1 //===- InstCombineAddSub.cpp ----------------------------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the visit functions for add, fadd, sub, and fsub.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "InstCombine.h"
15 #include "llvm/Analysis/InstructionSimplify.h"
16 #include "llvm/Target/TargetData.h"
17 #include "llvm/Support/GetElementPtrTypeIterator.h"
18 #include "llvm/Support/PatternMatch.h"
19 using namespace llvm;
20 using namespace PatternMatch;
21
22 /// AddOne - Add one to a ConstantInt.
AddOne(Constant * C)23 static Constant *AddOne(Constant *C) {
24 return ConstantExpr::getAdd(C, ConstantInt::get(C->getType(), 1));
25 }
26 /// SubOne - Subtract one from a ConstantInt.
SubOne(ConstantInt * C)27 static Constant *SubOne(ConstantInt *C) {
28 return ConstantInt::get(C->getContext(), C->getValue()-1);
29 }
30
31
32 // dyn_castFoldableMul - If this value is a multiply that can be folded into
33 // other computations (because it has a constant operand), return the
34 // non-constant operand of the multiply, and set CST to point to the multiplier.
35 // Otherwise, return null.
36 //
dyn_castFoldableMul(Value * V,ConstantInt * & CST)37 static inline Value *dyn_castFoldableMul(Value *V, ConstantInt *&CST) {
38 if (!V->hasOneUse() || !V->getType()->isIntegerTy())
39 return 0;
40
41 Instruction *I = dyn_cast<Instruction>(V);
42 if (I == 0) return 0;
43
44 if (I->getOpcode() == Instruction::Mul)
45 if ((CST = dyn_cast<ConstantInt>(I->getOperand(1))))
46 return I->getOperand(0);
47 if (I->getOpcode() == Instruction::Shl)
48 if ((CST = dyn_cast<ConstantInt>(I->getOperand(1)))) {
49 // The multiplier is really 1 << CST.
50 uint32_t BitWidth = cast<IntegerType>(V->getType())->getBitWidth();
51 uint32_t CSTVal = CST->getLimitedValue(BitWidth);
52 CST = ConstantInt::get(V->getType()->getContext(),
53 APInt(BitWidth, 1).shl(CSTVal));
54 return I->getOperand(0);
55 }
56 return 0;
57 }
58
59
60 /// WillNotOverflowSignedAdd - Return true if we can prove that:
61 /// (sext (add LHS, RHS)) === (add (sext LHS), (sext RHS))
62 /// This basically requires proving that the add in the original type would not
63 /// overflow to change the sign bit or have a carry out.
WillNotOverflowSignedAdd(Value * LHS,Value * RHS)64 bool InstCombiner::WillNotOverflowSignedAdd(Value *LHS, Value *RHS) {
65 // There are different heuristics we can use for this. Here are some simple
66 // ones.
67
68 // Add has the property that adding any two 2's complement numbers can only
69 // have one carry bit which can change a sign. As such, if LHS and RHS each
70 // have at least two sign bits, we know that the addition of the two values
71 // will sign extend fine.
72 if (ComputeNumSignBits(LHS) > 1 && ComputeNumSignBits(RHS) > 1)
73 return true;
74
75
76 // If one of the operands only has one non-zero bit, and if the other operand
77 // has a known-zero bit in a more significant place than it (not including the
78 // sign bit) the ripple may go up to and fill the zero, but won't change the
79 // sign. For example, (X & ~4) + 1.
80
81 // TODO: Implement.
