1
2 /* -----------------------------------------------------------------------------------------------------------
3 Software License for The Fraunhofer FDK AAC Codec Library for Android
4
5 � Copyright 1995 - 2012 Fraunhofer-Gesellschaft zur F�rderung der angewandten Forschung e.V.
6 All rights reserved.
7
8 1. INTRODUCTION
9 The Fraunhofer FDK AAC Codec Library for Android ("FDK AAC Codec") is software that implements
10 the MPEG Advanced Audio Coding ("AAC") encoding and decoding scheme for digital audio.
11 This FDK AAC Codec software is intended to be used on a wide variety of Android devices.
12
13 AAC's HE-AAC and HE-AAC v2 versions are regarded as today's most efficient general perceptual
14 audio codecs. AAC-ELD is considered the best-performing full-bandwidth communications codec by
15 independent studies and is widely deployed. AAC has been standardized by ISO and IEC as part
16 of the MPEG specifications.
17
18 Patent licenses for necessary patent claims for the FDK AAC Codec (including those of Fraunhofer)
19 may be obtained through Via Licensing (www.vialicensing.com) or through the respective patent owners
20 individually for the purpose of encoding or decoding bit streams in products that are compliant with
21 the ISO/IEC MPEG audio standards. Please note that most manufacturers of Android devices already license
22 these patent claims through Via Licensing or directly from the patent owners, and therefore FDK AAC Codec
23 software may already be covered under those patent licenses when it is used for those licensed purposes only.
24
25 Commercially-licensed AAC software libraries, including floating-point versions with enhanced sound quality,
26 are also available from Fraunhofer. Users are encouraged to check the Fraunhofer website for additional
27 applications information and documentation.
28
29 2. COPYRIGHT LICENSE
30
31 Redistribution and use in source and binary forms, with or without modification, are permitted without
32 payment of copyright license fees provided that you satisfy the following conditions:
33
34 You must retain the complete text of this software license in redistributions of the FDK AAC Codec or
35 your modifications thereto in source code form.
36
37 You must retain the complete text of this software license in the documentation and/or other materials
38 provided with redistributions of the FDK AAC Codec or your modifications thereto in binary form.
39 You must make available free of charge copies of the complete source code of the FDK AAC Codec and your
40 modifications thereto to recipients of copies in binary form.
41
42 The name of Fraunhofer may not be used to endorse or promote products derived from this library without
43 prior written permission.
44
45 You may not charge copyright license fees for anyone to use, copy or distribute the FDK AAC Codec
46 software or your modifications thereto.
47
48 Your modified versions of the FDK AAC Codec must carry prominent notices stating that you changed the software
49 and the date of any change. For modified versions of the FDK AAC Codec, the term
50 "Fraunhofer FDK AAC Codec Library for Android" must be replaced by the term
51 "Third-Party Modified Version of the Fraunhofer FDK AAC Codec Library for Android."
52
53 3. NO PATENT LICENSE
54
55 NO EXPRESS OR IMPLIED LICENSES TO ANY PATENT CLAIMS, including without limitation the patents of Fraunhofer,
56 ARE GRANTED BY THIS SOFTWARE LICENSE. Fraunhofer provides no warranty of patent non-infringement with
57 respect to this software.
58
59 You may use this FDK AAC Codec software or modifications thereto only for purposes that are authorized
60 by appropriate patent licenses.
61
62 4. DISCLAIMER
63
64 This FDK AAC Codec software is provided by Fraunhofer on behalf of the copyright holders and contributors
65 "AS IS" and WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES, including but not limited to the implied warranties
66 of merchantability and fitness for a particular purpose. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
67 CONTRIBUTORS BE LIABLE for any direct, indirect, incidental, special, exemplary, or consequential damages,
68 including but not limited to procurement of substitute goods or services; loss of use, data, or profits,
69 or business interruption, however caused and on any theory of liability, whether in contract, strict
70 liability, or tort (including negligence), arising in any way out of the use of this software, even if
71 advised of the possibility of such damage.
