• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright (c) 2011 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #include "base/message_pump_win.h"
6 
7 #include <math.h>
8 
9 #include "base/message_loop.h"
10 #include "base/metrics/histogram.h"
11 #include "base/win/wrapped_window_proc.h"
12 
13 namespace base {
14 
15 static const wchar_t kWndClass[] = L"Chrome_MessagePumpWindow";
16 
17 // Message sent to get an additional time slice for pumping (processing) another
18 // task (a series of such messages creates a continuous task pump).
19 static const int kMsgHaveWork = WM_USER + 1;
20 
21 //-----------------------------------------------------------------------------
22 // MessagePumpWin public:
23 
AddObserver(Observer * observer)24 void MessagePumpWin::AddObserver(Observer* observer) {
25   observers_.AddObserver(observer);
26 }
27 
RemoveObserver(Observer * observer)28 void MessagePumpWin::RemoveObserver(Observer* observer) {
29   observers_.RemoveObserver(observer);
30 }
31 
WillProcessMessage(const MSG & msg)32 void MessagePumpWin::WillProcessMessage(const MSG& msg) {
33   FOR_EACH_OBSERVER(Observer, observers_, WillProcessMessage(msg));
34 }
35 
DidProcessMessage(const MSG & msg)36 void MessagePumpWin::DidProcessMessage(const MSG& msg) {
37   FOR_EACH_OBSERVER(Observer, observers_, DidProcessMessage(msg));
38 }
39 
RunWithDispatcher(Delegate * delegate,Dispatcher * dispatcher)40 void MessagePumpWin::RunWithDispatcher(
41     Delegate* delegate, Dispatcher* dispatcher) {
42   RunState s;
43   s.delegate = delegate;
44   s.dispatcher = dispatcher;
45   s.should_quit = false;
46   s.run_depth = state_ ? state_->run_depth + 1 : 1;
47 
48   RunState* previous_state = state_;
49   state_ = &s;
50 
51   DoRunLoop();
52 
53   state_ = previous_state;
54 }
55 
Quit()56 void MessagePumpWin::Quit() {
57   DCHECK(state_);
58   state_->should_quit = true;
59 }
60 
61 //-----------------------------------------------------------------------------
62 // MessagePumpWin protected:
63 
GetCurrentDelay() const64 int MessagePumpWin::GetCurrentDelay() const {
65   if (delayed_work_time_.is_null())
66     return -1;
67 
68   // Be careful here.  TimeDelta has a precision of microseconds, but we want a
69   // value in milliseconds.  If there are 5.5ms left, should the delay be 5 or
70   // 6?  It should be 6 to avoid executing delayed work too early.
71   double timeout =
72       ceil((delayed_work_time_ - TimeTicks::Now()).InMillisecondsF());
73 
74   // If this value is negative, then we need to run delayed work soon.
75   int delay = static_cast<int>(timeout);
76   if (delay < 0)
77     delay = 0;
78 
79   return delay;
80 }
81 
82 //-----------------------------------------------------------------------------
83 // MessagePumpForUI public:
84 
MessagePumpForUI()85 MessagePumpForUI::MessagePumpForUI() {
86   InitMessageWnd();
87 }
88 
~MessagePumpForUI()89 MessagePumpForUI::~MessagePumpForUI() {
90   DestroyWindow(message_hwnd_);
91   UnregisterClass(kWndClass, GetModuleHandle(NULL));
92 }
93 
ScheduleWork()94 void MessagePumpForUI::ScheduleWork() {
95   if (InterlockedExchange(&have_work_, 1))
96     return;  // Someone else continued the pumping.
97 
98   // Make sure the MessagePump does some work for us.
99   PostMessage(message_hwnd_, kMsgHaveWork, reinterpret_cast<WPARAM>(this), 0);
100 }
101 
ScheduleDelayedWork(const TimeTicks & delayed_work_time)102 void MessagePumpForUI::ScheduleDelayedWork(const TimeTicks& delayed_work_time) {
103   //
104   // We would *like* to provide high resolution timers.  Windows timers using
105   // SetTimer() have a 10ms granularity.  We have to use WM_TIMER as a wakeup
106   // mechanism because the application can enter modal windows loops where it
107   // is not running our MessageLoop; the only way to have our timers fire in
108   // these cases is to post messages there.
