• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===- X86RecognizableInstr.cpp - Disassembler instruction spec --*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file is part of the X86 Disassembler Emitter.
11 // It contains the implementation of a single recognizable instruction.
12 // Documentation for the disassembler emitter in general can be found in
13 //  X86DisasemblerEmitter.h.
14 //
15 //===----------------------------------------------------------------------===//
16 
17 #include "X86DisassemblerShared.h"
18 #include "X86RecognizableInstr.h"
19 #include "X86ModRMFilters.h"
20 
21 #include "llvm/Support/ErrorHandling.h"
22 
23 #include <string>
24 
25 using namespace llvm;
26 
27 #define MRM_MAPPING     \
28   MAP(C1, 33)           \
29   MAP(C2, 34)           \
30   MAP(C3, 35)           \
31   MAP(C4, 36)           \
32   MAP(C8, 37)           \
33   MAP(C9, 38)           \
34   MAP(E8, 39)           \
35   MAP(F0, 40)           \
36   MAP(F8, 41)           \
37   MAP(F9, 42)           \
38   MAP(D0, 45)           \
39   MAP(D1, 46)           \
40   MAP(D4, 47)           \
41   MAP(D8, 48)           \
42   MAP(D9, 49)           \
43   MAP(DA, 50)           \
44   MAP(DB, 51)           \
45   MAP(DC, 52)           \
46   MAP(DD, 53)           \
47   MAP(DE, 54)           \
48   MAP(DF, 55)
49 
50 // A clone of X86 since we can't depend on something that is generated.
51 namespace X86Local {
52   enum {
53     Pseudo      = 0,
54     RawFrm      = 1,
55     AddRegFrm   = 2,
56     MRMDestReg  = 3,
57     MRMDestMem  = 4,
58     MRMSrcReg   = 5,
59     MRMSrcMem   = 6,
60     MRM0r = 16, MRM1r = 17, MRM2r = 18, MRM3r = 19,
61     MRM4r = 20, MRM5r = 21, MRM6r = 22, MRM7r = 23,
62     MRM0m = 24, MRM1m = 25, MRM2m = 26, MRM3m = 27,
63     MRM4m = 28, MRM5m = 29, MRM6m = 30, MRM7m = 31,
64     MRMInitReg  = 32,
65     RawFrmImm8  = 43,
66     RawFrmImm16 = 44,
67 #define MAP(from, to) MRM_##from = to,
68     MRM_MAPPING
69 #undef MAP
70     lastMRM
71   };
72 
73   enum {
74     TB  = 1,
75     REP = 2,
76     D8 = 3, D9 = 4, DA = 5, DB = 6,
77     DC = 7, DD = 8, DE = 9, DF = 10,
78     XD = 11,  XS = 12,
79     T8 = 13,  P_TA = 14,
80     A6 = 15,  A7 = 16, T8XD = 17, T8XS = 18, TAXD = 19
81   };
82 }
83 
84 // If rows are added to the opcode extension tables, then corresponding entries
85 // must be added here.
86 //
87 // If the row corresponds to a single byte (i.e., 8f), then add an entry for
88 // that byte to ONE_BYTE_EXTENSION_TABLES.
89 //
90 // If the row corresponds to two bytes where the first is 0f, add an entry for
91 // the second byte to TWO_BYTE_EXTENSION_TABLES.
92 //
93 // If the row corresponds to some other set of bytes, you will need to modify
94 // the code in RecognizableInstr::emitDecodePath() as well, and add new prefixes
95 // to the X86 TD files, except in two cases: if the first two bytes of such a
96 // new combination are 0f 38 or 0f 3a, you just have to add maps called
97 // THREE_BYTE_38_EXTENSION_TABLES and THREE_BYTE_3A_EXTENSION_TABLES and add a
98 // switch(Opcode) just below the case X86Local::T8: or case X86Local::TA: line
99 // in RecognizableInstr::emitDecodePath().
100 
101 #define ONE_BYTE_EXTENSION_TABLES \
102   EXTENSION_TABLE(80)             \
103   EXTENSION_TABLE(81)             \
104   EXTENSION_TABLE(82)             \
105   EXTENSION_TABLE(83)             \
106   EXTENSION_TABLE(8f)             \
107   EXTENSION_TABLE(c0)             \
108   EXTENSION_TABLE(c1)             \
109   EXTENSION_TABLE(c6)             \
110   EXTENSION_TABLE(c7)             \
111   EXTENSION_TABLE(d0)             \
112   EXTENSION_TABLE(d1)             \
113   EXTENSION_TABLE(d2)             \
114   EXTENSION_TABLE(d3)             \
115   EXTENSION_TABLE(f6)             \
116   EXTENSION_TABLE(f7)             \
117   EXTENSION_TABLE(fe)             \
118   EXTENSION_TABLE(ff)
119 
120 #define TWO_BYTE_EXTENSION_TABLES \
121   EXTENSION_TABLE(00)             \
122   EXTENSION_TABLE(01)             \
123   EXTENSION_TABLE(18)             \
124   EXTENSION_TABLE(71)             \
125   EXTENSION_TABLE(72)             \
126   EXTENSION_TABLE(73)             \
127   EXTENSION_TABLE(ae)             \
128   EXTENSION_TABLE(ba)             \
129   EXTENSION_TABLE(c7)
130 
131 #define THREE_BYTE_38_EXTENSION_TABLES \
132   EXTENSION_TABLE(F3)
133 
134 using namespace X86Disassembler;
135 
136 /// needsModRMForDecode - Indicates whether a particular instruction requires a
137 ///   ModR/M byte for the instruction to be properly decoded.  For example, a
138 ///   MRMDestReg instruction needs the Mod field in the ModR/M byte to be set to
139 ///   0b11.
140 ///
141 /// @param form - The form of the instruction.