72
73 5. CONTACT INFORMATION
74
75 Fraunhofer Institute for Integrated Circuits IIS
76 Attention: Audio and Multimedia Departments - FDK AAC LL
77 Am Wolfsmantel 33
78 91058 Erlangen, Germany
79
80 www.iis.fraunhofer.de/amm
81 amm-info@iis.fraunhofer.de
82 ----------------------------------------------------------------------------------------------------------- */
83
84 /***************************** MPEG Audio Encoder ***************************
85
86 Initial Authors: M. Multrus
87 Contents/Description: PS Wrapper, Downmix
88
89 ******************************************************************************/
90
91 #include "ps_main.h"
92
93
94 /* Includes ******************************************************************/
95
96 #include "ps_const.h"
97 #include "ps_bitenc.h"
98
99 #include "sbr_ram.h"
100
101 /*--------------- function declarations --------------------*/
102 static void psFindBestScaling(
103 HANDLE_PARAMETRIC_STEREO hParametricStereo,
104 FIXP_DBL *hybridData[HYBRID_FRAMESIZE][MAX_PS_CHANNELS][2],
105 UCHAR *dynBandScale,
106 FIXP_QMF *maxBandValue,
107 SCHAR *dmxScale
108 );
109
110 /*------------- function definitions ----------------*/
PSEnc_Create(HANDLE_PARAMETRIC_STEREO * phParametricStereo)111 FDK_PSENC_ERROR PSEnc_Create(
112 HANDLE_PARAMETRIC_STEREO *phParametricStereo
113 )
114 {
115 FDK_PSENC_ERROR error = PSENC_OK;
116
117 if (phParametricStereo==NULL) {
118 error = PSENC_INVALID_HANDLE;
119 }
120 else {
121 int i;
122 HANDLE_PARAMETRIC_STEREO hParametricStereo = NULL;
123
124 if (NULL==(hParametricStereo = GetRam_ParamStereo())) {
125 error = PSENC_MEMORY_ERROR;
126 goto bail;
127 }
128 FDKmemclear(hParametricStereo, sizeof(PARAMETRIC_STEREO));
129
130 if (PSENC_OK != (error = FDKsbrEnc_CreatePSEncode(&hParametricStereo->hPsEncode))) {
131 goto bail;
132 }
133
134 for (i=0; i<MAX_PS_CHANNELS; i++) {
135 if (FDKhybridAnalysisOpen(
136 &hParametricStereo->fdkHybAnaFilter[i],
137 hParametricStereo->__staticHybAnaStatesLF[i],
138 sizeof(hParametricStereo->__staticHybAnaStatesLF[i]),
139 hParametricStereo->__staticHybAnaStatesHF[i],
140 sizeof(hParametricStereo->__staticHybAnaStatesHF[i])
141 ) !=0 )
142 {
143 error = PSENC_MEMORY_ERROR;
144 goto bail;
145 }
146 }
147
148 *phParametricStereo = hParametricStereo; /* return allocated handle */
149 }
150 bail:
151 return error;
152 }
153
PSEnc_Init(HANDLE_PARAMETRIC_STEREO hParametricStereo,const HANDLE_PSENC_CONFIG hPsEncConfig,INT noQmfSlots,INT noQmfBands,UCHAR * dynamic_RAM)154 FDK_PSENC_ERROR PSEnc_Init(
155 HANDLE_PARAMETRIC_STEREO hParametricStereo,
156 const HANDLE_PSENC_CONFIG hPsEncConfig,
157 INT noQmfSlots,
158 INT noQmfBands
159 ,UCHAR *dynamic_RAM
160 )
161 {
162 FDK_PSENC_ERROR error = PSENC_OK;
163
164 if ( (NULL==hParametricStereo) || (NULL==hPsEncConfig) ) {
