1 //===--- ASTContext.h - Context to hold long-lived AST nodes ----*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 ///
10 /// \file
11 /// \brief Defines the clang::ASTContext interface.
12 ///
13 //===----------------------------------------------------------------------===//
14
15 #ifndef LLVM_CLANG_AST_ASTCONTEXT_H
16 #define LLVM_CLANG_AST_ASTCONTEXT_H
17
18 #include "clang/Basic/AddressSpaces.h"
19 #include "clang/Basic/IdentifierTable.h"
20 #include "clang/Basic/LangOptions.h"
21 #include "clang/Basic/OperatorKinds.h"
22 #include "clang/Basic/PartialDiagnostic.h"
23 #include "clang/Basic/VersionTuple.h"
24 #include "clang/AST/Decl.h"
25 #include "clang/AST/LambdaMangleContext.h"
26 #include "clang/AST/NestedNameSpecifier.h"
27 #include "clang/AST/PrettyPrinter.h"
28 #include "clang/AST/TemplateName.h"
29 #include "clang/AST/Type.h"
30 #include "clang/AST/CanonicalType.h"
31 #include "clang/AST/RawCommentList.h"
32 #include "clang/AST/CommentCommandTraits.h"
33 #include "llvm/ADT/DenseMap.h"
34 #include "llvm/ADT/FoldingSet.h"
35 #include "llvm/ADT/IntrusiveRefCntPtr.h"
36 #include "llvm/ADT/OwningPtr.h"
37 #include "llvm/ADT/SmallPtrSet.h"
38 #include "llvm/ADT/TinyPtrVector.h"
39 #include "llvm/Support/Allocator.h"
40 #include <vector>
41
42 namespace llvm {
43 struct fltSemantics;
44 }
45
46 namespace clang {
47 class FileManager;
48 class ASTRecordLayout;
49 class BlockExpr;
50 class CharUnits;
51 class DiagnosticsEngine;
52 class Expr;
53 class ExternalASTSource;
54 class ASTMutationListener;
55 class IdentifierTable;
56 class SelectorTable;
57 class TargetInfo;
58 class CXXABI;
59 // Decls
60 class DeclContext;
61 class CXXConversionDecl;
62 class CXXMethodDecl;
63 class CXXRecordDecl;
64 class Decl;
65 class FieldDecl;
66 class MangleContext;
67 class ObjCIvarDecl;
68 class ObjCIvarRefExpr;
69 class ObjCPropertyDecl;
70 class ParmVarDecl;
71 class RecordDecl;
72 class StoredDeclsMap;
73 class TagDecl;
74 class TemplateTemplateParmDecl;
75 class TemplateTypeParmDecl;
76 class TranslationUnitDecl;
77 class TypeDecl;
78 class TypedefNameDecl;
79 class UsingDecl;
80 class UsingShadowDecl;
81 class UnresolvedSetIterator;
82
83 namespace Builtin { class Context; }
84
85 namespace comments {
86 class FullComment;
87 }
88
89 /// \brief Holds long-lived AST nodes (such as types and decls) that can be
90 /// referred to throughout the semantic analysis of a file.
91 class ASTContext : public RefCountedBase<ASTContext> {
this_()92 ASTContext &this_() { return *this; }
93
94 mutable std::vector<Type*> Types;
95 mutable llvm::FoldingSet<ExtQuals> ExtQualNodes;
96 mutable llvm::FoldingSet<ComplexType> ComplexTypes;
97 mutable llvm::FoldingSet<PointerType> PointerTypes;
98 mutable llvm::FoldingSet<BlockPointerType> BlockPointerTypes;
99 mutable llvm::FoldingSet<LValueReferenceType> LValueReferenceTypes;
100 mutable llvm::FoldingSet<RValueReferenceType> RValueReferenceTypes;
101 mutable llvm::FoldingSet<MemberPointerType> MemberPointerTypes;
102 mutable llvm::FoldingSet<ConstantArrayType> ConstantArrayTypes;
103 mutable llvm::FoldingSet<IncompleteArrayType> IncompleteArrayTypes;
104 mutable std::vector<VariableArrayType*> VariableArrayTypes;
105 mutable llvm::FoldingSet<DependentSizedArrayType> DependentSizedArrayTypes;
106 mutable llvm::FoldingSet<DependentSizedExtVectorType>
107 DependentSizedExtVectorTypes;
108 mutable llvm::FoldingSet<VectorType> VectorTypes;
109 mutable llvm::FoldingSet<FunctionNoProtoType> FunctionNoProtoTypes;
110 mutable llvm::ContextualFoldingSet<FunctionProtoType, ASTContext&>
111 FunctionProtoTypes;
112 mutable llvm::FoldingSet<DependentTypeOfExprType> DependentTypeOfExprTypes;
113 mutable llvm::FoldingSet<DependentDecltypeType> DependentDecltypeTypes;
114 mutable llvm::FoldingSet<TemplateTypeParmType> TemplateTypeParmTypes;
115 mutable llvm::FoldingSet<SubstTemplateTypeParmType>
116 SubstTemplateTypeParmTypes;
117 mutable llvm::FoldingSet<SubstTemplateTypeParmPackType>
118 SubstTemplateTypeParmPackTypes;
119 mutable llvm::ContextualFoldingSet<TemplateSpecializationType, ASTContext&>
120 TemplateSpecializationTypes;
121 mutable llvm::FoldingSet<ParenType> ParenTypes;
122 mutable llvm::FoldingSet<ElaboratedType> ElaboratedTypes;
123 mutable llvm::FoldingSet<DependentNameType> DependentNameTypes;
124 mutable llvm::ContextualFoldingSet<DependentTemplateSpecializationType,
125 ASTContext&>
126 DependentTemplateSpecializationTypes;
127 llvm::FoldingSet<PackExpansionType> PackExpansionTypes;
128 mutable llvm::FoldingSet<ObjCObjectTypeImpl> ObjCObjectTypes;
129 mutable llvm::FoldingSet<ObjCObjectPointerType> ObjCObjectPointerTypes;
130 mutable llvm::FoldingSet<AutoType> AutoTypes;
131 mutable llvm::FoldingSet<AtomicType> AtomicTypes;
132 llvm::FoldingSet<AttributedType> AttributedTypes;
133
134 mutable llvm::FoldingSet<QualifiedTemplateName> QualifiedTemplateNames;
135 mutable llvm::FoldingSet<DependentTemplateName> DependentTemplateNames;
136 mutable llvm::FoldingSet<SubstTemplateTemplateParmStorage>
137 SubstTemplateTemplateParms;
138 mutable llvm::ContextualFoldingSet<SubstTemplateTemplateParmPackStorage,
139 ASTContext&>
140 SubstTemplateTemplateParmPacks;
141
142 /// \brief The set of nested name specifiers.
143 ///
144 /// This set is managed by the NestedNameSpecifier class.
145 mutable llvm::FoldingSet<NestedNameSpecifier> NestedNameSpecifiers;
146 mutable NestedNameSpecifier *GlobalNestedNameSpecifier;
147 friend class NestedNameSpecifier;
148
149 /// \brief A cache mapping from RecordDecls to ASTRecordLayouts.
150 ///
151 /// This is lazily created. This is intentionally not serialized.
152 mutable llvm::DenseMap<const RecordDecl*, const ASTRecordLayout*>
153 ASTRecordLayouts;
154 mutable llvm::DenseMap<const ObjCContainerDecl*, const ASTRecordLayout*>
155 ObjCLayouts;
156
157 /// \brief A cache from types to size and alignment information.
158 typedef llvm::DenseMap<const Type*,
159 std::pair<uint64_t, unsigned> > TypeInfoMap;
160 mutable TypeInfoMap MemoizedTypeInfo;
161
162 /// \brief A cache mapping from CXXRecordDecls to key functions.
163 llvm::DenseMap<const CXXRecordDecl*, const CXXMethodDecl*> KeyFunctions;
164
165 /// \brief Mapping from ObjCContainers to their ObjCImplementations.
166 llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*> ObjCImpls;
167
168 /// \brief Mapping from ObjCMethod to its duplicate declaration in the same
169 /// interface.
170 llvm::DenseMap<const ObjCMethodDecl*,const ObjCMethodDecl*> ObjCMethodRedecls;
171
172 /// \brief Mapping from __block VarDecls to their copy initialization expr.
173 llvm::DenseMap<const VarDecl*, Expr*> BlockVarCopyInits;
174
175 /// \brief Mapping from class scope functions specialization to their
176 /// template patterns.
177 llvm::DenseMap<const FunctionDecl*, FunctionDecl*>
178 ClassScopeSpecializationPattern;
179
180 /// \brief Representation of a "canonical" template template parameter that
181 /// is used in canonical template names.
182 class CanonicalTemplateTemplateParm : public llvm::FoldingSetNode {
183 TemplateTemplateParmDecl *Parm;
184
185 public:
CanonicalTemplateTemplateParm(TemplateTemplateParmDecl * Parm)186 CanonicalTemplateTemplateParm(TemplateTemplateParmDecl *Parm)
187 : Parm(Parm) { }
188
getParam()189 TemplateTemplateParmDecl *getParam() const { return Parm; }
190
Profile(llvm::FoldingSetNodeID & ID)191 void Profile(llvm::FoldingSetNodeID &ID) { Profile(ID, Parm); }
192
193 static void Profile(llvm::FoldingSetNodeID &ID,
194 TemplateTemplateParmDecl *Parm);
195 };
196 mutable llvm::FoldingSet<CanonicalTemplateTemplateParm>
197 CanonTemplateTemplateParms;
198
199 TemplateTemplateParmDecl *
200 getCanonicalTemplateTemplateParmDecl(TemplateTemplateParmDecl *TTP) const;
201
202 /// \brief The typedef for the __int128_t type.
203 mutable TypedefDecl *Int128Decl;
204
205 /// \brief The typedef for the __uint128_t type.
206 mutable TypedefDecl *UInt128Decl;
207
208 /// \brief The typedef for the target specific predefined
209 /// __builtin_va_list type.
210 mutable TypedefDecl *BuiltinVaListDecl;
211
212 /// \brief The typedef for the predefined \c id type.
213 mutable TypedefDecl *ObjCIdDecl;
214
215 /// \brief The typedef for the predefined \c SEL type.
216 mutable TypedefDecl *ObjCSelDecl;
217
218 /// \brief The typedef for the predefined \c Class type.
219 mutable TypedefDecl *ObjCClassDecl;
220
221 /// \brief The typedef for the predefined \c Protocol class in Objective-C.
222 mutable ObjCInterfaceDecl *ObjCProtocolClassDecl;
223
224 /// \brief The typedef for the predefined 'BOOL' type.
225 mutable TypedefDecl *BOOLDecl;
226
227 // Typedefs which may be provided defining the structure of Objective-C
228 // pseudo-builtins
229 QualType ObjCIdRedefinitionType;
230 QualType ObjCClassRedefinitionType;
231 QualType ObjCSelRedefinitionType;
232
233 QualType ObjCConstantStringType;
234 mutable RecordDecl *CFConstantStringTypeDecl;
235
236 QualType ObjCNSStringType;
237
238 /// \brief The typedef declaration for the Objective-C "instancetype" type.
239 TypedefDecl *ObjCInstanceTypeDecl;
240
241 /// \brief The type for the C FILE type.
242 TypeDecl *FILEDecl;
243
244 /// \brief The type for the C jmp_buf type.
245 TypeDecl *jmp_bufDecl;
246
247 /// \brief The type for the C sigjmp_buf type.
248 TypeDecl *sigjmp_bufDecl;
249
250 /// \brief The type for the C ucontext_t type.
251 TypeDecl *ucontext_tDecl;
252
253 /// \brief Type for the Block descriptor for Blocks CodeGen.
254 ///
255 /// Since this is only used for generation of debug info, it is not
256 /// serialized.
257 mutable RecordDecl *BlockDescriptorType;
258
259 /// \brief Type for the Block descriptor for Blocks CodeGen.
260 ///
261 /// Since this is only used for generation of debug info, it is not
262 /// serialized.
263 mutable RecordDecl *BlockDescriptorExtendedType;
264
265 /// \brief Declaration for the CUDA cudaConfigureCall function.
266 FunctionDecl *cudaConfigureCallDecl;
267
268 TypeSourceInfo NullTypeSourceInfo;
269
270 /// \brief Keeps track of all declaration attributes.
