• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===----- SchedulePostRAList.cpp - list scheduler ------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This implements a top-down list scheduler, using standard algorithms.
11 // The basic approach uses a priority queue of available nodes to schedule.
12 // One at a time, nodes are taken from the priority queue (thus in priority
13 // order), checked for legality to schedule, and emitted if legal.
14 //
15 // Nodes may not be legal to schedule either due to structural hazards (e.g.
16 // pipeline or resource constraints) or because an input to the instruction has
17 // not completed execution.
18 //
19 //===----------------------------------------------------------------------===//
20 
21 #define DEBUG_TYPE "post-RA-sched"
22 #include "AntiDepBreaker.h"
23 #include "AggressiveAntiDepBreaker.h"
24 #include "CriticalAntiDepBreaker.h"
25 #include "llvm/CodeGen/Passes.h"
26 #include "llvm/CodeGen/LatencyPriorityQueue.h"
27 #include "llvm/CodeGen/SchedulerRegistry.h"
28 #include "llvm/CodeGen/MachineDominators.h"
29 #include "llvm/CodeGen/MachineFrameInfo.h"
30 #include "llvm/CodeGen/MachineFunctionPass.h"
31 #include "llvm/CodeGen/MachineLoopInfo.h"
32 #include "llvm/CodeGen/MachineRegisterInfo.h"
33 #include "llvm/CodeGen/RegisterClassInfo.h"
34 #include "llvm/CodeGen/ScheduleDAGInstrs.h"
35 #include "llvm/CodeGen/ScheduleHazardRecognizer.h"
36 #include "llvm/Analysis/AliasAnalysis.h"
37 #include "llvm/Target/TargetLowering.h"
38 #include "llvm/Target/TargetMachine.h"
39 #include "llvm/Target/TargetInstrInfo.h"
40 #include "llvm/Target/TargetRegisterInfo.h"
41 #include "llvm/Target/TargetSubtargetInfo.h"
42 #include "llvm/Support/CommandLine.h"
43 #include "llvm/Support/Debug.h"
44 #include "llvm/Support/ErrorHandling.h"
45 #include "llvm/Support/raw_ostream.h"
46 #include "llvm/ADT/BitVector.h"
47 #include "llvm/ADT/Statistic.h"
48 using namespace llvm;
49 
50 STATISTIC(NumNoops, "Number of noops inserted");
51 STATISTIC(NumStalls, "Number of pipeline stalls");
52 STATISTIC(NumFixedAnti, "Number of fixed anti-dependencies");
53 
54 // Post-RA scheduling is enabled with
55 // TargetSubtargetInfo.enablePostRAScheduler(). This flag can be used to
56 // override the target.
57 static cl::opt<bool>
58 EnablePostRAScheduler("post-RA-scheduler",
59                        cl::desc("Enable scheduling after register allocation"),
60                        cl::init(false), cl::Hidden);
61 static cl::opt<std::string>
62 EnableAntiDepBreaking("break-anti-dependencies",
63                       cl::desc("Break post-RA scheduling anti-dependencies: "
64                                "\"critical\", \"all\", or \"none\""),
65                       cl::init("none"), cl::Hidden);
66 
67 // If DebugDiv > 0 then only schedule MBB with (ID % DebugDiv) == DebugMod
68 static cl::opt<int>
69 DebugDiv("postra-sched-debugdiv",
70                       cl::desc("Debug control MBBs that are scheduled"),
71                       cl::init(0), cl::Hidden);
72 static cl::opt<int>
73 DebugMod("postra-sched-debugmod",
74                       cl::desc("Debug control MBBs that are scheduled"),
75                       cl::init(0), cl::Hidden);
76 
~AntiDepBreaker()77 AntiDepBreaker::~AntiDepBreaker() { }
78 
79 namespace {
80   class PostRAScheduler : public MachineFunctionPass {
81     const TargetInstrInfo *TII;
82     RegisterClassInfo RegClassInfo;
83 
84   public:
85     static char ID;
PostRAScheduler()86     PostRAScheduler() : MachineFunctionPass(ID) {}
87 
getAnalysisUsage(AnalysisUsage & AU) const88     void getAnalysisUsage(AnalysisUsage &AU) const {
89       AU.setPreservesCFG();
90       AU.addRequired<AliasAnalysis>();
91       AU.addRequired<TargetPassConfig>();
92       AU.addRequired<MachineDominatorTree>();
93       AU.addPreserved<MachineDominatorTree>();
94       AU.addRequired<MachineLoopInfo>();
95       AU.addPreserved<MachineLoopInfo>();
96       MachineFunctionPass::getAnalysisUsage(AU);
97     }
98 
99     bool runOnMachineFunction(MachineFunction &Fn);
100   };
101   char PostRAScheduler::ID = 0;
102 
103   class SchedulePostRATDList : public ScheduleDAGInstrs {
104     /// AvailableQueue - The priority queue to use for the available SUnits.