142 /// @return     - true if the form implies that a ModR/M byte is required, false
143 ///               otherwise.
needsModRMForDecode(uint8_t form)144 static bool needsModRMForDecode(uint8_t form) {
145   if (form == X86Local::MRMDestReg    ||
146      form == X86Local::MRMDestMem    ||
147      form == X86Local::MRMSrcReg     ||
148      form == X86Local::MRMSrcMem     ||
149      (form >= X86Local::MRM0r && form <= X86Local::MRM7r) ||
150      (form >= X86Local::MRM0m && form <= X86Local::MRM7m))
151     return true;
152   else
153     return false;
154 }
155 
156 /// isRegFormat - Indicates whether a particular form requires the Mod field of
157 ///   the ModR/M byte to be 0b11.
158 ///
159 /// @param form - The form of the instruction.
160 /// @return     - true if the form implies that Mod must be 0b11, false
161 ///               otherwise.
isRegFormat(uint8_t form)162 static bool isRegFormat(uint8_t form) {
163   if (form == X86Local::MRMDestReg ||
164      form == X86Local::MRMSrcReg  ||
165      (form >= X86Local::MRM0r && form <= X86Local::MRM7r))
166     return true;
167   else
168     return false;
169 }
170 
171 /// byteFromBitsInit - Extracts a value at most 8 bits in width from a BitsInit.
172 ///   Useful for switch statements and the like.
173 ///
174 /// @param init - A reference to the BitsInit to be decoded.
175 /// @return     - The field, with the first bit in the BitsInit as the lowest
176 ///               order bit.
byteFromBitsInit(BitsInit & init)177 static uint8_t byteFromBitsInit(BitsInit &init) {
178   int width = init.getNumBits();
179 
180   assert(width <= 8 && "Field is too large for uint8_t!");
181 
182   int     index;
183   uint8_t mask = 0x01;
184 
185   uint8_t ret = 0;
186 
187   for (index = 0; index < width; index++) {
188     if (static_cast<BitInit*>(init.getBit(index))->getValue())
189       ret |= mask;
190 
191     mask <<= 1;
192   }
193 
194   return ret;
195 }
196 
197 /// byteFromRec - Extract a value at most 8 bits in with from a Record given the
198 ///   name of the field.
199 ///
200 /// @param rec  - The record from which to extract the value.
201 /// @param name - The name of the field in the record.
202 /// @return     - The field, as translated by byteFromBitsInit().
byteFromRec(const Record * rec,const std::string & name)203 static uint8_t byteFromRec(const Record* rec, const std::string &name) {
204   BitsInit* bits = rec->getValueAsBitsInit(name);
205   return byteFromBitsInit(*bits);
206 }
207 
RecognizableInstr(DisassemblerTables & tables,const CodeGenInstruction & insn,InstrUID uid)208 RecognizableInstr::RecognizableInstr(DisassemblerTables &tables,
209                                      const CodeGenInstruction &insn,
210                                      InstrUID uid) {
211   UID = uid;
212 
213   Rec = insn.TheDef;
214   Name = Rec->getName();
215   Spec = &tables.specForUID(UID);
216 
217   if (!Rec->isSubClassOf("X86Inst")) {
218     ShouldBeEmitted = false;
219     return;
220   }
221 
222   Prefix   = byteFromRec(Rec, "Prefix");
223   Opcode   = byteFromRec(Rec, "Opcode");
224   Form     = byteFromRec(Rec, "FormBits");
225   SegOvr   = byteFromRec(Rec, "SegOvrBits");
226 
227   HasOpSizePrefix  = Rec->getValueAsBit("hasOpSizePrefix");
228   HasAdSizePrefix  = Rec->getValueAsBit("hasAdSizePrefix");
229   HasREX_WPrefix   = Rec->getValueAsBit("hasREX_WPrefix");
230   HasVEXPrefix     = Rec->getValueAsBit("hasVEXPrefix");
231   HasVEX_4VPrefix  = Rec->getValueAsBit("hasVEX_4VPrefix");
232   HasVEX_4VOp3Prefix = Rec->getValueAsBit("hasVEX_4VOp3Prefix");
233   HasVEX_WPrefix   = Rec->getValueAsBit("hasVEX_WPrefix");
234   HasMemOp4Prefix  = Rec->getValueAsBit("hasMemOp4Prefix");
235   IgnoresVEX_L     = Rec->getValueAsBit("ignoresVEX_L");
236   HasLockPrefix    = Rec->getValueAsBit("hasLockPrefix");
237   IsCodeGenOnly    = Rec->getValueAsBit("isCodeGenOnly");
238 
239   Name      = Rec->getName();
240   AsmString = Rec->getValueAsString("AsmString");
241 
242   Operands = &insn.Operands.OperandList;
243 
244   IsSSE            = (HasOpSizePrefix && (Name.find("16") == Name.npos)) ||
245                      (Name.find("CRC32") != Name.npos);
246   HasFROperands    = hasFROperands();
247   HasVEX_LPrefix   = has256BitOperands() || Rec->getValueAsBit("hasVEX_L");
248 
249   // Check for 64-bit inst which does not require REX
250   Is32Bit = false;
251   Is64Bit = false;
252   // FIXME: Is there some better way to check for In64BitMode?
253   std::vector<Record*> Predicates = Rec->getValueAsListOfDefs("Predicates");
254   for (unsigned i = 0, e = Predicates.size(); i != e; ++i) {
255     if (Predicates[i]->getName().find("32Bit") != Name.npos) {
256       Is32Bit = true;
257       break;
258     }
259     if (Predicates[i]->getName().find("64Bit") != Name.npos) {
260       Is64Bit = true;
261       break;
262     }
263   }
264   // FIXME: These instructions aren't marked as 64-bit in any way
265   Is64Bit |= Rec->getName() == "JMP64pcrel32" ||
266              Rec->getName() == "MASKMOVDQU64" ||
267              Rec->getName() == "POPFS64" ||
268              Rec->getName() == "POPGS64" ||
269              Rec->getName() == "PUSHFS64" ||
270              Rec->getName() == "PUSHGS64" ||
271              Rec->getName() == "REX64_PREFIX" ||
272              Rec->getName().find("MOV64") != Name.npos ||
273              Rec->getName().find("PUSH64") != Name.npos ||
274              Rec->getName().find("POP64") != Name.npos;
275 
276   ShouldBeEmitted  = true;
277 }
278 
processInstr(DisassemblerTables & tables,const CodeGenInstruction & insn,InstrUID uid)279 void RecognizableInstr::processInstr(DisassemblerTables &tables,
280                                      const CodeGenInstruction &insn,
281                                      InstrUID uid)
282 {
283   // Ignore "asm parser only" instructions.
