• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===--- RewriteRope.cpp - Rope specialized for rewriter --------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 //  This file implements the RewriteRope class, which is a powerful string.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "clang/Rewrite/Core/RewriteRope.h"
15 #include "clang/Basic/LLVM.h"
16 #include <algorithm>
17 using namespace clang;
18 
19 /// RewriteRope is a "strong" string class, designed to make insertions and
20 /// deletions in the middle of the string nearly constant time (really, they are
21 /// O(log N), but with a very low constant factor).
22 ///
23 /// The implementation of this datastructure is a conceptual linear sequence of
24 /// RopePiece elements.  Each RopePiece represents a view on a separately
25 /// allocated and reference counted string.  This means that splitting a very
26 /// long string can be done in constant time by splitting a RopePiece that
27 /// references the whole string into two rope pieces that reference each half.
28 /// Once split, another string can be inserted in between the two halves by
29 /// inserting a RopePiece in between the two others.  All of this is very
30 /// inexpensive: it takes time proportional to the number of RopePieces, not the
31 /// length of the strings they represent.
32 ///
33 /// While a linear sequences of RopePieces is the conceptual model, the actual
34 /// implementation captures them in an adapted B+ Tree.  Using a B+ tree (which
35 /// is a tree that keeps the values in the leaves and has where each node
36 /// contains a reasonable number of pointers to children/values) allows us to
37 /// maintain efficient operation when the RewriteRope contains a *huge* number
38 /// of RopePieces.  The basic idea of the B+ Tree is that it allows us to find
39 /// the RopePiece corresponding to some offset very efficiently, and it
40 /// automatically balances itself on insertions of RopePieces (which can happen
41 /// for both insertions and erases of string ranges).
42 ///
43 /// The one wrinkle on the theory is that we don't attempt to keep the tree
44 /// properly balanced when erases happen.  Erases of string data can both insert
45 /// new RopePieces (e.g. when the middle of some other rope piece is deleted,
46 /// which results in two rope pieces, which is just like an insert) or it can
47 /// reduce the number of RopePieces maintained by the B+Tree.  In the case when
48 /// the number of RopePieces is reduced, we don't attempt to maintain the
49 /// standard 'invariant' that each node in the tree contains at least
50 /// 'WidthFactor' children/values.  For our use cases, this doesn't seem to
51 /// matter.
52 ///
53 /// The implementation below is primarily implemented in terms of three classes:
54 ///   RopePieceBTreeNode - Common base class for:
55 ///
56 ///     RopePieceBTreeLeaf - Directly manages up to '2*WidthFactor' RopePiece
57 ///          nodes.  This directly represents a chunk of the string with those
58 ///          RopePieces contatenated.
59 ///     RopePieceBTreeInterior - An interior node in the B+ Tree, which manages
60 ///          up to '2*WidthFactor' other nodes in the tree.
61 
62 
63 //===----------------------------------------------------------------------===//
64 // RopePieceBTreeNode Class
65 //===----------------------------------------------------------------------===//
66 
67 namespace {
68   /// RopePieceBTreeNode - Common base class of RopePieceBTreeLeaf and
69   /// RopePieceBTreeInterior.  This provides some 'virtual' dispatching methods
70   /// and a flag that determines which subclass the instance is.  Also
71   /// important, this node knows the full extend of the node, including any
72   /// children that it has.  This allows efficient skipping over entire subtrees
73   /// when looking for an offset in the BTree.
74   class RopePieceBTreeNode {
75   protected:
76     /// WidthFactor - This controls the number of K/V slots held in the BTree:
77     /// how wide it is.  Each level of the BTree is guaranteed to have at least
78     /// 'WidthFactor' elements in it (either ropepieces or children), (except
79     /// the root, which may have less) and may have at most 2*WidthFactor
80     /// elements.
81     enum { WidthFactor = 8 };
82 
83     /// Size - This is the number of bytes of file this node (including any
84     /// potential children) covers.
85     unsigned Size;
86 
87     /// IsLeaf - True if this is an instance of RopePieceBTreeLeaf, false if it
88     /// is an instance of RopePieceBTreeInterior.
89     bool IsLeaf;
90 
RopePieceBTreeNode(bool isLeaf)91     RopePieceBTreeNode(bool isLeaf) : Size(0), IsLeaf(isLeaf) {}
~RopePieceBTreeNode()92     ~RopePieceBTreeNode() {}
93   public:
94 
isLeaf() const95     bool isLeaf() const { return IsLeaf; }
size() const96     unsigned size() const { return Size; }
97 
98     void Destroy();
99 
100     /// split - Split the range containing the specified offset so that we are
101     /// guaranteed that there is a place to do an insertion at the specified
102     /// offset.  The offset is relative, so "0" is the start of the node.