105     ///
106     LatencyPriorityQueue AvailableQueue;
107 
108     /// PendingQueue - This contains all of the instructions whose operands have
109     /// been issued, but their results are not ready yet (due to the latency of
110     /// the operation).  Once the operands becomes available, the instruction is
111     /// added to the AvailableQueue.
112     std::vector<SUnit*> PendingQueue;
113 
114     /// Topo - A topological ordering for SUnits.
115     ScheduleDAGTopologicalSort Topo;
116 
117     /// HazardRec - The hazard recognizer to use.
118     ScheduleHazardRecognizer *HazardRec;
119 
120     /// AntiDepBreak - Anti-dependence breaking object, or NULL if none
121     AntiDepBreaker *AntiDepBreak;
122 
123     /// AA - AliasAnalysis for making memory reference queries.
124     AliasAnalysis *AA;
125 
126     /// LiveRegs - true if the register is live.
127     BitVector LiveRegs;
128 
129     /// The schedule. Null SUnit*'s represent noop instructions.
130     std::vector<SUnit*> Sequence;
131 
132   public:
133     SchedulePostRATDList(
134       MachineFunction &MF, MachineLoopInfo &MLI, MachineDominatorTree &MDT,
135       AliasAnalysis *AA, const RegisterClassInfo&,
136       TargetSubtargetInfo::AntiDepBreakMode AntiDepMode,
137       SmallVectorImpl<const TargetRegisterClass*> &CriticalPathRCs);
138 
139     ~SchedulePostRATDList();
140 
141     /// startBlock - Initialize register live-range state for scheduling in
142     /// this block.
143     ///
144     void startBlock(MachineBasicBlock *BB);
145 
146     /// Initialize the scheduler state for the next scheduling region.
147     virtual void enterRegion(MachineBasicBlock *bb,
148                              MachineBasicBlock::iterator begin,
149                              MachineBasicBlock::iterator end,
150                              unsigned endcount);
151 
152     /// Notify that the scheduler has finished scheduling the current region.
153     virtual void exitRegion();
154 
155     /// Schedule - Schedule the instruction range using list scheduling.
156     ///
157     void schedule();
158 
159     void EmitSchedule();
160 
161     /// Observe - Update liveness information to account for the current
162     /// instruction, which will not be scheduled.
163     ///
164     void Observe(MachineInstr *MI, unsigned Count);
165 
166     /// finishBlock - Clean up register live-range state.
167     ///
168     void finishBlock();
169 
170     /// FixupKills - Fix register kill flags that have been made
171     /// invalid due to scheduling
172     ///
173     void FixupKills(MachineBasicBlock *MBB);
174 
175   private:
176     void ReleaseSucc(SUnit *SU, SDep *SuccEdge);
177     void ReleaseSuccessors(SUnit *SU);
178     void ScheduleNodeTopDown(SUnit *SU, unsigned CurCycle);
179     void ListScheduleTopDown();
180     void StartBlockForKills(MachineBasicBlock *BB);
181 
182     // ToggleKillFlag - Toggle a register operand kill flag. Other
183     // adjustments may be made to the instruction if necessary. Return
184     // true if the operand has been deleted, false if not.