271 ///
272 /// Since so few decls have attrs, we keep them in a hash map instead of
273 /// wasting space in the Decl class.
274 llvm::DenseMap<const Decl*, AttrVec*> DeclAttrs;
275
276 /// \brief Keeps track of the static data member templates from which
277 /// static data members of class template specializations were instantiated.
278 ///
279 /// This data structure stores the mapping from instantiations of static
280 /// data members to the static data member representations within the
281 /// class template from which they were instantiated along with the kind
282 /// of instantiation or specialization (a TemplateSpecializationKind - 1).
283 ///
284 /// Given the following example:
285 ///
286 /// \code
287 /// template<typename T>
288 /// struct X {
289 /// static T value;
290 /// };
291 ///
292 /// template<typename T>
293 /// T X<T>::value = T(17);
294 ///
295 /// int *x = &X<int>::value;
296 /// \endcode
297 ///
298 /// This mapping will contain an entry that maps from the VarDecl for
299 /// X<int>::value to the corresponding VarDecl for X<T>::value (within the
300 /// class template X) and will be marked TSK_ImplicitInstantiation.
301 llvm::DenseMap<const VarDecl *, MemberSpecializationInfo *>
302 InstantiatedFromStaticDataMember;
303
304 /// \brief Keeps track of the declaration from which a UsingDecl was
305 /// created during instantiation.
306 ///
307 /// The source declaration is always a UsingDecl, an UnresolvedUsingValueDecl,
308 /// or an UnresolvedUsingTypenameDecl.
309 ///
310 /// For example:
311 /// \code
312 /// template<typename T>
313 /// struct A {
314 /// void f();
315 /// };
316 ///
317 /// template<typename T>
318 /// struct B : A<T> {
319 /// using A<T>::f;
320 /// };
321 ///
322 /// template struct B<int>;
323 /// \endcode
324 ///
325 /// This mapping will contain an entry that maps from the UsingDecl in
326 /// B<int> to the UnresolvedUsingDecl in B<T>.
327 llvm::DenseMap<UsingDecl *, NamedDecl *> InstantiatedFromUsingDecl;
328
329 llvm::DenseMap<UsingShadowDecl*, UsingShadowDecl*>
330 InstantiatedFromUsingShadowDecl;
331
332 llvm::DenseMap<FieldDecl *, FieldDecl *> InstantiatedFromUnnamedFieldDecl;
333
334 /// \brief Mapping that stores the methods overridden by a given C++
335 /// member function.
336 ///
337 /// Since most C++ member functions aren't virtual and therefore
338 /// don't override anything, we store the overridden functions in
339 /// this map on the side rather than within the CXXMethodDecl structure.
340 typedef llvm::TinyPtrVector<const CXXMethodDecl*> CXXMethodVector;
341 llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector> OverriddenMethods;
342
343 /// \brief Mapping from each declaration context to its corresponding lambda
344 /// mangling context.
345 llvm::DenseMap<const DeclContext *, LambdaMangleContext> LambdaMangleContexts;
346
347 /// \brief Mapping that stores parameterIndex values for ParmVarDecls when
348 /// that value exceeds the bitfield size of ParmVarDeclBits.ParameterIndex.
349 typedef llvm::DenseMap<const VarDecl *, unsigned> ParameterIndexTable;
350 ParameterIndexTable ParamIndices;
351
352 ImportDecl *FirstLocalImport;
353 ImportDecl *LastLocalImport;
354
355 TranslationUnitDecl *TUDecl;
356
357 /// \brief The associated SourceManager object.a
358 SourceManager &SourceMgr;
359
360 /// \brief The language options used to create the AST associated with
361 /// this ASTContext object.
362 LangOptions &LangOpts;
363
364 /// \brief The allocator used to create AST objects.
365 ///
366 /// AST objects are never destructed; rather, all memory associated with the
367 /// AST objects will be released when the ASTContext itself is destroyed.
368 mutable llvm::BumpPtrAllocator BumpAlloc;
369
370 /// \brief Allocator for partial diagnostics.
371 PartialDiagnostic::StorageAllocator DiagAllocator;
372
373 /// \brief The current C++ ABI.
374 OwningPtr<CXXABI> ABI;
375 CXXABI *createCXXABI(const TargetInfo &T);
376
377 /// \brief The logical -> physical address space map.
378 const LangAS::Map *AddrSpaceMap;
379
380 friend class ASTDeclReader;
381 friend class ASTReader;
382 friend class ASTWriter;
383 friend class CXXRecordDecl;
384
385 const TargetInfo *Target;
386 clang::PrintingPolicy PrintingPolicy;
387
388 public:
389 IdentifierTable &Idents;
390 SelectorTable &Selectors;
391 Builtin::Context &BuiltinInfo;
392 mutable DeclarationNameTable DeclarationNames;
393 OwningPtr<ExternalASTSource> ExternalSource;
394 ASTMutationListener *Listener;
395
getPrintingPolicy()396 clang::PrintingPolicy getPrintingPolicy() const { return PrintingPolicy; }
397
setPrintingPolicy(clang::PrintingPolicy Policy)398 void setPrintingPolicy(clang::PrintingPolicy Policy) {
399 PrintingPolicy = Policy;
400 }
401
getSourceManager()402 SourceManager& getSourceManager() { return SourceMgr; }
getSourceManager()403 const SourceManager& getSourceManager() const { return SourceMgr; }
404
getAllocator()405 llvm::BumpPtrAllocator &getAllocator() const {
406 return BumpAlloc;
407 }
408
409 void *Allocate(unsigned Size, unsigned Align = 8) const {
410 return BumpAlloc.Allocate(Size, Align);
411 }
Deallocate(void * Ptr)412 void Deallocate(void *Ptr) const { }
413
414 /// Return the total amount of physical memory allocated for representing
415 /// AST nodes and type information.
getASTAllocatedMemory()416 size_t getASTAllocatedMemory() const {
417 return BumpAlloc.getTotalMemory();
418 }
419 /// Return the total memory used for various side tables.
420 size_t getSideTableAllocatedMemory() const;
421
getDiagAllocator()422 PartialDiagnostic::StorageAllocator &getDiagAllocator() {
423 return DiagAllocator;
424 }
425
getTargetInfo()426 const TargetInfo &getTargetInfo() const { return *Target; }
427
getLangOpts()428 const LangOptions& getLangOpts() const { return LangOpts; }
429
430 DiagnosticsEngine &getDiagnostics() const;
431
getFullLoc(SourceLocation Loc)432 FullSourceLoc getFullLoc(SourceLocation Loc) const {
433 return FullSourceLoc(Loc,SourceMgr);
434 }
435
436 /// \brief All comments in this translation unit.
437 RawCommentList Comments;
438
439 /// \brief True if comments are already loaded from ExternalASTSource.
440 mutable bool CommentsLoaded;
441
442 class RawCommentAndCacheFlags {
443 public:
444 enum Kind {
445 /// We searched for a comment attached to the particular declaration, but
446 /// didn't find any.
447 ///
448 /// getRaw() == 0.
449 NoCommentInDecl = 0,
450
451 /// We have found a comment attached to this particular declaration.
452 ///
453 /// getRaw() != 0.
454 FromDecl,
455
456 /// This declaration does not have an attached comment, and we have
457 /// searched the redeclaration chain.
458 ///
459 /// If getRaw() == 0, the whole redeclaration chain does not have any
460 /// comments.
461 ///
462 /// If getRaw() != 0, it is a comment propagated from other
463 /// redeclaration.
464 FromRedecl
465 };
466
getKind()467 Kind getKind() const LLVM_READONLY {
468 return Data.getInt();
469 }
470
setKind(Kind K)471 void setKind(Kind K) {
472 Data.setInt(K);
473 }
474
getRaw()475 const RawComment *getRaw() const LLVM_READONLY {
476 return Data.getPointer();
477 }
478
setRaw(const RawComment * RC)479 void setRaw(const RawComment *RC) {
480 Data.setPointer(RC);
481 }
482
getOriginalDecl()483 const Decl *getOriginalDecl() const LLVM_READONLY {
484 return OriginalDecl;
485 }
486
setOriginalDecl(const Decl * Orig)487 void setOriginalDecl(const Decl *Orig) {
488 OriginalDecl = Orig;
489 }
490
491 private:
492 llvm::PointerIntPair<const RawComment *, 2, Kind> Data;
493 const Decl *OriginalDecl;
494 };
495
496 /// \brief Mapping from declarations to comments attached to any
497 /// redeclaration.
498 ///
499 /// Raw comments are owned by Comments list. This mapping is populated
500 /// lazily.
501 mutable llvm::DenseMap<const Decl *, RawCommentAndCacheFlags> RedeclComments;
502
503 /// \brief Mapping from declarations to parsed comments attached to any
504 /// redeclaration.
505 mutable llvm::DenseMap<const Decl *, comments::FullComment *> ParsedComments;
506
507 /// \brief Return the documentation comment attached to a given declaration,
508 /// without looking into cache.
509 RawComment *getRawCommentForDeclNoCache(const Decl *D) const;
510
511 public:
getRawCommentList()512 RawCommentList &getRawCommentList() {
513 return Comments;
514 }
515
addComment(const RawComment & RC)516 void addComment(const RawComment &RC) {
517 Comments.addComment(RC, BumpAlloc);
518 }
519
520 /// \brief Return the documentation comment attached to a given declaration.
521 /// Returns NULL if no comment is attached.
522 ///
523 /// \param OriginalDecl if not NULL, is set to declaration AST node that had
524 /// the comment, if the comment we found comes from a redeclaration.
525 const RawComment *getRawCommentForAnyRedecl(
526 const Decl *D,
527 const Decl **OriginalDecl = NULL) const;
528
529 /// Return parsed documentation comment attached to a given declaration.
530 /// Returns NULL if no comment is attached.
531 comments::FullComment *getCommentForDecl(const Decl *D) const;
532
533 private:
534 mutable comments::CommandTraits CommentCommandTraits;
535
536 public:
getCommentCommandTraits()537 comments::CommandTraits &getCommentCommandTraits() const {
538 return CommentCommandTraits;
539 }
540
541 /// \brief Retrieve the attributes for the given declaration.
542 AttrVec& getDeclAttrs(const Decl *D);
543
544 /// \brief Erase the attributes corresponding to the given declaration.
545 void eraseDeclAttrs(const Decl *D);
546
547 /// \brief If this variable is an instantiated static data member of a
548 /// class template specialization, returns the templated static data member
549 /// from which it was instantiated.
550 MemberSpecializationInfo *getInstantiatedFromStaticDataMember(
551 const VarDecl *Var);
552
553 FunctionDecl *getClassScopeSpecializationPattern(const FunctionDecl *FD);
554
555 void setClassScopeSpecializationPattern(FunctionDecl *FD,
556 FunctionDecl *Pattern);
557
558 /// \brief Note that the static data member \p Inst is an instantiation of
559 /// the static data member template \p Tmpl of a class template.
560 void setInstantiatedFromStaticDataMember(VarDecl *Inst, VarDecl *Tmpl,
561 TemplateSpecializationKind TSK,
562 SourceLocation PointOfInstantiation = SourceLocation());
563
564 /// \brief If the given using decl \p Inst is an instantiation of a
565 /// (possibly unresolved) using decl from a template instantiation,
566 /// return it.
567 NamedDecl *getInstantiatedFromUsingDecl(UsingDecl *Inst);
568
569 /// \brief Remember that the using decl \p Inst is an instantiation
570 /// of the using decl \p Pattern of a class template.
571 void setInstantiatedFromUsingDecl(UsingDecl *Inst, NamedDecl *Pattern);
572
573 void setInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst,
574 UsingShadowDecl *Pattern);
575 UsingShadowDecl *getInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst);
576
577 FieldDecl *getInstantiatedFromUnnamedFieldDecl(FieldDecl *Field);
578
579 void setInstantiatedFromUnnamedFieldDecl(FieldDecl *Inst, FieldDecl *Tmpl);
580
581 /// \brief Return \c true if \p FD is a zero-length bitfield which follows
582 /// the non-bitfield \p LastFD.
583 bool ZeroBitfieldFollowsNonBitfield(const FieldDecl *FD,
584 const FieldDecl *LastFD) const;
585
586 /// \brief Return \c true if \p FD is a zero-length bitfield which follows
587 /// the bitfield \p LastFD.