103     ///
104     /// If there is no space in this subtree for the extra piece, the extra tree
105     /// node is returned and must be inserted into a parent.
106     RopePieceBTreeNode *split(unsigned Offset);
107 
108     /// insert - Insert the specified ropepiece into this tree node at the
109     /// specified offset.  The offset is relative, so "0" is the start of the
110     /// node.
111     ///
112     /// If there is no space in this subtree for the extra piece, the extra tree
113     /// node is returned and must be inserted into a parent.
114     RopePieceBTreeNode *insert(unsigned Offset, const RopePiece &R);
115 
116     /// erase - Remove NumBytes from this node at the specified offset.  We are
117     /// guaranteed that there is a split at Offset.
118     void erase(unsigned Offset, unsigned NumBytes);
119 
120     //static inline bool classof(const RopePieceBTreeNode *) { return true; }
121 
122   };
123 } // end anonymous namespace
124 
125 //===----------------------------------------------------------------------===//
126 // RopePieceBTreeLeaf Class
127 //===----------------------------------------------------------------------===//
128 
129 namespace {
130   /// RopePieceBTreeLeaf - Directly manages up to '2*WidthFactor' RopePiece
131   /// nodes.  This directly represents a chunk of the string with those
132   /// RopePieces contatenated.  Since this is a B+Tree, all values (in this case
133   /// instances of RopePiece) are stored in leaves like this.  To make iteration
134   /// over the leaves efficient, they maintain a singly linked list through the
135   /// NextLeaf field.  This allows the B+Tree forward iterator to be constant
136   /// time for all increments.
137   class RopePieceBTreeLeaf : public RopePieceBTreeNode {
138     /// NumPieces - This holds the number of rope pieces currently active in the
139     /// Pieces array.
140     unsigned char NumPieces;
141 
142     /// Pieces - This tracks the file chunks currently in this leaf.
143     ///
144     RopePiece Pieces[2*WidthFactor];
145 
146     /// NextLeaf - This is a pointer to the next leaf in the tree, allowing
147     /// efficient in-order forward iteration of the tree without traversal.
148     RopePieceBTreeLeaf **PrevLeaf, *NextLeaf;
149   public:
RopePieceBTreeLeaf()150     RopePieceBTreeLeaf() : RopePieceBTreeNode(true), NumPieces(0),
151                            PrevLeaf(0), NextLeaf(0) {}
~RopePieceBTreeLeaf()152     ~RopePieceBTreeLeaf() {
153       if (PrevLeaf || NextLeaf)
154         removeFromLeafInOrder();
155       clear();
156     }
157 
isFull() const158     bool isFull() const { return NumPieces == 2*WidthFactor; }
159 
160     /// clear - Remove all rope pieces from this leaf.
clear()161     void clear() {
162       while (NumPieces)
163         Pieces[--NumPieces] = RopePiece();
164       Size = 0;
165     }
166 
getNumPieces() const167     unsigned getNumPieces() const { return NumPieces; }
168 
getPiece(unsigned i) const169     const RopePiece &getPiece(unsigned i) const {
170       assert(i < getNumPieces() && "Invalid piece ID");
171       return Pieces[i];
172     }
173 
getNextLeafInOrder() const174     const RopePieceBTreeLeaf *getNextLeafInOrder() const { return NextLeaf; }
insertAfterLeafInOrder(RopePieceBTreeLeaf * Node)175     void insertAfterLeafInOrder(RopePieceBTreeLeaf *Node) {
176       assert(PrevLeaf == 0 && NextLeaf == 0 && "Already in ordering");
177 
178       NextLeaf = Node->NextLeaf;
179       if (NextLeaf)
180         NextLeaf->PrevLeaf = &NextLeaf;
181       PrevLeaf = &Node->NextLeaf;
182       Node->NextLeaf = this;
183     }
184 
removeFromLeafInOrder()185     void removeFromLeafInOrder() {
186       if (PrevLeaf) {
187         *PrevLeaf = NextLeaf;
188         if (NextLeaf)
189           NextLeaf->PrevLeaf = PrevLeaf;
190       } else if (NextLeaf) {
191         NextLeaf->PrevLeaf = 0;
192       }
193     }
194 
195     /// FullRecomputeSizeLocally - This method recomputes the 'Size' field by
196     /// summing the size of all RopePieces.