82
83 return false;
84 }
85
visitAdd(BinaryOperator & I)86 Instruction *InstCombiner::visitAdd(BinaryOperator &I) {
87 bool Changed = SimplifyAssociativeOrCommutative(I);
88 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
89
90 if (Value *V = SimplifyAddInst(LHS, RHS, I.hasNoSignedWrap(),
91 I.hasNoUnsignedWrap(), TD))
92 return ReplaceInstUsesWith(I, V);
93
94 // (A*B)+(A*C) -> A*(B+C) etc
95 if (Value *V = SimplifyUsingDistributiveLaws(I))
96 return ReplaceInstUsesWith(I, V);
97
98 if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
99 // X + (signbit) --> X ^ signbit
100 const APInt &Val = CI->getValue();
101 if (Val.isSignBit())
102 return BinaryOperator::CreateXor(LHS, RHS);
103
104 // See if SimplifyDemandedBits can simplify this. This handles stuff like
105 // (X & 254)+1 -> (X&254)|1
106 if (SimplifyDemandedInstructionBits(I))
107 return &I;
108
109 // zext(bool) + C -> bool ? C + 1 : C
110 if (ZExtInst *ZI = dyn_cast<ZExtInst>(LHS))
111 if (ZI->getSrcTy()->isIntegerTy(1))
112 return SelectInst::Create(ZI->getOperand(0), AddOne(CI), CI);
113
114 Value *XorLHS = 0; ConstantInt *XorRHS = 0;
115 if (match(LHS, m_Xor(m_Value(XorLHS), m_ConstantInt(XorRHS)))) {
116 uint32_t TySizeBits = I.getType()->getScalarSizeInBits();
117 const APInt &RHSVal = CI->getValue();
118 unsigned ExtendAmt = 0;
119 // If we have ADD(XOR(AND(X, 0xFF), 0x80), 0xF..F80), it's a sext.
120 // If we have ADD(XOR(AND(X, 0xFF), 0xF..F80), 0x80), it's a sext.
121 if (XorRHS->getValue() == -RHSVal) {
122 if (RHSVal.isPowerOf2())
123 ExtendAmt = TySizeBits - RHSVal.logBase2() - 1;
124 else if (XorRHS->getValue().isPowerOf2())
125 ExtendAmt = TySizeBits - XorRHS->getValue().logBase2() - 1;
126 }
127
128 if (ExtendAmt) {
129 APInt Mask = APInt::getHighBitsSet(TySizeBits, ExtendAmt);
130 if (!MaskedValueIsZero(XorLHS, Mask))
131 ExtendAmt = 0;
132 }
133
134 if (ExtendAmt) {
135 Constant *ShAmt = ConstantInt::get(I.getType(), ExtendAmt);
136 Value *NewShl = Builder->CreateShl(XorLHS, ShAmt, "sext");
137 return BinaryOperator::CreateAShr(NewShl, ShAmt);
138 }
139
140 // If this is a xor that was canonicalized from a sub, turn it back into
141 // a sub and fuse this add with it.
142 if (LHS->hasOneUse() && (XorRHS->getValue()+1).isPowerOf2()) {
143 IntegerType *IT = cast<IntegerType>(I.getType());
144 APInt LHSKnownOne(IT->getBitWidth(), 0);
145 APInt LHSKnownZero(IT->getBitWidth(), 0);
146 ComputeMaskedBits(XorLHS, LHSKnownZero, LHSKnownOne);
147 if ((XorRHS->getValue() | LHSKnownZero).isAllOnesValue())
148 return BinaryOperator::CreateSub(ConstantExpr::getAdd(XorRHS, CI),
149 XorLHS);
150 }
151 }
152 }
153
154 if (isa<Constant>(RHS) && isa<PHINode>(LHS))
155 if (Instruction *NV = FoldOpIntoPhi(I))
156 return NV;
157
158 if (I.getType()->isIntegerTy(1))
159 return BinaryOperator::CreateXor(LHS, RHS);
160
161 // X + X --> X << 1
162 if (LHS == RHS) {
163 BinaryOperator *New =