588 bool ZeroBitfieldFollowsBitfield(const FieldDecl *FD,
589 const FieldDecl *LastFD) const;
590
591 /// \brief Return \c true if \p FD is a bitfield which follows the bitfield
592 /// \p LastFD.
593 bool BitfieldFollowsBitfield(const FieldDecl *FD,
594 const FieldDecl *LastFD) const;
595
596 /// \brief Return \c true if \p FD is not a bitfield which follows the
597 /// bitfield \p LastFD.
598 bool NonBitfieldFollowsBitfield(const FieldDecl *FD,
599 const FieldDecl *LastFD) const;
600
601 /// \brief Return \c true if \p FD is a bitfield which follows the
602 /// non-bitfield \p LastFD.
603 bool BitfieldFollowsNonBitfield(const FieldDecl *FD,
604 const FieldDecl *LastFD) const;
605
606 // Access to the set of methods overridden by the given C++ method.
607 typedef CXXMethodVector::const_iterator overridden_cxx_method_iterator;
608 overridden_cxx_method_iterator
609 overridden_methods_begin(const CXXMethodDecl *Method) const;
610
611 overridden_cxx_method_iterator
612 overridden_methods_end(const CXXMethodDecl *Method) const;
613
614 unsigned overridden_methods_size(const CXXMethodDecl *Method) const;
615
616 /// \brief Note that the given C++ \p Method overrides the given \p
617 /// Overridden method.
618 void addOverriddenMethod(const CXXMethodDecl *Method,
619 const CXXMethodDecl *Overridden);
620
621 /// \brief Notify the AST context that a new import declaration has been
622 /// parsed or implicitly created within this translation unit.
623 void addedLocalImportDecl(ImportDecl *Import);
624
getNextLocalImport(ImportDecl * Import)625 static ImportDecl *getNextLocalImport(ImportDecl *Import) {
626 return Import->NextLocalImport;
627 }
628
629 /// \brief Iterator that visits import declarations.
630 class import_iterator {
631 ImportDecl *Import;
632
633 public:
634 typedef ImportDecl *value_type;
635 typedef ImportDecl *reference;
636 typedef ImportDecl *pointer;
637 typedef int difference_type;
638 typedef std::forward_iterator_tag iterator_category;
639
import_iterator()640 import_iterator() : Import() { }
import_iterator(ImportDecl * Import)641 explicit import_iterator(ImportDecl *Import) : Import(Import) { }
642
643 reference operator*() const { return Import; }
644 pointer operator->() const { return Import; }
645
646 import_iterator &operator++() {
647 Import = ASTContext::getNextLocalImport(Import);
648 return *this;
649 }
650
651 import_iterator operator++(int) {
652 import_iterator Other(*this);
653 ++(*this);
654 return Other;
655 }
656
657 friend bool operator==(import_iterator X, import_iterator Y) {
658 return X.Import == Y.Import;
659 }
660
661 friend bool operator!=(import_iterator X, import_iterator Y) {
662 return X.Import != Y.Import;
663 }
664 };
665
local_import_begin()666 import_iterator local_import_begin() const {
667 return import_iterator(FirstLocalImport);
668 }
local_import_end()669 import_iterator local_import_end() const { return import_iterator(); }
670
getTranslationUnitDecl()671 TranslationUnitDecl *getTranslationUnitDecl() const { return TUDecl; }
672
673
674 // Builtin Types.
675 CanQualType VoidTy;
676 CanQualType BoolTy;
677 CanQualType CharTy;
678 CanQualType WCharTy; // [C++ 3.9.1p5], integer type in C99.
679 CanQualType WIntTy; // [C99 7.24.1], integer type unchanged by default promotions.
680 CanQualType Char16Ty; // [C++0x 3.9.1p5], integer type in C99.
681 CanQualType Char32Ty; // [C++0x 3.9.1p5], integer type in C99.
682 CanQualType SignedCharTy, ShortTy, IntTy, LongTy, LongLongTy, Int128Ty;
683 CanQualType UnsignedCharTy, UnsignedShortTy, UnsignedIntTy, UnsignedLongTy;
684 CanQualType UnsignedLongLongTy, UnsignedInt128Ty;
685 CanQualType FloatTy, DoubleTy, LongDoubleTy;
686 CanQualType HalfTy; // [OpenCL 6.1.1.1], ARM NEON
687 CanQualType FloatComplexTy, DoubleComplexTy, LongDoubleComplexTy;
688 CanQualType VoidPtrTy, NullPtrTy;
689 CanQualType DependentTy, OverloadTy, BoundMemberTy, UnknownAnyTy;
690 CanQualType BuiltinFnTy;
691 CanQualType PseudoObjectTy, ARCUnbridgedCastTy;
692 CanQualType ObjCBuiltinIdTy, ObjCBuiltinClassTy, ObjCBuiltinSelTy;
693 CanQualType ObjCBuiltinBoolTy;
694
695 // Types for deductions in C++0x [stmt.ranged]'s desugaring. Built on demand.
696 mutable QualType AutoDeductTy; // Deduction against 'auto'.
697 mutable QualType AutoRRefDeductTy; // Deduction against 'auto &&'.
698
699 // Type used to help define __builtin_va_list for some targets.
700 // The type is built when constructing 'BuiltinVaListDecl'.
701 mutable QualType VaListTagTy;
702
703 ASTContext(LangOptions& LOpts, SourceManager &SM, const TargetInfo *t,
704 IdentifierTable &idents, SelectorTable &sels,
705 Builtin::Context &builtins,
706 unsigned size_reserve,
707 bool DelayInitialization = false);
708
709 ~ASTContext();
710
711 /// \brief Attach an external AST source to the AST context.
712 ///
713 /// The external AST source provides the ability to load parts of
714 /// the abstract syntax tree as needed from some external storage,
715 /// e.g., a precompiled header.
716 void setExternalSource(OwningPtr<ExternalASTSource> &Source);
717
718 /// \brief Retrieve a pointer to the external AST source associated
719 /// with this AST context, if any.
getExternalSource()720 ExternalASTSource *getExternalSource() const { return ExternalSource.get(); }
721
722 /// \brief Attach an AST mutation listener to the AST context.
723 ///
724 /// The AST mutation listener provides the ability to track modifications to
725 /// the abstract syntax tree entities committed after they were initially
726 /// created.
setASTMutationListener(ASTMutationListener * Listener)727 void setASTMutationListener(ASTMutationListener *Listener) {
728 this->Listener = Listener;
729 }
730
731 /// \brief Retrieve a pointer to the AST mutation listener associated
732 /// with this AST context, if any.
getASTMutationListener()733 ASTMutationListener *getASTMutationListener() const { return Listener; }
734
735 void PrintStats() const;
getTypes()736 const std::vector<Type*>& getTypes() const { return Types; }
737
738 /// \brief Retrieve the declaration for the 128-bit signed integer type.
739 TypedefDecl *getInt128Decl() const;
740
741 /// \brief Retrieve the declaration for the 128-bit unsigned integer type.
742 TypedefDecl *getUInt128Decl() const;
743
744 //===--------------------------------------------------------------------===//
745 // Type Constructors
746 //===--------------------------------------------------------------------===//
747
748 private:
749 /// \brief Return a type with extended qualifiers.
750 QualType getExtQualType(const Type *Base, Qualifiers Quals) const;
751
752 QualType getTypeDeclTypeSlow(const TypeDecl *Decl) const;
753
754 public:
755 /// \brief Return the uniqued reference to the type for an address space
756 /// qualified type with the specified type and address space.
757 ///
758 /// The resulting type has a union of the qualifiers from T and the address
759 /// space. If T already has an address space specifier, it is silently
760 /// replaced.
761 QualType getAddrSpaceQualType(QualType T, unsigned AddressSpace) const;
762
763 /// \brief Return the uniqued reference to the type for an Objective-C
764 /// gc-qualified type.
765 ///
766 /// The retulting type has a union of the qualifiers from T and the gc
767 /// attribute.
768 QualType getObjCGCQualType(QualType T, Qualifiers::GC gcAttr) const;
769
770 /// \brief Return the uniqued reference to the type for a \c restrict
771 /// qualified type.
772 ///
773 /// The resulting type has a union of the qualifiers from \p T and
774 /// \c restrict.
getRestrictType(QualType T)775 QualType getRestrictType(QualType T) const {
776 return T.withFastQualifiers(Qualifiers::Restrict);
777 }
778
779 /// \brief Return the uniqued reference to the type for a \c volatile
780 /// qualified type.
781 ///
782 /// The resulting type has a union of the qualifiers from \p T and
783 /// \c volatile.
getVolatileType(QualType T)784 QualType getVolatileType(QualType T) const {
785 return T.withFastQualifiers(Qualifiers::Volatile);
786 }
787
788 /// \brief Return the uniqued reference to the type for a \c const
789 /// qualified type.
790 ///
791 /// The resulting type has a union of the qualifiers from \p T and \c const.
792 ///
793 /// It can be reasonably expected that this will always be equivalent to
794 /// calling T.withConst().
getConstType(QualType T)795 QualType getConstType(QualType T) const { return T.withConst(); }
796
797 /// \brief Change the ExtInfo on a function type.
798 const FunctionType *adjustFunctionType(const FunctionType *Fn,
799 FunctionType::ExtInfo EInfo);
800
801 /// \brief Return the uniqued reference to the type for a complex
802 /// number with the specified element type.
803 QualType getComplexType(QualType T) const;
getComplexType(CanQualType T)804 CanQualType getComplexType(CanQualType T) const {
805 return CanQualType::CreateUnsafe(getComplexType((QualType) T));
806 }
807
808 /// \brief Return the uniqued reference to the type for a pointer to
809 /// the specified type.
810 QualType getPointerType(QualType T) const;
getPointerType(CanQualType T)811 CanQualType getPointerType(CanQualType T) const {
812 return CanQualType::CreateUnsafe(getPointerType((QualType) T));
813 }
814
815 /// \brief Return the uniqued reference to the atomic type for the specified
816 /// type.
817 QualType getAtomicType(QualType T) const;
818
819 /// \brief Return the uniqued reference to the type for a block of the
820 /// specified type.
821 QualType getBlockPointerType(QualType T) const;
822
823 /// Gets the struct used to keep track of the descriptor for pointer to
824 /// blocks.
825 QualType getBlockDescriptorType() const;
826
827 /// Gets the struct used to keep track of the extended descriptor for
828 /// pointer to blocks.
829 QualType getBlockDescriptorExtendedType() const;
830
setcudaConfigureCallDecl(FunctionDecl * FD)831 void setcudaConfigureCallDecl(FunctionDecl *FD) {
832 cudaConfigureCallDecl = FD;
833 }
getcudaConfigureCallDecl()834 FunctionDecl *getcudaConfigureCallDecl() {
835 return cudaConfigureCallDecl;
836 }
837
838 /// Builds the struct used for __block variables.
839 QualType BuildByRefType(StringRef DeclName, QualType Ty) const;
840
841 /// Returns true iff we need copy/dispose helpers for the given type.
842 bool BlockRequiresCopying(QualType Ty) const;
843
844 /// \brief Return the uniqued reference to the type for an lvalue reference
845 /// to the specified type.
846 QualType getLValueReferenceType(QualType T, bool SpelledAsLValue = true)
847 const;
848
849 /// \brief Return the uniqued reference to the type for an rvalue reference
850 /// to the specified type.
851 QualType getRValueReferenceType(QualType T) const;
852
853 /// \brief Return the uniqued reference to the type for a member pointer to
854 /// the specified type in the specified class.
855 ///
856 /// The class \p Cls is a \c Type because it could be a dependent name.
857 QualType getMemberPointerType(QualType T, const Type *Cls) const;
858
859 /// \brief Return a non-unique reference to the type for a variable array of
860 /// the specified element type.
861 QualType getVariableArrayType(QualType EltTy, Expr *NumElts,
862 ArrayType::ArraySizeModifier ASM,
863 unsigned IndexTypeQuals,
864 SourceRange Brackets) const;
865
866 /// \brief Return a non-unique reference to the type for a dependently-sized
867 /// array of the specified element type.
868 ///
869 /// FIXME: We will need these to be uniqued, or at least comparable, at some
870 /// point.
871 QualType getDependentSizedArrayType(QualType EltTy, Expr *NumElts,
872 ArrayType::ArraySizeModifier ASM,
873 unsigned IndexTypeQuals,
874 SourceRange Brackets) const;
875
876 /// \brief Return a unique reference to the type for an incomplete array of
877 /// the specified element type.