185     bool ToggleKillFlag(MachineInstr *MI, MachineOperand &MO);
186 
187     void dumpSchedule() const;
188   };
189 }
190 
191 char &llvm::PostRASchedulerID = PostRAScheduler::ID;
192 
193 INITIALIZE_PASS(PostRAScheduler, "post-RA-sched",
194                 "Post RA top-down list latency scheduler", false, false)
195 
SchedulePostRATDList(MachineFunction & MF,MachineLoopInfo & MLI,MachineDominatorTree & MDT,AliasAnalysis * AA,const RegisterClassInfo & RCI,TargetSubtargetInfo::AntiDepBreakMode AntiDepMode,SmallVectorImpl<const TargetRegisterClass * > & CriticalPathRCs)196 SchedulePostRATDList::SchedulePostRATDList(
197   MachineFunction &MF, MachineLoopInfo &MLI, MachineDominatorTree &MDT,
198   AliasAnalysis *AA, const RegisterClassInfo &RCI,
199   TargetSubtargetInfo::AntiDepBreakMode AntiDepMode,
200   SmallVectorImpl<const TargetRegisterClass*> &CriticalPathRCs)
201   : ScheduleDAGInstrs(MF, MLI, MDT, /*IsPostRA=*/true), Topo(SUnits), AA(AA),
202     LiveRegs(TRI->getNumRegs())
203 {
204   const TargetMachine &TM = MF.getTarget();
205   const InstrItineraryData *InstrItins = TM.getInstrItineraryData();
206   HazardRec =
207     TM.getInstrInfo()->CreateTargetPostRAHazardRecognizer(InstrItins, this);
208 
209   assert((AntiDepMode == TargetSubtargetInfo::ANTIDEP_NONE ||
210           MRI.tracksLiveness()) &&
211          "Live-ins must be accurate for anti-dependency breaking");
212   AntiDepBreak =
213     ((AntiDepMode == TargetSubtargetInfo::ANTIDEP_ALL) ?
214      (AntiDepBreaker *)new AggressiveAntiDepBreaker(MF, RCI, CriticalPathRCs) :
215      ((AntiDepMode == TargetSubtargetInfo::ANTIDEP_CRITICAL) ?
216       (AntiDepBreaker *)new CriticalAntiDepBreaker(MF, RCI) : NULL));
217 }
218 
~SchedulePostRATDList()219 SchedulePostRATDList::~SchedulePostRATDList() {
220   delete HazardRec;
221   delete AntiDepBreak;
222 }
223 
224 /// Initialize state associated with the next scheduling region.
enterRegion(MachineBasicBlock * bb,MachineBasicBlock::iterator begin,MachineBasicBlock::iterator end,unsigned endcount)225 void SchedulePostRATDList::enterRegion(MachineBasicBlock *bb,
226                  MachineBasicBlock::iterator begin,
227                  MachineBasicBlock::iterator end,
228                  unsigned endcount) {
229   ScheduleDAGInstrs::enterRegion(bb, begin, end, endcount);
230   Sequence.clear();
231 }
232 
233 /// Print the schedule before exiting the region.
exitRegion()234 void SchedulePostRATDList::exitRegion() {
235   DEBUG({
236       dbgs() << "*** Final schedule ***\n";
237       dumpSchedule();
238       dbgs() << '\n';
239     });
240   ScheduleDAGInstrs::exitRegion();
241 }
242 
243 #ifndef NDEBUG
244 /// dumpSchedule - dump the scheduled Sequence.
dumpSchedule() const245 void SchedulePostRATDList::dumpSchedule() const {
246   for (unsigned i = 0, e = Sequence.size(); i != e; i++) {
247     if (SUnit *SU = Sequence[i])
248       SU->dump(this);
249     else
250       dbgs() << "**** NOOP ****\n";
251   }
252 }
253 #endif
254 
runOnMachineFunction(MachineFunction & Fn)255 bool PostRAScheduler::runOnMachineFunction(MachineFunction &Fn) {
256   TII = Fn.getTarget().getInstrInfo();
257   MachineLoopInfo &MLI = getAnalysis<MachineLoopInfo>();
258   MachineDominatorTree &MDT = getAnalysis<MachineDominatorTree>();
259   AliasAnalysis *AA = &getAnalysis<AliasAnalysis>();
260   TargetPassConfig *PassConfig = &getAnalysis<TargetPassConfig>();
261 
262   RegClassInfo.runOnMachineFunction(Fn);
263 
264   // Check for explicit enable/disable of post-ra scheduling.
265   TargetSubtargetInfo::AntiDepBreakMode AntiDepMode =
266     TargetSubtargetInfo::ANTIDEP_NONE;
267   SmallVector<const TargetRegisterClass*, 4> CriticalPathRCs;
268   if (EnablePostRAScheduler.getPosition() > 0) {
269     if (!EnablePostRAScheduler)
270       return false;
271   } else {
272     // Check that post-RA scheduling is enabled for this target.