164 BinaryOperator::CreateShl(LHS, ConstantInt::get(I.getType(), 1));
165 New->setHasNoSignedWrap(I.hasNoSignedWrap());
166 New->setHasNoUnsignedWrap(I.hasNoUnsignedWrap());
167 return New;
168 }
169
170 // -A + B --> B - A
171 // -A + -B --> -(A + B)
172 if (Value *LHSV = dyn_castNegVal(LHS)) {
173 if (!isa<Constant>(RHS))
174 if (Value *RHSV = dyn_castNegVal(RHS)) {
175 Value *NewAdd = Builder->CreateAdd(LHSV, RHSV, "sum");
176 return BinaryOperator::CreateNeg(NewAdd);
177 }
178
179 return BinaryOperator::CreateSub(RHS, LHSV);
180 }
181
182 // A + -B --> A - B
183 if (!isa<Constant>(RHS))
184 if (Value *V = dyn_castNegVal(RHS))
185 return BinaryOperator::CreateSub(LHS, V);
186
187
188 ConstantInt *C2;
189 if (Value *X = dyn_castFoldableMul(LHS, C2)) {
190 if (X == RHS) // X*C + X --> X * (C+1)
191 return BinaryOperator::CreateMul(RHS, AddOne(C2));
192
193 // X*C1 + X*C2 --> X * (C1+C2)
194 ConstantInt *C1;
195 if (X == dyn_castFoldableMul(RHS, C1))
196 return BinaryOperator::CreateMul(X, ConstantExpr::getAdd(C1, C2));
197 }
198
199 // X + X*C --> X * (C+1)
200 if (dyn_castFoldableMul(RHS, C2) == LHS)
201 return BinaryOperator::CreateMul(LHS, AddOne(C2));
202
203 // A+B --> A|B iff A and B have no bits set in common.
204 if (IntegerType *IT = dyn_cast<IntegerType>(I.getType())) {
205 APInt LHSKnownOne(IT->getBitWidth(), 0);
206 APInt LHSKnownZero(IT->getBitWidth(), 0);
207 ComputeMaskedBits(LHS, LHSKnownZero, LHSKnownOne);
208 if (LHSKnownZero != 0) {
209 APInt RHSKnownOne(IT->getBitWidth(), 0);
210 APInt RHSKnownZero(IT->getBitWidth(), 0);
211 ComputeMaskedBits(RHS, RHSKnownZero, RHSKnownOne);
212
213 // No bits in common -> bitwise or.
214 if ((LHSKnownZero|RHSKnownZero).isAllOnesValue())
215 return BinaryOperator::CreateOr(LHS, RHS);
216 }
217 }
218
219 // W*X + Y*Z --> W * (X+Z) iff W == Y
220 {
221 Value *W, *X, *Y, *Z;
222 if (match(LHS, m_Mul(m_Value(W), m_Value(X))) &&
223 match(RHS, m_Mul(m_Value(Y), m_Value(Z)))) {
224 if (W != Y) {
225 if (W == Z) {
226 std::swap(Y, Z);
227 } else if (Y == X) {
228 std::swap(W, X);
229 } else if (X == Z) {
230 std::swap(Y, Z);
231 std::swap(W, X);
232 }
233 }
234
235 if (W == Y) {
236 Value *NewAdd = Builder->CreateAdd(X, Z, LHS->getName());
237 return BinaryOperator::CreateMul(W, NewAdd);
238 }
239 }
240 }
241
242 if (ConstantInt *CRHS = dyn_cast<ConstantInt>(RHS)) {
243 Value *X = 0;
244 if (match(LHS, m_Not(m_Value(X)))) // ~X + C --> (C-1) - X
245 return BinaryOperator::CreateSub(SubOne(CRHS), X);
246
247 // (X & FF00) + xx00 -> (X+xx00) & FF00
248 if (LHS->hasOneUse() &&
249 match(LHS, m_And(m_Value(X), m_ConstantInt(C2))) &&
250 CRHS->getValue() == (CRHS->getValue() & C2->getValue())) {
251 // See if all bits from the first bit set in the Add RHS up are included
252 // in the mask. First, get the rightmost bit.
253 const APInt &AddRHSV = CRHS->getValue();
254
255 // Form a mask of all bits from the lowest bit added through the top.