878 QualType getIncompleteArrayType(QualType EltTy,
879 ArrayType::ArraySizeModifier ASM,
880 unsigned IndexTypeQuals) const;
881
882 /// \brief Return the unique reference to the type for a constant array of
883 /// the specified element type.
884 QualType getConstantArrayType(QualType EltTy, const llvm::APInt &ArySize,
885 ArrayType::ArraySizeModifier ASM,
886 unsigned IndexTypeQuals) const;
887
888 /// \brief Returns a vla type where known sizes are replaced with [*].
889 QualType getVariableArrayDecayedType(QualType Ty) const;
890
891 /// \brief Return the unique reference to a vector type of the specified
892 /// element type and size.
893 ///
894 /// \pre \p VectorType must be a built-in type.
895 QualType getVectorType(QualType VectorType, unsigned NumElts,
896 VectorType::VectorKind VecKind) const;
897
898 /// \brief Return the unique reference to an extended vector type
899 /// of the specified element type and size.
900 ///
901 /// \pre \p VectorType must be a built-in type.
902 QualType getExtVectorType(QualType VectorType, unsigned NumElts) const;
903
904 /// \pre Return a non-unique reference to the type for a dependently-sized
905 /// vector of the specified element type.
906 ///
907 /// FIXME: We will need these to be uniqued, or at least comparable, at some
908 /// point.
909 QualType getDependentSizedExtVectorType(QualType VectorType,
910 Expr *SizeExpr,
911 SourceLocation AttrLoc) const;
912
913 /// \brief Return a K&R style C function type like 'int()'.
914 QualType getFunctionNoProtoType(QualType ResultTy,
915 const FunctionType::ExtInfo &Info) const;
916
getFunctionNoProtoType(QualType ResultTy)917 QualType getFunctionNoProtoType(QualType ResultTy) const {
918 return getFunctionNoProtoType(ResultTy, FunctionType::ExtInfo());
919 }
920
921 /// \brief Return a normal function type with a typed argument list.
922 QualType getFunctionType(QualType ResultTy,
923 const QualType *Args, unsigned NumArgs,
924 const FunctionProtoType::ExtProtoInfo &EPI) const;
925
926 /// \brief Return the unique reference to the type for the specified type
927 /// declaration.
928 QualType getTypeDeclType(const TypeDecl *Decl,
929 const TypeDecl *PrevDecl = 0) const {
930 assert(Decl && "Passed null for Decl param");
931 if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
932
933 if (PrevDecl) {
934 assert(PrevDecl->TypeForDecl && "previous decl has no TypeForDecl");
935 Decl->TypeForDecl = PrevDecl->TypeForDecl;
936 return QualType(PrevDecl->TypeForDecl, 0);
937 }
938
939 return getTypeDeclTypeSlow(Decl);
940 }
941
942 /// \brief Return the unique reference to the type for the specified
943 /// typedef-name decl.
944 QualType getTypedefType(const TypedefNameDecl *Decl,
945 QualType Canon = QualType()) const;
946
947 QualType getRecordType(const RecordDecl *Decl) const;
948
949 QualType getEnumType(const EnumDecl *Decl) const;
950
951 QualType getInjectedClassNameType(CXXRecordDecl *Decl, QualType TST) const;
952
953 QualType getAttributedType(AttributedType::Kind attrKind,
954 QualType modifiedType,
955 QualType equivalentType);
956
957 QualType getSubstTemplateTypeParmType(const TemplateTypeParmType *Replaced,
958 QualType Replacement) const;
959 QualType getSubstTemplateTypeParmPackType(
960 const TemplateTypeParmType *Replaced,
961 const TemplateArgument &ArgPack);
962
963 QualType getTemplateTypeParmType(unsigned Depth, unsigned Index,
964 bool ParameterPack,
965 TemplateTypeParmDecl *ParmDecl = 0) const;
966
967 QualType getTemplateSpecializationType(TemplateName T,
968 const TemplateArgument *Args,
969 unsigned NumArgs,
970 QualType Canon = QualType()) const;
971
972 QualType getCanonicalTemplateSpecializationType(TemplateName T,
973 const TemplateArgument *Args,
974 unsigned NumArgs) const;
975
976 QualType getTemplateSpecializationType(TemplateName T,
977 const TemplateArgumentListInfo &Args,
978 QualType Canon = QualType()) const;
979
980 TypeSourceInfo *
981 getTemplateSpecializationTypeInfo(TemplateName T, SourceLocation TLoc,
982 const TemplateArgumentListInfo &Args,
983 QualType Canon = QualType()) const;
984
985 QualType getParenType(QualType NamedType) const;
986
987 QualType getElaboratedType(ElaboratedTypeKeyword Keyword,
988 NestedNameSpecifier *NNS,
989 QualType NamedType) const;
990 QualType getDependentNameType(ElaboratedTypeKeyword Keyword,
991 NestedNameSpecifier *NNS,
992 const IdentifierInfo *Name,
993 QualType Canon = QualType()) const;
994
995 QualType getDependentTemplateSpecializationType(ElaboratedTypeKeyword Keyword,
996 NestedNameSpecifier *NNS,
997 const IdentifierInfo *Name,
998 const TemplateArgumentListInfo &Args) const;
999 QualType getDependentTemplateSpecializationType(ElaboratedTypeKeyword Keyword,
1000 NestedNameSpecifier *NNS,
1001 const IdentifierInfo *Name,
1002 unsigned NumArgs,
1003 const TemplateArgument *Args) const;
1004
1005 QualType getPackExpansionType(QualType Pattern,
1006 llvm::Optional<unsigned> NumExpansions);
1007
1008 QualType getObjCInterfaceType(const ObjCInterfaceDecl *Decl,
1009 ObjCInterfaceDecl *PrevDecl = 0) const;
1010
1011 QualType getObjCObjectType(QualType Base,
1012 ObjCProtocolDecl * const *Protocols,
1013 unsigned NumProtocols) const;
1014
1015 /// \brief Return a ObjCObjectPointerType type for the given ObjCObjectType.
1016 QualType getObjCObjectPointerType(QualType OIT) const;
1017
1018 /// \brief GCC extension.
1019 QualType getTypeOfExprType(Expr *e) const;
1020 QualType getTypeOfType(QualType t) const;
1021
1022 /// \brief C++11 decltype.
1023 QualType getDecltypeType(Expr *e, QualType UnderlyingType) const;
1024
1025 /// \brief Unary type transforms
1026 QualType getUnaryTransformType(QualType BaseType, QualType UnderlyingType,
1027 UnaryTransformType::UTTKind UKind) const;
1028
1029 /// \brief C++11 deduced auto type.
1030 QualType getAutoType(QualType DeducedType) const;
1031
1032 /// \brief C++11 deduction pattern for 'auto' type.
1033 QualType getAutoDeductType() const;
1034
1035 /// \brief C++11 deduction pattern for 'auto &&' type.
1036 QualType getAutoRRefDeductType() const;
1037
1038 /// \brief Return the unique reference to the type for the specified TagDecl
1039 /// (struct/union/class/enum) decl.
1040 QualType getTagDeclType(const TagDecl *Decl) const;
1041
1042 /// \brief Return the unique type for "size_t" (C99 7.17), defined in
1043 /// <stddef.h>.
1044 ///
1045 /// The sizeof operator requires this (C99 6.5.3.4p4).
1046 CanQualType getSizeType() const;
1047
1048 /// \brief Return the unique type for "intmax_t" (C99 7.18.1.5), defined in
1049 /// <stdint.h>.
1050 CanQualType getIntMaxType() const;
1051
1052 /// \brief Return the unique type for "uintmax_t" (C99 7.18.1.5), defined in
1053 /// <stdint.h>.
1054 CanQualType getUIntMaxType() const;
1055
1056 /// \brief In C++, this returns the unique wchar_t type. In C99, this
1057 /// returns a type compatible with the type defined in <stddef.h> as defined
1058 /// by the target.
getWCharType()1059 QualType getWCharType() const { return WCharTy; }
1060
1061 /// \brief Return the type of "signed wchar_t".
1062 ///
1063 /// Used when in C++, as a GCC extension.
1064 QualType getSignedWCharType() const;
1065
1066 /// \brief Return the type of "unsigned wchar_t".
1067 ///
1068 /// Used when in C++, as a GCC extension.
1069 QualType getUnsignedWCharType() const;
1070
1071 /// \brief In C99, this returns a type compatible with the type
1072 /// defined in <stddef.h> as defined by the target.
getWIntType()1073 QualType getWIntType() const { return WIntTy; }
1074
1075 /// \brief Return the unique type for "ptrdiff_t" (C99 7.17) defined in
1076 /// <stddef.h>. Pointer - pointer requires this (C99 6.5.6p9).
1077 QualType getPointerDiffType() const;
1078
1079 /// \brief Return the C structure type used to represent constant CFStrings.
1080 QualType getCFConstantStringType() const;
1081
1082 /// Get the structure type used to representation CFStrings, or NULL
1083 /// if it hasn't yet been built.
getRawCFConstantStringType()1084 QualType getRawCFConstantStringType() const {
1085 if (CFConstantStringTypeDecl)
1086 return getTagDeclType(CFConstantStringTypeDecl);
1087 return QualType();
1088 }
1089 void setCFConstantStringType(QualType T);
1090
1091 // This setter/getter represents the ObjC type for an NSConstantString.
1092 void setObjCConstantStringInterface(ObjCInterfaceDecl *Decl);
getObjCConstantStringInterface()1093 QualType getObjCConstantStringInterface() const {
1094 return ObjCConstantStringType;
1095 }
1096
getObjCNSStringType()1097 QualType getObjCNSStringType() const {
1098 return ObjCNSStringType;
1099 }
1100
setObjCNSStringType(QualType T)1101 void setObjCNSStringType(QualType T) {
1102 ObjCNSStringType = T;
1103 }
1104
1105 /// \brief Retrieve the type that \c id has been defined to, which may be
1106 /// different from the built-in \c id if \c id has been typedef'd.
getObjCIdRedefinitionType()1107 QualType getObjCIdRedefinitionType() const {
1108 if (ObjCIdRedefinitionType.isNull())
1109 return getObjCIdType();
1110 return ObjCIdRedefinitionType;
1111 }
1112
1113 /// \brief Set the user-written type that redefines \c id.
setObjCIdRedefinitionType(QualType RedefType)1114 void setObjCIdRedefinitionType(QualType RedefType) {
1115 ObjCIdRedefinitionType = RedefType;
1116 }
1117
1118 /// \brief Retrieve the type that \c Class has been defined to, which may be
1119 /// different from the built-in \c Class if \c Class has been typedef'd.
getObjCClassRedefinitionType()1120 QualType getObjCClassRedefinitionType() const {
1121 if (ObjCClassRedefinitionType.isNull())
1122 return getObjCClassType();
1123 return ObjCClassRedefinitionType;
1124 }
1125
1126 /// \brief Set the user-written type that redefines 'SEL'.
setObjCClassRedefinitionType(QualType RedefType)1127 void setObjCClassRedefinitionType(QualType RedefType) {
1128 ObjCClassRedefinitionType = RedefType;
1129 }
1130
1131 /// \brief Retrieve the type that 'SEL' has been defined to, which may be
1132 /// different from the built-in 'SEL' if 'SEL' has been typedef'd.
getObjCSelRedefinitionType()1133 QualType getObjCSelRedefinitionType() const {
1134 if (ObjCSelRedefinitionType.isNull())
1135 return getObjCSelType();
1136 return ObjCSelRedefinitionType;
1137 }
1138
1139
1140 /// \brief Set the user-written type that redefines 'SEL'.
setObjCSelRedefinitionType(QualType RedefType)1141 void setObjCSelRedefinitionType(QualType RedefType) {
1142 ObjCSelRedefinitionType = RedefType;
1143 }
1144
1145 /// \brief Retrieve the Objective-C "instancetype" type, if already known;
1146 /// otherwise, returns a NULL type;
getObjCInstanceType()1147 QualType getObjCInstanceType() {
1148 return getTypeDeclType(getObjCInstanceTypeDecl());
1149 }
1150
1151 /// \brief Retrieve the typedef declaration corresponding to the Objective-C
1152 /// "instancetype" type.