284   if (insn.TheDef->getValueAsBit("isAsmParserOnly"))
285     return;
286 
287   RecognizableInstr recogInstr(tables, insn, uid);
288 
289   recogInstr.emitInstructionSpecifier(tables);
290 
291   if (recogInstr.shouldBeEmitted())
292     recogInstr.emitDecodePath(tables);
293 }
294 
insnContext() const295 InstructionContext RecognizableInstr::insnContext() const {
296   InstructionContext insnContext;
297 
298   if (HasVEX_4VPrefix || HasVEX_4VOp3Prefix|| HasVEXPrefix) {
299     if (HasVEX_LPrefix && HasVEX_WPrefix) {
300       if (HasOpSizePrefix)
301         insnContext = IC_VEX_L_W_OPSIZE;
302       else
303         llvm_unreachable("Don't support VEX.L and VEX.W together");
304     } else if (HasOpSizePrefix && HasVEX_LPrefix)
305       insnContext = IC_VEX_L_OPSIZE;
306     else if (HasOpSizePrefix && HasVEX_WPrefix)
307       insnContext = IC_VEX_W_OPSIZE;
308     else if (HasOpSizePrefix)
309       insnContext = IC_VEX_OPSIZE;
310     else if (HasVEX_LPrefix &&
311              (Prefix == X86Local::XS || Prefix == X86Local::T8XS))
312       insnContext = IC_VEX_L_XS;
313     else if (HasVEX_LPrefix && (Prefix == X86Local::XD ||
314                                 Prefix == X86Local::T8XD ||
315                                 Prefix == X86Local::TAXD))
316       insnContext = IC_VEX_L_XD;
317     else if (HasVEX_WPrefix &&
318              (Prefix == X86Local::XS || Prefix == X86Local::T8XS))
319       insnContext = IC_VEX_W_XS;
320     else if (HasVEX_WPrefix && (Prefix == X86Local::XD ||
321                                 Prefix == X86Local::T8XD ||
322                                 Prefix == X86Local::TAXD))
323       insnContext = IC_VEX_W_XD;
324     else if (HasVEX_WPrefix)
325       insnContext = IC_VEX_W;
326     else if (HasVEX_LPrefix)
327       insnContext = IC_VEX_L;
328     else if (Prefix == X86Local::XD || Prefix == X86Local::T8XD ||
329              Prefix == X86Local::TAXD)
330       insnContext = IC_VEX_XD;
331     else if (Prefix == X86Local::XS || Prefix == X86Local::T8XS)
332       insnContext = IC_VEX_XS;
333     else
334       insnContext = IC_VEX;
335   } else if (Is64Bit || HasREX_WPrefix) {
336     if (HasREX_WPrefix && HasOpSizePrefix)
337       insnContext = IC_64BIT_REXW_OPSIZE;
338     else if (HasOpSizePrefix && (Prefix == X86Local::XD ||
339                                  Prefix == X86Local::T8XD ||
340                                  Prefix == X86Local::TAXD))
341       insnContext = IC_64BIT_XD_OPSIZE;
342     else if (HasOpSizePrefix &&
343              (Prefix == X86Local::XS || Prefix == X86Local::T8XS))
344       insnContext = IC_64BIT_XS_OPSIZE;
345     else if (HasOpSizePrefix)
346       insnContext = IC_64BIT_OPSIZE;
347     else if (HasAdSizePrefix)
348       insnContext = IC_64BIT_ADSIZE;
349     else if (HasREX_WPrefix &&
350              (Prefix == X86Local::XS || Prefix == X86Local::T8XS))
351       insnContext = IC_64BIT_REXW_XS;
352     else if (HasREX_WPrefix && (Prefix == X86Local::XD ||
353                                 Prefix == X86Local::T8XD ||
354                                 Prefix == X86Local::TAXD))
355       insnContext = IC_64BIT_REXW_XD;
356     else if (Prefix == X86Local::XD || Prefix == X86Local::T8XD ||
357              Prefix == X86Local::TAXD)
358       insnContext = IC_64BIT_XD;
359     else if (Prefix == X86Local::XS || Prefix == X86Local::T8XS)
360       insnContext = IC_64BIT_XS;
361     else if (HasREX_WPrefix)
362       insnContext = IC_64BIT_REXW;
363     else
364       insnContext = IC_64BIT;
365   } else {
366     if (HasOpSizePrefix && (Prefix == X86Local::XD ||
367                             Prefix == X86Local::T8XD ||
368                             Prefix == X86Local::TAXD))
369       insnContext = IC_XD_OPSIZE;
370     else if (HasOpSizePrefix &&
371              (Prefix == X86Local::XS || Prefix == X86Local::T8XS))
372       insnContext = IC_XS_OPSIZE;
373     else if (HasOpSizePrefix)
374       insnContext = IC_OPSIZE;
375     else if (HasAdSizePrefix)
376       insnContext = IC_ADSIZE;
377     else if (Prefix == X86Local::XD || Prefix == X86Local::T8XD ||
378              Prefix == X86Local::TAXD)
379       insnContext = IC_XD;
380     else if (Prefix == X86Local::XS || Prefix == X86Local::T8XS ||
381              Prefix == X86Local::REP)
382       insnContext = IC_XS;
383     else
384       insnContext = IC;
385   }
386 
387   return insnContext;
388 }
389 
filter() const390 RecognizableInstr::filter_ret RecognizableInstr::filter() const {
391   ///////////////////
392   // FILTER_STRONG
393   //
394 
395   // Filter out intrinsics
396 
397   assert(Rec->isSubClassOf("X86Inst") && "Can only filter X86 instructions");
398 
399   if (Form == X86Local::Pseudo ||
400       (IsCodeGenOnly && Name.find("_REV") == Name.npos))
401     return FILTER_STRONG;
402 
403 
404   // Filter out artificial instructions but leave in the LOCK_PREFIX so it is
405   // printed as a separate "instruction".