165 error = PSENC_INVALID_HANDLE;
166 }
167 else {
168 int ch, i;
169
170 hParametricStereo->initPS = 1;
171 hParametricStereo->noQmfSlots = noQmfSlots;
172 hParametricStereo->noQmfBands = noQmfBands;
173
174 /* clear delay lines */
175 FDKmemclear(hParametricStereo->qmfDelayLines, sizeof(hParametricStereo->qmfDelayLines));
176
177 hParametricStereo->qmfDelayScale = FRACT_BITS-1;
178
179 /* create configuration for hybrid filter bank */
180 for (ch=0; ch<MAX_PS_CHANNELS; ch++) {
181 FDKhybridAnalysisInit(
182 &hParametricStereo->fdkHybAnaFilter[ch],
183 THREE_TO_TEN,
184 QMF_CHANNELS,
185 QMF_CHANNELS,
186 1
187 );
188 } /* ch */
189
190 FDKhybridSynthesisInit(
191 &hParametricStereo->fdkHybSynFilter,
192 THREE_TO_TEN,
193 QMF_CHANNELS,
194 QMF_CHANNELS
195 );
196
197 /* determine average delay */
198 hParametricStereo->psDelay = (HYBRID_FILTER_DELAY*hParametricStereo->noQmfBands);
199
200 if ( (hPsEncConfig->maxEnvelopes < PSENC_NENV_1) || (hPsEncConfig->maxEnvelopes > PSENC_NENV_MAX) ) {
201 hPsEncConfig->maxEnvelopes = PSENC_NENV_DEFAULT;
202 }
203 hParametricStereo->maxEnvelopes = hPsEncConfig->maxEnvelopes;
204
205 if (PSENC_OK != (error = FDKsbrEnc_InitPSEncode(hParametricStereo->hPsEncode, (PS_BANDS) hPsEncConfig->nStereoBands, hPsEncConfig->iidQuantErrorThreshold))){
206 goto bail;
207 }
208
209 for (ch = 0; ch<MAX_PS_CHANNELS; ch ++) {
210 FIXP_DBL *pDynReal = GetRam_Sbr_envRBuffer (ch, dynamic_RAM);
211 FIXP_DBL *pDynImag = GetRam_Sbr_envIBuffer (ch, dynamic_RAM);
212
213 for (i=0; i<HYBRID_FRAMESIZE; i++) {
214 hParametricStereo->pHybridData[i+HYBRID_READ_OFFSET][ch][0] = &pDynReal[i*MAX_HYBRID_BANDS];
215 hParametricStereo->pHybridData[i+HYBRID_READ_OFFSET][ch][1] = &pDynImag[i*MAX_HYBRID_BANDS];;
216 }
217
218 for (i=0; i<HYBRID_READ_OFFSET; i++) {
219 hParametricStereo->pHybridData[i][ch][0] = hParametricStereo->__staticHybridData[i][ch][0];
220 hParametricStereo->pHybridData[i][ch][1] = hParametricStereo->__staticHybridData[i][ch][1];
221 }
222 } /* ch */
223
224 /* clear static hybrid buffer */
225 FDKmemclear(hParametricStereo->__staticHybridData, sizeof(hParametricStereo->__staticHybridData));
226
227 /* clear bs buffer */
228 FDKmemclear(hParametricStereo->psOut, sizeof(hParametricStereo->psOut));
229
230 /* clear scaling buffer */
231 FDKmemclear(hParametricStereo->dynBandScale, sizeof(UCHAR)*PS_MAX_BANDS);
232 FDKmemclear(hParametricStereo->maxBandValue, sizeof(FIXP_QMF)*PS_MAX_BANDS);
233
234 } /* valid handle */
235 bail:
236 return error;
237 }
238
239
PSEnc_Destroy(HANDLE_PARAMETRIC_STEREO * phParametricStereo)240 FDK_PSENC_ERROR PSEnc_Destroy(
241 HANDLE_PARAMETRIC_STEREO *phParametricStereo
242 )
243 {
244 FDK_PSENC_ERROR error = PSENC_OK;
245
246 if (NULL!=phParametricStereo) {