1153 TypedefDecl *getObjCInstanceTypeDecl();
1154
1155 /// \brief Set the type for the C FILE type.
setFILEDecl(TypeDecl * FILEDecl)1156 void setFILEDecl(TypeDecl *FILEDecl) { this->FILEDecl = FILEDecl; }
1157
1158 /// \brief Retrieve the C FILE type.
getFILEType()1159 QualType getFILEType() const {
1160 if (FILEDecl)
1161 return getTypeDeclType(FILEDecl);
1162 return QualType();
1163 }
1164
1165 /// \brief Set the type for the C jmp_buf type.
setjmp_bufDecl(TypeDecl * jmp_bufDecl)1166 void setjmp_bufDecl(TypeDecl *jmp_bufDecl) {
1167 this->jmp_bufDecl = jmp_bufDecl;
1168 }
1169
1170 /// \brief Retrieve the C jmp_buf type.
getjmp_bufType()1171 QualType getjmp_bufType() const {
1172 if (jmp_bufDecl)
1173 return getTypeDeclType(jmp_bufDecl);
1174 return QualType();
1175 }
1176
1177 /// \brief Set the type for the C sigjmp_buf type.
setsigjmp_bufDecl(TypeDecl * sigjmp_bufDecl)1178 void setsigjmp_bufDecl(TypeDecl *sigjmp_bufDecl) {
1179 this->sigjmp_bufDecl = sigjmp_bufDecl;
1180 }
1181
1182 /// \brief Retrieve the C sigjmp_buf type.
getsigjmp_bufType()1183 QualType getsigjmp_bufType() const {
1184 if (sigjmp_bufDecl)
1185 return getTypeDeclType(sigjmp_bufDecl);
1186 return QualType();
1187 }
1188
1189 /// \brief Set the type for the C ucontext_t type.
setucontext_tDecl(TypeDecl * ucontext_tDecl)1190 void setucontext_tDecl(TypeDecl *ucontext_tDecl) {
1191 this->ucontext_tDecl = ucontext_tDecl;
1192 }
1193
1194 /// \brief Retrieve the C ucontext_t type.
getucontext_tType()1195 QualType getucontext_tType() const {
1196 if (ucontext_tDecl)
1197 return getTypeDeclType(ucontext_tDecl);
1198 return QualType();
1199 }
1200
1201 /// \brief The result type of logical operations, '<', '>', '!=', etc.
getLogicalOperationType()1202 QualType getLogicalOperationType() const {
1203 return getLangOpts().CPlusPlus ? BoolTy : IntTy;
1204 }
1205
1206 /// \brief Emit the Objective-CC type encoding for the given type \p T into
1207 /// \p S.
1208 ///
1209 /// If \p Field is specified then record field names are also encoded.
1210 void getObjCEncodingForType(QualType T, std::string &S,
1211 const FieldDecl *Field=0) const;
1212
1213 void getLegacyIntegralTypeEncoding(QualType &t) const;
1214
1215 /// \brief Put the string version of the type qualifiers \p QT into \p S.
1216 void getObjCEncodingForTypeQualifier(Decl::ObjCDeclQualifier QT,
1217 std::string &S) const;
1218
1219 /// \brief Emit the encoded type for the function \p Decl into \p S.
1220 ///
1221 /// This is in the same format as Objective-C method encodings.
1222 ///
1223 /// \returns true if an error occurred (e.g., because one of the parameter
1224 /// types is incomplete), false otherwise.
1225 bool getObjCEncodingForFunctionDecl(const FunctionDecl *Decl, std::string& S);
1226
1227 /// \brief Emit the encoded type for the method declaration \p Decl into
1228 /// \p S.
1229 ///
1230 /// \returns true if an error occurred (e.g., because one of the parameter
1231 /// types is incomplete), false otherwise.
1232 bool getObjCEncodingForMethodDecl(const ObjCMethodDecl *Decl, std::string &S,
1233 bool Extended = false)
1234 const;
1235
1236 /// \brief Return the encoded type for this block declaration.
1237 std::string getObjCEncodingForBlock(const BlockExpr *blockExpr) const;
1238
1239 /// getObjCEncodingForPropertyDecl - Return the encoded type for
1240 /// this method declaration. If non-NULL, Container must be either
1241 /// an ObjCCategoryImplDecl or ObjCImplementationDecl; it should
1242 /// only be NULL when getting encodings for protocol properties.
1243 void getObjCEncodingForPropertyDecl(const ObjCPropertyDecl *PD,
1244 const Decl *Container,
1245 std::string &S) const;
1246
1247 bool ProtocolCompatibleWithProtocol(ObjCProtocolDecl *lProto,
1248 ObjCProtocolDecl *rProto) const;
1249
1250 /// \brief Return the size of type \p T for Objective-C encoding purpose,
1251 /// in characters.
1252 CharUnits getObjCEncodingTypeSize(QualType T) const;
1253
1254 /// \brief Retrieve the typedef corresponding to the predefined \c id type
1255 /// in Objective-C.
1256 TypedefDecl *getObjCIdDecl() const;
1257
1258 /// \brief Represents the Objective-CC \c id type.
1259 ///
1260 /// This is set up lazily, by Sema. \c id is always a (typedef for a)
1261 /// pointer type, a pointer to a struct.
getObjCIdType()1262 QualType getObjCIdType() const {
1263 return getTypeDeclType(getObjCIdDecl());
1264 }
1265
1266 /// \brief Retrieve the typedef corresponding to the predefined 'SEL' type
1267 /// in Objective-C.
1268 TypedefDecl *getObjCSelDecl() const;
1269
1270 /// \brief Retrieve the type that corresponds to the predefined Objective-C
1271 /// 'SEL' type.
getObjCSelType()1272 QualType getObjCSelType() const {
1273 return getTypeDeclType(getObjCSelDecl());
1274 }
1275
1276 /// \brief Retrieve the typedef declaration corresponding to the predefined
1277 /// Objective-C 'Class' type.
1278 TypedefDecl *getObjCClassDecl() const;
1279
1280 /// \brief Represents the Objective-C \c Class type.
1281 ///
1282 /// This is set up lazily, by Sema. \c Class is always a (typedef for a)
1283 /// pointer type, a pointer to a struct.
getObjCClassType()1284 QualType getObjCClassType() const {
1285 return getTypeDeclType(getObjCClassDecl());
1286 }
1287
1288 /// \brief Retrieve the Objective-C class declaration corresponding to
1289 /// the predefined \c Protocol class.
1290 ObjCInterfaceDecl *getObjCProtocolDecl() const;
1291
1292 /// \brief Retrieve declaration of 'BOOL' typedef
getBOOLDecl()1293 TypedefDecl *getBOOLDecl() const {
1294 return BOOLDecl;
1295 }
1296
1297 /// \brief Save declaration of 'BOOL' typedef
setBOOLDecl(TypedefDecl * TD)1298 void setBOOLDecl(TypedefDecl *TD) {
1299 BOOLDecl = TD;
1300 }
1301
1302 /// \brief type of 'BOOL' type.
getBOOLType()1303 QualType getBOOLType() const {
1304 return getTypeDeclType(getBOOLDecl());
1305 }
1306
1307 /// \brief Retrieve the type of the Objective-C \c Protocol class.
getObjCProtoType()1308 QualType getObjCProtoType() const {
1309 return getObjCInterfaceType(getObjCProtocolDecl());
1310 }
1311
1312 /// \brief Retrieve the C type declaration corresponding to the predefined
1313 /// \c __builtin_va_list type.
1314 TypedefDecl *getBuiltinVaListDecl() const;
1315
1316 /// \brief Retrieve the type of the \c __builtin_va_list type.
getBuiltinVaListType()1317 QualType getBuiltinVaListType() const {
1318 return getTypeDeclType(getBuiltinVaListDecl());
1319 }
1320
1321 /// \brief Retrieve the C type declaration corresponding to the predefined
1322 /// \c __va_list_tag type used to help define the \c __builtin_va_list type
1323 /// for some targets.
1324 QualType getVaListTagType() const;
1325
1326 /// \brief Return a type with additional \c const, \c volatile, or \crestrict
1327 /// qualifiers.
getCVRQualifiedType(QualType T,unsigned CVR)1328 QualType getCVRQualifiedType(QualType T, unsigned CVR) const {
1329 return getQualifiedType(T, Qualifiers::fromCVRMask(CVR));
1330 }
1331
1332 /// \brief Un-split a SplitQualType.
getQualifiedType(SplitQualType split)1333 QualType getQualifiedType(SplitQualType split) const {
1334 return getQualifiedType(split.Ty, split.Quals);
1335 }
1336
1337 /// \brief Return a type with additional qualifiers.
getQualifiedType(QualType T,Qualifiers Qs)1338 QualType getQualifiedType(QualType T, Qualifiers Qs) const {
1339 if (!Qs.hasNonFastQualifiers())
1340 return T.withFastQualifiers(Qs.getFastQualifiers());
1341 QualifierCollector Qc(Qs);
1342 const Type *Ptr = Qc.strip(T);
1343 return getExtQualType(Ptr, Qc);
1344 }
1345
1346 /// \brief Return a type with additional qualifiers.
getQualifiedType(const Type * T,Qualifiers Qs)1347 QualType getQualifiedType(const Type *T, Qualifiers Qs) const {
1348 if (!Qs.hasNonFastQualifiers())
1349 return QualType(T, Qs.getFastQualifiers());
1350 return getExtQualType(T, Qs);
1351 }
1352
1353 /// \brief Return a type with the given lifetime qualifier.
1354 ///
1355 /// \pre Neither type.ObjCLifetime() nor \p lifetime may be \c OCL_None.
getLifetimeQualifiedType(QualType type,Qualifiers::ObjCLifetime lifetime)1356 QualType getLifetimeQualifiedType(QualType type,
1357 Qualifiers::ObjCLifetime lifetime) {
1358 assert(type.getObjCLifetime() == Qualifiers::OCL_None);
1359 assert(lifetime != Qualifiers::OCL_None);
1360
1361 Qualifiers qs;
1362 qs.addObjCLifetime(lifetime);
1363 return getQualifiedType(type, qs);
1364 }
1365
1366 DeclarationNameInfo getNameForTemplate(TemplateName Name,
1367 SourceLocation NameLoc) const;
1368
1369 TemplateName getOverloadedTemplateName(UnresolvedSetIterator Begin,
1370 UnresolvedSetIterator End) const;
1371
1372 TemplateName getQualifiedTemplateName(NestedNameSpecifier *NNS,
1373 bool TemplateKeyword,
1374 TemplateDecl *Template) const;
1375
1376 TemplateName getDependentTemplateName(NestedNameSpecifier *NNS,
1377 const IdentifierInfo *Name) const;
1378 TemplateName getDependentTemplateName(NestedNameSpecifier *NNS,
1379 OverloadedOperatorKind Operator) const;
1380 TemplateName getSubstTemplateTemplateParm(TemplateTemplateParmDecl *param,
1381 TemplateName replacement) const;
1382 TemplateName getSubstTemplateTemplateParmPack(TemplateTemplateParmDecl *Param,
1383 const TemplateArgument &ArgPack) const;
1384
1385 enum GetBuiltinTypeError {
1386 GE_None, ///< No error
1387 GE_Missing_stdio, ///< Missing a type from <stdio.h>
1388 GE_Missing_setjmp, ///< Missing a type from <setjmp.h>
1389 GE_Missing_ucontext ///< Missing a type from <ucontext.h>
1390 };
1391
1392 /// \brief Return the type for the specified builtin.
1393 ///
1394 /// If \p IntegerConstantArgs is non-null, it is filled in with a bitmask of
1395 /// arguments to the builtin that are required to be integer constant
1396 /// expressions.
1397 QualType GetBuiltinType(unsigned ID, GetBuiltinTypeError &Error,
1398 unsigned *IntegerConstantArgs = 0) const;
1399
1400 private:
1401 CanQualType getFromTargetType(unsigned Type) const;
1402 std::pair<uint64_t, unsigned> getTypeInfoImpl(const Type *T) const;
1403
1404 //===--------------------------------------------------------------------===//
1405 // Type Predicates.
1406 //===--------------------------------------------------------------------===//
1407
1408 public:
1409 /// \brief Return one of the GCNone, Weak or Strong Objective-C garbage
1410 /// collection attributes.
