object_stack_.length(); i++) {
5823         if (i > 0) PrintF("\n     |\n     |\n     V\n\n");
5824         Object* obj = object_stack_[i];
5825         obj->Print();
5826       }
5827       PrintF("=====================================\n");
5828     }
5829   }
5830 
5831   // Helper class for visiting HeapObjects recursively.
5832   class MarkRootVisitor: public ObjectVisitor {
5833    public:
MarkRootVisitor(HeapDebugUtils * utils)5834     explicit MarkRootVisitor(HeapDebugUtils* utils) : utils_(utils) { }
5835 
VisitPointers(Object ** start,Object ** end)5836     void VisitPointers(Object** start, Object** end) {
5837       // Visit all HeapObject pointers in [start, end)
5838       for (Object** p = start; p < end; p++) {
5839         if ((*p)->IsHeapObject())
5840           utils_->MarkRootObjectRecursively(p);
5841       }
5842     }
5843 
5844     HeapDebugUtils* utils_;
5845   };
5846 
5847   bool search_for_any_global_;
5848   Object* search_target_;
5849   bool found_target_;
5850   List<Object*> object_stack_;
5851   Heap* heap_;
5852 
5853   friend class Heap;
5854 };
5855 
5856 #endif
5857 
SetUp(bool create_heap_objects)5858 bool Heap::SetUp(bool create_heap_objects) {
5859 #ifdef DEBUG
5860   allocation_timeout_ = FLAG_gc_interval;
5861   debug_utils_ = new HeapDebugUtils(this);
5862 #endif
5863 
5864   // Initialize heap spaces and initial maps and objects. Whenever something
5865   // goes wrong, just return false. The caller should check the results and
5866   // call Heap::TearDown() to release allocated memory.
5867   //
5868   // If the heap is not yet configured (e.g. through the API), configure it.
5869   // Configuration is based on the flags new-space-size (really the semispace
5870   // size) and old-space-size if set or the initial values of semispace_size_
5871   // and old_generation_size_ otherwise.
5872   if (!configured_) {
5873     if (!ConfigureHeapDefault()) return false;
5874   }
5875 
5876   gc_initializer_mutex.Pointer()->Lock();
5877   static bool initialized_gc = false;
5878   if (!initialized_gc) {
5879       initialized_gc = true;
5880       InitializeScavengingVisitorsTables();
5881       NewSpaceScavenger::Initialize();
5882       MarkCompactCollector::Initialize();
5883   }
5884   gc_initializer_mutex.Pointer()->Unlock();
5885 
5886   MarkMapPointersAsEncoded(false);
5887 
5888   // Set up memory allocator.
5889   if (!isolate_->memory_allocator()->SetUp(MaxReserved(), MaxExecutableSize()))
5890       return false;
5891 
5892   // Set up new space.
5893   if (!new_space_.SetUp(reserved_semispace_size_, max_semispace_size_)) {
5894     return false;
5895   }
5896 
5897   // Initialize old pointer space.
5898   old_pointer_space_ =
5899       new OldSpace(this,
5900                    max_old_generation_size_,
5901                    OLD_POINTER_SPACE,
5902                    NOT_EXECUTABLE);
5903   if (old_pointer_space_ == NULL) return false;
5904   if (!old_pointer_space_->SetUp()) return false;
5905 
5906   // Initialize old data space.
5907   old_data_space_ =
5908       new OldSpace(this,
5909                    max_old_generation_size_,
5910                    OLD_DATA_SPACE,
5911                    NOT_EXECUTABLE);
5912   if (old_data_space_ == NULL) return false;
5913   if (!old_data_space_->SetUp()) return false;
5914 
5915   // Initialize the code space, set its maximum capacity to the old
5916   // generation size. It needs executable memory.
5917   // On 64-bit platform(s), we put all code objects in a 2 GB range of
5918   // virtual address space, so that they can call each other with near calls.
5919   if (code_range_size_ > 0) {
5920     if (!isolate_->code_range()->SetUp(code_range_size_)) {
5921       return false;
5922     }
5923   }
5924 
5925   code_space_ =
5926       new OldSpace(this, max_old_generation_size_, CODE_SPACE, EXECUTABLE);
5927   if (code_space_ == NULL) return false;
5928   if (!code_space_->SetUp()) return false;
5929 
5930   // Initialize map space.
5931   map_space_ = new MapSpace(this, max_old_generation_size_, MAP_SPACE);
5932   if (map_space_ == NULL) return false;
5933   if (!map_space_->SetUp()) return false;
5934 
5935   // Initialize global property cell space.
5936   cell_space_ = new CellSpace(this, max_old_generation_size_, CELL_SPACE);
5937   if (cell_space_ == NULL) return false;
5938   if (!cell_space_->SetUp()) return false;
5939 
5940   // The large object code space may contain code or data.  We set the memory
5941   // to be non-executable here for safety, but this means we need to enable it
5942   // explicitly when allocating large code objects.
5943   lo_space_ = new LargeObjectSpace(this, max_old_generation_size_, LO_SPACE);
5944   if (lo_space_ == NULL) return false;
5945   if (!lo_space_->SetUp()) return false;
5946 
5947   // Set up the seed that is used to randomize the string hash function.
5948   ASSERT(hash_seed() == 0);
5949   if (FLAG_randomize_hashes) {
5950     if (FLAG_hash_seed == 0) {
5951       set_hash_seed(
5952           Smi::FromInt(V8::RandomPrivate(isolate()) & 0x3fffffff));
5953     } else {
5954       set_hash_seed(Smi::FromInt(FLAG_hash_seed));
5955     }
5956   }
5957 
5958   if (create_heap_objects) {
5959     // Create initial maps.