256 APInt AddRHSHighBits(~((AddRHSV & -AddRHSV)-1));
257
258 // See if the and mask includes all of these bits.
259 APInt AddRHSHighBitsAnd(AddRHSHighBits & C2->getValue());
260
261 if (AddRHSHighBits == AddRHSHighBitsAnd) {
262 // Okay, the xform is safe. Insert the new add pronto.
263 Value *NewAdd = Builder->CreateAdd(X, CRHS, LHS->getName());
264 return BinaryOperator::CreateAnd(NewAdd, C2);
265 }
266 }
267
268 // Try to fold constant add into select arguments.
269 if (SelectInst *SI = dyn_cast<SelectInst>(LHS))
270 if (Instruction *R = FoldOpIntoSelect(I, SI))
271 return R;
272 }
273
274 // add (select X 0 (sub n A)) A --> select X A n
275 {
276 SelectInst *SI = dyn_cast<SelectInst>(LHS);
277 Value *A = RHS;
278 if (!SI) {
279 SI = dyn_cast<SelectInst>(RHS);
280 A = LHS;
281 }
282 if (SI && SI->hasOneUse()) {
283 Value *TV = SI->getTrueValue();
284 Value *FV = SI->getFalseValue();
285 Value *N;
286
287 // Can we fold the add into the argument of the select?
288 // We check both true and false select arguments for a matching subtract.
289 if (match(FV, m_Zero()) && match(TV, m_Sub(m_Value(N), m_Specific(A))))
290 // Fold the add into the true select value.
291 return SelectInst::Create(SI->getCondition(), N, A);
292
293 if (match(TV, m_Zero()) && match(FV, m_Sub(m_Value(N), m_Specific(A))))
294 // Fold the add into the false select value.
295 return SelectInst::Create(SI->getCondition(), A, N);
296 }
297 }
298
299 // Check for (add (sext x), y), see if we can merge this into an
300 // integer add followed by a sext.
301 if (SExtInst *LHSConv = dyn_cast<SExtInst>(LHS)) {
302 // (add (sext x), cst) --> (sext (add x, cst'))
303 if (ConstantInt *RHSC = dyn_cast<ConstantInt>(RHS)) {
304 Constant *CI =
305 ConstantExpr::getTrunc(RHSC, LHSConv->getOperand(0)->getType());
306 if (LHSConv->hasOneUse() &&
307 ConstantExpr::getSExt(CI, I.getType()) == RHSC &&
308 WillNotOverflowSignedAdd(LHSConv->getOperand(0), CI)) {
309 // Insert the new, smaller add.
310 Value *NewAdd = Builder->CreateNSWAdd(LHSConv->getOperand(0),
311 CI, "addconv");
312 return new SExtInst(NewAdd, I.getType());
313 }
314 }
315
316 // (add (sext x), (sext y)) --> (sext (add int x, y))
317 if (SExtInst *RHSConv = dyn_cast<SExtInst>(RHS)) {
318 // Only do this if x/y have the same type, if at last one of them has a
319 // single use (so we don't increase the number of sexts), and if the
320 // integer add will not overflow.
321 if (LHSConv->getOperand(0)->getType()==RHSConv->getOperand(0)->getType()&&
322 (LHSConv->hasOneUse() || RHSConv->hasOneUse()) &&
323 WillNotOverflowSignedAdd(LHSConv->getOperand(0),
324 RHSConv->getOperand(0))) {
325 // Insert the new integer add.