109   //
110   // To provide sub-10ms timers, we process timers directly from our run loop.
111   // For the common case, timers will be processed there as the run loop does
112   // its normal work.  However, we *also* set the system timer so that WM_TIMER
113   // events fire.  This mops up the case of timers not being able to work in
114   // modal message loops.  It is possible for the SetTimer to pop and have no
115   // pending timers, because they could have already been processed by the
116   // run loop itself.
117   //
118   // We use a single SetTimer corresponding to the timer that will expire
119   // soonest.  As new timers are created and destroyed, we update SetTimer.
120   // Getting a spurrious SetTimer event firing is benign, as we'll just be
121   // processing an empty timer queue.
122   //
123   delayed_work_time_ = delayed_work_time;
124 
125   int delay_msec = GetCurrentDelay();
126   DCHECK_GE(delay_msec, 0);
127   if (delay_msec < USER_TIMER_MINIMUM)
128     delay_msec = USER_TIMER_MINIMUM;
129 
130   // Create a WM_TIMER event that will wake us up to check for any pending
131   // timers (in case we are running within a nested, external sub-pump).
132   SetTimer(message_hwnd_, reinterpret_cast<UINT_PTR>(this), delay_msec, NULL);
133 }
134 
PumpOutPendingPaintMessages()135 void MessagePumpForUI::PumpOutPendingPaintMessages() {
136   // If we are being called outside of the context of Run, then don't try to do
137   // any work.
138   if (!state_)
139     return;
140 
141   // Create a mini-message-pump to force immediate processing of only Windows
142   // WM_PAINT messages.  Don't provide an infinite loop, but do enough peeking
143   // to get the job done.  Actual common max is 4 peeks, but we'll be a little
144   // safe here.
145   const int kMaxPeekCount = 20;
146   int peek_count;
147   for (peek_count = 0; peek_count < kMaxPeekCount; ++peek_count) {
148     MSG msg;
149     if (!PeekMessage(&msg, NULL, 0, 0, PM_REMOVE | PM_QS_PAINT))
150       break;
151     ProcessMessageHelper(msg);
152     if (state_->should_quit)  // Handle WM_QUIT.
153       break;
154   }
155   // Histogram what was really being used, to help to adjust kMaxPeekCount.
156   DHISTOGRAM_COUNTS("Loop.PumpOutPendingPaintMessages Peeks", peek_count);
157 }
158 
159 //-----------------------------------------------------------------------------
160 // MessagePumpForUI private:
161 
162 // static
WndProcThunk(HWND hwnd,UINT message,WPARAM wparam,LPARAM lparam)163 LRESULT CALLBACK MessagePumpForUI::WndProcThunk(
164     HWND hwnd, UINT message, WPARAM wparam, LPARAM lparam) {
165   switch (message) {
166     case kMsgHaveWork:
167       reinterpret_cast<MessagePumpForUI*>(wparam)->HandleWorkMessage();
168       break;
169     case WM_TIMER:
170       reinterpret_cast<MessagePumpForUI*>(wparam)->HandleTimerMessage();
171       break;
172   }
173   return DefWindowProc(hwnd, message, wparam, lparam);
174 }
175 
DoRunLoop()176 void MessagePumpForUI::DoRunLoop() {
177   // IF this was just a simple PeekMessage() loop (servicing all possible work
178   // queues), then Windows would try to achieve the following order according
179   // to MSDN documentation about PeekMessage with no filter):
180   //    * Sent messages
181   //    * Posted messages
182   //    * Sent messages (again)
183   //    * WM_PAINT messages
184   //    * WM_TIMER messages
185   //
186   // Summary: none of the above classes is starved, and sent messages has twice
187   // the chance of being processed (i.e., reduced service time).
188 
189   for (;;) {
190     // If we do any work, we may create more messages etc., and more work may
191     // possibly be waiting in another task group.  When we (for example)
192     // ProcessNextWindowsMessage(), there is a good chance there are still more
193     // messages waiting.  On the other hand, when any of these methods return
194     // having done no work, then it is pretty unlikely that calling them again
195     // quickly will find any work to do.  Finally, if they all say they had no
196     // work, then it is a good time to consider sleeping (waiting) for more
197     // work.