5960     if (!CreateInitialMaps()) return false;
5961     if (!CreateApiObjects()) return false;
5962 
5963     // Create initial objects
5964     if (!CreateInitialObjects()) return false;
5965 
5966     global_contexts_list_ = undefined_value();
5967   }
5968 
5969   LOG(isolate_, IntPtrTEvent("heap-capacity", Capacity()));
5970   LOG(isolate_, IntPtrTEvent("heap-available", Available()));
5971 
5972   store_buffer()->SetUp();
5973 
5974   return true;
5975 }
5976 
5977 
SetStackLimits()5978 void Heap::SetStackLimits() {
5979   ASSERT(isolate_ != NULL);
5980   ASSERT(isolate_ == isolate());
5981   // On 64 bit machines, pointers are generally out of range of Smis.  We write
5982   // something that looks like an out of range Smi to the GC.
5983 
5984   // Set up the special root array entries containing the stack limits.
5985   // These are actually addresses, but the tag makes the GC ignore it.
5986   roots_[kStackLimitRootIndex] =
5987       reinterpret_cast<Object*>(
5988           (isolate_->stack_guard()->jslimit() & ~kSmiTagMask) | kSmiTag);
5989   roots_[kRealStackLimitRootIndex] =
5990       reinterpret_cast<Object*>(
5991           (isolate_->stack_guard()->real_jslimit() & ~kSmiTagMask) | kSmiTag);
5992 }
5993 
5994 
TearDown()5995 void Heap::TearDown() {
5996   if (FLAG_print_cumulative_gc_stat) {
5997     PrintF("\n\n");
5998     PrintF("gc_count=%d ", gc_count_);
5999     PrintF("mark_sweep_count=%d ", ms_count_);
6000     PrintF("max_gc_pause=%d ", get_max_gc_pause());
6001     PrintF("min_in_mutator=%d ", get_min_in_mutator());
6002     PrintF("max_alive_after_gc=%" V8_PTR_PREFIX "d ",
6003            get_max_alive_after_gc());
6004     PrintF("\n\n");
6005   }
6006 
6007   isolate_->global_handles()->TearDown();
6008 
6009   external_string_table_.TearDown();
6010 
6011   new_space_.TearDown();
6012 
6013   if (old_pointer_space_ != NULL) {
6014     old_pointer_space_->TearDown();
6015     delete old_pointer_space_;
6016     old_pointer_space_ = NULL;
6017   }
6018 
6019   if (old_data_space_ != NULL) {
6020     old_data_space_->TearDown();
6021     delete old_data_space_;
6022     old_data_space_ = NULL;
6023   }
6024 
6025   if (code_space_ != NULL) {
6026     code_space_->TearDown();
6027     delete code_space_;
6028     code_space_ = NULL;
6029   }
6030 
6031   if (map_space_ != NULL) {
6032     map_space_->TearDown();
6033     delete map_space_;
6034     map_space_ = NULL;
6035   }
6036 
6037   if (cell_space_ != NULL) {
6038     cell_space_->TearDown();
6039     delete cell_space_;
6040     cell_space_ = NULL;
6041   }
6042 
6043   if (lo_space_ != NULL) {
6044     lo_space_->TearDown();
6045     delete lo_space_;
6046     lo_space_ = NULL;
6047   }
6048 
6049   store_buffer()->TearDown();
6050   incremental_marking()->TearDown();
6051 
6052   isolate_->memory_allocator()->TearDown();
6053 
6054 #ifdef DEBUG
6055   delete debug_utils_;
6056   debug_utils_ = NULL;
6057 #endif
6058 }
6059 
6060 
Shrink()6061 void Heap::Shrink() {
6062   // Try to shrink all paged spaces.
6063   PagedSpaces spaces;
6064   for (PagedSpace* space = spaces.next();
6065        space != NULL;
6066        space = spaces.next()) {
6067     space->ReleaseAllUnusedPages();
6068   }
6069 }
6070 
6071 
AddGCPrologueCallback(GCPrologueCallback callback,GCType gc_type)6072 void Heap::AddGCPrologueCallback(GCPrologueCallback callback, GCType gc_type) {
6073   ASSERT(callback != NULL);
6074   GCPrologueCallbackPair pair(callback, gc_type);
6075   ASSERT(!gc_prologue_callbacks_.Contains(pair));
6076   return gc_prologue_callbacks_.Add(pair);
6077 }
6078 
6079 
RemoveGCPrologueCallback(GCPrologueCallback callback)6080 void Heap::RemoveGCPrologueCallback(GCPrologueCallback callback) {
6081   ASSERT(callback != NULL);
6082   for (int i = 0; i < gc_prologue_callbacks_.length(); ++i) {
6083     if (gc_prologue_callbacks_[i].callback == callback) {
6084       gc_prologue_callbacks_.Remove(i);
6085       return;
6086     }
6087   }
6088   UNREACHABLE();
6089 }
6090 
6091 
AddGCEpilogueCallback(GCEpilogueCallback callback,GCType gc_type)6092 void Heap::AddGCEpilogueCallback(GCEpilogueCallback callback, GCType gc_type) {
6093   ASSERT(callback != NULL);
6094   GCEpilogueCallbackPair pair(callback, gc_type);
6095   ASSERT(!gc_epilogue_callbacks_.Contains(pair));
6096   return gc_epilogue_callbacks_.Add(pair);
6097 }
6098 
6099 
RemoveGCEpilogueCallback(GCEpilogueCallback callback)6100 void Heap::RemoveGCEpilogueCallback(GCEpilogueCallback callback) {
6101   ASSERT(callback != NULL);
6102   for (int i = 0; i < gc_epilogue_callbacks_.length(); ++i) {
6103     if (gc_epilogue_callbacks_[i].callback == callback) {
6104       gc_epilogue_callbacks_.Remove(i);
6105       return;
6106     }
6107   }
6108   UNREACHABLE();
6109 }
6110 
6111 
6112 #ifdef DEBUG
6113 
6114 class PrintHandleVisitor: public ObjectVisitor {
6115  public:
VisitPointers(Object ** start,Object ** end)6116   void VisitPointers(Object** start, Object** end) {
6117     for (Object** p = start; p < end; p++)
6118       PrintF("  handle %p to %p\n",
6119              reinterpret_cast<void*>(p),
6120              reinterpret_cast<void*>(*p));
6121   }
6122 };
6123 
PrintHandles()6124 void Heap::PrintHandles() {
6125   PrintF("Handles:\n");
6126   PrintHandleVisitor v;
6127   isolate_->handle_scope_implementer()->Iterate(&v);
6128 }
6129 
6130 #endif
6131 
6132 
next()6133 Space* AllSpaces::next() {
6134   switch (counter_++) {
6135     case NEW_SPACE:
6136       return HEAP->new_space();
6137     case OLD_POINTER_SPACE:
6138       return HEAP->old_pointer_space();
6139     case OLD_DATA_SPACE:
6140       return HEAP->old_data_space();
6141     case CODE_SPACE:
6142       return HEAP->code_space();
6143     case MAP_SPACE:
6144       return HEAP->map_space();