406 
407   if (Name.find("_Int") != Name.npos       ||
408       Name.find("Int_") != Name.npos)
409     return FILTER_STRONG;
410 
411   // Filter out instructions with segment override prefixes.
412   // They're too messy to handle now and we'll special case them if needed.
413 
414   if (SegOvr)
415     return FILTER_STRONG;
416 
417 
418   /////////////////
419   // FILTER_WEAK
420   //
421 
422 
423   // Filter out instructions with a LOCK prefix;
424   //   prefer forms that do not have the prefix
425   if (HasLockPrefix)
426     return FILTER_WEAK;
427 
428   // Filter out alternate forms of AVX instructions
429   if (Name.find("_alt") != Name.npos ||
430       Name.find("XrYr") != Name.npos ||
431       (Name.find("r64r") != Name.npos && Name.find("r64r64") == Name.npos) ||
432       Name.find("_64mr") != Name.npos ||
433       Name.find("Xrr") != Name.npos ||
434       Name.find("rr64") != Name.npos)
435     return FILTER_WEAK;
436 
437   // Special cases.
438 
439   if (Name.find("PCMPISTRI") != Name.npos && Name != "PCMPISTRI")
440     return FILTER_WEAK;
441   if (Name.find("PCMPESTRI") != Name.npos && Name != "PCMPESTRI")
442     return FILTER_WEAK;
443 
444   if (Name.find("MOV") != Name.npos && Name.find("r0") != Name.npos)
445     return FILTER_WEAK;
446   if (Name.find("MOVZ") != Name.npos && Name.find("MOVZX") == Name.npos)
447     return FILTER_WEAK;
448   if (Name.find("Fs") != Name.npos)
449     return FILTER_WEAK;
450   if (Name == "PUSH64i16"         ||
451       Name == "MOVPQI2QImr"       ||
452       Name == "VMOVPQI2QImr"      ||
453       Name == "MMX_MOVD64rrv164"  ||
454       Name == "MOV64ri64i32"      ||
455       Name == "VMASKMOVDQU64"     ||
456       Name == "VEXTRACTPSrr64"    ||
457       Name == "VMOVQd64rr"        ||
458       Name == "VMOVQs64rr")
459     return FILTER_WEAK;
460 
461   if (HasFROperands && Name.find("MOV") != Name.npos &&
462      ((Name.find("2") != Name.npos && Name.find("32") == Name.npos) ||
463       (Name.find("to") != Name.npos)))
464     return FILTER_STRONG;
465 
466   return FILTER_NORMAL;
467 }
468 
hasFROperands() const469 bool RecognizableInstr::hasFROperands() const {
470   const std::vector<CGIOperandList::OperandInfo> &OperandList = *Operands;
471   unsigned numOperands = OperandList.size();
472 
473   for (unsigned operandIndex = 0; operandIndex < numOperands; ++operandIndex) {
474     const std::string &recName = OperandList[operandIndex].Rec->getName();
475 
476     if (recName.find("FR") != recName.npos)
477       return true;
478   }
479   return false;
480 }
481 
has256BitOperands() const482 bool RecognizableInstr::has256BitOperands() const {
483   const std::vector<CGIOperandList::OperandInfo> &OperandList = *Operands;
484   unsigned numOperands = OperandList.size();
485 
486   for (unsigned operandIndex = 0; operandIndex < numOperands; ++operandIndex) {
487     const std::string &recName = OperandList[operandIndex].Rec->getName();
488 
489     if (!recName.compare("VR256")) {
490       return true;
491     }
492   }
493   return false;
494 }
495 
handleOperand(bool optional,unsigned & operandIndex,unsigned & physicalOperandIndex,unsigned & numPhysicalOperands,const unsigned * operandMapping,OperandEncoding (* encodingFromString)(const std::string &,bool hasOpSizePrefix))496 void RecognizableInstr::handleOperand(bool optional, unsigned &operandIndex,
497                                       unsigned &physicalOperandIndex,
498                                       unsigned &numPhysicalOperands,
499                                       const unsigned *operandMapping,
500                                       OperandEncoding (*encodingFromString)
501                                         (const std::string&,
502                                          bool hasOpSizePrefix)) {
503   if (optional) {
504     if (physicalOperandIndex >= numPhysicalOperands)
505       return;
506   } else {
507     assert(physicalOperandIndex < numPhysicalOperands);
508   }
509 
510   while (operandMapping[operandIndex] != operandIndex) {
511     Spec->operands[operandIndex].encoding = ENCODING_DUP;
512     Spec->operands[operandIndex].type =
513       (OperandType)(TYPE_DUP0 + operandMapping[operandIndex]);
514     ++operandIndex;
515   }
516 
517   const std::string &typeName = (*Operands)[operandIndex].Rec->getName();
518 
519   Spec->operands[operandIndex].encoding = encodingFromString(typeName,
520                                                               HasOpSizePrefix);
521   Spec->operands[operandIndex].type = typeFromString(typeName,
522                                                      IsSSE,
523                                                      HasREX_WPrefix,
524                                                      HasOpSizePrefix);
525 
526   ++operandIndex;
527   ++physicalOperandIndex;
528 }
529 
emitInstructionSpecifier(DisassemblerTables & tables)530 void RecognizableInstr::emitInstructionSpecifier(DisassemblerTables &tables) {
531   Spec->name       = Name;
532 
533   if (!ShouldBeEmitted)
534     return;
535 
536   switch (filter()) {
537   case FILTER_WEAK:
538     Spec->filtered = true;
539     break;
540   case FILTER_STRONG:
541     ShouldBeEmitted = false;
542     return;
543   case FILTER_NORMAL:
544     break;
545   }
546 
547   Spec->insnContext = insnContext();
548 
549   const std::vector<CGIOperandList::OperandInfo> &OperandList = *Operands;
550 
551   unsigned numOperands = OperandList.size();
552   unsigned numPhysicalOperands = 0;
553 
554   // operandMapping maps from operands in OperandList to their originals.