198 
199     bool more_work_is_plausible = ProcessNextWindowsMessage();
200     if (state_->should_quit)
201       break;
202 
203     more_work_is_plausible |= state_->delegate->DoWork();
204     if (state_->should_quit)
205       break;
206 
207     more_work_is_plausible |=
208         state_->delegate->DoDelayedWork(&delayed_work_time_);
209     // If we did not process any delayed work, then we can assume that our
210     // existing WM_TIMER if any will fire when delayed work should run.  We
211     // don't want to disturb that timer if it is already in flight.  However,
212     // if we did do all remaining delayed work, then lets kill the WM_TIMER.
213     if (more_work_is_plausible && delayed_work_time_.is_null())
214       KillTimer(message_hwnd_, reinterpret_cast<UINT_PTR>(this));
215     if (state_->should_quit)
216       break;
217 
218     if (more_work_is_plausible)
219       continue;
220 
221     more_work_is_plausible = state_->delegate->DoIdleWork();
222     if (state_->should_quit)
223       break;
224 
225     if (more_work_is_plausible)
226       continue;
227 
228     WaitForWork();  // Wait (sleep) until we have work to do again.
229   }
230 }
231 
InitMessageWnd()232 void MessagePumpForUI::InitMessageWnd() {
233   HINSTANCE hinst = GetModuleHandle(NULL);
234 
235   WNDCLASSEX wc = {0};
236   wc.cbSize = sizeof(wc);
237   wc.lpfnWndProc = base::win::WrappedWindowProc<WndProcThunk>;
238   wc.hInstance = hinst;
239   wc.lpszClassName = kWndClass;
240   RegisterClassEx(&wc);
241 
242   message_hwnd_ =
243       CreateWindow(kWndClass, 0, 0, 0, 0, 0, 0, HWND_MESSAGE, 0, hinst, 0);
244   DCHECK(message_hwnd_);
245 }
246 
WaitForWork()247 void MessagePumpForUI::WaitForWork() {
248   // Wait until a message is available, up to the time needed by the timer
249   // manager to fire the next set of timers.
250   int delay = GetCurrentDelay();
251   if (delay < 0)  // Negative value means no timers waiting.
252     delay = INFINITE;
253 
254   DWORD result;
255   result = MsgWaitForMultipleObjectsEx(0, NULL, delay, QS_ALLINPUT,
256                                        MWMO_INPUTAVAILABLE);
257 
258   if (WAIT_OBJECT_0 == result) {
259     // A WM_* message is available.
260     // If a parent child relationship exists between windows across threads
261     // then their thread inputs are implicitly attached.
262     // This causes the MsgWaitForMultipleObjectsEx API to return indicating
263     // that messages are ready for processing (specifically mouse messages
264     // intended for the child window. Occurs if the child window has capture)
265     // The subsequent PeekMessages call fails to return any messages thus
266     // causing us to enter a tight loop at times.
267     // The WaitMessage call below is a workaround to give the child window
268     // sometime to process its input messages.
269     MSG msg = {0};
270     DWORD queue_status = GetQueueStatus(QS_MOUSE);
271     if (HIWORD(queue_status) & QS_MOUSE &&
272        !PeekMessage(&msg, NULL, WM_MOUSEFIRST, WM_MOUSELAST, PM_NOREMOVE)) {
273       WaitMessage();
274     }
275     return;
276   }
277 
278   DCHECK_NE(WAIT_FAILED, result) << GetLastError();
279 }
280 
HandleWorkMessage()281 void MessagePumpForUI::HandleWorkMessage() {
282   // If we are being called outside of the context of Run, then don't try to do
283   // any work.  This could correspond to a MessageBox call or something of that
284   // sort.
285   if (!state_) {
286     // Since we handled a kMsgHaveWork message, we must still update this flag.
287     InterlockedExchange(&have_work_, 0);
288     return;
289   }
290 
291   // Let whatever would have run had we not been putting messages in the queue
292   // run now.  This is an attempt to make our dummy message not starve other
293   // messages that may be in the Windows message queue.