6145     case CELL_SPACE:
6146       return HEAP->cell_space();
6147     case LO_SPACE:
6148       return HEAP->lo_space();
6149     default:
6150       return NULL;
6151   }
6152 }
6153 
6154 
next()6155 PagedSpace* PagedSpaces::next() {
6156   switch (counter_++) {
6157     case OLD_POINTER_SPACE:
6158       return HEAP->old_pointer_space();
6159     case OLD_DATA_SPACE:
6160       return HEAP->old_data_space();
6161     case CODE_SPACE:
6162       return HEAP->code_space();
6163     case MAP_SPACE:
6164       return HEAP->map_space();
6165     case CELL_SPACE:
6166       return HEAP->cell_space();
6167     default:
6168       return NULL;
6169   }
6170 }
6171 
6172 
6173 
next()6174 OldSpace* OldSpaces::next() {
6175   switch (counter_++) {
6176     case OLD_POINTER_SPACE:
6177       return HEAP->old_pointer_space();
6178     case OLD_DATA_SPACE:
6179       return HEAP->old_data_space();
6180     case CODE_SPACE:
6181       return HEAP->code_space();
6182     default:
6183       return NULL;
6184   }
6185 }
6186 
6187 
SpaceIterator()6188 SpaceIterator::SpaceIterator()
6189     : current_space_(FIRST_SPACE),
6190       iterator_(NULL),
6191       size_func_(NULL) {
6192 }
6193 
6194 
SpaceIterator(HeapObjectCallback size_func)6195 SpaceIterator::SpaceIterator(HeapObjectCallback size_func)
6196     : current_space_(FIRST_SPACE),
6197       iterator_(NULL),
6198       size_func_(size_func) {
6199 }
6200 
6201 
~SpaceIterator()6202 SpaceIterator::~SpaceIterator() {
6203   // Delete active iterator if any.
6204   delete iterator_;
6205 }
6206 
6207 
has_next()6208 bool SpaceIterator::has_next() {
6209   // Iterate until no more spaces.
6210   return current_space_ != LAST_SPACE;
6211 }
6212 
6213 
next()6214 ObjectIterator* SpaceIterator::next() {
6215   if (iterator_ != NULL) {
6216     delete iterator_;
6217     iterator_ = NULL;
6218     // Move to the next space
6219     current_space_++;
6220     if (current_space_ > LAST_SPACE) {
6221       return NULL;
6222     }
6223   }
6224 
6225   // Return iterator for the new current space.
6226   return CreateIterator();
6227 }
6228 
6229 
6230 // Create an iterator for the space to iterate.
CreateIterator()6231 ObjectIterator* SpaceIterator::CreateIterator() {
6232   ASSERT(iterator_ == NULL);
6233 
6234   switch (current_space_) {
6235     case NEW_SPACE:
6236       iterator_ = new SemiSpaceIterator(HEAP->new_space(), size_func_);
6237       break;
6238     case OLD_POINTER_SPACE:
6239       iterator_ = new HeapObjectIterator(HEAP->old_pointer_space(), size_func_);
6240       break;
6241     case OLD_DATA_SPACE:
6242       iterator_ = new HeapObjectIterator(HEAP->old_data_space(), size_func_);
6243       break;
6244     case CODE_SPACE:
6245       iterator_ = new HeapObjectIterator(HEAP->code_space(), size_func_);
6246       break;
6247     case MAP_SPACE:
6248       iterator_ = new HeapObjectIterator(HEAP->map_space(), size_func_);
6249       break;
6250     case CELL_SPACE:
6251       iterator_ = new HeapObjectIterator(HEAP->cell_space(), size_func_);
6252       break;
6253     case LO_SPACE:
6254       iterator_ = new LargeObjectIterator(HEAP->lo_space(), size_func_);
6255       break;
6256   }
6257 
6258   // Return the newly allocated iterator;
6259   ASSERT(iterator_ != NULL);
6260   return iterator_;
6261 }
6262 
6263 
6264 class HeapObjectsFilter {
6265  public:
~HeapObjectsFilter()6266   virtual ~HeapObjectsFilter() {}
6267   virtual bool SkipObject(HeapObject* object) = 0;
6268 };
6269 
6270 
6271 class UnreachableObjectsFilter : public HeapObjectsFilter {
6272  public:
UnreachableObjectsFilter()6273   UnreachableObjectsFilter() {
6274     MarkReachableObjects();
6275   }
6276 
~UnreachableObjectsFilter()6277   ~UnreachableObjectsFilter() {
6278     Isolate::Current()->heap()->mark_compact_collector()->ClearMarkbits();
6279   }
6280 
SkipObject(HeapObject * object)6281   bool SkipObject(HeapObject* object) {
6282     MarkBit mark_bit = Marking::MarkBitFrom(object);
6283     return !mark_bit.Get();
6284   }
6285 
6286  private:
6287   class MarkingVisitor : public ObjectVisitor {
6288    public:
MarkingVisitor()6289     MarkingVisitor() : marking_stack_(10) {}
6290 
VisitPointers(Object ** start,Object ** end)6291     void VisitPointers(Object** start, Object** end) {
6292       for (Object** p = start; p < end; p++) {
6293         if (!(*p)->IsHeapObject()) continue;
6294         HeapObject* obj = HeapObject::cast(*p);
6295         MarkBit mark_bit = Marking::MarkBitFrom(obj);
6296         if (!mark_bit.Get()) {
6297           mark_bit.Set();
6298           marking_stack_.Add(obj);
6299         }
6300       }
6301     }
6302 
TransitiveClosure()6303     void TransitiveClosure() {
6304       while (!marking_stack_.is_empty()) {
6305         HeapObject* obj = marking_stack_.RemoveLast();
6306         obj->Iterate(this);
6307       }
6308     }
6309 
6310    private:
6311     List<HeapObject*> marking_stack_;
6312   };
6313 
MarkReachableObjects()6314   void MarkReachableObjects() {
6315     Heap* heap = Isolate::Current()->heap();
6316     MarkingVisitor visitor;
6317     heap->IterateRoots(&visitor, VISIT_ALL);
6318     visitor.TransitiveClosure();
6319   }
6320 
6321   AssertNoAllocation no_alloc;
6322 };
6323 
6324 
HeapIterator()6325 HeapIterator::HeapIterator()
6326     : filtering_(HeapIterator::kNoFiltering),
6327       filter_(NULL) {
6328   Init();
6329 }
6330 
6331 
HeapIterator(HeapIterator::HeapObjectsFiltering filtering)6332 HeapIterator::HeapIterator(HeapIterator::HeapObjectsFiltering filtering)
6333     : filtering_(filtering),
6334       filter_(NULL) {
6335   Init();
6336 }
6337 
6338 
~HeapIterator()6339 HeapIterator::~HeapIterator() {
6340   Shutdown();
6341 }
6342 
6343 
Init()6344 void HeapIterator::Init() {
6345   // Start the iteration.