247 HANDLE_PARAMETRIC_STEREO hParametricStereo = *phParametricStereo;
248 if(hParametricStereo != NULL){
249 FDKsbrEnc_DestroyPSEncode(&hParametricStereo->hPsEncode);
250 FreeRam_ParamStereo(phParametricStereo);
251 }
252 }
253
254 return error;
255 }
256
ExtractPSParameters(HANDLE_PARAMETRIC_STEREO hParametricStereo,const int sendHeader,FIXP_DBL * hybridData[HYBRID_FRAMESIZE][MAX_PS_CHANNELS][2])257 static FDK_PSENC_ERROR ExtractPSParameters(
258 HANDLE_PARAMETRIC_STEREO hParametricStereo,
259 const int sendHeader,
260 FIXP_DBL *hybridData[HYBRID_FRAMESIZE][MAX_PS_CHANNELS][2]
261 )
262 {
263 FDK_PSENC_ERROR error = PSENC_OK;
264
265 if (hParametricStereo == NULL) {
266 error = PSENC_INVALID_HANDLE;
267 }
268 else {
269 /* call ps encode function */
270 if (hParametricStereo->initPS){
271 hParametricStereo->psOut[1] = hParametricStereo->psOut[0];
272 }
273 hParametricStereo->psOut[0] = hParametricStereo->psOut[1];
274
275 if (PSENC_OK != (error = FDKsbrEnc_PSEncode(
276 hParametricStereo->hPsEncode,
277 &hParametricStereo->psOut[1],
278 hParametricStereo->dynBandScale,
279 hParametricStereo->maxEnvelopes,
280 hybridData,
281 hParametricStereo->noQmfSlots,
282 sendHeader)))
283 {
284 goto bail;
285 }
286
287 if (hParametricStereo->initPS) {
288 hParametricStereo->psOut[0] = hParametricStereo->psOut[1];
289 hParametricStereo->initPS = 0;
290 }
291 }
292 bail:
293 return error;
294 }
295
296
DownmixPSQmfData(HANDLE_PARAMETRIC_STEREO hParametricStereo,HANDLE_QMF_FILTER_BANK sbrSynthQmf,FIXP_QMF ** RESTRICT mixRealQmfData,FIXP_QMF ** RESTRICT mixImagQmfData,INT_PCM * downsampledOutSignal,FIXP_DBL * hybridData[HYBRID_FRAMESIZE][MAX_PS_CHANNELS][2],const INT noQmfSlots,const INT psQmfScale[MAX_PS_CHANNELS],SCHAR * qmfScale)297 static FDK_PSENC_ERROR DownmixPSQmfData(
298 HANDLE_PARAMETRIC_STEREO hParametricStereo,
299 HANDLE_QMF_FILTER_BANK sbrSynthQmf,
300 FIXP_QMF **RESTRICT mixRealQmfData,
301 FIXP_QMF **RESTRICT mixImagQmfData,
302 INT_PCM *downsampledOutSignal,
303 FIXP_DBL *hybridData[HYBRID_FRAMESIZE][MAX_PS_CHANNELS][2],
304 const INT noQmfSlots,
305 const INT psQmfScale[MAX_PS_CHANNELS],
306 SCHAR *qmfScale
307 )
308 {
309 FDK_PSENC_ERROR error = PSENC_OK;
310
311 if(hParametricStereo == NULL){
312 error = PSENC_INVALID_HANDLE;
313 }
314 else {
315 int n, k;
316 C_ALLOC_SCRATCH_START(pWorkBuffer, FIXP_QMF, QMF_CHANNELS*2);
317
318 /* define scalings */
319 int dynQmfScale = fixMax(0, hParametricStereo->dmxScale-1); /* scale one bit more for addition of left and right */
320 int downmixScale = psQmfScale[0] - dynQmfScale;
321 const FIXP_DBL maxStereoScaleFactor = MAXVAL_DBL; /* 2.f/2.f */
322
323 for (n = 0; n<noQmfSlots; n++) {
324
325 FIXP_DBL tmpHybrid[2][MAX_HYBRID_BANDS];
326
327 for(k = 0; k<71; k++){
328 int dynScale, sc; /* scaling */