555   // If operandMapping[i] != i, then the entry is a duplicate.
556   unsigned operandMapping[X86_MAX_OPERANDS];
557   assert(numOperands <= X86_MAX_OPERANDS && "X86_MAX_OPERANDS is not large enough");
558 
559   for (unsigned operandIndex = 0; operandIndex < numOperands; ++operandIndex) {
560     if (OperandList[operandIndex].Constraints.size()) {
561       const CGIOperandList::ConstraintInfo &Constraint =
562         OperandList[operandIndex].Constraints[0];
563       if (Constraint.isTied()) {
564         operandMapping[operandIndex] = operandIndex;
565         operandMapping[Constraint.getTiedOperand()] = operandIndex;
566       } else {
567         ++numPhysicalOperands;
568         operandMapping[operandIndex] = operandIndex;
569       }
570     } else {
571       ++numPhysicalOperands;
572       operandMapping[operandIndex] = operandIndex;
573     }
574   }
575 
576 #define HANDLE_OPERAND(class)               \
577   handleOperand(false,                      \
578                 operandIndex,               \
579                 physicalOperandIndex,       \
580                 numPhysicalOperands,        \
581                 operandMapping,             \
582                 class##EncodingFromString);
583 
584 #define HANDLE_OPTIONAL(class)              \
585   handleOperand(true,                       \
586                 operandIndex,               \
587                 physicalOperandIndex,       \
588                 numPhysicalOperands,        \
589                 operandMapping,             \
590                 class##EncodingFromString);
591 
592   // operandIndex should always be < numOperands
593   unsigned operandIndex = 0;
594   // physicalOperandIndex should always be < numPhysicalOperands
595   unsigned physicalOperandIndex = 0;
596 
597   switch (Form) {
598   case X86Local::RawFrm:
599     // Operand 1 (optional) is an address or immediate.
600     // Operand 2 (optional) is an immediate.
601     assert(numPhysicalOperands <= 2 &&
602            "Unexpected number of operands for RawFrm");
603     HANDLE_OPTIONAL(relocation)
604     HANDLE_OPTIONAL(immediate)
605     break;
606   case X86Local::AddRegFrm:
607     // Operand 1 is added to the opcode.
608     // Operand 2 (optional) is an address.
609     assert(numPhysicalOperands >= 1 && numPhysicalOperands <= 2 &&
610            "Unexpected number of operands for AddRegFrm");
611     HANDLE_OPERAND(opcodeModifier)
612     HANDLE_OPTIONAL(relocation)
613     break;
614   case X86Local::MRMDestReg:
615     // Operand 1 is a register operand in the R/M field.
616     // Operand 2 is a register operand in the Reg/Opcode field.
617     // - In AVX, there is a register operand in the VEX.vvvv field here -
618     // Operand 3 (optional) is an immediate.
619     if (HasVEX_4VPrefix)
620       assert(numPhysicalOperands >= 3 && numPhysicalOperands <= 4 &&
621              "Unexpected number of operands for MRMDestRegFrm with VEX_4V");
622     else
623       assert(numPhysicalOperands >= 2 && numPhysicalOperands <= 3 &&
624              "Unexpected number of operands for MRMDestRegFrm");
625 
626     HANDLE_OPERAND(rmRegister)
627 
628     if (HasVEX_4VPrefix)
629       // FIXME: In AVX, the register below becomes the one encoded
630       // in ModRMVEX and the one above the one in the VEX.VVVV field
631       HANDLE_OPERAND(vvvvRegister)
632 
633     HANDLE_OPERAND(roRegister)
634     HANDLE_OPTIONAL(immediate)
635     break;
636   case X86Local::MRMDestMem:
637     // Operand 1 is a memory operand (possibly SIB-extended)
638     // Operand 2 is a register operand in the Reg/Opcode field.
639     // - In AVX, there is a register operand in the VEX.vvvv field here -
640     // Operand 3 (optional) is an immediate.
641     if (HasVEX_4VPrefix)
642       assert(numPhysicalOperands >= 3 && numPhysicalOperands <= 4 &&
643              "Unexpected number of operands for MRMDestMemFrm with VEX_4V");
644     else
645       assert(numPhysicalOperands >= 2 && numPhysicalOperands <= 3 &&
646              "Unexpected number of operands for MRMDestMemFrm");
647     HANDLE_OPERAND(memory)
648 
649     if (HasVEX_4VPrefix)
650       // FIXME: In AVX, the register below becomes the one encoded
651       // in ModRMVEX and the one above the one in the VEX.VVVV field
652       HANDLE_OPERAND(vvvvRegister)
653 
654     HANDLE_OPERAND(roRegister)
655     HANDLE_OPTIONAL(immediate)
656     break;
657   case X86Local::MRMSrcReg:
658     // Operand 1 is a register operand in the Reg/Opcode field.
659     // Operand 2 is a register operand in the R/M field.
660     // - In AVX, there is a register operand in the VEX.vvvv field here -
661     // Operand 3 (optional) is an immediate.
662     // Operand 4 (optional) is an immediate.