FullRecomputeSizeLocally()197     void FullRecomputeSizeLocally() {
198       Size = 0;
199       for (unsigned i = 0, e = getNumPieces(); i != e; ++i)
200         Size += getPiece(i).size();
201     }
202 
203     /// split - Split the range containing the specified offset so that we are
204     /// guaranteed that there is a place to do an insertion at the specified
205     /// offset.  The offset is relative, so "0" is the start of the node.
206     ///
207     /// If there is no space in this subtree for the extra piece, the extra tree
208     /// node is returned and must be inserted into a parent.
209     RopePieceBTreeNode *split(unsigned Offset);
210 
211     /// insert - Insert the specified ropepiece into this tree node at the
212     /// specified offset.  The offset is relative, so "0" is the start of the
213     /// node.
214     ///
215     /// If there is no space in this subtree for the extra piece, the extra tree
216     /// node is returned and must be inserted into a parent.
217     RopePieceBTreeNode *insert(unsigned Offset, const RopePiece &R);
218 
219 
220     /// erase - Remove NumBytes from this node at the specified offset.  We are
221     /// guaranteed that there is a split at Offset.
222     void erase(unsigned Offset, unsigned NumBytes);
223 
224     //static inline bool classof(const RopePieceBTreeLeaf *) { return true; }
classof(const RopePieceBTreeNode * N)225     static inline bool classof(const RopePieceBTreeNode *N) {
226       return N->isLeaf();
227     }
228   };
229 } // end anonymous namespace
230 
231 /// split - Split the range containing the specified offset so that we are
232 /// guaranteed that there is a place to do an insertion at the specified
233 /// offset.  The offset is relative, so "0" is the start of the node.
234 ///
235 /// If there is no space in this subtree for the extra piece, the extra tree
236 /// node is returned and must be inserted into a parent.
split(unsigned Offset)237 RopePieceBTreeNode *RopePieceBTreeLeaf::split(unsigned Offset) {
238   // Find the insertion point.  We are guaranteed that there is a split at the
239   // specified offset so find it.
240   if (Offset == 0 || Offset == size()) {
241     // Fastpath for a common case.  There is already a splitpoint at the end.
242     return 0;
243   }
244 
245   // Find the piece that this offset lands in.
246   unsigned PieceOffs = 0;
247   unsigned i = 0;
248   while (Offset >= PieceOffs+Pieces[i].size()) {
249     PieceOffs += Pieces[i].size();
250     ++i;
251   }
252 
253   // If there is already a split point at the specified offset, just return
254   // success.
255   if (PieceOffs == Offset)
256     return 0;
257 
258   // Otherwise, we need to split piece 'i' at Offset-PieceOffs.  Convert Offset
259   // to being Piece relative.
260   unsigned IntraPieceOffset = Offset-PieceOffs;
261 
262   // We do this by shrinking the RopePiece and then doing an insert of the tail.
263   RopePiece Tail(Pieces[i].StrData, Pieces[i].StartOffs+IntraPieceOffset,
264                  Pieces[i].EndOffs);
265   Size -= Pieces[i].size();
266   Pieces[i].EndOffs = Pieces[i].StartOffs+IntraPieceOffset;
267   Size += Pieces[i].size();
268 
269   return insert(Offset, Tail);
270 }
271 
272 
273 /// insert - Insert the specified RopePiece into this tree node at the
274 /// specified offset.  The offset is relative, so "0" is the start of the node.
275 ///
276 /// If there is no space in this subtree for the extra piece, the extra tree
277 /// node is returned and must be inserted into a parent.
insert(unsigned Offset,const RopePiece & R)278 RopePieceBTreeNode *RopePieceBTreeLeaf::insert(unsigned Offset,
279                                                const RopePiece &R) {
280   // If this node is not full, insert the piece.
281   if (!isFull()) {
282     // Find the insertion point.  We are guaranteed that there is a split at the
283     // specified offset so find it.
284     unsigned i = 0, e = getNumPieces();
285     if (Offset == size()) {
286       // Fastpath for a common case.
287       i = e;
288     } else {
289       unsigned SlotOffs = 0;
290       for (; Offset > SlotOffs; ++i)
291         SlotOffs += getPiece(i).size();
292       assert(SlotOffs == Offset && "Split didn't occur before insertion!");
293     }
294 
295     // For an insertion into a non-full leaf node, just insert the value in
296     // its sorted position.  This requires moving later values over.