1411 Qualifiers::GC getObjCGCAttrKind(QualType Ty) const;
1412
1413 /// \brief Return true if the given vector types are of the same unqualified
1414 /// type or if they are equivalent to the same GCC vector type.
1415 ///
1416 /// \note This ignores whether they are target-specific (AltiVec or Neon)
1417 /// types.
1418 bool areCompatibleVectorTypes(QualType FirstVec, QualType SecondVec);
1419
1420 /// \brief Return true if this is an \c NSObject object with its \c NSObject
1421 /// attribute set.
isObjCNSObjectType(QualType Ty)1422 static bool isObjCNSObjectType(QualType Ty) {
1423 return Ty->isObjCNSObjectType();
1424 }
1425
1426 //===--------------------------------------------------------------------===//
1427 // Type Sizing and Analysis
1428 //===--------------------------------------------------------------------===//
1429
1430 /// \brief Return the APFloat 'semantics' for the specified scalar floating
1431 /// point type.
1432 const llvm::fltSemantics &getFloatTypeSemantics(QualType T) const;
1433
1434 /// \brief Get the size and alignment of the specified complete type in bits.
1435 std::pair<uint64_t, unsigned> getTypeInfo(const Type *T) const;
getTypeInfo(QualType T)1436 std::pair<uint64_t, unsigned> getTypeInfo(QualType T) const {
1437 return getTypeInfo(T.getTypePtr());
1438 }
1439
1440 /// \brief Return the size of the specified (complete) type \p T, in bits.
getTypeSize(QualType T)1441 uint64_t getTypeSize(QualType T) const {
1442 return getTypeInfo(T).first;
1443 }
getTypeSize(const Type * T)1444 uint64_t getTypeSize(const Type *T) const {
1445 return getTypeInfo(T).first;
1446 }
1447
1448 /// \brief Return the size of the character type, in bits.
getCharWidth()1449 uint64_t getCharWidth() const {
1450 return getTypeSize(CharTy);
1451 }
1452
1453 /// \brief Convert a size in bits to a size in characters.
1454 CharUnits toCharUnitsFromBits(int64_t BitSize) const;
1455
1456 /// \brief Convert a size in characters to a size in bits.
1457 int64_t toBits(CharUnits CharSize) const;
1458
1459 /// \brief Return the size of the specified (complete) type \p T, in
1460 /// characters.
1461 CharUnits getTypeSizeInChars(QualType T) const;
1462 CharUnits getTypeSizeInChars(const Type *T) const;
1463
1464 /// \brief Return the ABI-specified alignment of a (complete) type \p T, in
1465 /// bits.
getTypeAlign(QualType T)1466 unsigned getTypeAlign(QualType T) const {
1467 return getTypeInfo(T).second;
1468 }
getTypeAlign(const Type * T)1469 unsigned getTypeAlign(const Type *T) const {
1470 return getTypeInfo(T).second;
1471 }
1472
1473 /// \brief Return the ABI-specified alignment of a (complete) type \p T, in
1474 /// characters.
1475 CharUnits getTypeAlignInChars(QualType T) const;
1476 CharUnits getTypeAlignInChars(const Type *T) const;
1477
1478 // getTypeInfoDataSizeInChars - Return the size of a type, in chars. If the
1479 // type is a record, its data size is returned.
1480 std::pair<CharUnits, CharUnits> getTypeInfoDataSizeInChars(QualType T) const;
1481
1482 std::pair<CharUnits, CharUnits> getTypeInfoInChars(const Type *T) const;
1483 std::pair<CharUnits, CharUnits> getTypeInfoInChars(QualType T) const;
1484
1485 /// \brief Return the "preferred" alignment of the specified type \p T for
1486 /// the current target, in bits.
1487 ///
1488 /// This can be different than the ABI alignment in cases where it is
1489 /// beneficial for performance to overalign a data type.
1490 unsigned getPreferredTypeAlign(const Type *T) const;
1491
1492 /// \brief Return a conservative estimate of the alignment of the specified
1493 /// decl \p D.
1494 ///
1495 /// \pre \p D must not be a bitfield type, as bitfields do not have a valid
1496 /// alignment.
1497 ///
1498 /// If \p RefAsPointee, references are treated like their underlying type
1499 /// (for alignof), else they're treated like pointers (for CodeGen).
1500 CharUnits getDeclAlign(const Decl *D, bool RefAsPointee = false) const;
1501
1502 /// \brief Get or compute information about the layout of the specified
1503 /// record (struct/union/class) \p D, which indicates its size and field
1504 /// position information.
1505 const ASTRecordLayout &getASTRecordLayout(const RecordDecl *D) const;
1506
1507 /// \brief Get or compute information about the layout of the specified
1508 /// Objective-C interface.
1509 const ASTRecordLayout &getASTObjCInterfaceLayout(const ObjCInterfaceDecl *D)
1510 const;
1511
1512 void DumpRecordLayout(const RecordDecl *RD, raw_ostream &OS,
1513 bool Simple = false) const;
1514
1515 /// \brief Get or compute information about the layout of the specified
1516 /// Objective-C implementation.
1517 ///
1518 /// This may differ from the interface if synthesized ivars are present.
1519 const ASTRecordLayout &
1520 getASTObjCImplementationLayout(const ObjCImplementationDecl *D) const;
1521
1522 /// \brief Get the key function for the given record decl, or NULL if there
1523 /// isn't one.
1524 ///
1525 /// The key function is, according to the Itanium C++ ABI section 5.2.3:
1526 ///
1527 /// ...the first non-pure virtual function that is not inline at the point
1528 /// of class definition.
1529 const CXXMethodDecl *getKeyFunction(const CXXRecordDecl *RD);
1530
1531 /// Get the offset of a FieldDecl or IndirectFieldDecl, in bits.
1532 uint64_t getFieldOffset(const ValueDecl *FD) const;
1533
1534 bool isNearlyEmpty(const CXXRecordDecl *RD) const;
1535
1536 MangleContext *createMangleContext();
1537
1538 void DeepCollectObjCIvars(const ObjCInterfaceDecl *OI, bool leafClass,
1539 SmallVectorImpl<const ObjCIvarDecl*> &Ivars) const;
1540
1541 unsigned CountNonClassIvars(const ObjCInterfaceDecl *OI) const;
1542 void CollectInheritedProtocols(const Decl *CDecl,
1543 llvm::SmallPtrSet<ObjCProtocolDecl*, 8> &Protocols);
1544
1545 //===--------------------------------------------------------------------===//
1546 // Type Operators
1547 //===--------------------------------------------------------------------===//
1548
1549 /// \brief Return the canonical (structural) type corresponding to the
1550 /// specified potentially non-canonical type \p T.
1551 ///
1552 /// The non-canonical version of a type may have many "decorated" versions of
1553 /// types. Decorators can include typedefs, 'typeof' operators, etc. The
1554 /// returned type is guaranteed to be free of any of these, allowing two
1555 /// canonical types to be compared for exact equality with a simple pointer
1556 /// comparison.
getCanonicalType(QualType T)1557 CanQualType getCanonicalType(QualType T) const {
1558 return CanQualType::CreateUnsafe(T.getCanonicalType());
1559 }
1560
getCanonicalType(const Type * T)1561 const Type *getCanonicalType(const Type *T) const {
1562 return T->getCanonicalTypeInternal().getTypePtr();
1563 }
1564
1565 /// \brief Return the canonical parameter type corresponding to the specific
1566 /// potentially non-canonical one.
1567 ///
1568 /// Qualifiers are stripped off, functions are turned into function
1569 /// pointers, and arrays decay one level into pointers.
1570 CanQualType getCanonicalParamType(QualType T) const;
1571
1572 /// \brief Determine whether the given types \p T1 and \p T2 are equivalent.
hasSameType(QualType T1,QualType T2)1573 bool hasSameType(QualType T1, QualType T2) const {
1574 return getCanonicalType(T1) == getCanonicalType(T2);
1575 }
1576
1577 /// \brief Return this type as a completely-unqualified array type,
1578 /// capturing the qualifiers in \p Quals.
1579 ///
1580 /// This will remove the minimal amount of sugaring from the types, similar
1581 /// to the behavior of QualType::getUnqualifiedType().
1582 ///
1583 /// \param T is the qualified type, which may be an ArrayType
1584 ///
1585 /// \param Quals will receive the full set of qualifiers that were
1586 /// applied to the array.
1587 ///
1588 /// \returns if this is an array type, the completely unqualified array type
1589 /// that corresponds to it. Otherwise, returns T.getUnqualifiedType().
1590 QualType getUnqualifiedArrayType(QualType T, Qualifiers &Quals);
1591
1592 /// \brief Determine whether the given types are equivalent after
1593 /// cvr-qualifiers have been removed.
hasSameUnqualifiedType(QualType T1,QualType T2)1594 bool hasSameUnqualifiedType(QualType T1, QualType T2) const {
1595 return getCanonicalType(T1).getTypePtr() ==
1596 getCanonicalType(T2).getTypePtr();
1597 }
1598
1599 bool UnwrapSimilarPointerTypes(QualType &T1, QualType &T2);
1600
1601 /// \brief Retrieves the "canonical" nested name specifier for a
1602 /// given nested name specifier.
1603 ///
1604 /// The canonical nested name specifier is a nested name specifier
1605 /// that uniquely identifies a type or namespace within the type
1606 /// system. For example, given:
1607 ///
1608 /// \code
1609 /// namespace N {
1610 /// struct S {
1611 /// template<typename T> struct X { typename T* type; };
1612 /// };
1613 /// }
1614 ///
1615 /// template<typename T> struct Y {
1616 /// typename N::S::X<T>::type member;
1617 /// };
1618 /// \endcode
1619 ///
1620 /// Here, the nested-name-specifier for N::S::X<T>:: will be
1621 /// S::X<template-param-0-0>, since 'S' and 'X' are uniquely defined
1622 /// by declarations in the type system and the canonical type for
1623 /// the template type parameter 'T' is template-param-0-0.
1624 NestedNameSpecifier *
1625 getCanonicalNestedNameSpecifier(NestedNameSpecifier *NNS) const;
1626
1627 /// \brief Retrieves the default calling convention to use for
1628 /// C++ instance methods.
1629 CallingConv getDefaultCXXMethodCallConv(bool isVariadic);
1630
1631 /// \brief Retrieves the canonical representation of the given
1632 /// calling convention.
1633 CallingConv getCanonicalCallConv(CallingConv CC) const;
1634
1635 /// \brief Determines whether two calling conventions name the same
1636 /// calling convention.
isSameCallConv(CallingConv lcc,CallingConv rcc)1637 bool isSameCallConv(CallingConv lcc, CallingConv rcc) {
1638 return (getCanonicalCallConv(lcc) == getCanonicalCallConv(rcc));
1639 }
1640
1641 /// \brief Retrieves the "canonical" template name that refers to a
1642 /// given template.
1643 ///
1644 /// The canonical template name is the simplest expression that can
1645 /// be used to refer to a given template. For most templates, this
1646 /// expression is just the template declaration itself. For example,
1647 /// the template std::vector can be referred to via a variety of
1648 /// names---std::vector, \::std::vector, vector (if vector is in
1649 /// scope), etc.---but all of these names map down to the same
1650 /// TemplateDecl, which is used to form the canonical template name.
1651 ///
1652 /// Dependent template names are more interesting. Here, the
1653 /// template name could be something like T::template apply or
1654 /// std::allocator<T>::template rebind, where the nested name
1655 /// specifier itself is dependent. In this case, the canonical
1656 /// template name uses the shortest form of the dependent
1657 /// nested-name-specifier, which itself contains all canonical
1658 /// types, values, and templates.
1659 TemplateName getCanonicalTemplateName(TemplateName Name) const;
1660
1661 /// \brief Determine whether the given template names refer to the same
1662 /// template.
1663 bool hasSameTemplateName(TemplateName X, TemplateName Y);
1664
1665 /// \brief Retrieve the "canonical" template argument.
1666 ///
1667 /// The canonical template argument is the simplest template argument
1668 /// (which may be a type, value, expression, or declaration) that
1669 /// expresses the value of the argument.
1670 TemplateArgument getCanonicalTemplateArgument(const TemplateArgument &Arg)
1671 const;
1672
1673 /// Type Query functions. If the type is an instance of the specified class,
1674 /// return the Type pointer for the underlying maximally pretty type. This
1675 /// is a member of ASTContext because this may need to do some amount of
1676 /// canonicalization, e.g. to move type qualifiers into the element type.