6346   space_iterator_ = new SpaceIterator;
6347   switch (filtering_) {
6348     case kFilterUnreachable:
6349       filter_ = new UnreachableObjectsFilter;
6350       break;
6351     default:
6352       break;
6353   }
6354   object_iterator_ = space_iterator_->next();
6355 }
6356 
6357 
Shutdown()6358 void HeapIterator::Shutdown() {
6359 #ifdef DEBUG
6360   // Assert that in filtering mode we have iterated through all
6361   // objects. Otherwise, heap will be left in an inconsistent state.
6362   if (filtering_ != kNoFiltering) {
6363     ASSERT(object_iterator_ == NULL);
6364   }
6365 #endif
6366   // Make sure the last iterator is deallocated.
6367   delete space_iterator_;
6368   space_iterator_ = NULL;
6369   object_iterator_ = NULL;
6370   delete filter_;
6371   filter_ = NULL;
6372 }
6373 
6374 
next()6375 HeapObject* HeapIterator::next() {
6376   if (filter_ == NULL) return NextObject();
6377 
6378   HeapObject* obj = NextObject();
6379   while (obj != NULL && filter_->SkipObject(obj)) obj = NextObject();
6380   return obj;
6381 }
6382 
6383 
NextObject()6384 HeapObject* HeapIterator::NextObject() {
6385   // No iterator means we are done.
6386   if (object_iterator_ == NULL) return NULL;
6387 
6388   if (HeapObject* obj = object_iterator_->next_object()) {
6389     // If the current iterator has more objects we are fine.
6390     return obj;
6391   } else {
6392     // Go though the spaces looking for one that has objects.
6393     while (space_iterator_->has_next()) {
6394       object_iterator_ = space_iterator_->next();
6395       if (HeapObject* obj = object_iterator_->next_object()) {
6396         return obj;
6397       }
6398     }
6399   }
6400   // Done with the last space.
6401   object_iterator_ = NULL;
6402   return NULL;
6403 }
6404 
6405 
reset()6406 void HeapIterator::reset() {
6407   // Restart the iterator.
6408   Shutdown();
6409   Init();
6410 }
6411 
6412 
6413 #if defined(DEBUG) || defined(LIVE_OBJECT_LIST)
6414 
6415 Object* const PathTracer::kAnyGlobalObject = reinterpret_cast<Object*>(NULL);
6416 
6417 class PathTracer::MarkVisitor: public ObjectVisitor {
6418  public:
MarkVisitor(PathTracer * tracer)6419   explicit MarkVisitor(PathTracer* tracer) : tracer_(tracer) {}
VisitPointers(Object ** start,Object ** end)6420   void VisitPointers(Object** start, Object** end) {
6421     // Scan all HeapObject pointers in [start, end)
6422     for (Object** p = start; !tracer_->found() && (p < end); p++) {
6423       if ((*p)->IsHeapObject())
6424         tracer_->MarkRecursively(p, this);
6425     }
6426   }
6427 
6428  private:
6429   PathTracer* tracer_;
6430 };
6431 
6432 
6433 class PathTracer::UnmarkVisitor: public ObjectVisitor {
6434  public:
UnmarkVisitor(PathTracer * tracer)6435   explicit UnmarkVisitor(PathTracer* tracer) : tracer_(tracer) {}
VisitPointers(Object ** start,Object ** end)6436   void VisitPointers(Object** start, Object** end) {
6437     // Scan all HeapObject pointers in [start, end)
6438     for (Object** p = start; p < end; p++) {
6439       if ((*p)->IsHeapObject())
6440         tracer_->UnmarkRecursively(p, this);
6441     }
6442   }
6443 
6444  private:
6445   PathTracer* tracer_;
6446 };
6447 
6448 
VisitPointers(Object ** start,Object ** end)6449 void PathTracer::VisitPointers(Object** start, Object** end) {
6450   bool done = ((what_to_find_ == FIND_FIRST) && found_target_);
6451   // Visit all HeapObject pointers in [start, end)
6452   for (Object** p = start; !done && (p < end); p++) {
6453     if ((*p)->IsHeapObject()) {
6454       TracePathFrom(p);
6455       done = ((what_to_find_ == FIND_FIRST) && found_target_);
6456     }
6457   }
6458 }
6459 
6460 
Reset()6461 void PathTracer::Reset() {
6462   found_target_ = false;
6463   object_stack_.Clear();
6464 }
6465 
6466 
TracePathFrom(Object ** root)6467 void PathTracer::TracePathFrom(Object** root) {
6468   ASSERT((search_target_ == kAnyGlobalObject) ||
6469          search_target_->IsHeapObject());
6470   found_target_in_trace_ = false;
6471   object_stack_.Clear();
6472 
6473   MarkVisitor mark_visitor(this);
6474   MarkRecursively(root, &mark_visitor);
6475 
6476   UnmarkVisitor unmark_visitor(this);
6477   UnmarkRecursively(root, &unmark_visitor);
6478 
6479   ProcessResults();
6480 }
6481 
6482 