297     for (; i != e; --e)
298       Pieces[e] = Pieces[e-1];
299     Pieces[i] = R;
300     ++NumPieces;
301     Size += R.size();
302     return 0;
303   }
304 
305   // Otherwise, if this is leaf is full, split it in two halves.  Since this
306   // node is full, it contains 2*WidthFactor values.  We move the first
307   // 'WidthFactor' values to the LHS child (which we leave in this node) and
308   // move the last 'WidthFactor' values into the RHS child.
309 
310   // Create the new node.
311   RopePieceBTreeLeaf *NewNode = new RopePieceBTreeLeaf();
312 
313   // Move over the last 'WidthFactor' values from here to NewNode.
314   std::copy(&Pieces[WidthFactor], &Pieces[2*WidthFactor],
315             &NewNode->Pieces[0]);
316   // Replace old pieces with null RopePieces to drop refcounts.
317   std::fill(&Pieces[WidthFactor], &Pieces[2*WidthFactor], RopePiece());
318 
319   // Decrease the number of values in the two nodes.
320   NewNode->NumPieces = NumPieces = WidthFactor;
321 
322   // Recompute the two nodes' size.
323   NewNode->FullRecomputeSizeLocally();
324   FullRecomputeSizeLocally();
325 
326   // Update the list of leaves.
327   NewNode->insertAfterLeafInOrder(this);
328 
329   // These insertions can't fail.
330   if (this->size() >= Offset)
331     this->insert(Offset, R);
332   else
333     NewNode->insert(Offset - this->size(), R);
334   return NewNode;
335 }
336 
337 /// erase - Remove NumBytes from this node at the specified offset.  We are
338 /// guaranteed that there is a split at Offset.
erase(unsigned Offset,unsigned NumBytes)339 void RopePieceBTreeLeaf::erase(unsigned Offset, unsigned NumBytes) {
340   // Since we are guaranteed that there is a split at Offset, we start by
341   // finding the Piece that starts there.
342   unsigned PieceOffs = 0;
343   unsigned i = 0;
344   for (; Offset > PieceOffs; ++i)
345     PieceOffs += getPiece(i).size();
346   assert(PieceOffs == Offset && "Split didn't occur before erase!");
347 
348   unsigned StartPiece = i;
349 
350   // Figure out how many pieces completely cover 'NumBytes'.  We want to remove
351   // all of them.
352   for (; Offset+NumBytes > PieceOffs+getPiece(i).size(); ++i)
353     PieceOffs += getPiece(i).size();
354 
355   // If we exactly include the last one, include it in the region to delete.
356   if (Offset+NumBytes == PieceOffs+getPiece(i).size())
357     PieceOffs += getPiece(i).size(), ++i;
358 
359   // If we completely cover some RopePieces, erase them now.
360   if (i != StartPiece) {
361     unsigned NumDeleted = i-StartPiece;
362     for (; i != getNumPieces(); ++i)
363       Pieces[i-NumDeleted] = Pieces[i];
364 
365     // Drop references to dead rope pieces.
366     std::fill(&Pieces[getNumPieces()-NumDeleted], &Pieces[getNumPieces()],
367               RopePiece());
368     NumPieces -= NumDeleted;
369 
370     unsigned CoverBytes = PieceOffs-Offset;
371     NumBytes -= CoverBytes;
372     Size -= CoverBytes;
373   }
374 
375   // If we completely removed some stuff, we could be done.
376   if (NumBytes == 0) return;
377 
378   // Okay, now might be erasing part of some Piece.  If this is the case, then
379   // move the start point of the piece.
380   assert(getPiece(StartPiece).size() > NumBytes);
381   Pieces[StartPiece].StartOffs += NumBytes;
382 
383   // The size of this node just shrunk by NumBytes.
384   Size -= NumBytes;
385 }
386 
387 //===----------------------------------------------------------------------===//
388 // RopePieceBTreeInterior Class
389 //===----------------------------------------------------------------------===//
390 
391 namespace {
392   /// RopePieceBTreeInterior - This represents an interior node in the B+Tree,
393   /// which holds up to 2*WidthFactor pointers to child nodes.
394   class RopePieceBTreeInterior : public RopePieceBTreeNode {
395     /// NumChildren - This holds the number of children currently active in the
396     /// Children array.