1677 const ArrayType *getAsArrayType(QualType T) const;
getAsConstantArrayType(QualType T)1678 const ConstantArrayType *getAsConstantArrayType(QualType T) const {
1679 return dyn_cast_or_null<ConstantArrayType>(getAsArrayType(T));
1680 }
getAsVariableArrayType(QualType T)1681 const VariableArrayType *getAsVariableArrayType(QualType T) const {
1682 return dyn_cast_or_null<VariableArrayType>(getAsArrayType(T));
1683 }
getAsIncompleteArrayType(QualType T)1684 const IncompleteArrayType *getAsIncompleteArrayType(QualType T) const {
1685 return dyn_cast_or_null<IncompleteArrayType>(getAsArrayType(T));
1686 }
getAsDependentSizedArrayType(QualType T)1687 const DependentSizedArrayType *getAsDependentSizedArrayType(QualType T)
1688 const {
1689 return dyn_cast_or_null<DependentSizedArrayType>(getAsArrayType(T));
1690 }
1691
1692 /// \brief Return the innermost element type of an array type.
1693 ///
1694 /// For example, will return "int" for int[m][n]
1695 QualType getBaseElementType(const ArrayType *VAT) const;
1696
1697 /// \brief Return the innermost element type of a type (which needn't
1698 /// actually be an array type).
1699 QualType getBaseElementType(QualType QT) const;
1700
1701 /// \brief Return number of constant array elements.
1702 uint64_t getConstantArrayElementCount(const ConstantArrayType *CA) const;
1703
1704 /// \brief Perform adjustment on the parameter type of a function.
1705 ///
1706 /// This routine adjusts the given parameter type @p T to the actual
1707 /// parameter type used by semantic analysis (C99 6.7.5.3p[7,8],
1708 /// C++ [dcl.fct]p3). The adjusted parameter type is returned.
1709 QualType getAdjustedParameterType(QualType T) const;
1710
1711 /// \brief Retrieve the parameter type as adjusted for use in the signature
1712 /// of a function, decaying array and function types and removing top-level
1713 /// cv-qualifiers.
1714 QualType getSignatureParameterType(QualType T) const;
1715
1716 /// \brief Return the properly qualified result of decaying the specified
1717 /// array type to a pointer.
1718 ///
1719 /// This operation is non-trivial when handling typedefs etc. The canonical
1720 /// type of \p T must be an array type, this returns a pointer to a properly
1721 /// qualified element of the array.
1722 ///
1723 /// See C99 6.7.5.3p7 and C99 6.3.2.1p3.
1724 QualType getArrayDecayedType(QualType T) const;
1725
1726 /// \brief Return the type that \p PromotableType will promote to: C99
1727 /// 6.3.1.1p2, assuming that \p PromotableType is a promotable integer type.
1728 QualType getPromotedIntegerType(QualType PromotableType) const;
1729
1730 /// \brief Recurses in pointer/array types until it finds an Objective-C
1731 /// retainable type and returns its ownership.
1732 Qualifiers::ObjCLifetime getInnerObjCOwnership(QualType T) const;
1733
1734 /// \brief Whether this is a promotable bitfield reference according
1735 /// to C99 6.3.1.1p2, bullet 2 (and GCC extensions).
1736 ///
1737 /// \returns the type this bit-field will promote to, or NULL if no
1738 /// promotion occurs.
1739 QualType isPromotableBitField(Expr *E) const;
1740
1741 /// \brief Return the highest ranked integer type, see C99 6.3.1.8p1.
1742 ///
1743 /// If \p LHS > \p RHS, returns 1. If \p LHS == \p RHS, returns 0. If
1744 /// \p LHS < \p RHS, return -1.
1745 int getIntegerTypeOrder(QualType LHS, QualType RHS) const;
1746
1747 /// \brief Compare the rank of the two specified floating point types,
1748 /// ignoring the domain of the type (i.e. 'double' == '_Complex double').
1749 ///
1750 /// If \p LHS > \p RHS, returns 1. If \p LHS == \p RHS, returns 0. If
1751 /// \p LHS < \p RHS, return -1.
1752 int getFloatingTypeOrder(QualType LHS, QualType RHS) const;
1753
1754 /// \brief Return a real floating point or a complex type (based on
1755 /// \p typeDomain/\p typeSize).
1756 ///
1757 /// \arg typeDomain a real floating point or complex type.
1758 /// \arg typeSize a real floating point or complex type.
1759 QualType getFloatingTypeOfSizeWithinDomain(QualType typeSize,
1760 QualType typeDomain) const;
1761
getTargetAddressSpace(QualType T)1762 unsigned getTargetAddressSpace(QualType T) const {
1763 return getTargetAddressSpace(T.getQualifiers());
1764 }
1765
getTargetAddressSpace(Qualifiers Q)1766 unsigned getTargetAddressSpace(Qualifiers Q) const {
1767 return getTargetAddressSpace(Q.getAddressSpace());
1768 }
1769
getTargetAddressSpace(unsigned AS)1770 unsigned getTargetAddressSpace(unsigned AS) const {
1771 if (AS < LangAS::Offset || AS >= LangAS::Offset + LangAS::Count)
1772 return AS;
1773 else
1774 return (*AddrSpaceMap)[AS - LangAS::Offset];
1775 }
1776
1777 private:
1778 // Helper for integer ordering
1779 unsigned getIntegerRank(const Type *T) const;
1780
1781 public:
1782
1783 //===--------------------------------------------------------------------===//
1784 // Type Compatibility Predicates
1785 //===--------------------------------------------------------------------===//
1786
1787 /// Compatibility predicates used to check assignment expressions.
1788 bool typesAreCompatible(QualType T1, QualType T2,
1789 bool CompareUnqualified = false); // C99 6.2.7p1
1790
1791 bool propertyTypesAreCompatible(QualType, QualType);
1792 bool typesAreBlockPointerCompatible(QualType, QualType);
1793
isObjCIdType(QualType T)1794 bool isObjCIdType(QualType T) const {
1795 return T == getObjCIdType();
1796 }
isObjCClassType(QualType T)1797 bool isObjCClassType(QualType T) const {
1798 return T == getObjCClassType();
1799 }
isObjCSelType(QualType T)1800 bool isObjCSelType(QualType T) const {
1801 return T == getObjCSelType();
1802 }
1803 bool QualifiedIdConformsQualifiedId(QualType LHS, QualType RHS);
1804 bool ObjCQualifiedIdTypesAreCompatible(QualType LHS, QualType RHS,
1805 bool ForCompare);
1806
1807 bool ObjCQualifiedClassTypesAreCompatible(QualType LHS, QualType RHS);
1808
1809 // Check the safety of assignment from LHS to RHS
1810 bool canAssignObjCInterfaces(const ObjCObjectPointerType *LHSOPT,
1811 const ObjCObjectPointerType *RHSOPT);
1812 bool canAssignObjCInterfaces(const ObjCObjectType *LHS,
1813 const ObjCObjectType *RHS);
1814 bool canAssignObjCInterfacesInBlockPointer(
1815 const ObjCObjectPointerType *LHSOPT,
1816 const ObjCObjectPointerType *RHSOPT,
1817 bool BlockReturnType);
1818 bool areComparableObjCPointerTypes(QualType LHS, QualType RHS);
1819 QualType areCommonBaseCompatible(const ObjCObjectPointerType *LHSOPT,
1820 const ObjCObjectPointerType *RHSOPT);
1821 bool canBindObjCObjectType(QualType To, QualType From);
1822
1823 // Functions for calculating composite types
1824 QualType mergeTypes(QualType, QualType, bool OfBlockPointer=false,
1825 bool Unqualified = false, bool BlockReturnType = false);
1826 QualType mergeFunctionTypes(QualType, QualType, bool OfBlockPointer=false,
1827 bool Unqualified = false);
1828 QualType mergeFunctionArgumentTypes(QualType, QualType,
1829 bool OfBlockPointer=false,
1830 bool Unqualified = false);
1831 QualType mergeTransparentUnionType(QualType, QualType,
1832 bool OfBlockPointer=false,
1833 bool Unqualified = false);
1834
1835 QualType mergeObjCGCQualifiers(QualType, QualType);
1836
1837 bool FunctionTypesMatchOnNSConsumedAttrs(
1838 const FunctionProtoType *FromFunctionType,
1839 const FunctionProtoType *ToFunctionType);
1840
ResetObjCLayout(const ObjCContainerDecl * CD)1841 void ResetObjCLayout(const ObjCContainerDecl *CD) {
1842 ObjCLayouts[CD] = 0;
1843 }
1844
1845 //===--------------------------------------------------------------------===//
1846 // Integer Predicates
1847 //===--------------------------------------------------------------------===//
1848
1849 // The width of an integer, as defined in C99 6.2.6.2. This is the number
1850 // of bits in an integer type excluding any padding bits.
1851 unsigned getIntWidth(QualType T) const;
1852
1853 // Per C99 6.2.5p6, for every signed integer type, there is a corresponding
1854 // unsigned integer type. This method takes a signed type, and returns the
1855 // corresponding unsigned integer type.
1856 QualType getCorrespondingUnsignedType(QualType T) const;
1857
1858 //===--------------------------------------------------------------------===//
1859 // Type Iterators.
1860 //===--------------------------------------------------------------------===//
1861
1862 typedef std::vector<Type*>::iterator type_iterator;
1863 typedef std::vector<Type*>::const_iterator const_type_iterator;
1864
types_begin()1865 type_iterator types_begin() { return Types.begin(); }
types_end()1866 type_iterator types_end() { return Types.end(); }
types_begin()1867 const_type_iterator types_begin() const { return Types.begin(); }
types_end()1868 const_type_iterator types_end() const { return Types.end(); }
1869
1870 //===--------------------------------------------------------------------===//
1871 // Integer Values
1872 //===--------------------------------------------------------------------===//
1873
1874 /// \brief Make an APSInt of the appropriate width and signedness for the
1875 /// given \p Value and integer \p Type.
MakeIntValue(uint64_t Value,QualType Type)1876 llvm::APSInt MakeIntValue(uint64_t Value, QualType Type) const {
1877 llvm::APSInt Res(getIntWidth(Type),
1878 !Type->isSignedIntegerOrEnumerationType());
1879 Res = Value;
1880 return Res;
1881 }
1882
1883 bool isSentinelNullExpr(const Expr *E);
1884
1885 /// \brief Get the implementation of the ObjCInterfaceDecl \p D, or NULL if
1886 /// none exists.
1887 ObjCImplementationDecl *getObjCImplementation(ObjCInterfaceDecl *D);
1888 /// \brief Get the implementation of the ObjCCategoryDecl \p D, or NULL if
1889 /// none exists.
1890 ObjCCategoryImplDecl *getObjCImplementation(ObjCCategoryDecl *D);
1891
1892 /// \brief Return true if there is at least one \@implementation in the TU.
AnyObjCImplementation()1893 bool AnyObjCImplementation() {
1894 return !ObjCImpls.empty();
1895 }
1896
1897 /// \brief Set the implementation of ObjCInterfaceDecl.
1898 void setObjCImplementation(ObjCInterfaceDecl *IFaceD,
1899 ObjCImplementationDecl *ImplD);
1900 /// \brief Set the implementation of ObjCCategoryDecl.
1901 void setObjCImplementation(ObjCCategoryDecl *CatD,
1902 ObjCCategoryImplDecl *ImplD);
1903
1904 /// \brief Get the duplicate declaration of a ObjCMethod in the same
1905 /// interface, or null if none exists.
getObjCMethodRedeclaration(const ObjCMethodDecl * MD)1906 const ObjCMethodDecl *getObjCMethodRedeclaration(
1907 const ObjCMethodDecl *MD) const {
1908 return ObjCMethodRedecls.lookup(MD);
1909 }
1910
setObjCMethodRedeclaration(const ObjCMethodDecl * MD,const ObjCMethodDecl * Redecl)1911 void setObjCMethodRedeclaration(const ObjCMethodDecl *MD,
1912 const ObjCMethodDecl *Redecl) {
1913 assert(!getObjCMethodRedeclaration(MD) && "MD already has a redeclaration");
1914 ObjCMethodRedecls[MD] = Redecl;
1915 }
1916
1917 /// \brief Returns the Objective-C interface that \p ND belongs to if it is
1918 /// an Objective-C method/property/ivar etc. that is part of an interface,
1919 /// otherwise returns null.