SafeIsGlobalContext(HeapObject * obj)6483 static bool SafeIsGlobalContext(HeapObject* obj) {
6484   return obj->map() == obj->GetHeap()->raw_unchecked_global_context_map();
6485 }
6486 
6487 
MarkRecursively(Object ** p,MarkVisitor * mark_visitor)6488 void PathTracer::MarkRecursively(Object** p, MarkVisitor* mark_visitor) {
6489   if (!(*p)->IsHeapObject()) return;
6490 
6491   HeapObject* obj = HeapObject::cast(*p);
6492 
6493   Object* map = obj->map();
6494 
6495   if (!map->IsHeapObject()) return;  // visited before
6496 
6497   if (found_target_in_trace_) return;  // stop if target found
6498   object_stack_.Add(obj);
6499   if (((search_target_ == kAnyGlobalObject) && obj->IsJSGlobalObject()) ||
6500       (obj == search_target_)) {
6501     found_target_in_trace_ = true;
6502     found_target_ = true;
6503     return;
6504   }
6505 
6506   bool is_global_context = SafeIsGlobalContext(obj);
6507 
6508   // not visited yet
6509   Map* map_p = reinterpret_cast<Map*>(HeapObject::cast(map));
6510 
6511   Address map_addr = map_p->address();
6512 
6513   obj->set_map_no_write_barrier(reinterpret_cast<Map*>(map_addr + kMarkTag));
6514 
6515   // Scan the object body.
6516   if (is_global_context && (visit_mode_ == VISIT_ONLY_STRONG)) {
6517     // This is specialized to scan Context's properly.
6518     Object** start = reinterpret_cast<Object**>(obj->address() +
6519                                                 Context::kHeaderSize);
6520     Object** end = reinterpret_cast<Object**>(obj->address() +
6521         Context::kHeaderSize + Context::FIRST_WEAK_SLOT * kPointerSize);
6522     mark_visitor->VisitPointers(start, end);
6523   } else {
6524     obj->IterateBody(map_p->instance_type(),
6525                      obj->SizeFromMap(map_p),
6526                      mark_visitor);
6527   }
6528 
6529   // Scan the map after the body because the body is a lot more interesting
6530   // when doing leak detection.
6531   MarkRecursively(&map, mark_visitor);
6532 
6533   if (!found_target_in_trace_)  // don't pop if found the target
6534     object_stack_.RemoveLast();
6535 }
6536 
6537 
UnmarkRecursively(Object ** p,UnmarkVisitor * unmark_visitor)6538 void PathTracer::UnmarkRecursively(Object** p, UnmarkVisitor* unmark_visitor) {
6539   if (!(*p)->IsHeapObject()) return;
6540 
6541   HeapObject* obj = HeapObject::cast(*p);
6542 
6543   Object* map = obj->map();
6544 
6545   if (map->IsHeapObject()) return;  // unmarked already
6546 
6547   Address map_addr = reinterpret_cast<Address>(map);
6548 
6549   map_addr -= kMarkTag;
6550 
6551   ASSERT_TAG_ALIGNED(map_addr);
6552 
6553   HeapObject* map_p = HeapObject::FromAddress(map_addr);
6554 
6555   obj->set_map_no_write_barrier(reinterpret_cast<Map*>(map_p));
6556 
6557   UnmarkRecursively(reinterpret_cast<Object**>(&map_p), unmark_visitor);
6558 
6559   obj->IterateBody(Map::cast(map_p)->instance_type(),
6560                    obj->SizeFromMap(Map::cast(map_p)),
6561                    unmark_visitor);
6562 }
6563 
6564 
ProcessResults()6565 void PathTracer::ProcessResults() {
6566   if (found_target_) {
6567     PrintF("=====================================\n");
6568     PrintF("====        Path to object       ====\n");
6569     PrintF("=====================================\n\n");
6570 
6571     ASSERT(!object_stack_.is_empty());
6572     for (int i = 0; i < object_stack_.length(); i++) {
6573       if (i > 0) PrintF("\n     |\n     |\n     V\n\n");
6574       Object* obj = object_stack_[i];
6575 #ifdef OBJECT_PRINT
6576       obj->Print();
6577 #else
6578       obj->ShortPrint();
6579 #endif
6580     }
6581     PrintF("=====================================\n");
6582   }
6583 }
6584 #endif  // DEBUG || LIVE_OBJECT_LIST
6585 
6586 
6587 #ifdef DEBUG
6588 // Triggers a depth-first traversal of reachable objects from roots
6589 // and finds a path to a specific heap object and prints it.
TracePathToObject(Object * target)6590 void Heap::TracePathToObject(Object* target) {
6591   PathTracer tracer(target, PathTracer::FIND_ALL, VISIT_ALL);
6592   IterateRoots(&tracer, VISIT_ONLY_STRONG);
6593 }
6594 
6595 
6596 // Triggers a depth-first traversal of reachable objects from roots
6597 // and finds a path to any global object and prints it. Useful for
6598 // determining the source for leaks of global objects.