397     unsigned char NumChildren;
398     RopePieceBTreeNode *Children[2*WidthFactor];
399   public:
RopePieceBTreeInterior()400     RopePieceBTreeInterior() : RopePieceBTreeNode(false), NumChildren(0) {}
401 
RopePieceBTreeInterior(RopePieceBTreeNode * LHS,RopePieceBTreeNode * RHS)402     RopePieceBTreeInterior(RopePieceBTreeNode *LHS, RopePieceBTreeNode *RHS)
403     : RopePieceBTreeNode(false) {
404       Children[0] = LHS;
405       Children[1] = RHS;
406       NumChildren = 2;
407       Size = LHS->size() + RHS->size();
408     }
409 
~RopePieceBTreeInterior()410     ~RopePieceBTreeInterior() {
411       for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
412         Children[i]->Destroy();
413     }
414 
isFull() const415     bool isFull() const { return NumChildren == 2*WidthFactor; }
416 
getNumChildren() const417     unsigned getNumChildren() const { return NumChildren; }
getChild(unsigned i) const418     const RopePieceBTreeNode *getChild(unsigned i) const {
419       assert(i < NumChildren && "invalid child #");
420       return Children[i];
421     }
getChild(unsigned i)422     RopePieceBTreeNode *getChild(unsigned i) {
423       assert(i < NumChildren && "invalid child #");
424       return Children[i];
425     }
426 
427     /// FullRecomputeSizeLocally - Recompute the Size field of this node by
428     /// summing up the sizes of the child nodes.
FullRecomputeSizeLocally()429     void FullRecomputeSizeLocally() {
430       Size = 0;
431       for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
432         Size += getChild(i)->size();
433     }
434 
435 
436     /// split - Split the range containing the specified offset so that we are
437     /// guaranteed that there is a place to do an insertion at the specified
438     /// offset.  The offset is relative, so "0" is the start of the node.
439     ///
440     /// If there is no space in this subtree for the extra piece, the extra tree
441     /// node is returned and must be inserted into a parent.
442     RopePieceBTreeNode *split(unsigned Offset);
443 
444 
445     /// insert - Insert the specified ropepiece into this tree node at the
446     /// specified offset.  The offset is relative, so "0" is the start of the
447     /// node.
448     ///
449     /// If there is no space in this subtree for the extra piece, the extra tree
450     /// node is returned and must be inserted into a parent.
451     RopePieceBTreeNode *insert(unsigned Offset, const RopePiece &R);
452 
453     /// HandleChildPiece - A child propagated an insertion result up to us.
454     /// Insert the new child, and/or propagate the result further up the tree.
455     RopePieceBTreeNode *HandleChildPiece(unsigned i, RopePieceBTreeNode *RHS);
456 
457     /// erase - Remove NumBytes from this node at the specified offset.  We are
458     /// guaranteed that there is a split at Offset.
459     void erase(unsigned Offset, unsigned NumBytes);
460 
461     //static inline bool classof(const RopePieceBTreeInterior *) { return true; }
classof(const RopePieceBTreeNode * N)462     static inline bool classof(const RopePieceBTreeNode *N) {
463       return !N->isLeaf();
464     }
465   };
466 } // end anonymous namespace
467 
468 /// split - Split the range containing the specified offset so that we are
469 /// guaranteed that there is a place to do an insertion at the specified
470 /// offset.  The offset is relative, so "0" is the start of the node.
471 ///
472 /// If there is no space in this subtree for the extra piece, the extra tree
473 /// node is returned and must be inserted into a parent.
split(unsigned Offset)474 RopePieceBTreeNode *RopePieceBTreeInterior::split(unsigned Offset) {
475   // Figure out which child to split.
476   if (Offset == 0 || Offset == size())
477     return 0;  // If we have an exact offset, we're already split.
478 
479   unsigned ChildOffset = 0;
480   unsigned i = 0;
481   for (; Offset >= ChildOffset+getChild(i)->size(); ++i)
482     ChildOffset += getChild(i)->size();
483 
484   // If already split there, we're done.
485   if (ChildOffset == Offset)
486     return 0;
487 
488   // Otherwise, recursively split the child.
489   if (RopePieceBTreeNode *RHS = getChild(i)->split(Offset-ChildOffset))
490     return HandleChildPiece(i, RHS);
491   return 0;  // Done!
492 }
493 
494 /// insert - Insert the specified ropepiece into this tree node at the
495 /// specified offset.  The offset is relative, so "0" is the start of the
496 /// node.
497 ///
498 /// If there is no space in this subtree for the extra piece, the extra tree
499 /// node is returned and must be inserted into a parent.
insert(unsigned Offset,const RopePiece & R)500 RopePieceBTreeNode *RopePieceBTreeInterior::insert(unsigned Offset,
501                                                    const RopePiece &R) {
502   // Find the insertion point.  We are guaranteed that there is a split at the
503   // specified offset so find it.
504   unsigned i = 0, e = getNumChildren();
505 
506   unsigned ChildOffs = 0;
507   if (Offset == size()) {
508     // Fastpath for a common case.  Insert at end of last child.