294   ProcessPumpReplacementMessage();
295 
296   // Now give the delegate a chance to do some work.  He'll let us know if he
297   // needs to do more work.
298   if (state_->delegate->DoWork())
299     ScheduleWork();
300 }
301 
HandleTimerMessage()302 void MessagePumpForUI::HandleTimerMessage() {
303   KillTimer(message_hwnd_, reinterpret_cast<UINT_PTR>(this));
304 
305   // If we are being called outside of the context of Run, then don't do
306   // anything.  This could correspond to a MessageBox call or something of
307   // that sort.
308   if (!state_)
309     return;
310 
311   state_->delegate->DoDelayedWork(&delayed_work_time_);
312   if (!delayed_work_time_.is_null()) {
313     // A bit gratuitous to set delayed_work_time_ again, but oh well.
314     ScheduleDelayedWork(delayed_work_time_);
315   }
316 }
317 
ProcessNextWindowsMessage()318 bool MessagePumpForUI::ProcessNextWindowsMessage() {
319   // If there are sent messages in the queue then PeekMessage internally
320   // dispatches the message and returns false. We return true in this
321   // case to ensure that the message loop peeks again instead of calling
322   // MsgWaitForMultipleObjectsEx again.
323   bool sent_messages_in_queue = false;
324   DWORD queue_status = GetQueueStatus(QS_SENDMESSAGE);
325   if (HIWORD(queue_status) & QS_SENDMESSAGE)
326     sent_messages_in_queue = true;
327 
328   MSG msg;
329   if (PeekMessage(&msg, NULL, 0, 0, PM_REMOVE))
330     return ProcessMessageHelper(msg);
331 
332   return sent_messages_in_queue;
333 }
334 
ProcessMessageHelper(const MSG & msg)335 bool MessagePumpForUI::ProcessMessageHelper(const MSG& msg) {
336   if (WM_QUIT == msg.message) {
337     // Repost the QUIT message so that it will be retrieved by the primary
338     // GetMessage() loop.
339     state_->should_quit = true;
340     PostQuitMessage(static_cast<int>(msg.wParam));
341     return false;
342   }
343 
344   // While running our main message pump, we discard kMsgHaveWork messages.
345   if (msg.message == kMsgHaveWork && msg.hwnd == message_hwnd_)
346     return ProcessPumpReplacementMessage();
347 
348   if (CallMsgFilter(const_cast<MSG*>(&msg), kMessageFilterCode))
349     return true;
350 
351   WillProcessMessage(msg);
352 
353   if (state_->dispatcher) {
354     if (!state_->dispatcher->Dispatch(msg))
355       state_->should_quit = true;
356   } else {
357     TranslateMessage(&msg);
358     DispatchMessage(&msg);
359   }
360 
361   DidProcessMessage(msg);
362   return true;
363 }
364 
ProcessPumpReplacementMessage()365 bool MessagePumpForUI::ProcessPumpReplacementMessage() {
366   // When we encounter a kMsgHaveWork message, this method is called to peek
367   // and process a replacement message, such as a WM_PAINT or WM_TIMER.  The
368   // goal is to make the kMsgHaveWork as non-intrusive as possible, even though
369   // a continuous stream of such messages are posted.  This method carefully
370   // peeks a message while there is no chance for a kMsgHaveWork to be pending,
371   // then resets the have_work_ flag (allowing a replacement kMsgHaveWork to
372   // possibly be posted), and finally dispatches that peeked replacement.  Note
373   // that the re-post of kMsgHaveWork may be asynchronous to this thread!!
374 
375   bool have_message = false;
376   MSG msg;
377   // We should not process all window messages if we are in the context of an
378   // OS modal loop, i.e. in the context of a windows API call like MessageBox.
379   // This is to ensure that these messages are peeked out by the OS modal loop.
380   if (MessageLoop::current()->os_modal_loop()) {
381     // We only peek out WM_PAINT and WM_TIMER here for reasons mentioned above.