TracePathToGlobal()6599 void Heap::TracePathToGlobal() {
6600   PathTracer tracer(PathTracer::kAnyGlobalObject,
6601                     PathTracer::FIND_ALL,
6602                     VISIT_ALL);
6603   IterateRoots(&tracer, VISIT_ONLY_STRONG);
6604 }
6605 #endif
6606 
6607 
CountTotalHolesSize()6608 static intptr_t CountTotalHolesSize() {
6609   intptr_t holes_size = 0;
6610   OldSpaces spaces;
6611   for (OldSpace* space = spaces.next();
6612        space != NULL;
6613        space = spaces.next()) {
6614     holes_size += space->Waste() + space->Available();
6615   }
6616   return holes_size;
6617 }
6618 
6619 
GCTracer(Heap * heap,const char * gc_reason,const char * collector_reason)6620 GCTracer::GCTracer(Heap* heap,
6621                    const char* gc_reason,
6622                    const char* collector_reason)
6623     : start_time_(0.0),
6624       start_object_size_(0),
6625       start_memory_size_(0),
6626       gc_count_(0),
6627       full_gc_count_(0),
6628       allocated_since_last_gc_(0),
6629       spent_in_mutator_(0),
6630       promoted_objects_size_(0),
6631       heap_(heap),
6632       gc_reason_(gc_reason),
6633       collector_reason_(collector_reason) {
6634   if (!FLAG_trace_gc && !FLAG_print_cumulative_gc_stat) return;
6635   start_time_ = OS::TimeCurrentMillis();
6636   start_object_size_ = heap_->SizeOfObjects();
6637   start_memory_size_ = heap_->isolate()->memory_allocator()->Size();
6638 
6639   for (int i = 0; i < Scope::kNumberOfScopes; i++) {
6640     scopes_[i] = 0;
6641   }
6642 
6643   in_free_list_or_wasted_before_gc_ = CountTotalHolesSize();
6644 
6645   allocated_since_last_gc_ =
6646       heap_->SizeOfObjects() - heap_->alive_after_last_gc_;
6647 
6648   if (heap_->last_gc_end_timestamp_ > 0) {
6649     spent_in_mutator_ = Max(start_time_ - heap_->last_gc_end_timestamp_, 0.0);
6650   }
6651 
6652   steps_count_ = heap_->incremental_marking()->steps_count();
6653   steps_took_ = heap_->incremental_marking()->steps_took();
6654   longest_step_ = heap_->incremental_marking()->longest_step();
6655   steps_count_since_last_gc_ =
6656       heap_->incremental_marking()->steps_count_since_last_gc();
6657   steps_took_since_last_gc_ =
6658       heap_->incremental_marking()->steps_took_since_last_gc();
6659 }
6660 
6661 
~GCTracer()6662 GCTracer::~GCTracer() {
6663   // Printf ONE line iff flag is set.
6664   if (!FLAG_trace_gc && !FLAG_print_cumulative_gc_stat) return;
6665 
6666   bool first_gc = (heap_->last_gc_end_timestamp_ == 0);
6667 
6668   heap_->alive_after_last_gc_ = heap_->SizeOfObjects();
6669   heap_->last_gc_end_timestamp_ = OS::TimeCurrentMillis();
6670 
6671   int time = static_cast<int>(heap_->last_gc_end_timestamp_ - start_time_);
6672 
6673   // Update cumulative GC statistics if required.
6674   if (FLAG_print_cumulative_gc_stat) {
6675     heap_->max_gc_pause_ = Max(heap_->max_gc_pause_, time);
6676     heap_->max_alive_after_gc_ = Max(heap_->max_alive_after_gc_,
6677                                      heap_->alive_after_last_gc_);
6678     if (!first_gc) {
6679       heap_->min_in_mutator_ = Min(heap_->min_in_mutator_,
6680                                    static_cast<int>(spent_in_mutator_));
6681     }
6682   }
6683 
6684   PrintF("%8.0f ms: ", heap_->isolate()->time_millis_since_init());
6685 
6686   if (!FLAG_trace_gc_nvp) {
6687     int external_time = static_cast<int>(scopes_[Scope::EXTERNAL]);
6688 
6689     double end_memory_size_mb =
6690         static_cast<double>(heap_->isolate()->memory_allocator()->Size()) / MB;
6691 
6692     PrintF("%s %.1f (%.1f) -> %.1f (%.1f) MB, ",
6693            CollectorString(),
6694            static_cast<double>(start_object_size_) / MB,
6695            static_cast<double>(start_memory_size_) / MB,
6696            SizeOfHeapObjects(),
6697            end_memory_size_mb);
6698 
6699     if (external_time > 0) PrintF("%d / ", external_time);
6700     PrintF("%d ms", time);
6701     if (steps_count_ > 0) {
6702       if (collector_ == SCAVENGER) {
6703         PrintF(" (+ %d ms in %d steps since last GC)",
6704                static_cast<int>(steps_took_since_last_gc_),
6705                steps_count_since_last_gc_);
6706       } else {
6707         PrintF(" (+ %d ms in %d steps since start of marking, "
6708                    "biggest step %f ms)",
6709                static_cast<int>(steps_took_),
6710                steps_count_,
6711                longest_step_);
6712       }
6713     }
6714 
6715     if (gc_reason_ != NULL) {
6716       PrintF(" [%s]", gc_reason_);
6717     }
6718 
6719     if (collector_reason_ != NULL) {
6720       PrintF(" [%s]", collector_reason_);
6721     }
6722 
6723     PrintF(".\n");
6724   } else {
6725     PrintF("pause=%d ", time);
6726     PrintF("mutator=%d ",
6727            static_cast<int>(spent_in_mutator_));
6728 
6729     PrintF("gc=");
6730     switch (collector_) {
6731       case SCAVENGER:
6732         PrintF("s");
6733         break;
6734       case MARK_COMPACTOR:
6735         PrintF("ms");
6736         break;
6737       default:
6738         UNREACHABLE();
6739     }
6740     PrintF(" ");
6741 
6742     PrintF("external=%d ", static_cast<int>(scopes_[Scope::EXTERNAL]));