329 FIXP_QMF tmpLeftReal, tmpRightReal, tmpLeftImag, tmpRightImag;
330 FIXP_DBL tmpScaleFactor, stereoScaleFactor;
331
332 tmpLeftReal = hybridData[n][0][0][k];
333 tmpLeftImag = hybridData[n][0][1][k];
334 tmpRightReal = hybridData[n][1][0][k];
335 tmpRightImag = hybridData[n][1][1][k];
336
337 sc = fixMax(0,CntLeadingZeros( fixMax(fixMax(fixp_abs(tmpLeftReal),fixp_abs(tmpLeftImag)),fixMax(fixp_abs(tmpRightReal),fixp_abs(tmpRightImag))) )-2);
338
339 tmpLeftReal <<= sc; tmpLeftImag <<= sc;
340 tmpRightReal <<= sc; tmpRightImag <<= sc;
341 dynScale = fixMin(sc-dynQmfScale,DFRACT_BITS-1);
342
343 /* calc stereo scale factor to avoid loss of energy in bands */
344 /* stereo scale factor = min(2.0f, sqrt( (abs(l(k, n)^2 + abs(r(k, n)^2 )))/(0.5f*abs(l(k, n) + r(k, n))) )) */
345 stereoScaleFactor = fPow2Div2(tmpLeftReal) + fPow2Div2(tmpLeftImag)
346 + fPow2Div2(tmpRightReal) + fPow2Div2(tmpRightImag) ;
347
348 /* might be that tmpScaleFactor becomes negative, so fabs(.) */
349 tmpScaleFactor = fixp_abs(stereoScaleFactor + fMult(tmpLeftReal,tmpRightReal) + fMult(tmpLeftImag,tmpRightImag));
350
351 /* min(2.0f, sqrt(stereoScaleFactor/(0.5f*tmpScaleFactor))) */
352 if ( (stereoScaleFactor>>1) < fMult(maxStereoScaleFactor,tmpScaleFactor) ) {
353
354 int sc_num = CountLeadingBits(stereoScaleFactor) ;
355 int sc_denum = CountLeadingBits(tmpScaleFactor) ;
356 sc = -(sc_num-sc_denum);
357
358 tmpScaleFactor = schur_div((stereoScaleFactor<<(sc_num))>>1,
359 tmpScaleFactor<<sc_denum,
360 16) ;
361
362 /* prevent odd scaling for next sqrt calculation */
363 if (sc&0x1) {
364 sc++;
365 tmpScaleFactor>>=1;
366 }
367 stereoScaleFactor = sqrtFixp(tmpScaleFactor);
368 stereoScaleFactor <<= (sc>>1);
369 }
370 else {
371 stereoScaleFactor = maxStereoScaleFactor;
372 }
373
374 /* write data to hybrid output */
375 tmpHybrid[0][k] = fMultDiv2(stereoScaleFactor, (FIXP_QMF)(tmpLeftReal + tmpRightReal))>>dynScale;
376 tmpHybrid[1][k] = fMultDiv2(stereoScaleFactor, (FIXP_QMF)(tmpLeftImag + tmpRightImag))>>dynScale;
377
378 } /* hybrid bands - k */
379
380 FDKhybridSynthesisApply(
381 &hParametricStereo->fdkHybSynFilter,
382 tmpHybrid[0],
383 tmpHybrid[1],
384 mixRealQmfData[n],
385 mixImagQmfData[n]);
386
387 qmfSynthesisFilteringSlot(
388 sbrSynthQmf,
389 mixRealQmfData[n],
390 mixImagQmfData[n],
391 downmixScale-7,
392 downmixScale-7,
393 downsampledOutSignal+(n*sbrSynthQmf->no_channels),
394 1,
395 pWorkBuffer);
396
397 } /* slots */
398
399 *qmfScale = -downmixScale + 7;
400
401 C_ALLOC_SCRATCH_END(pWorkBuffer, FIXP_QMF, QMF_CHANNELS*2);
402
403
404 {
405 const INT noQmfSlots2 = hParametricStereo->noQmfSlots>>1;
406 const int noQmfBands = hParametricStereo->noQmfBands;
407
408 INT scale, i, j, slotOffset;
409
410 FIXP_QMF tmp[2][QMF_CHANNELS];
411