326 Value *NewAdd = Builder->CreateNSWAdd(LHSConv->getOperand(0),
327 RHSConv->getOperand(0), "addconv");
328 return new SExtInst(NewAdd, I.getType());
329 }
330 }
331 }
332
333 // Check for (x & y) + (x ^ y)
334 {
335 Value *A = 0, *B = 0;
336 if (match(RHS, m_Xor(m_Value(A), m_Value(B))) &&
337 (match(LHS, m_And(m_Specific(A), m_Specific(B))) ||
338 match(LHS, m_And(m_Specific(B), m_Specific(A)))))
339 return BinaryOperator::CreateOr(A, B);
340
341 if (match(LHS, m_Xor(m_Value(A), m_Value(B))) &&
342 (match(RHS, m_And(m_Specific(A), m_Specific(B))) ||
343 match(RHS, m_And(m_Specific(B), m_Specific(A)))))
344 return BinaryOperator::CreateOr(A, B);
345 }
346
347 return Changed ? &I : 0;
348 }
349
visitFAdd(BinaryOperator & I)350 Instruction *InstCombiner::visitFAdd(BinaryOperator &I) {
351 bool Changed = SimplifyAssociativeOrCommutative(I);
352 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
353
354 if (Constant *RHSC = dyn_cast<Constant>(RHS)) {
355 // X + 0 --> X
356 if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHSC)) {
357 if (CFP->isExactlyValue(ConstantFP::getNegativeZero
358 (I.getType())->getValueAPF()))
359 return ReplaceInstUsesWith(I, LHS);
360 }
361
362 if (isa<PHINode>(LHS))
363 if (Instruction *NV = FoldOpIntoPhi(I))
364 return NV;
365 }
366
367 // -A + B --> B - A
368 // -A + -B --> -(A + B)
369 if (Value *LHSV = dyn_castFNegVal(LHS))
370 return BinaryOperator::CreateFSub(RHS, LHSV);
371
372 // A + -B --> A - B
373 if (!isa<Constant>(RHS))
374 if (Value *V = dyn_castFNegVal(RHS))
375 return BinaryOperator::CreateFSub(LHS, V);
376
377 // Check for X+0.0. Simplify it to X if we know X is not -0.0.
378 if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHS))
379 if (CFP->getValueAPF().isPosZero() && CannotBeNegativeZero(LHS))
380 return ReplaceInstUsesWith(I, LHS);
381
382 // Check for (fadd double (sitofp x), y), see if we can merge this into an
383 // integer add followed by a promotion.
384 if (SIToFPInst *LHSConv = dyn_cast<SIToFPInst>(LHS)) {
385 // (fadd double (sitofp x), fpcst) --> (sitofp (add int x, intcst))
386 // ... if the constant fits in the integer value. This is useful for things
387 // like (double)(x & 1234) + 4.0 -> (double)((X & 1234)+4) which no longer
388 // requires a constant pool load, and generally allows the add to be better
389 // instcombined.
390 if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHS)) {
391 Constant *CI =
392 ConstantExpr::getFPToSI(CFP, LHSConv->getOperand(0)->getType());
393 if (LHSConv->hasOneUse() &&
394 ConstantExpr::getSIToFP(CI, I.getType()) == CFP &&
395 WillNotOverflowSignedAdd(LHSConv->getOperand(0), CI)) {
396 // Insert the new integer add.
397 Value *NewAdd = Builder->CreateNSWAdd(LHSConv->getOperand(0),
398 CI, "addconv");
399 return new SIToFPInst(NewAdd, I.getType());
400 }
401 }
402
403 // (fadd double (sitofp x), (sitofp y)) --> (sitofp (add int x, y))
404 if (SIToFPInst *RHSConv = dyn_cast<SIToFPInst>(RHS)) {
405 // Only do this if x/y have the same type, if at last one of them has a
406 // single use (so we don't increase the number of int->fp conversions),
407 // and if the integer add will not overflow.
408 if (LHSConv->getOperand(0)->getType()==RHSConv->getOperand(0)->getType()&&
409 (LHSConv->hasOneUse() || RHSConv->hasOneUse()) &&
410 WillNotOverflowSignedAdd(LHSConv->getOperand(0),
411 RHSConv->getOperand(0))) {
412 // Insert the new integer add.