382     have_message = PeekMessage(&msg, NULL, WM_PAINT, WM_PAINT, PM_REMOVE) ||
383                    PeekMessage(&msg, NULL, WM_TIMER, WM_TIMER, PM_REMOVE);
384   } else {
385     have_message = (0 != PeekMessage(&msg, NULL, 0, 0, PM_REMOVE));
386   }
387 
388   DCHECK(!have_message || kMsgHaveWork != msg.message ||
389          msg.hwnd != message_hwnd_);
390 
391   // Since we discarded a kMsgHaveWork message, we must update the flag.
392   int old_have_work = InterlockedExchange(&have_work_, 0);
393   DCHECK(old_have_work);
394 
395   // We don't need a special time slice if we didn't have_message to process.
396   if (!have_message)
397     return false;
398 
399   // Guarantee we'll get another time slice in the case where we go into native
400   // windows code.   This ScheduleWork() may hurt performance a tiny bit when
401   // tasks appear very infrequently, but when the event queue is busy, the
402   // kMsgHaveWork events get (percentage wise) rarer and rarer.
403   ScheduleWork();
404   return ProcessMessageHelper(msg);
405 }
406 
407 //-----------------------------------------------------------------------------
408 // MessagePumpForIO public:
409 
MessagePumpForIO()410 MessagePumpForIO::MessagePumpForIO() {
411   port_.Set(CreateIoCompletionPort(INVALID_HANDLE_VALUE, NULL, NULL, 1));
412   DCHECK(port_.IsValid());
413 }
414 
ScheduleWork()415 void MessagePumpForIO::ScheduleWork() {
416   if (InterlockedExchange(&have_work_, 1))
417     return;  // Someone else continued the pumping.
418 
419   // Make sure the MessagePump does some work for us.
420   BOOL ret = PostQueuedCompletionStatus(port_, 0,
421                                         reinterpret_cast<ULONG_PTR>(this),
422                                         reinterpret_cast<OVERLAPPED*>(this));
423   DCHECK(ret);
424 }
425 
ScheduleDelayedWork(const TimeTicks & delayed_work_time)426 void MessagePumpForIO::ScheduleDelayedWork(const TimeTicks& delayed_work_time) {
427   // We know that we can't be blocked right now since this method can only be
428   // called on the same thread as Run, so we only need to update our record of
429   // how long to sleep when we do sleep.
430   delayed_work_time_ = delayed_work_time;
431 }
432 
RegisterIOHandler(HANDLE file_handle,IOHandler * handler)433 void MessagePumpForIO::RegisterIOHandler(HANDLE file_handle,
434                                          IOHandler* handler) {
435   ULONG_PTR key = reinterpret_cast<ULONG_PTR>(handler);
436   HANDLE port = CreateIoCompletionPort(file_handle, port_, key, 1);
437   DPCHECK(port);
438 }
439 
440 //-----------------------------------------------------------------------------
441 // MessagePumpForIO private:
442 
DoRunLoop()443 void MessagePumpForIO::DoRunLoop() {
444   for (;;) {
445     // If we do any work, we may create more messages etc., and more work may
446     // possibly be waiting in another task group.  When we (for example)
447     // WaitForIOCompletion(), there is a good chance there are still more
448     // messages waiting.  On the other hand, when any of these methods return
449     // having done no work, then it is pretty unlikely that calling them
450     // again quickly will find any work to do.  Finally, if they all say they
451     // had no work, then it is a good time to consider sleeping (waiting) for
452     // more work.
453 
454     bool more_work_is_plausible = state_->delegate->DoWork();
455     if (state_->should_quit)
456       break;
457 
458     more_work_is_plausible |= WaitForIOCompletion(0, NULL);
459     if (state_->should_quit)
460       break;
461 
462     more_work_is_plausible |=
463         state_->delegate->DoDelayedWork(&delayed_work_time_);
464     if (state_->should_quit)
465       break;
466 
467     if (more_work_is_plausible)
468       continue;
469 
470     more_work_is_plausible = state_->delegate->DoIdleWork();
471     if (state_->should_quit)
472       break;
473 
474     if (more_work_is_plausible)
475       continue;
476 
477     WaitForWork();  // Wait (sleep) until we have work to do again.
478   }
479 }
480 
481 // Wait until IO completes, up to the time needed by the timer manager to fire
482 // the next set of timers.