412 for (i=0; i<noQmfSlots2; i++) {
413 FDKmemcpy(tmp[0], hParametricStereo->qmfDelayLines[0][i], noQmfBands*sizeof(FIXP_QMF));
414 FDKmemcpy(tmp[1], hParametricStereo->qmfDelayLines[1][i], noQmfBands*sizeof(FIXP_QMF));
415
416 FDKmemcpy(hParametricStereo->qmfDelayLines[0][i], mixRealQmfData[i+noQmfSlots2], noQmfBands*sizeof(FIXP_QMF));
417 FDKmemcpy(hParametricStereo->qmfDelayLines[1][i], mixImagQmfData[i+noQmfSlots2], noQmfBands*sizeof(FIXP_QMF));
418
419 FDKmemcpy(mixRealQmfData[i+noQmfSlots2], mixRealQmfData[i], noQmfBands*sizeof(FIXP_QMF));
420 FDKmemcpy(mixImagQmfData[i+noQmfSlots2], mixImagQmfData[i], noQmfBands*sizeof(FIXP_QMF));
421
422 FDKmemcpy(mixRealQmfData[i], tmp[0], noQmfBands*sizeof(FIXP_QMF));
423 FDKmemcpy(mixImagQmfData[i], tmp[1], noQmfBands*sizeof(FIXP_QMF));
424 }
425
426 if (hParametricStereo->qmfDelayScale > *qmfScale) {
427 scale = hParametricStereo->qmfDelayScale - *qmfScale;
428 slotOffset = 0;
429 }
430 else {
431 scale = *qmfScale - hParametricStereo->qmfDelayScale;
432 slotOffset = noQmfSlots2;
433 }
434
435 for (i=0; i<noQmfSlots2; i++) {
436 for (j=0; j<noQmfBands; j++) {
437 mixRealQmfData[i+slotOffset][j] >>= scale;
438 mixImagQmfData[i+slotOffset][j] >>= scale;
439 }
440 }
441
442 scale = *qmfScale;
443 *qmfScale = FDKmin(*qmfScale, hParametricStereo->qmfDelayScale);
444 hParametricStereo->qmfDelayScale = scale;
445 }
446
447 } /* valid handle */
448
449 return error;
450 }
451
452
FDKsbrEnc_PSEnc_WritePSData(HANDLE_PARAMETRIC_STEREO hParametricStereo,HANDLE_FDK_BITSTREAM hBitstream)453 INT FDKsbrEnc_PSEnc_WritePSData(
454 HANDLE_PARAMETRIC_STEREO hParametricStereo,
455 HANDLE_FDK_BITSTREAM hBitstream
456 )
457 {
458 return ( (hParametricStereo!=NULL) ? FDKsbrEnc_WritePSBitstream(&hParametricStereo->psOut[0], hBitstream) : 0 );
459 }
460
461
FDKsbrEnc_PSEnc_ParametricStereoProcessing(HANDLE_PARAMETRIC_STEREO hParametricStereo,INT_PCM * samples[2],UINT timeInStride,QMF_FILTER_BANK ** hQmfAnalysis,FIXP_QMF ** RESTRICT downmixedRealQmfData,FIXP_QMF ** RESTRICT downmixedImagQmfData,INT_PCM * downsampledOutSignal,HANDLE_QMF_FILTER_BANK sbrSynthQmf,SCHAR * qmfScale,const int sendHeader)462 FDK_PSENC_ERROR FDKsbrEnc_PSEnc_ParametricStereoProcessing(
463 HANDLE_PARAMETRIC_STEREO hParametricStereo,
464 INT_PCM *samples[2],
465 UINT timeInStride,
466 QMF_FILTER_BANK **hQmfAnalysis,
467 FIXP_QMF **RESTRICT downmixedRealQmfData,
468 FIXP_QMF **RESTRICT downmixedImagQmfData,
469 INT_PCM *downsampledOutSignal,
470 HANDLE_QMF_FILTER_BANK sbrSynthQmf,
471 SCHAR *qmfScale,
472 const int sendHeader
473 )
474 {
475 FDK_PSENC_ERROR error = PSENC_OK;
476 INT noQmfBands = hParametricStereo->noQmfBands;
477 INT psQmfScale[MAX_PS_CHANNELS] = {0};
478 int psCh, i;
479 C_ALLOC_SCRATCH_START(pWorkBuffer, FIXP_DBL, QMF_CHANNELS*4);
480