273     // This may upgrade the AntiDepMode.
274     const TargetSubtargetInfo &ST = Fn.getTarget().getSubtarget<TargetSubtargetInfo>();
275     if (!ST.enablePostRAScheduler(PassConfig->getOptLevel(), AntiDepMode,
276                                   CriticalPathRCs))
277       return false;
278   }
279 
280   // Check for antidep breaking override...
281   if (EnableAntiDepBreaking.getPosition() > 0) {
282     AntiDepMode = (EnableAntiDepBreaking == "all")
283       ? TargetSubtargetInfo::ANTIDEP_ALL
284       : ((EnableAntiDepBreaking == "critical")
285          ? TargetSubtargetInfo::ANTIDEP_CRITICAL
286          : TargetSubtargetInfo::ANTIDEP_NONE);
287   }
288 
289   DEBUG(dbgs() << "PostRAScheduler\n");
290 
291   SchedulePostRATDList Scheduler(Fn, MLI, MDT, AA, RegClassInfo, AntiDepMode,
292                                  CriticalPathRCs);
293 
294   // Loop over all of the basic blocks
295   for (MachineFunction::iterator MBB = Fn.begin(), MBBe = Fn.end();
296        MBB != MBBe; ++MBB) {
297 #ifndef NDEBUG
298     // If DebugDiv > 0 then only schedule MBB with (ID % DebugDiv) == DebugMod
299     if (DebugDiv > 0) {
300       static int bbcnt = 0;
301       if (bbcnt++ % DebugDiv != DebugMod)
302         continue;
303       dbgs() << "*** DEBUG scheduling " << Fn.getName()
304              << ":BB#" << MBB->getNumber() << " ***\n";
305     }
306 #endif
307 
308     // Initialize register live-range state for scheduling in this block.
309     Scheduler.startBlock(MBB);
310 
311     // Schedule each sequence of instructions not interrupted by a label
312     // or anything else that effectively needs to shut down scheduling.
313     MachineBasicBlock::iterator Current = MBB->end();
314     unsigned Count = MBB->size(), CurrentCount = Count;
315     for (MachineBasicBlock::iterator I = Current; I != MBB->begin(); ) {
316       MachineInstr *MI = llvm::prior(I);
317       // Calls are not scheduling boundaries before register allocation, but
318       // post-ra we don't gain anything by scheduling across calls since we
319       // don't need to worry about register pressure.
320       if (MI->isCall() || TII->isSchedulingBoundary(MI, MBB, Fn)) {
321         Scheduler.enterRegion(MBB, I, Current, CurrentCount);
322         Scheduler.schedule();
323         Scheduler.exitRegion();
324         Scheduler.EmitSchedule();
325         Current = MI;
326         CurrentCount = Count - 1;
327         Scheduler.Observe(MI, CurrentCount);
328       }
329       I = MI;
330       --Count;
331       if (MI->isBundle())
332         Count -= MI->getBundleSize();
333     }
334     assert(Count == 0 && "Instruction count mismatch!");
335     assert((MBB->begin() == Current || CurrentCount != 0) &&
336            "Instruction count mismatch!");
337     Scheduler.enterRegion(MBB, MBB->begin(), Current, CurrentCount);
338     Scheduler.schedule();
339     Scheduler.exitRegion();
340     Scheduler.EmitSchedule();
341 
342     // Clean up register live-range state.
343     Scheduler.finishBlock();
344 
345     // Update register kills
346     Scheduler.FixupKills(MBB);
347   }
348 
349   return true;
350 }
351 
352 /// StartBlock - Initialize register live-range state for scheduling in
353 /// this block.
354 ///
startBlock(MachineBasicBlock * BB)355 void SchedulePostRATDList::startBlock(MachineBasicBlock *BB) {
356   // Call the superclass.
357   ScheduleDAGInstrs::startBlock(BB);
358 
359   // Reset the hazard recognizer and anti-dep breaker.
360   HazardRec->Reset();
361   if (AntiDepBreak != NULL)
362     AntiDepBreak->StartBlock(BB);
363 }
364 
365 /// Schedule - Schedule the instruction range using list scheduling.
366 ///
schedule()367 void SchedulePostRATDList::schedule() {
368   // Build the scheduling graph.