663 
664     if (HasVEX_4VPrefix || HasVEX_4VOp3Prefix)
665       assert(numPhysicalOperands >= 3 && numPhysicalOperands <= 5 &&
666              "Unexpected number of operands for MRMSrcRegFrm with VEX_4V");
667     else
668       assert(numPhysicalOperands >= 2 && numPhysicalOperands <= 4 &&
669              "Unexpected number of operands for MRMSrcRegFrm");
670 
671     HANDLE_OPERAND(roRegister)
672 
673     if (HasVEX_4VPrefix)
674       // FIXME: In AVX, the register below becomes the one encoded
675       // in ModRMVEX and the one above the one in the VEX.VVVV field
676       HANDLE_OPERAND(vvvvRegister)
677 
678     if (HasMemOp4Prefix)
679       HANDLE_OPERAND(immediate)
680 
681     HANDLE_OPERAND(rmRegister)
682 
683     if (HasVEX_4VOp3Prefix)
684       HANDLE_OPERAND(vvvvRegister)
685 
686     if (!HasMemOp4Prefix)
687       HANDLE_OPTIONAL(immediate)
688     HANDLE_OPTIONAL(immediate) // above might be a register in 7:4
689     HANDLE_OPTIONAL(immediate)
690     break;
691   case X86Local::MRMSrcMem:
692     // Operand 1 is a register operand in the Reg/Opcode field.
693     // Operand 2 is a memory operand (possibly SIB-extended)
694     // - In AVX, there is a register operand in the VEX.vvvv field here -
695     // Operand 3 (optional) is an immediate.
696 
697     if (HasVEX_4VPrefix || HasVEX_4VOp3Prefix)
698       assert(numPhysicalOperands >= 3 && numPhysicalOperands <= 5 &&
699              "Unexpected number of operands for MRMSrcMemFrm with VEX_4V");
700     else
701       assert(numPhysicalOperands >= 2 && numPhysicalOperands <= 3 &&
702              "Unexpected number of operands for MRMSrcMemFrm");
703 
704     HANDLE_OPERAND(roRegister)
705 
706     if (HasVEX_4VPrefix)
707       // FIXME: In AVX, the register below becomes the one encoded
708       // in ModRMVEX and the one above the one in the VEX.VVVV field
709       HANDLE_OPERAND(vvvvRegister)
710 
711     if (HasMemOp4Prefix)
712       HANDLE_OPERAND(immediate)
713 
714     HANDLE_OPERAND(memory)
715 
716     if (HasVEX_4VOp3Prefix)
717       HANDLE_OPERAND(vvvvRegister)
718 
719     if (!HasMemOp4Prefix)
720       HANDLE_OPTIONAL(immediate)
721     HANDLE_OPTIONAL(immediate) // above might be a register in 7:4
722     break;
723   case X86Local::MRM0r:
724   case X86Local::MRM1r:
725   case X86Local::MRM2r:
726   case X86Local::MRM3r:
727   case X86Local::MRM4r:
728   case X86Local::MRM5r:
729   case X86Local::MRM6r:
730   case X86Local::MRM7r:
731     // Operand 1 is a register operand in the R/M field.
732     // Operand 2 (optional) is an immediate or relocation.
733     // Operand 3 (optional) is an immediate.
734     if (HasVEX_4VPrefix)
735       assert(numPhysicalOperands <= 3 &&
736              "Unexpected number of operands for MRMnRFrm with VEX_4V");
737     else
738       assert(numPhysicalOperands <= 3 &&
739              "Unexpected number of operands for MRMnRFrm");
740     if (HasVEX_4VPrefix)
741       HANDLE_OPERAND(vvvvRegister)
742     HANDLE_OPTIONAL(rmRegister)
743     HANDLE_OPTIONAL(relocation)
744     HANDLE_OPTIONAL(immediate)
745     break;
746   case X86Local::MRM0m:
747   case X86Local::MRM1m:
748   case X86Local::MRM2m:
749   case X86Local::MRM3m:
750   case X86Local::MRM4m:
751   case X86Local::MRM5m:
752   case X86Local::MRM6m:
753   case X86Local::MRM7m:
754     // Operand 1 is a memory operand (possibly SIB-extended)
755     // Operand 2 (optional) is an immediate or relocation.
756     if (HasVEX_4VPrefix)
757       assert(numPhysicalOperands >= 2 && numPhysicalOperands <= 3 &&
758              "Unexpected number of operands for MRMnMFrm");
759     else
760       assert(numPhysicalOperands >= 1 && numPhysicalOperands <= 2 &&
761              "Unexpected number of operands for MRMnMFrm");
762     if (HasVEX_4VPrefix)
763       HANDLE_OPERAND(vvvvRegister)
764     HANDLE_OPERAND(memory)
765     HANDLE_OPTIONAL(relocation)
766     break;
767   case X86Local::RawFrmImm8:
768     // operand 1 is a 16-bit immediate
769     // operand 2 is an 8-bit immediate
770     assert(numPhysicalOperands == 2 &&
771            "Unexpected number of operands for X86Local::RawFrmImm8");
772     HANDLE_OPERAND(immediate)
773     HANDLE_OPERAND(immediate)
774     break;
775   case X86Local::RawFrmImm16:
776     // operand 1 is a 16-bit immediate
777     // operand 2 is a 16-bit immediate
778     HANDLE_OPERAND(immediate)
779     HANDLE_OPERAND(immediate)
780     break;
781   case X86Local::MRMInitReg:
782     // Ignored.