509     i = e-1;
510     ChildOffs = size()-getChild(i)->size();
511   } else {
512     for (; Offset > ChildOffs+getChild(i)->size(); ++i)
513       ChildOffs += getChild(i)->size();
514   }
515 
516   Size += R.size();
517 
518   // Insert at the end of this child.
519   if (RopePieceBTreeNode *RHS = getChild(i)->insert(Offset-ChildOffs, R))
520     return HandleChildPiece(i, RHS);
521 
522   return 0;
523 }
524 
525 /// HandleChildPiece - A child propagated an insertion result up to us.
526 /// Insert the new child, and/or propagate the result further up the tree.
527 RopePieceBTreeNode *
HandleChildPiece(unsigned i,RopePieceBTreeNode * RHS)528 RopePieceBTreeInterior::HandleChildPiece(unsigned i, RopePieceBTreeNode *RHS) {
529   // Otherwise the child propagated a subtree up to us as a new child.  See if
530   // we have space for it here.
531   if (!isFull()) {
532     // Insert RHS after child 'i'.
533     if (i + 1 != getNumChildren())
534       memmove(&Children[i+2], &Children[i+1],
535               (getNumChildren()-i-1)*sizeof(Children[0]));
536     Children[i+1] = RHS;
537     ++NumChildren;
538     return 0;
539   }
540 
541   // Okay, this node is full.  Split it in half, moving WidthFactor children to
542   // a newly allocated interior node.
543 
544   // Create the new node.
545   RopePieceBTreeInterior *NewNode = new RopePieceBTreeInterior();
546 
547   // Move over the last 'WidthFactor' values from here to NewNode.
548   memcpy(&NewNode->Children[0], &Children[WidthFactor],
549          WidthFactor*sizeof(Children[0]));
550 
551   // Decrease the number of values in the two nodes.
552   NewNode->NumChildren = NumChildren = WidthFactor;
553 
554   // Finally, insert the two new children in the side the can (now) hold them.
555   // These insertions can't fail.
556   if (i < WidthFactor)
557     this->HandleChildPiece(i, RHS);
558   else
559     NewNode->HandleChildPiece(i-WidthFactor, RHS);
560 
561   // Recompute the two nodes' size.
562   NewNode->FullRecomputeSizeLocally();
563   FullRecomputeSizeLocally();
564   return NewNode;
565 }
566 
567 /// erase - Remove NumBytes from this node at the specified offset.  We are
568 /// guaranteed that there is a split at Offset.
erase(unsigned Offset,unsigned NumBytes)569 void RopePieceBTreeInterior::erase(unsigned Offset, unsigned NumBytes) {
570   // This will shrink this node by NumBytes.
571   Size -= NumBytes;
572 
573   // Find the first child that overlaps with Offset.
574   unsigned i = 0;
575   for (; Offset >= getChild(i)->size(); ++i)
576     Offset -= getChild(i)->size();
577 
578   // Propagate the delete request into overlapping children, or completely
579   // delete the children as appropriate.
580   while (NumBytes) {
581     RopePieceBTreeNode *CurChild = getChild(i);
582 
583     // If we are deleting something contained entirely in the child, pass on the
584     // request.
585     if (Offset+NumBytes < CurChild->size()) {
586       CurChild->erase(Offset, NumBytes);
587       return;
588     }
589 
590     // If this deletion request starts somewhere in the middle of the child, it
591     // must be deleting to the end of the child.
592     if (Offset) {
593       unsigned BytesFromChild = CurChild->size()-Offset;
594       CurChild->erase(Offset, BytesFromChild);
595       NumBytes -= BytesFromChild;
596       // Start at the beginning of the next child.
597       Offset = 0;
598       ++i;
599       continue;
600     }
601 
602     // If the deletion request completely covers the child, delete it and move
603     // the rest down.
604     NumBytes -= CurChild->size();
605     CurChild->Destroy();
606     --NumChildren;
607     if (i != getNumChildren())
608       memmove(&Children[i], &Children[i+1],
609               (getNumChildren()-i)*sizeof(Children[0]));
610   }
611 }
612 
613 //===----------------------------------------------------------------------===//
614 // RopePieceBTreeNode Implementation
615 //===----------------------------------------------------------------------===//
616 
Destroy()617 void RopePieceBTreeNode::Destroy() {
618   if (RopePieceBTreeLeaf *Leaf = dyn_cast<RopePieceBTreeLeaf>(this))
619     delete Leaf;
620   else
621     delete cast<RopePieceBTreeInterior>(this);
622 }
623 
624 /// split - Split the range containing the specified offset so that we are
625 /// guaranteed that there is a place to do an insertion at the specified
626 /// offset.  The offset is relative, so "0" is the start of the node.