369   buildSchedGraph(AA);
370 
371   if (AntiDepBreak != NULL) {
372     unsigned Broken =
373       AntiDepBreak->BreakAntiDependencies(SUnits, RegionBegin, RegionEnd,
374                                           EndIndex, DbgValues);
375 
376     if (Broken != 0) {
377       // We made changes. Update the dependency graph.
378       // Theoretically we could update the graph in place:
379       // When a live range is changed to use a different register, remove
380       // the def's anti-dependence *and* output-dependence edges due to
381       // that register, and add new anti-dependence and output-dependence
382       // edges based on the next live range of the register.
383       ScheduleDAG::clearDAG();
384       buildSchedGraph(AA);
385 
386       NumFixedAnti += Broken;
387     }
388   }
389 
390   DEBUG(dbgs() << "********** List Scheduling **********\n");
391   DEBUG(for (unsigned su = 0, e = SUnits.size(); su != e; ++su)
392           SUnits[su].dumpAll(this));
393 
394   AvailableQueue.initNodes(SUnits);
395   ListScheduleTopDown();
396   AvailableQueue.releaseState();
397 }
398 
399 /// Observe - Update liveness information to account for the current
400 /// instruction, which will not be scheduled.
401 ///
Observe(MachineInstr * MI,unsigned Count)402 void SchedulePostRATDList::Observe(MachineInstr *MI, unsigned Count) {
403   if (AntiDepBreak != NULL)
404     AntiDepBreak->Observe(MI, Count, EndIndex);
405 }
406 
407 /// FinishBlock - Clean up register live-range state.
408 ///
finishBlock()409 void SchedulePostRATDList::finishBlock() {
410   if (AntiDepBreak != NULL)
411     AntiDepBreak->FinishBlock();
412 
413   // Call the superclass.
414   ScheduleDAGInstrs::finishBlock();
415 }
416 
417 /// StartBlockForKills - Initialize register live-range state for updating kills
418 ///
StartBlockForKills(MachineBasicBlock * BB)419 void SchedulePostRATDList::StartBlockForKills(MachineBasicBlock *BB) {
420   // Start with no live registers.
421   LiveRegs.reset();
422 
423   // Determine the live-out physregs for this block.
424   if (!BB->empty() && BB->back().isReturn()) {
425     // In a return block, examine the function live-out regs.
426     for (MachineRegisterInfo::liveout_iterator I = MRI.liveout_begin(),
427            E = MRI.liveout_end(); I != E; ++I) {
428       unsigned Reg = *I;
429       LiveRegs.set(Reg);
430       // Repeat, for all subregs.
431       for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs)
432         LiveRegs.set(*SubRegs);
433     }
434   }
435   else {
436     // In a non-return block, examine the live-in regs of all successors.
437     for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(),
438            SE = BB->succ_end(); SI != SE; ++SI) {
439       for (MachineBasicBlock::livein_iterator I = (*SI)->livein_begin(),
440              E = (*SI)->livein_end(); I != E; ++I) {
441         unsigned Reg = *I;
442         LiveRegs.set(Reg);
443         // Repeat, for all subregs.
444         for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs)
445           LiveRegs.set(*SubRegs);
446       }
447     }
448   }
449 }
450 
ToggleKillFlag(MachineInstr * MI,MachineOperand & MO)451 bool SchedulePostRATDList::ToggleKillFlag(MachineInstr *MI,
452                                           MachineOperand &MO) {
453   // Setting kill flag...
454   if (!MO.isKill()) {
455     MO.setIsKill(true);
456     return false;
457   }
458 
459   // If MO itself is live, clear the kill flag...
460   if (LiveRegs.test(MO.getReg())) {
461     MO.setIsKill(false);
462     return false;
463   }
464 
465   // If any subreg of MO is live, then create an imp-def for that
466   // subreg and keep MO marked as killed.
467   MO.setIsKill(false);
468   bool AllDead = true;
469   const unsigned SuperReg = MO.getReg();
470   for (MCSubRegIterator SubRegs(SuperReg, TRI); SubRegs.isValid(); ++SubRegs) {
471     if (LiveRegs.test(*SubRegs)) {
472       MI->addOperand(MachineOperand::CreateReg(*SubRegs,
473                                                true  /*IsDef*/,
474                                                true  /*IsImp*/,
475                                                false /*IsKill*/,
476                                                false /*IsDead*/));
477       AllDead = false;
478     }
479   }
480 
481   if(AllDead)
482     MO.setIsKill(true);
483   return false;
484 }
485 
486 /// FixupKills - Fix the register kill flags, they may have been made
487 /// incorrect by instruction reordering.