1920 ObjCInterfaceDecl *getObjContainingInterface(NamedDecl *ND) const;
1921
1922 /// \brief Set the copy inialization expression of a block var decl.
1923 void setBlockVarCopyInits(VarDecl*VD, Expr* Init);
1924 /// \brief Get the copy initialization expression of the VarDecl \p VD, or
1925 /// NULL if none exists.
1926 Expr *getBlockVarCopyInits(const VarDecl* VD);
1927
1928 /// \brief Allocate an uninitialized TypeSourceInfo.
1929 ///
1930 /// The caller should initialize the memory held by TypeSourceInfo using
1931 /// the TypeLoc wrappers.
1932 ///
1933 /// \param T the type that will be the basis for type source info. This type
1934 /// should refer to how the declarator was written in source code, not to
1935 /// what type semantic analysis resolved the declarator to.
1936 ///
1937 /// \param Size the size of the type info to create, or 0 if the size
1938 /// should be calculated based on the type.
1939 TypeSourceInfo *CreateTypeSourceInfo(QualType T, unsigned Size = 0) const;
1940
1941 /// \brief Allocate a TypeSourceInfo where all locations have been
1942 /// initialized to a given location, which defaults to the empty
1943 /// location.
1944 TypeSourceInfo *
1945 getTrivialTypeSourceInfo(QualType T,
1946 SourceLocation Loc = SourceLocation()) const;
1947
getNullTypeSourceInfo()1948 TypeSourceInfo *getNullTypeSourceInfo() { return &NullTypeSourceInfo; }
1949
1950 /// \brief Add a deallocation callback that will be invoked when the
1951 /// ASTContext is destroyed.
1952 ///
1953 /// \param Callback A callback function that will be invoked on destruction.
1954 ///
1955 /// \param Data Pointer data that will be provided to the callback function
1956 /// when it is called.
1957 void AddDeallocation(void (*Callback)(void*), void *Data);
1958
1959 GVALinkage GetGVALinkageForFunction(const FunctionDecl *FD);
1960 GVALinkage GetGVALinkageForVariable(const VarDecl *VD);
1961
1962 /// \brief Determines if the decl can be CodeGen'ed or deserialized from PCH
1963 /// lazily, only when used; this is only relevant for function or file scoped
1964 /// var definitions.
1965 ///
1966 /// \returns true if the function/var must be CodeGen'ed/deserialized even if
1967 /// it is not used.
1968 bool DeclMustBeEmitted(const Decl *D);
1969
1970 /// \brief Retrieve the lambda mangling number for a lambda expression.
1971 unsigned getLambdaManglingNumber(CXXMethodDecl *CallOperator);
1972
1973 /// \brief Used by ParmVarDecl to store on the side the
1974 /// index of the parameter when it exceeds the size of the normal bitfield.
1975 void setParameterIndex(const ParmVarDecl *D, unsigned index);
1976
1977 /// \brief Used by ParmVarDecl to retrieve on the side the
1978 /// index of the parameter when it exceeds the size of the normal bitfield.
1979 unsigned getParameterIndex(const ParmVarDecl *D) const;
1980
1981 //===--------------------------------------------------------------------===//
1982 // Statistics
1983 //===--------------------------------------------------------------------===//
1984
1985 /// \brief The number of implicitly-declared default constructors.
1986 static unsigned NumImplicitDefaultConstructors;
1987
1988 /// \brief The number of implicitly-declared default constructors for
1989 /// which declarations were built.
1990 static unsigned NumImplicitDefaultConstructorsDeclared;
1991
1992 /// \brief The number of implicitly-declared copy constructors.
1993 static unsigned NumImplicitCopyConstructors;
1994
1995 /// \brief The number of implicitly-declared copy constructors for
1996 /// which declarations were built.
1997 static unsigned NumImplicitCopyConstructorsDeclared;
1998
1999 /// \brief The number of implicitly-declared move constructors.
2000 static unsigned NumImplicitMoveConstructors;
2001
2002 /// \brief The number of implicitly-declared move constructors for
2003 /// which declarations were built.
2004 static unsigned NumImplicitMoveConstructorsDeclared;
2005
2006 /// \brief The number of implicitly-declared copy assignment operators.
2007 static unsigned NumImplicitCopyAssignmentOperators;
2008
2009 /// \brief The number of implicitly-declared copy assignment operators for
2010 /// which declarations were built.
2011 static unsigned NumImplicitCopyAssignmentOperatorsDeclared;
2012
2013 /// \brief The number of implicitly-declared move assignment operators.
2014 static unsigned NumImplicitMoveAssignmentOperators;
2015
2016 /// \brief The number of implicitly-declared move assignment operators for
2017 /// which declarations were built.
2018 static unsigned NumImplicitMoveAssignmentOperatorsDeclared;
2019
2020 /// \brief The number of implicitly-declared destructors.
2021 static unsigned NumImplicitDestructors;
2022
2023 /// \brief The number of implicitly-declared destructors for which
2024 /// declarations were built.
2025 static unsigned NumImplicitDestructorsDeclared;
2026
2027 private:
2028 ASTContext(const ASTContext&); // DO NOT IMPLEMENT
2029 void operator=(const ASTContext&); // DO NOT IMPLEMENT
2030
2031 public:
2032 /// \brief Initialize built-in types.
2033 ///
2034 /// This routine may only be invoked once for a given ASTContext object.
2035 /// It is normally invoked by the ASTContext constructor. However, the
2036 /// constructor can be asked to delay initialization, which places the burden
2037 /// of calling this function on the user of that object.
2038 ///
2039 /// \param Target The target
2040 void InitBuiltinTypes(const TargetInfo &Target);
2041
2042 private:
2043 void InitBuiltinType(CanQualType &R, BuiltinType::Kind K);
2044
2045 // Return the Objective-C type encoding for a given type.
2046 void getObjCEncodingForTypeImpl(QualType t, std::string &S,
2047 bool ExpandPointedToStructures,
2048 bool ExpandStructures,
2049 const FieldDecl *Field,
2050 bool OutermostType = false,
2051 bool EncodingProperty = false,
2052 bool StructField = false,
2053 bool EncodeBlockParameters = false,
2054 bool EncodeClassNames = false) const;
2055
2056 // Adds the encoding of the structure's members.
2057 void getObjCEncodingForStructureImpl(RecordDecl *RD, std::string &S,
2058 const FieldDecl *Field,
2059 bool includeVBases = true) const;
2060
2061 // Adds the encoding of a method parameter or return type.
2062 void getObjCEncodingForMethodParameter(Decl::ObjCDeclQualifier QT,
2063 QualType T, std::string& S,
2064 bool Extended) const;
2065
2066 const ASTRecordLayout &
2067 getObjCLayout(const ObjCInterfaceDecl *D,
2068 const ObjCImplementationDecl *Impl) const;
2069
2070 private:
2071 /// \brief A set of deallocations that should be performed when the
2072 /// ASTContext is destroyed.
2073 SmallVector<std::pair<void (*)(void*), void *>, 16> Deallocations;
2074
2075 // FIXME: This currently contains the set of StoredDeclMaps used
2076 // by DeclContext objects. This probably should not be in ASTContext,
2077 // but we include it here so that ASTContext can quickly deallocate them.
2078 llvm::PointerIntPair<StoredDeclsMap*,1> LastSDM;
2079
2080 /// \brief A counter used to uniquely identify "blocks".
2081 mutable unsigned int UniqueBlockByRefTypeID;
2082
2083 friend class DeclContext;
2084 friend class DeclarationNameTable;
2085 void ReleaseDeclContextMaps();
2086 };
2087
2088 /// \brief Utility function for constructing a nullary selector.
GetNullarySelector(StringRef name,ASTContext & Ctx)2089 static inline Selector GetNullarySelector(StringRef name, ASTContext& Ctx) {
2090 IdentifierInfo* II = &Ctx.Idents.get(name);
2091 return Ctx.Selectors.getSelector(0, &II);
2092 }
2093
2094 /// \brief Utility function for constructing an unary selector.
GetUnarySelector(StringRef name,ASTContext & Ctx)2095 static inline Selector GetUnarySelector(StringRef name, ASTContext& Ctx) {
2096 IdentifierInfo* II = &Ctx.Idents.get(name);
2097 return Ctx.Selectors.getSelector(1, &II);
2098 }
2099
2100 } // end namespace clang
2101
2102 // operator new and delete aren't allowed inside namespaces.
2103
2104 /// @brief Placement new for using the ASTContext's allocator.
2105 ///
2106 /// This placement form of operator new uses the ASTContext's allocator for
2107 /// obtaining memory.
2108 ///
2109 /// IMPORTANT: These are also declared in clang/AST/Attr.h! Any changes here
2110 /// need to also be made there.
2111 ///
2112 /// We intentionally avoid using a nothrow specification here so that the calls
2113 /// to this operator will not perform a null check on the result -- the
2114 /// underlying allocator never returns null pointers.
2115 ///
2116 /// Usage looks like this (assuming there's an ASTContext 'Context' in scope):
2117 /// @code
2118 /// // Default alignment (8)
2119 /// IntegerLiteral *Ex = new (Context) IntegerLiteral(arguments);
2120 /// // Specific alignment
2121 /// IntegerLiteral *Ex2 = new (Context, 4) IntegerLiteral(arguments);
2122 /// @endcode
2123 /// Please note that you cannot use delete on the pointer; it must be
2124 /// deallocated using an explicit destructor call followed by
2125 /// @c Context.Deallocate(Ptr).
2126 ///
2127 /// @param Bytes The number of bytes to allocate. Calculated by the compiler.
2128 /// @param C The ASTContext that provides the allocator.
2129 /// @param Alignment The alignment of the allocated memory (if the underlying
2130 /// allocator supports it).
2131 /// @return The allocated memory. Could be NULL.
new(size_t Bytes,const clang::ASTContext & C,size_t Alignment)2132 inline void *operator new(size_t Bytes, const clang::ASTContext &C,
2133 size_t Alignment) {
2134 return C.Allocate(Bytes, Alignment);
2135 }
2136 /// @brief Placement delete companion to the new above.
2137 ///
2138 /// This operator is just a companion to the new above. There is no way of
2139 /// invoking it directly; see the new operator for more details. This operator
2140 /// is called implicitly by the compiler if a placement new expression using
2141 /// the ASTContext throws in the object constructor.
delete(void * Ptr,const clang::ASTContext & C,size_t)2142 inline void operator delete(void *Ptr, const clang::ASTContext &C, size_t) {
2143 C.Deallocate(Ptr);
2144 }
2145
2146 /// This placement form of operator new[] uses the ASTContext's allocator for
2147 /// obtaining memory.
2148 ///
2149 /// We intentionally avoid using a nothrow specification here so that the calls
2150 /// to this operator will not perform a null check on the result -- the
2151 /// underlying allocator never returns null pointers.
2152 ///
2153 /// Usage looks like this (assuming there's an ASTContext 'Context' in scope):
2154 /// @code
2155 /// // Default alignment (8)
2156 /// char *data = new (Context) char[10];
2157 /// // Specific alignment
2158 /// char *data = new (Context, 4) char[10];
2159 /// @endcode
2160 /// Please note that you cannot use delete on the pointer; it must be
2161 /// deallocated using an explicit destructor call followed by
2162 /// @c Context.Deallocate(Ptr).
2163 ///
2164 /// @param Bytes The number of bytes to allocate. Calculated by the compiler.
2165 /// @param C The ASTContext that provides the allocator.
2166 /// @param Alignment The alignment of the allocated memory (if the underlying
2167 /// allocator supports it).
2168 /// @return The allocated memory. Could be NULL.
2169 inline void *operator new[](size_t Bytes, const clang::ASTContext& C,
2170 size_t Alignment = 8) {
2171 return C.Allocate(Bytes, Alignment);
2172 }
2173
2174 /// @brief Placement delete[] companion to the new[] above.
2175 ///
2176 /// This operator is just a companion to the new[] above. There is no way of
2177 /// invoking it directly; see the new[] operator for more details. This operator
2178 /// is called implicitly by the compiler if a placement new[] expression using
2179 /// the ASTContext throws in the object constructor.
2180 inline void operator delete[](void *Ptr, const clang::ASTContext &C, size_t) {
2181 C.Deallocate(Ptr);
2182 }
2183
2184 #endif
2185