WaitForWork()483 void MessagePumpForIO::WaitForWork() {
484   // We do not support nested IO message loops. This is to avoid messy
485   // recursion problems.
486   DCHECK_EQ(1, state_->run_depth) << "Cannot nest an IO message loop!";
487 
488   int timeout = GetCurrentDelay();
489   if (timeout < 0)  // Negative value means no timers waiting.
490     timeout = INFINITE;
491 
492   WaitForIOCompletion(timeout, NULL);
493 }
494 
WaitForIOCompletion(DWORD timeout,IOHandler * filter)495 bool MessagePumpForIO::WaitForIOCompletion(DWORD timeout, IOHandler* filter) {
496   IOItem item;
497   if (completed_io_.empty() || !MatchCompletedIOItem(filter, &item)) {
498     // We have to ask the system for another IO completion.
499     if (!GetIOItem(timeout, &item))
500       return false;
501 
502     if (ProcessInternalIOItem(item))
503       return true;
504   }
505 
506   if (item.context->handler) {
507     if (filter && item.handler != filter) {
508       // Save this item for later
509       completed_io_.push_back(item);
510     } else {
511       DCHECK_EQ(item.context->handler, item.handler);
512       WillProcessIOEvent();
513       item.handler->OnIOCompleted(item.context, item.bytes_transfered,
514                                   item.error);
515       DidProcessIOEvent();
516     }
517   } else {
518     // The handler must be gone by now, just cleanup the mess.
519     delete item.context;
520   }
521   return true;
522 }
523 
524 // Asks the OS for another IO completion result.
GetIOItem(DWORD timeout,IOItem * item)525 bool MessagePumpForIO::GetIOItem(DWORD timeout, IOItem* item) {
526   memset(item, 0, sizeof(*item));
527   ULONG_PTR key = NULL;
528   OVERLAPPED* overlapped = NULL;
529   if (!GetQueuedCompletionStatus(port_.Get(), &item->bytes_transfered, &key,
530                                  &overlapped, timeout)) {
531     if (!overlapped)
532       return false;  // Nothing in the queue.
533     item->error = GetLastError();
534     item->bytes_transfered = 0;
535   }
536 
537   item->handler = reinterpret_cast<IOHandler*>(key);
538   item->context = reinterpret_cast<IOContext*>(overlapped);
539   return true;
540 }
541 
ProcessInternalIOItem(const IOItem & item)542 bool MessagePumpForIO::ProcessInternalIOItem(const IOItem& item) {
543   if (this == reinterpret_cast<MessagePumpForIO*>(item.context) &&
544       this == reinterpret_cast<MessagePumpForIO*>(item.handler)) {
545     // This is our internal completion.
546     DCHECK(!item.bytes_transfered);
547     InterlockedExchange(&have_work_, 0);
548     return true;
549   }
550   return false;
551 }
552 
553 // Returns a completion item that was previously received.
MatchCompletedIOItem(IOHandler * filter,IOItem * item)554 bool MessagePumpForIO::MatchCompletedIOItem(IOHandler* filter, IOItem* item) {
555   DCHECK(!completed_io_.empty());
556   for (std::list<IOItem>::iterator it = completed_io_.begin();
557        it != completed_io_.end(); ++it) {
558     if (!filter || it->handler == filter) {
559       *item = *it;
560       completed_io_.erase(it);
561       return true;
562     }
563   }
564   return false;
565 }
566 
AddIOObserver(IOObserver * obs)567 void MessagePumpForIO::AddIOObserver(IOObserver *obs) {
568   io_observers_.AddObserver(obs);
569 }
570 
RemoveIOObserver(IOObserver * obs)571 void MessagePumpForIO::RemoveIOObserver(IOObserver *obs) {
572   io_observers_.RemoveObserver(obs);
573 }
574 
WillProcessIOEvent()575 void MessagePumpForIO::WillProcessIOEvent() {
576   FOR_EACH_OBSERVER(IOObserver, io_observers_, WillProcessIOEvent());
577 }
578 
DidProcessIOEvent()579 void MessagePumpForIO::DidProcessIOEvent() {
580   FOR_EACH_OBSERVER(IOObserver, io_observers_, DidProcessIOEvent());
581 }
582 
583 }  // namespace base
584