481 for (psCh = 0; psCh<MAX_PS_CHANNELS; psCh ++) {
482
483 for (i = 0; i < hQmfAnalysis[psCh]->no_col; i++) {
484
485 qmfAnalysisFilteringSlot(
486 hQmfAnalysis[psCh],
487 &pWorkBuffer[2*QMF_CHANNELS], /* qmfReal[QMF_CHANNELS] */
488 &pWorkBuffer[3*QMF_CHANNELS], /* qmfImag[QMF_CHANNELS] */
489 samples[psCh]+i*(hQmfAnalysis[psCh]->no_channels*timeInStride),
490 timeInStride,
491 &pWorkBuffer[0*QMF_CHANNELS] /* qmf workbuffer 2*QMF_CHANNELS */
492 );
493
494 FDKhybridAnalysisApply(
495 &hParametricStereo->fdkHybAnaFilter[psCh],
496 &pWorkBuffer[2*QMF_CHANNELS], /* qmfReal[QMF_CHANNELS] */
497 &pWorkBuffer[3*QMF_CHANNELS], /* qmfImag[QMF_CHANNELS] */
498 hParametricStereo->pHybridData[i+HYBRID_READ_OFFSET][psCh][0],
499 hParametricStereo->pHybridData[i+HYBRID_READ_OFFSET][psCh][1]
500 );
501
502 } /* no_col loop i */
503
504 psQmfScale[psCh] = hQmfAnalysis[psCh]->outScalefactor;
505
506 } /* for psCh */
507
508 C_ALLOC_SCRATCH_END(pWorkBuffer, FIXP_DBL, QMF_CHANNELS*4);
509
510 /* find best scaling in new QMF and Hybrid data */
511 psFindBestScaling( hParametricStereo,
512 &hParametricStereo->pHybridData[HYBRID_READ_OFFSET],
513 hParametricStereo->dynBandScale,
514 hParametricStereo->maxBandValue,
515 &hParametricStereo->dmxScale ) ;
516
517
518 /* extract the ps parameters */
519 if(PSENC_OK != (error = ExtractPSParameters(hParametricStereo, sendHeader, &hParametricStereo->pHybridData[0]))){
520 goto bail;
521 }
522
523 /* save hybrid date for next frame */
524 for (i=0; i<HYBRID_READ_OFFSET; i++) {
525 FDKmemcpy(hParametricStereo->pHybridData[i][0][0], hParametricStereo->pHybridData[HYBRID_FRAMESIZE+i][0][0], MAX_HYBRID_BANDS*sizeof(FIXP_DBL)); /* left, real */
526 FDKmemcpy(hParametricStereo->pHybridData[i][0][1], hParametricStereo->pHybridData[HYBRID_FRAMESIZE+i][0][1], MAX_HYBRID_BANDS*sizeof(FIXP_DBL)); /* left, imag */
527 FDKmemcpy(hParametricStereo->pHybridData[i][1][0], hParametricStereo->pHybridData[HYBRID_FRAMESIZE+i][1][0], MAX_HYBRID_BANDS*sizeof(FIXP_DBL)); /* right, real */
528 FDKmemcpy(hParametricStereo->pHybridData[i][1][1], hParametricStereo->pHybridData[HYBRID_FRAMESIZE+i][1][1], MAX_HYBRID_BANDS*sizeof(FIXP_DBL)); /* right, imag */
529 }
530
531 /* downmix and hybrid synthesis */
532 if (PSENC_OK != (error = DownmixPSQmfData(hParametricStereo, sbrSynthQmf, downmixedRealQmfData, downmixedImagQmfData, downsampledOutSignal, &hParametricStereo->pHybridData[HYBRID_READ_OFFSET], hParametricStereo->noQmfSlots, psQmfScale, qmfScale))) {
533 goto bail;
534 }
535
536 bail:
537
538 return error;
539 }
540
psFindBestScaling(HANDLE_PARAMETRIC_STEREO hParametricStereo,FIXP_DBL * hybridData[HYBRID_FRAMESIZE][MAX_PS_CHANNELS][2],UCHAR * dynBandScale,FIXP_QMF * maxBandValue,SCHAR * dmxScale)541 static void psFindBestScaling(