627 ///
628 /// If there is no space in this subtree for the extra piece, the extra tree
629 /// node is returned and must be inserted into a parent.
split(unsigned Offset)630 RopePieceBTreeNode *RopePieceBTreeNode::split(unsigned Offset) {
631   assert(Offset <= size() && "Invalid offset to split!");
632   if (RopePieceBTreeLeaf *Leaf = dyn_cast<RopePieceBTreeLeaf>(this))
633     return Leaf->split(Offset);
634   return cast<RopePieceBTreeInterior>(this)->split(Offset);
635 }
636 
637 /// insert - Insert the specified ropepiece into this tree node at the
638 /// specified offset.  The offset is relative, so "0" is the start of the
639 /// node.
640 ///
641 /// If there is no space in this subtree for the extra piece, the extra tree
642 /// node is returned and must be inserted into a parent.
insert(unsigned Offset,const RopePiece & R)643 RopePieceBTreeNode *RopePieceBTreeNode::insert(unsigned Offset,
644                                                const RopePiece &R) {
645   assert(Offset <= size() && "Invalid offset to insert!");
646   if (RopePieceBTreeLeaf *Leaf = dyn_cast<RopePieceBTreeLeaf>(this))
647     return Leaf->insert(Offset, R);
648   return cast<RopePieceBTreeInterior>(this)->insert(Offset, R);
649 }
650 
651 /// erase - Remove NumBytes from this node at the specified offset.  We are
652 /// guaranteed that there is a split at Offset.
erase(unsigned Offset,unsigned NumBytes)653 void RopePieceBTreeNode::erase(unsigned Offset, unsigned NumBytes) {
654   assert(Offset+NumBytes <= size() && "Invalid offset to erase!");
655   if (RopePieceBTreeLeaf *Leaf = dyn_cast<RopePieceBTreeLeaf>(this))
656     return Leaf->erase(Offset, NumBytes);
657   return cast<RopePieceBTreeInterior>(this)->erase(Offset, NumBytes);
658 }
659 
660 
661 //===----------------------------------------------------------------------===//
662 // RopePieceBTreeIterator Implementation
663 //===----------------------------------------------------------------------===//
664 
getCN(const void * P)665 static const RopePieceBTreeLeaf *getCN(const void *P) {
666   return static_cast<const RopePieceBTreeLeaf*>(P);
667 }
668 
669 // begin iterator.
RopePieceBTreeIterator(const void * n)670 RopePieceBTreeIterator::RopePieceBTreeIterator(const void *n) {
671   const RopePieceBTreeNode *N = static_cast<const RopePieceBTreeNode*>(n);
672 
673   // Walk down the left side of the tree until we get to a leaf.
674   while (const RopePieceBTreeInterior *IN = dyn_cast<RopePieceBTreeInterior>(N))
675     N = IN->getChild(0);
676 
677   // We must have at least one leaf.
678   CurNode = cast<RopePieceBTreeLeaf>(N);
679 
680   // If we found a leaf that happens to be empty, skip over it until we get
681   // to something full.
682   while (CurNode && getCN(CurNode)->getNumPieces() == 0)
683     CurNode = getCN(CurNode)->getNextLeafInOrder();
684 
685   if (CurNode != 0)
686     CurPiece = &getCN(CurNode)->getPiece(0);
687   else  // Empty tree, this is an end() iterator.
688     CurPiece = 0;
689   CurChar = 0;
690 }
691 
MoveToNextPiece()692 void RopePieceBTreeIterator::MoveToNextPiece() {
693   if (CurPiece != &getCN(CurNode)->getPiece(getCN(CurNode)->getNumPieces()-1)) {
694     CurChar = 0;
695     ++CurPiece;
696     return;
697   }
698 
699   // Find the next non-empty leaf node.
700   do
701     CurNode = getCN(CurNode)->getNextLeafInOrder();
702   while (CurNode && getCN(CurNode)->getNumPieces() == 0);
703 
704   if (CurNode != 0)
705     CurPiece = &getCN(CurNode)->getPiece(0);
706   else // Hit end().