488 ///
FixupKills(MachineBasicBlock * MBB)489 void SchedulePostRATDList::FixupKills(MachineBasicBlock *MBB) {
490   DEBUG(dbgs() << "Fixup kills for BB#" << MBB->getNumber() << '\n');
491 
492   BitVector killedRegs(TRI->getNumRegs());
493   BitVector ReservedRegs = TRI->getReservedRegs(MF);
494 
495   StartBlockForKills(MBB);
496 
497   // Examine block from end to start...
498   unsigned Count = MBB->size();
499   for (MachineBasicBlock::iterator I = MBB->end(), E = MBB->begin();
500        I != E; --Count) {
501     MachineInstr *MI = --I;
502     if (MI->isDebugValue())
503       continue;
504 
505     // Update liveness.  Registers that are defed but not used in this
506     // instruction are now dead. Mark register and all subregs as they
507     // are completely defined.
508     for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
509       MachineOperand &MO = MI->getOperand(i);
510       if (MO.isRegMask())
511         LiveRegs.clearBitsNotInMask(MO.getRegMask());
512       if (!MO.isReg()) continue;
513       unsigned Reg = MO.getReg();
514       if (Reg == 0) continue;
515       if (!MO.isDef()) continue;
516       // Ignore two-addr defs.
517       if (MI->isRegTiedToUseOperand(i)) continue;
518 
519       LiveRegs.reset(Reg);
520 
521       // Repeat for all subregs.
522       for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs)
523         LiveRegs.reset(*SubRegs);
524     }
525 
526     // Examine all used registers and set/clear kill flag. When a
527     // register is used multiple times we only set the kill flag on
528     // the first use.
529     killedRegs.reset();
530     for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
531       MachineOperand &MO = MI->getOperand(i);
532       if (!MO.isReg() || !MO.isUse()) continue;
533       unsigned Reg = MO.getReg();
534       if ((Reg == 0) || ReservedRegs.test(Reg)) continue;
535 
536       bool kill = false;
537       if (!killedRegs.test(Reg)) {
538         kill = true;
539         // A register is not killed if any subregs are live...
540         for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs) {
541           if (LiveRegs.test(*SubRegs)) {
542             kill = false;
543             break;
544           }
545         }
546 
547         // If subreg is not live, then register is killed if it became
548         // live in this instruction
549         if (kill)
550           kill = !LiveRegs.test(Reg);
551       }
552 
553       if (MO.isKill() != kill) {
554         DEBUG(dbgs() << "Fixing " << MO << " in ");
555         // Warning: ToggleKillFlag may invalidate MO.
556         ToggleKillFlag(MI, MO);
557         DEBUG(MI->dump());
558       }
559 
560       killedRegs.set(Reg);
561     }
562 
563     // Mark any used register (that is not using undef) and subregs as
564     // now live...
565     for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
566       MachineOperand &MO = MI->getOperand(i);
567       if (!MO.isReg() || !MO.isUse() || MO.isUndef()) continue;
568       unsigned Reg = MO.getReg();
569       if ((Reg == 0) || ReservedRegs.test(Reg)) continue;
570 
571       LiveRegs.set(Reg);
572 
573       for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs)
574         LiveRegs.set(*SubRegs);
575     }
576   }
577 }
578 
579 //===----------------------------------------------------------------------===//
580 //  Top-Down Scheduling
581 //===----------------------------------------------------------------------===//
582 
583 /// ReleaseSucc - Decrement the NumPredsLeft count of a successor. Add it to
584 /// the PendingQueue if the count reaches zero. Also update its cycle bound.
ReleaseSucc(SUnit * SU,SDep * SuccEdge)585 void SchedulePostRATDList::ReleaseSucc(SUnit *SU, SDep *SuccEdge) {
586   SUnit *SuccSU = SuccEdge->getSUnit();
587 
588 #ifndef NDEBUG
589   if (SuccSU->NumPredsLeft == 0) {
590     dbgs() << "*** Scheduling failed! ***\n";
591     SuccSU->dump(this);
592     dbgs() << " has been released too many times!\n";
593     llvm_unreachable(0);
594   }
595 #endif
596   --SuccSU->NumPredsLeft;
597 
598   // Standard scheduler algorithms will recompute the depth of the successor
599   // here as such:
600   //   SuccSU->setDepthToAtLeast(SU->getDepth() + SuccEdge->getLatency());
601   //
602   // However, we lazily compute node depth instead. Note that
603   // ScheduleNodeTopDown has already updated the depth of this node which causes
604   // all descendents to be marked dirty. Setting the successor depth explicitly
605   // here would cause depth to be recomputed for all its ancestors. If the
606   // successor is not yet ready (because of a transitively redundant edge) then
607   // this causes depth computation to be quadratic in the size of the DAG.