413 Value *NewAdd = Builder->CreateNSWAdd(LHSConv->getOperand(0),
414 RHSConv->getOperand(0),"addconv");
415 return new SIToFPInst(NewAdd, I.getType());
416 }
417 }
418 }
419
420 return Changed ? &I : 0;
421 }
422
423
424 /// Optimize pointer differences into the same array into a size. Consider:
425 /// &A[10] - &A[0]: we should compile this to "10". LHS/RHS are the pointer
426 /// operands to the ptrtoint instructions for the LHS/RHS of the subtract.
427 ///
OptimizePointerDifference(Value * LHS,Value * RHS,Type * Ty)428 Value *InstCombiner::OptimizePointerDifference(Value *LHS, Value *RHS,
429 Type *Ty) {
430 assert(TD && "Must have target data info for this");
431
432 // If LHS is a gep based on RHS or RHS is a gep based on LHS, we can optimize
433 // this.
434 bool Swapped = false;
435 GEPOperator *GEP1 = 0, *GEP2 = 0;
436
437 // For now we require one side to be the base pointer "A" or a constant
438 // GEP derived from it.
439 if (GEPOperator *LHSGEP = dyn_cast<GEPOperator>(LHS)) {
440 // (gep X, ...) - X
441 if (LHSGEP->getOperand(0) == RHS) {
442 GEP1 = LHSGEP;
443 Swapped = false;
444 } else if (GEPOperator *RHSGEP = dyn_cast<GEPOperator>(RHS)) {
445 // (gep X, ...) - (gep X, ...)
446 if (LHSGEP->getOperand(0)->stripPointerCasts() ==
447 RHSGEP->getOperand(0)->stripPointerCasts()) {
448 GEP2 = RHSGEP;
449 GEP1 = LHSGEP;
450 Swapped = false;
451 }
452 }
453 }
454
455 if (GEPOperator *RHSGEP = dyn_cast<GEPOperator>(RHS)) {
456 // X - (gep X, ...)
457 if (RHSGEP->getOperand(0) == LHS) {
458 GEP1 = RHSGEP;
459 Swapped = true;
460 } else if (GEPOperator *LHSGEP = dyn_cast<GEPOperator>(LHS)) {
461 // (gep X, ...) - (gep X, ...)
462 if (RHSGEP->getOperand(0)->stripPointerCasts() ==
463 LHSGEP->getOperand(0)->stripPointerCasts()) {
464 GEP2 = LHSGEP;
465 GEP1 = RHSGEP;
466 Swapped = true;
467 }
468 }
469 }
470
471 // Avoid duplicating the arithmetic if GEP2 has non-constant indices and
472 // multiple users.
473 if (GEP1 == 0 ||
474 (GEP2 != 0 && !GEP2->hasAllConstantIndices() && !GEP2->hasOneUse()))
475 return 0;
476
477 // Emit the offset of the GEP and an intptr_t.
478 Value *Result = EmitGEPOffset(GEP1);
479
480 // If we had a constant expression GEP on the other side offsetting the
481 // pointer, subtract it from the offset we have.
482 if (GEP2) {
483 Value *Offset = EmitGEPOffset(GEP2);
484 Result = Builder->CreateSub(Result, Offset);
485 }
486
487 // If we have p - gep(p, ...) then we have to negate the result.
488 if (Swapped)
489 Result = Builder->CreateNeg(Result, "diff.neg");
490
491 return Builder->CreateIntCast(Result, Ty, true);
492 }
493
494
visitSub(BinaryOperator & I)495 Instruction *InstCombiner::visitSub(BinaryOperator &I) {
496 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
497
498 if (Value *V = SimplifySubInst(Op0, Op1, I.hasNoSignedWrap(),
499 I.hasNoUnsignedWrap(), TD))
500 return ReplaceInstUsesWith(I, V);
501
502 // (A*B)-(A*C) -> A*(B-C) etc
503 if (Value *V = SimplifyUsingDistributiveLaws(I))
504 return ReplaceInstUsesWith(I, V);
505
506 // If this is a 'B = x-(-A)', change to B = x+A. This preserves NSW/NUW.