6743     PrintF("mark=%d ", static_cast<int>(scopes_[Scope::MC_MARK]));
6744     PrintF("sweep=%d ", static_cast<int>(scopes_[Scope::MC_SWEEP]));
6745     PrintF("sweepns=%d ", static_cast<int>(scopes_[Scope::MC_SWEEP_NEWSPACE]));
6746     PrintF("evacuate=%d ", static_cast<int>(scopes_[Scope::MC_EVACUATE_PAGES]));
6747     PrintF("new_new=%d ",
6748            static_cast<int>(scopes_[Scope::MC_UPDATE_NEW_TO_NEW_POINTERS]));
6749     PrintF("root_new=%d ",
6750            static_cast<int>(scopes_[Scope::MC_UPDATE_ROOT_TO_NEW_POINTERS]));
6751     PrintF("old_new=%d ",
6752            static_cast<int>(scopes_[Scope::MC_UPDATE_OLD_TO_NEW_POINTERS]));
6753     PrintF("compaction_ptrs=%d ",
6754            static_cast<int>(scopes_[Scope::MC_UPDATE_POINTERS_TO_EVACUATED]));
6755     PrintF("intracompaction_ptrs=%d ", static_cast<int>(scopes_[
6756         Scope::MC_UPDATE_POINTERS_BETWEEN_EVACUATED]));
6757     PrintF("misc_compaction=%d ",
6758            static_cast<int>(scopes_[Scope::MC_UPDATE_MISC_POINTERS]));
6759 
6760     PrintF("total_size_before=%" V8_PTR_PREFIX "d ", start_object_size_);
6761     PrintF("total_size_after=%" V8_PTR_PREFIX "d ", heap_->SizeOfObjects());
6762     PrintF("holes_size_before=%" V8_PTR_PREFIX "d ",
6763            in_free_list_or_wasted_before_gc_);
6764     PrintF("holes_size_after=%" V8_PTR_PREFIX "d ", CountTotalHolesSize());
6765 
6766     PrintF("allocated=%" V8_PTR_PREFIX "d ", allocated_since_last_gc_);
6767     PrintF("promoted=%" V8_PTR_PREFIX "d ", promoted_objects_size_);
6768 
6769     if (collector_ == SCAVENGER) {
6770       PrintF("stepscount=%d ", steps_count_since_last_gc_);
6771       PrintF("stepstook=%d ", static_cast<int>(steps_took_since_last_gc_));
6772     } else {
6773       PrintF("stepscount=%d ", steps_count_);
6774       PrintF("stepstook=%d ", static_cast<int>(steps_took_));
6775     }
6776 
6777     PrintF("\n");
6778   }
6779 
6780   heap_->PrintShortHeapStatistics();
6781 }
6782 
6783 
CollectorString()6784 const char* GCTracer::CollectorString() {
6785   switch (collector_) {
6786     case SCAVENGER:
6787       return "Scavenge";
6788     case MARK_COMPACTOR:
6789       return "Mark-sweep";
6790   }
6791   return "Unknown GC";
6792 }
6793 
6794 
Hash(Map * map,String * name)6795 int KeyedLookupCache::Hash(Map* map, String* name) {
6796   // Uses only lower 32 bits if pointers are larger.
6797   uintptr_t addr_hash =
6798       static_cast<uint32_t>(reinterpret_cast<uintptr_t>(map)) >> kMapHashShift;
6799   return static_cast<uint32_t>((addr_hash ^ name->Hash()) & kCapacityMask);
6800 }
6801 
6802 
Lookup(Map * map,String * name)6803 int KeyedLookupCache::Lookup(Map* map, String* name) {
6804   int index = (Hash(map, name) & kHashMask);
6805   for (int i = 0; i < kEntriesPerBucket; i++) {
6806     Key& key = keys_[index + i];
6807     if ((key.map == map) && key.name->Equals(name)) {
6808       return field_offsets_[index + i];
6809     }
6810   }
6811   return kNotFound;
6812 }
6813 
6814 
Update(Map * map,String * name,int field_offset)6815 void KeyedLookupCache::Update(Map* map, String* name, int field_offset) {
6816   String* symbol;
6817   if (HEAP->LookupSymbolIfExists(name, &symbol)) {
6818     int index = (Hash(map, symbol) & kHashMask);
6819     // After a GC there will be free slots, so we use them in order (this may
6820     // help to get the most frequently used one in position 0).
6821     for (int i = 0; i< kEntriesPerBucket; i++) {
6822       Key& key = keys_[index];
6823       Object* free_entry_indicator = NULL;
6824       if (key.map == free_entry_indicator) {
6825         key.map = map;
6826         key.name = symbol;
6827         field_offsets_[index + i] = field_offset;
6828         return;
6829       }
6830     }
6831     // No free entry found in this bucket, so we move them all down one and
6832     // put the new entry at position zero.
6833     for (int i = kEntriesPerBucket - 1; i > 0; i--) {
6834       Key& key = keys_[index + i];
6835       Key& key2 = keys_[index + i - 1];
6836       key = key2;
6837       field_offsets_[index + i] = field_offsets_[index + i - 1];
6838     }
6839 
6840     // Write the new first entry.
6841     Key& key = keys_[index];
6842     key.map = map;
6843     key.name = symbol;
6844     field_offsets_[index] = field_offset;
6845   }
6846 }
6847 
6848 
Clear()6849 void KeyedLookupCache::Clear() {
6850   for (int index = 0; index < kLength; index++) keys_[index].map = NULL;
6851 }
6852 
6853 
Clear()6854 void DescriptorLookupCache::Clear() {
6855   for (int index = 0; index < kLength; index++) keys_[index].array = NULL;
6856 }
6857 
6858 
6859 #ifdef DEBUG
GarbageCollectionGreedyCheck()6860 void Heap::GarbageCollectionGreedyCheck() {
6861   ASSERT(FLAG_gc_greedy);
6862   if (isolate_->bootstrapper()->IsActive()) return;
6863   if (disallow_allocation_failure()) return;
6864   CollectGarbage(NEW_SPACE);
6865 }
6866 #endif
6867 
6868 
SubCache(Type t)6869 TranscendentalCache::SubCache::SubCache(Type t)
6870   : type_(t),
6871     isolate_(Isolate::Current()) {
6872   uint32_t in0 = 0xffffffffu;  // Bit-pattern for a NaN that isn't
6873   uint32_t in1 = 0xffffffffu;  // generated by the FPU.