608 
609   // If all the node's predecessors are scheduled, this node is ready
610   // to be scheduled. Ignore the special ExitSU node.
611   if (SuccSU->NumPredsLeft == 0 && SuccSU != &ExitSU)
612     PendingQueue.push_back(SuccSU);
613 }
614 
615 /// ReleaseSuccessors - Call ReleaseSucc on each of SU's successors.
ReleaseSuccessors(SUnit * SU)616 void SchedulePostRATDList::ReleaseSuccessors(SUnit *SU) {
617   for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
618        I != E; ++I) {
619     ReleaseSucc(SU, &*I);
620   }
621 }
622 
623 /// ScheduleNodeTopDown - Add the node to the schedule. Decrement the pending
624 /// count of its successors. If a successor pending count is zero, add it to
625 /// the Available queue.
ScheduleNodeTopDown(SUnit * SU,unsigned CurCycle)626 void SchedulePostRATDList::ScheduleNodeTopDown(SUnit *SU, unsigned CurCycle) {
627   DEBUG(dbgs() << "*** Scheduling [" << CurCycle << "]: ");
628   DEBUG(SU->dump(this));
629 
630   Sequence.push_back(SU);
631   assert(CurCycle >= SU->getDepth() &&
632          "Node scheduled above its depth!");
633   SU->setDepthToAtLeast(CurCycle);
634 
635   ReleaseSuccessors(SU);
636   SU->isScheduled = true;
637   AvailableQueue.scheduledNode(SU);
638 }
639 
640 /// ListScheduleTopDown - The main loop of list scheduling for top-down
641 /// schedulers.
ListScheduleTopDown()642 void SchedulePostRATDList::ListScheduleTopDown() {
643   unsigned CurCycle = 0;
644 
645   // We're scheduling top-down but we're visiting the regions in
646   // bottom-up order, so we don't know the hazards at the start of a
647   // region. So assume no hazards (this should usually be ok as most
648   // blocks are a single region).
649   HazardRec->Reset();
650 
651   // Release any successors of the special Entry node.
652   ReleaseSuccessors(&EntrySU);
653 
654   // Add all leaves to Available queue.
655   for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
656     // It is available if it has no predecessors.
657     bool available = SUnits[i].Preds.empty();
658     if (available) {
659       AvailableQueue.push(&SUnits[i]);
660       SUnits[i].isAvailable = true;
661     }
662   }
663 
664   // In any cycle where we can't schedule any instructions, we must
665   // stall or emit a noop, depending on the target.
666   bool CycleHasInsts = false;
667 
668   // While Available queue is not empty, grab the node with the highest
669   // priority. If it is not ready put it back.  Schedule the node.
670   std::vector<SUnit*> NotReady;
671   Sequence.reserve(SUnits.size());
672   while (!AvailableQueue.empty() || !PendingQueue.empty()) {
673     // Check to see if any of the pending instructions are ready to issue.  If
674     // so, add them to the available queue.
675     unsigned MinDepth = ~0u;
676     for (unsigned i = 0, e = PendingQueue.size(); i != e; ++i) {
677       if (PendingQueue[i]->getDepth() <= CurCycle) {
678         AvailableQueue.push(PendingQueue[i]);
679         PendingQueue[i]->isAvailable = true;
680         PendingQueue[i] = PendingQueue.back();
681         PendingQueue.pop_back();
682         --i; --e;
683       } else if (PendingQueue[i]->getDepth() < MinDepth)
684         MinDepth = PendingQueue[i]->getDepth();
685     }
686 
687     DEBUG(dbgs() << "\n*** Examining Available\n"; AvailableQueue.dump(this));
688 
689     SUnit *FoundSUnit = 0;
690     bool HasNoopHazards = false;
691     while (!AvailableQueue.empty()) {
692       SUnit *CurSUnit = AvailableQueue.pop();
693 
694       ScheduleHazardRecognizer::HazardType HT =
695         HazardRec->getHazardType(CurSUnit, 0/*no stalls*/);
696       if (HT == ScheduleHazardRecognizer::NoHazard) {
697         FoundSUnit = CurSUnit;
698         break;
699       }
700 
701       // Remember if this is a noop hazard.