507 if (Value *V = dyn_castNegVal(Op1)) {
508 BinaryOperator *Res = BinaryOperator::CreateAdd(Op0, V);
509 Res->setHasNoSignedWrap(I.hasNoSignedWrap());
510 Res->setHasNoUnsignedWrap(I.hasNoUnsignedWrap());
511 return Res;
512 }
513
514 if (I.getType()->isIntegerTy(1))
515 return BinaryOperator::CreateXor(Op0, Op1);
516
517 // Replace (-1 - A) with (~A).
518 if (match(Op0, m_AllOnes()))
519 return BinaryOperator::CreateNot(Op1);
520
521 if (ConstantInt *C = dyn_cast<ConstantInt>(Op0)) {
522 // C - ~X == X + (1+C)
523 Value *X = 0;
524 if (match(Op1, m_Not(m_Value(X))))
525 return BinaryOperator::CreateAdd(X, AddOne(C));
526
527 // -(X >>u 31) -> (X >>s 31)
528 // -(X >>s 31) -> (X >>u 31)
529 if (C->isZero()) {
530 Value *X; ConstantInt *CI;
531 if (match(Op1, m_LShr(m_Value(X), m_ConstantInt(CI))) &&
532 // Verify we are shifting out everything but the sign bit.
533 CI->getValue() == I.getType()->getPrimitiveSizeInBits()-1)
534 return BinaryOperator::CreateAShr(X, CI);
535
536 if (match(Op1, m_AShr(m_Value(X), m_ConstantInt(CI))) &&
537 // Verify we are shifting out everything but the sign bit.
538 CI->getValue() == I.getType()->getPrimitiveSizeInBits()-1)
539 return BinaryOperator::CreateLShr(X, CI);
540 }
541
542 // Try to fold constant sub into select arguments.
543 if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
544 if (Instruction *R = FoldOpIntoSelect(I, SI))
545 return R;
546
547 // C-(X+C2) --> (C-C2)-X
548 ConstantInt *C2;
549 if (match(Op1, m_Add(m_Value(X), m_ConstantInt(C2))))
550 return BinaryOperator::CreateSub(ConstantExpr::getSub(C, C2), X);
551
552 if (SimplifyDemandedInstructionBits(I))
553 return &I;
554 }
555
556
557 { Value *Y;
558 // X-(X+Y) == -Y X-(Y+X) == -Y
559 if (match(Op1, m_Add(m_Specific(Op0), m_Value(Y))) ||
560 match(Op1, m_Add(m_Value(Y), m_Specific(Op0))))
561 return BinaryOperator::CreateNeg(Y);
562
563 // (X-Y)-X == -Y
564 if (match(Op0, m_Sub(m_Specific(Op1), m_Value(Y))))
565 return BinaryOperator::CreateNeg(Y);
566 }
567
568 if (Op1->hasOneUse()) {
569 Value *X = 0, *Y = 0, *Z = 0;
570 Constant *C = 0;
571 ConstantInt *CI = 0;
572
573 // (X - (Y - Z)) --> (X + (Z - Y)).
574 if (match(Op1, m_Sub(m_Value(Y), m_Value(Z))))
575 return BinaryOperator::CreateAdd(Op0,
576 Builder->CreateSub(Z, Y, Op1->getName()));
577
578 // (X - (X & Y)) --> (X & ~Y)
579 //
580 if (match(Op1, m_And(m_Value(Y), m_Specific(Op0))) ||
581 match(Op1, m_And(m_Specific(Op0), m_Value(Y))))
582 return BinaryOperator::CreateAnd(Op0,
583 Builder->CreateNot(Y, Y->getName() + ".not"));
584
585 // 0 - (X sdiv C) -> (X sdiv -C)
586 if (match(Op1, m_SDiv(m_Value(X), m_Constant(C))) &&
587 match(Op0, m_Zero()))
588 return BinaryOperator::CreateSDiv(X, ConstantExpr::getNeg(C));
589
590 // 0 - (X << Y) -> (-X << Y) when X is freely negatable.