6874   for (int i = 0; i < kCacheSize; i++) {
6875     elements_[i].in[0] = in0;
6876     elements_[i].in[1] = in1;
6877     elements_[i].output = NULL;
6878   }
6879 }
6880 
6881 
Clear()6882 void TranscendentalCache::Clear() {
6883   for (int i = 0; i < kNumberOfCaches; i++) {
6884     if (caches_[i] != NULL) {
6885       delete caches_[i];
6886       caches_[i] = NULL;
6887     }
6888   }
6889 }
6890 
6891 
CleanUp()6892 void ExternalStringTable::CleanUp() {
6893   int last = 0;
6894   for (int i = 0; i < new_space_strings_.length(); ++i) {
6895     if (new_space_strings_[i] == heap_->raw_unchecked_the_hole_value()) {
6896       continue;
6897     }
6898     if (heap_->InNewSpace(new_space_strings_[i])) {
6899       new_space_strings_[last++] = new_space_strings_[i];
6900     } else {
6901       old_space_strings_.Add(new_space_strings_[i]);
6902     }
6903   }
6904   new_space_strings_.Rewind(last);
6905   last = 0;
6906   for (int i = 0; i < old_space_strings_.length(); ++i) {
6907     if (old_space_strings_[i] == heap_->raw_unchecked_the_hole_value()) {
6908       continue;
6909     }
6910     ASSERT(!heap_->InNewSpace(old_space_strings_[i]));
6911     old_space_strings_[last++] = old_space_strings_[i];
6912   }
6913   old_space_strings_.Rewind(last);
6914   if (FLAG_verify_heap) {
6915     Verify();
6916   }
6917 }
6918 
6919 
TearDown()6920 void ExternalStringTable::TearDown() {
6921   new_space_strings_.Free();
6922   old_space_strings_.Free();
6923 }
6924 
6925 
QueueMemoryChunkForFree(MemoryChunk * chunk)6926 void Heap::QueueMemoryChunkForFree(MemoryChunk* chunk) {
6927   chunk->set_next_chunk(chunks_queued_for_free_);
6928   chunks_queued_for_free_ = chunk;
6929 }
6930 
6931 
FreeQueuedChunks()6932 void Heap::FreeQueuedChunks() {
6933   if (chunks_queued_for_free_ == NULL) return;
6934   MemoryChunk* next;
6935   MemoryChunk* chunk;
6936   for (chunk = chunks_queued_for_free_; chunk != NULL; chunk = next) {
6937     next = chunk->next_chunk();
6938     chunk->SetFlag(MemoryChunk::ABOUT_TO_BE_FREED);
6939 
6940     if (chunk->owner()->identity() == LO_SPACE) {
6941       // StoreBuffer::Filter relies on MemoryChunk::FromAnyPointerAddress.
6942       // If FromAnyPointerAddress encounters a slot that belongs to a large
6943       // chunk queued for deletion it will fail to find the chunk because
6944       // it try to perform a search in the list of pages owned by of the large
6945       // object space and queued chunks were detached from that list.
6946       // To work around this we split large chunk into normal kPageSize aligned
6947       // pieces and initialize size, owner and flags field of every piece.
6948       // If FromAnyPointerAddress encounters a slot that belongs to one of
6949       // these smaller pieces it will treat it as a slot on a normal Page.
6950       Address chunk_end = chunk->address() + chunk->size();
6951       MemoryChunk* inner = MemoryChunk::FromAddress(
6952           chunk->address() + Page::kPageSize);
6953       MemoryChunk* inner_last = MemoryChunk::FromAddress(chunk_end - 1);
6954       while (inner <= inner_last) {
6955         // Size of a large chunk is always a multiple of
6956         // OS::AllocateAlignment() so there is always
6957         // enough space for a fake MemoryChunk header.
6958         Address area_end = Min(inner->address() + Page::kPageSize, chunk_end);
6959         // Guard against overflow.
6960         if (area_end < inner->address()) area_end = chunk_end;
6961         inner->SetArea(inner->address(), area_end);
6962         inner->set_size(Page::kPageSize);
6963         inner->set_owner(lo_space());
6964         inner->SetFlag(MemoryChunk::ABOUT_TO_BE_FREED);
6965         inner = MemoryChunk::FromAddress(
6966             inner->address() + Page::kPageSize);
6967       }
6968     }
6969   }
6970   isolate_->heap()->store_buffer()->Compact();
6971   isolate_->heap()->store_buffer()->Filter(MemoryChunk::ABOUT_TO_BE_FREED);
6972   for (chunk = chunks_queued_for_free_; chunk != NULL; chunk = next) {
6973     next = chunk->next_chunk();
6974     isolate_->memory_allocator()->Free(chunk);
6975   }
6976   chunks_queued_for_free_ = NULL;
6977 }
6978 
6979 
RememberUnmappedPage(Address page,bool compacted)6980 void Heap::RememberUnmappedPage(Address page, bool compacted) {
6981   uintptr_t p = reinterpret_cast<uintptr_t>(page);
6982   // Tag the page pointer to make it findable in the dump file.
6983   if (compacted) {
6984     p ^= 0xc1ead & (Page::kPageSize - 1);  // Cleared.
6985   } else {
6986     p ^= 0x1d1ed & (Page::kPageSize - 1);  // I died.
6987   }
6988   remembered_unmapped_pages_[remembered_unmapped_pages_index_] =
6989       reinterpret_cast<Address>(p);
6990   remembered_unmapped_pages_index_++;
6991   remembered_unmapped_pages_index_ %= kRememberedUnmappedPages;
6992 }
6993 
6994 } }  // namespace v8::internal
6995