702       HasNoopHazards |= HT == ScheduleHazardRecognizer::NoopHazard;
703 
704       NotReady.push_back(CurSUnit);
705     }
706 
707     // Add the nodes that aren't ready back onto the available list.
708     if (!NotReady.empty()) {
709       AvailableQueue.push_all(NotReady);
710       NotReady.clear();
711     }
712 
713     // If we found a node to schedule...
714     if (FoundSUnit) {
715       // ... schedule the node...
716       ScheduleNodeTopDown(FoundSUnit, CurCycle);
717       HazardRec->EmitInstruction(FoundSUnit);
718       CycleHasInsts = true;
719       if (HazardRec->atIssueLimit()) {
720         DEBUG(dbgs() << "*** Max instructions per cycle " << CurCycle << '\n');
721         HazardRec->AdvanceCycle();
722         ++CurCycle;
723         CycleHasInsts = false;
724       }
725     } else {
726       if (CycleHasInsts) {
727         DEBUG(dbgs() << "*** Finished cycle " << CurCycle << '\n');
728         HazardRec->AdvanceCycle();
729       } else if (!HasNoopHazards) {
730         // Otherwise, we have a pipeline stall, but no other problem,
731         // just advance the current cycle and try again.
732         DEBUG(dbgs() << "*** Stall in cycle " << CurCycle << '\n');
733         HazardRec->AdvanceCycle();
734         ++NumStalls;
735       } else {
736         // Otherwise, we have no instructions to issue and we have instructions
737         // that will fault if we don't do this right.  This is the case for
738         // processors without pipeline interlocks and other cases.
739         DEBUG(dbgs() << "*** Emitting noop in cycle " << CurCycle << '\n');
740         HazardRec->EmitNoop();
741         Sequence.push_back(0);   // NULL here means noop
742         ++NumNoops;
743       }
744 
745       ++CurCycle;
746       CycleHasInsts = false;
747     }
748   }
749 
750 #ifndef NDEBUG
751   unsigned ScheduledNodes = VerifyScheduledDAG(/*isBottomUp=*/false);
752   unsigned Noops = 0;
753   for (unsigned i = 0, e = Sequence.size(); i != e; ++i)
754     if (!Sequence[i])
755       ++Noops;
756   assert(Sequence.size() - Noops == ScheduledNodes &&
757          "The number of nodes scheduled doesn't match the expected number!");
758 #endif // NDEBUG
759 }
760 
761 // EmitSchedule - Emit the machine code in scheduled order.
EmitSchedule()762 void SchedulePostRATDList::EmitSchedule() {
763   RegionBegin = RegionEnd;
764 
765   // If first instruction was a DBG_VALUE then put it back.
766   if (FirstDbgValue)
767     BB->splice(RegionEnd, BB, FirstDbgValue);
768 
769   // Then re-insert them according to the given schedule.
770   for (unsigned i = 0, e = Sequence.size(); i != e; i++) {
771     if (SUnit *SU = Sequence[i])
772       BB->splice(RegionEnd, BB, SU->getInstr());
773     else
774       // Null SUnit* is a noop.
775       TII->insertNoop(*BB, RegionEnd);
776 
777     // Update the Begin iterator, as the first instruction in the block
778     // may have been scheduled later.
779     if (i == 0)
780       RegionBegin = prior(RegionEnd);
781   }
782 
783   // Reinsert any remaining debug_values.
784   for (std::vector<std::pair<MachineInstr *, MachineInstr *> >::iterator
785          DI = DbgValues.end(), DE = DbgValues.begin(); DI != DE; --DI) {
786     std::pair<MachineInstr *, MachineInstr *> P = *prior(DI);
787     MachineInstr *DbgValue = P.first;
788     MachineBasicBlock::iterator OrigPrivMI = P.second;
789     BB->splice(++OrigPrivMI, BB, DbgValue);
790   }
791   DbgValues.clear();
792   FirstDbgValue = NULL;
793 }
794