591 if (match(Op1, m_Shl(m_Value(X), m_Value(Y))) && match(Op0, m_Zero()))
592 if (Value *XNeg = dyn_castNegVal(X))
593 return BinaryOperator::CreateShl(XNeg, Y);
594
595 // X - X*C --> X * (1-C)
596 if (match(Op1, m_Mul(m_Specific(Op0), m_ConstantInt(CI)))) {
597 Constant *CP1 = ConstantExpr::getSub(ConstantInt::get(I.getType(),1), CI);
598 return BinaryOperator::CreateMul(Op0, CP1);
599 }
600
601 // X - X<<C --> X * (1-(1<<C))
602 if (match(Op1, m_Shl(m_Specific(Op0), m_ConstantInt(CI)))) {
603 Constant *One = ConstantInt::get(I.getType(), 1);
604 C = ConstantExpr::getSub(One, ConstantExpr::getShl(One, CI));
605 return BinaryOperator::CreateMul(Op0, C);
606 }
607
608 // X - A*-B -> X + A*B
609 // X - -A*B -> X + A*B
610 Value *A, *B;
611 if (match(Op1, m_Mul(m_Value(A), m_Neg(m_Value(B)))) ||
612 match(Op1, m_Mul(m_Neg(m_Value(A)), m_Value(B))))
613 return BinaryOperator::CreateAdd(Op0, Builder->CreateMul(A, B));
614
615 // X - A*CI -> X + A*-CI
616 // X - CI*A -> X + A*-CI
617 if (match(Op1, m_Mul(m_Value(A), m_ConstantInt(CI))) ||
618 match(Op1, m_Mul(m_ConstantInt(CI), m_Value(A)))) {
619 Value *NewMul = Builder->CreateMul(A, ConstantExpr::getNeg(CI));
620 return BinaryOperator::CreateAdd(Op0, NewMul);
621 }
622 }
623
624 ConstantInt *C1;
625 if (Value *X = dyn_castFoldableMul(Op0, C1)) {
626 if (X == Op1) // X*C - X --> X * (C-1)
627 return BinaryOperator::CreateMul(Op1, SubOne(C1));
628
629 ConstantInt *C2; // X*C1 - X*C2 -> X * (C1-C2)
630 if (X == dyn_castFoldableMul(Op1, C2))
631 return BinaryOperator::CreateMul(X, ConstantExpr::getSub(C1, C2));
632 }
633
634 // Optimize pointer differences into the same array into a size. Consider:
635 // &A[10] - &A[0]: we should compile this to "10".
636 if (TD) {
637 Value *LHSOp, *RHSOp;
638 if (match(Op0, m_PtrToInt(m_Value(LHSOp))) &&
639 match(Op1, m_PtrToInt(m_Value(RHSOp))))
640 if (Value *Res = OptimizePointerDifference(LHSOp, RHSOp, I.getType()))
641 return ReplaceInstUsesWith(I, Res);
642
643 // trunc(p)-trunc(q) -> trunc(p-q)
644 if (match(Op0, m_Trunc(m_PtrToInt(m_Value(LHSOp)))) &&
645 match(Op1, m_Trunc(m_PtrToInt(m_Value(RHSOp)))))
646 if (Value *Res = OptimizePointerDifference(LHSOp, RHSOp, I.getType()))
647 return ReplaceInstUsesWith(I, Res);
648 }
649
650 return 0;
651 }
652
visitFSub(BinaryOperator & I)653 Instruction *InstCombiner::visitFSub(BinaryOperator &I) {
654 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
655
656 // If this is a 'B = x-(-A)', change to B = x+A...
657 if (Value *V = dyn_castFNegVal(Op1))
658 return BinaryOperator::CreateFAdd(Op0, V);
659
660 return 0;
661 }
662