542 HANDLE_PARAMETRIC_STEREO hParametricStereo,
543 FIXP_DBL *hybridData[HYBRID_FRAMESIZE][MAX_PS_CHANNELS][2],
544 UCHAR *dynBandScale,
545 FIXP_QMF *maxBandValue,
546 SCHAR *dmxScale
547 )
548 {
549 HANDLE_PS_ENCODE hPsEncode = hParametricStereo->hPsEncode;
550
551 INT group, bin, col, band;
552 const INT frameSize = hParametricStereo->noQmfSlots;
553 const INT psBands = (INT) hPsEncode->psEncMode;
554 const INT nIidGroups = hPsEncode->nQmfIidGroups + hPsEncode->nSubQmfIidGroups;
555
556 /* group wise scaling */
557 FIXP_QMF maxVal [2][PS_MAX_BANDS];
558 FIXP_QMF maxValue = FL2FXCONST_DBL(0.f);
559
560 FDKmemclear(maxVal, sizeof(maxVal));
561
562 /* start with hybrid data */
563 for (group=0; group < nIidGroups; group++) {
564 /* Translate group to bin */
565 bin = hPsEncode->subband2parameterIndex[group];
566
567 /* Translate from 20 bins to 10 bins */
568 if (hPsEncode->psEncMode == PS_BANDS_COARSE) {
569 bin >>= 1;
570 }
571
572 /* QMF downmix scaling */
573 {
574 FIXP_QMF tmp = maxVal[0][bin];
575 int i;
576 for (col=0; col<frameSize-HYBRID_READ_OFFSET; col++) {
577 for (i = hPsEncode->iidGroupBorders[group]; i < hPsEncode->iidGroupBorders[group+1]; i++) {
578 tmp = fixMax(tmp, (FIXP_QMF)fixp_abs(hybridData[col][0][0][i]));
579 tmp = fixMax(tmp, (FIXP_QMF)fixp_abs(hybridData[col][0][1][i]));
580 tmp = fixMax(tmp, (FIXP_QMF)fixp_abs(hybridData[col][1][0][i]));
581 tmp = fixMax(tmp, (FIXP_QMF)fixp_abs(hybridData[col][1][1][i]));
582 }
583 }
584 maxVal[0][bin] = tmp;
585
586 tmp = maxVal[1][bin];
587 for (col=frameSize-HYBRID_READ_OFFSET; col<frameSize; col++) {
588 for (i = hPsEncode->iidGroupBorders[group]; i < hPsEncode->iidGroupBorders[group+1]; i++) {
589 tmp = fixMax(tmp, (FIXP_QMF)fixp_abs(hybridData[col][0][0][i]));
590 tmp = fixMax(tmp, (FIXP_QMF)fixp_abs(hybridData[col][0][1][i]));
591 tmp = fixMax(tmp, (FIXP_QMF)fixp_abs(hybridData[col][1][0][i]));
592 tmp = fixMax(tmp, (FIXP_QMF)fixp_abs(hybridData[col][1][1][i]));
593 }
594 }
595 maxVal[1][bin] = tmp;
596 }
597 } /* nIidGroups */
598
599 /* convert maxSpec to maxScaling, find scaling space */
600 for (band=0; band<psBands; band++) {
601 #ifndef MULT_16x16
602 dynBandScale[band] = CountLeadingBits(fixMax(maxVal[0][band],maxBandValue[band]));
603 #else
604 dynBandScale[band] = fixMax(0,CountLeadingBits(fixMax(maxVal[0][band],maxBandValue[band]))-FRACT_BITS);
605 #endif
606 maxValue = fixMax(maxValue,fixMax(maxVal[0][band],maxVal[1][band]));
607 maxBandValue[band] = fixMax(maxVal[0][band], maxVal[1][band]);
608 }
609
610 /* calculate maximal scaling for QMF downmix */
611 #ifndef MULT_16x16
612 *dmxScale = fixMin(DFRACT_BITS, CountLeadingBits(maxValue));
613 #else
614 *dmxScale = fixMax(0,fixMin(FRACT_BITS, CountLeadingBits(FX_QMF2FX_DBL(maxValue))));
615 #endif
616
617 }
618
619