707     CurPiece = 0;
708   CurChar = 0;
709 }
710 
711 //===----------------------------------------------------------------------===//
712 // RopePieceBTree Implementation
713 //===----------------------------------------------------------------------===//
714 
getRoot(void * P)715 static RopePieceBTreeNode *getRoot(void *P) {
716   return static_cast<RopePieceBTreeNode*>(P);
717 }
718 
RopePieceBTree()719 RopePieceBTree::RopePieceBTree() {
720   Root = new RopePieceBTreeLeaf();
721 }
RopePieceBTree(const RopePieceBTree & RHS)722 RopePieceBTree::RopePieceBTree(const RopePieceBTree &RHS) {
723   assert(RHS.empty() && "Can't copy non-empty tree yet");
724   Root = new RopePieceBTreeLeaf();
725 }
~RopePieceBTree()726 RopePieceBTree::~RopePieceBTree() {
727   getRoot(Root)->Destroy();
728 }
729 
size() const730 unsigned RopePieceBTree::size() const {
731   return getRoot(Root)->size();
732 }
733 
clear()734 void RopePieceBTree::clear() {
735   if (RopePieceBTreeLeaf *Leaf = dyn_cast<RopePieceBTreeLeaf>(getRoot(Root)))
736     Leaf->clear();
737   else {
738     getRoot(Root)->Destroy();
739     Root = new RopePieceBTreeLeaf();
740   }
741 }
742 
insert(unsigned Offset,const RopePiece & R)743 void RopePieceBTree::insert(unsigned Offset, const RopePiece &R) {
744   // #1. Split at Offset.
745   if (RopePieceBTreeNode *RHS = getRoot(Root)->split(Offset))
746     Root = new RopePieceBTreeInterior(getRoot(Root), RHS);
747 
748   // #2. Do the insertion.
749   if (RopePieceBTreeNode *RHS = getRoot(Root)->insert(Offset, R))
750     Root = new RopePieceBTreeInterior(getRoot(Root), RHS);
751 }
752 
erase(unsigned Offset,unsigned NumBytes)753 void RopePieceBTree::erase(unsigned Offset, unsigned NumBytes) {
754   // #1. Split at Offset.
755   if (RopePieceBTreeNode *RHS = getRoot(Root)->split(Offset))
756     Root = new RopePieceBTreeInterior(getRoot(Root), RHS);
757 
758   // #2. Do the erasing.
759   getRoot(Root)->erase(Offset, NumBytes);
760 }
761 
762 //===----------------------------------------------------------------------===//
763 // RewriteRope Implementation
764 //===----------------------------------------------------------------------===//
765 
766 /// MakeRopeString - This copies the specified byte range into some instance of
767 /// RopeRefCountString, and return a RopePiece that represents it.  This uses
768 /// the AllocBuffer object to aggregate requests for small strings into one
769 /// allocation instead of doing tons of tiny allocations.
MakeRopeString(const char * Start,const char * End)770 RopePiece RewriteRope::MakeRopeString(const char *Start, const char *End) {
771   unsigned Len = End-Start;
772   assert(Len && "Zero length RopePiece is invalid!");
773 
774   // If we have space for this string in the current alloc buffer, use it.
775   if (AllocOffs+Len <= AllocChunkSize) {
776     memcpy(AllocBuffer->Data+AllocOffs, Start, Len);
777     AllocOffs += Len;
778     return RopePiece(AllocBuffer, AllocOffs-Len, AllocOffs);
779   }
780 
781   // If we don't have enough room because this specific allocation is huge,
782   // just allocate a new rope piece for it alone.
783   if (Len > AllocChunkSize) {
784     unsigned Size = End-Start+sizeof(RopeRefCountString)-1;
785     RopeRefCountString *Res =
786       reinterpret_cast<RopeRefCountString *>(new char[Size]);
787     Res->RefCount = 0;
788     memcpy(Res->Data, Start, End-Start);
789     return RopePiece(Res, 0, End-Start);
790   }
791 
792   // Otherwise, this was a small request but we just don't have space for it
793   // Make a new chunk and share it with later allocations.
794 
795   // If we had an old allocation, drop our reference to it.
796   if (AllocBuffer && --AllocBuffer->RefCount == 0)
797     delete [] (char*)AllocBuffer;
798 
799   unsigned AllocSize = offsetof(RopeRefCountString, Data) + AllocChunkSize;
800   AllocBuffer = reinterpret_cast<RopeRefCountString *>(new char[AllocSize]);
801   AllocBuffer->RefCount = 0;
802   memcpy(AllocBuffer->Data, Start, Len);
803   AllocOffs = Len;
804 
805   // Start out the new allocation with a refcount of 1, since we have an
806   // internal reference to it.
807   AllocBuffer->addRef();
808   return RopePiece(AllocBuffer, 0, Len);
809 }
810 
811 
812