783     break;
784   }
785 
786   #undef HANDLE_OPERAND
787   #undef HANDLE_OPTIONAL
788 }
789 
emitDecodePath(DisassemblerTables & tables) const790 void RecognizableInstr::emitDecodePath(DisassemblerTables &tables) const {
791   // Special cases where the LLVM tables are not complete
792 
793 #define MAP(from, to)                     \
794   case X86Local::MRM_##from:              \
795     filter = new ExactFilter(0x##from);   \
796     break;
797 
798   OpcodeType    opcodeType  = (OpcodeType)-1;
799 
800   ModRMFilter*  filter      = NULL;
801   uint8_t       opcodeToSet = 0;
802 
803   switch (Prefix) {
804   // Extended two-byte opcodes can start with f2 0f, f3 0f, or 0f
805   case X86Local::XD:
806   case X86Local::XS:
807   case X86Local::TB:
808     opcodeType = TWOBYTE;
809 
810     switch (Opcode) {
811     default:
812       if (needsModRMForDecode(Form))
813         filter = new ModFilter(isRegFormat(Form));
814       else
815         filter = new DumbFilter();
816       break;
817 #define EXTENSION_TABLE(n) case 0x##n:
818     TWO_BYTE_EXTENSION_TABLES
819 #undef EXTENSION_TABLE
820       switch (Form) {
821       default:
822         llvm_unreachable("Unhandled two-byte extended opcode");
823       case X86Local::MRM0r:
824       case X86Local::MRM1r:
825       case X86Local::MRM2r:
826       case X86Local::MRM3r:
827       case X86Local::MRM4r:
828       case X86Local::MRM5r:
829       case X86Local::MRM6r:
830       case X86Local::MRM7r:
831         filter = new ExtendedFilter(true, Form - X86Local::MRM0r);
832         break;
833       case X86Local::MRM0m:
834       case X86Local::MRM1m:
835       case X86Local::MRM2m:
836       case X86Local::MRM3m:
837       case X86Local::MRM4m:
838       case X86Local::MRM5m:
839       case X86Local::MRM6m:
840       case X86Local::MRM7m:
841         filter = new ExtendedFilter(false, Form - X86Local::MRM0m);
842         break;
843       MRM_MAPPING
844       } // switch (Form)
845       break;
846     } // switch (Opcode)
847     opcodeToSet = Opcode;
848     break;
849   case X86Local::T8:
850   case X86Local::T8XD:
851   case X86Local::T8XS:
852     opcodeType = THREEBYTE_38;
853     switch (Opcode) {
854     default:
855       if (needsModRMForDecode(Form))
856         filter = new ModFilter(isRegFormat(Form));
857       else
858         filter = new DumbFilter();
859       break;
860 #define EXTENSION_TABLE(n) case 0x##n:
861     THREE_BYTE_38_EXTENSION_TABLES
862 #undef EXTENSION_TABLE
863       switch (Form) {
864       default:
865         llvm_unreachable("Unhandled two-byte extended opcode");
866       case X86Local::MRM0r:
867       case X86Local::MRM1r:
868       case X86Local::MRM2r:
869       case X86Local::MRM3r:
870       case X86Local::MRM4r:
871       case X86Local::MRM5r:
872       case X86Local::MRM6r:
873       case X86Local::MRM7r:
874         filter = new ExtendedFilter(true, Form - X86Local::MRM0r);
875         break;
876       case X86Local::MRM0m:
877       case X86Local::MRM1m:
878       case X86Local::MRM2m:
879       case X86Local::MRM3m:
880       case X86Local::MRM4m:
881       case X86Local::MRM5m:
882       case X86Local::MRM6m:
883       case X86Local::MRM7m:
884         filter = new ExtendedFilter(false, Form - X86Local::MRM0m);
885         break;
886       MRM_MAPPING
887       } // switch (Form)
888       break;
889     } // switch (Opcode)
890     opcodeToSet = Opcode;
891     break;
892   case X86Local::P_TA:
893   case X86Local::TAXD:
894     opcodeType = THREEBYTE_3A;
895     if (needsModRMForDecode(Form))
896       filter = new ModFilter(isRegFormat(Form));
897     else
898       filter = new DumbFilter();
899     opcodeToSet = Opcode;
900     break;
901   case X86Local::A6:
902     opcodeType = THREEBYTE_A6;
903     if (needsModRMForDecode(Form))
904       filter = new ModFilter(isRegFormat(Form));
905     else
906       filter = new DumbFilter();
907     opcodeToSet = Opcode;
908     break;
909   case X86Local::A7:
910     opcodeType = THREEBYTE_A7;
911     if (needsModRMForDecode(Form))
912       filter = new ModFilter(isRegFormat(Form));
913     else
914       filter = new DumbFilter();
915     opcodeToSet = Opcode;
916     break;
917   case X86Local::D8:
918   case X86Local::D9:
919   case X86Local::DA:
920   case X86Local::DB:
921   case X86Local::DC:
922   case X86Local::DD:
923   case X86Local::DE:
924   case X86Local::DF:
925     assert(Opcode >= 0xc0 && "Unexpected opcode for an escape opcode");
926     opcodeType = ONEBYTE;
927     if (Form == X86Local::AddRegFrm) {
928       Spec->modifierType = MODIFIER_MODRM;
929       Spec->modifierBase = Opcode;
930       filter = new AddRegEscapeFilter(Opcode);
931     } else {
932       filter = new EscapeFilter(true, Opcode);
933     }
934     opcodeToSet = 0xd8 + (Prefix - X86Local::D8);
935     break;
936   case X86Local::REP:
937   default:
938     opcodeType = ONEBYTE;
939     switch (Opcode) {
940 #define EXTENSION_TABLE(n) case 0x##n:
941     ONE_BYTE_EXTENSION_TABLES
942 #undef EXTENSION_TABLE
943       switch (Form) {
944       default:
945         llvm_unreachable("Fell through the cracks of a single-byte "
946                          "extended opcode");
947       case X86Local::MRM0r:
948       case X86Local::MRM1r:
949       case X86Local::MRM2r:
950       case X86Local::MRM3r:
951       case X86Local::MRM4r:
952       case X86Local::MRM5r:
953       case X86Local::MRM6r:
954       case X86Local::MRM7r:
955         filter = new ExtendedFilter(true, Form - X86Local::MRM0r);
956         break;
957       case X86Local::MRM0m:
958       case X86Local::MRM1m:
959       case X86Local::MRM2m:
960       case X86Local::MRM3m:
961       case X86Local::MRM4m:
962       case X86Local::MRM5m:
963       case X86Local::MRM6m:
964       case X86Local::MRM7m:
965         filter = new ExtendedFilter(false, Form - X86Local::MRM0m);
966         break;
967       MRM_MAPPING
968       } // switch (Form)
969       break;
970     case 0xd8:
971     case 0xd9:
972     case 0xda:
973     case 0xdb:
974     case 0xdc:
975     case 0xdd:
976     case 0xde:
977     case 0xdf:
978       filter = new EscapeFilter(false, Form - X86Local::MRM0m);
979       break;
980     default:
981       if (needsModRMForDecode(Form))
982         filter = new ModFilter(isRegFormat(Form));
983       else
984         filter = new DumbFilter();
985       break;
986     } // switch (Opcode)
987     opcodeToSet = Opcode;
988   } // switch (Prefix)
989 
990   assert(opcodeType != (OpcodeType)-1 &&
991          "Opcode type not set");
992   assert(filter && "Filter not set");
993 
994   if (Form == X86Local::AddRegFrm) {
995     if(Spec->modifierType != MODIFIER_MODRM) {
996       assert(opcodeToSet < 0xf9 &&
997              "Not enough room for all ADDREG_FRM operands");
998 
999       uint8_t currentOpcode;
1000 
1001       for (currentOpcode = opcodeToSet;
1002            currentOpcode < opcodeToSet + 8;
1003            ++currentOpcode)
1004         tables.setTableFields(opcodeType,
1005                               insnContext(),
1006                               currentOpcode,
1007                               *filter,
1008                               UID, Is32Bit, IgnoresVEX_L);
1009 
1010       Spec->modifierType = MODIFIER_OPCODE;
1011       Spec->modifierBase = opcodeToSet;
1012     } else {
1013       // modifierBase was set where MODIFIER_MODRM was set
1014       tables.setTableFields(opcodeType,
1015                             insnContext(),
1016                             opcodeToSet,
1017                             *filter,
1018                             UID, Is32Bit, IgnoresVEX_L);
1019     }
1020   } else {
1021     tables.setTableFields(opcodeType,
1022                           insnContext(),
1023                           opcodeToSet,
1024                           *filter,
1025                           UID, Is32Bit, IgnoresVEX_L);
1026 
1027     Spec->modifierType = MODIFIER_NONE;
1028     Spec->modifierBase = opcodeToSet;
1029   }
1030 
1031   delete filter;
1032 
1033 #undef MAP
1034 }
1035 
1036 #define TYPE(str, type) if (s == str) return type;
typeFromString(const std::string & s,bool isSSE,bool hasREX_WPrefix,bool hasOpSizePrefix)1037 OperandType RecognizableInstr::typeFromString(const std::string &s,
1038                                               bool isSSE,
1039                                               bool hasREX_WPrefix,
1040                                               bool hasOpSizePrefix) {
1041   if (isSSE) {
1042     // For SSE instructions, we ignore the OpSize prefix and force operand
1043     // sizes.
1044     TYPE("GR16",              TYPE_R16)
1045     TYPE("GR32",              TYPE_R32)
1046     TYPE("GR64",              TYPE_R64)
1047   }
1048   if(hasREX_WPrefix) {
1049     // For instructions with a REX_W prefix, a declared 32-bit register encoding
1050     // is special.
1051     TYPE("GR32",              TYPE_R32)
1052   }
1053   if(!hasOpSizePrefix) {
1054     // For instructions without an OpSize prefix, a declared 16-bit register or
1055     // immediate encoding is special.
1056     TYPE("GR16",              TYPE_R16)
1057     TYPE("i16imm",            TYPE_IMM16)
1058   }
1059   TYPE("i16mem",              TYPE_Mv)
1060   TYPE("i16imm",              TYPE_IMMv)
1061   TYPE("i16i8imm",            TYPE_IMMv)
1062   TYPE("GR16",                TYPE_Rv)
1063   TYPE("i32mem",              TYPE_Mv)
1064   TYPE("i32imm",              TYPE_IMMv)
1065   TYPE("i32i8imm",            TYPE_IMM32)
1066   TYPE("u32u8imm",            TYPE_IMM32)
1067   TYPE("GR32",                TYPE_Rv)
1068   TYPE("i64mem",              TYPE_Mv)
1069   TYPE("i64i32imm",           TYPE_IMM64)
1070   TYPE("i64i8imm",            TYPE_IMM64)
1071   TYPE("GR64",                TYPE_R64)
1072   TYPE("i8mem",               TYPE_M8)
1073   TYPE("i8imm",               TYPE_IMM8)
1074   TYPE("GR8",                 TYPE_R8)
1075   TYPE("VR128",               TYPE_XMM128)
1076   TYPE("f128mem",             TYPE_M128)
1077   TYPE("f256mem",             TYPE_M256)
1078   TYPE("FR64",                TYPE_XMM64)
1079   TYPE("f64mem",              TYPE_M64FP)
1080   TYPE("sdmem",               TYPE_M64FP)
1081   TYPE("FR32",                TYPE_XMM32)
1082   TYPE("f32mem",              TYPE_M32FP)
1083   TYPE("ssmem",               TYPE_M32FP)
1084   TYPE("RST",                 TYPE_ST)
1085   TYPE("i128mem",             TYPE_M128)
1086   TYPE("i256mem",             TYPE_M256)
1087   TYPE("i64i32imm_pcrel",     TYPE_REL64)
1088   TYPE("i16imm_pcrel",        TYPE_REL16)
1089   TYPE("i32imm_pcrel",        TYPE_REL32)
1090   TYPE("SSECC",               TYPE_IMM3)
1091   TYPE("AVXCC",               TYPE_IMM5)
1092   TYPE("brtarget",            TYPE_RELv)
1093   TYPE("uncondbrtarget",      TYPE_RELv)
1094   TYPE("brtarget8",           TYPE_REL8)
1095   TYPE("f80mem",              TYPE_M80FP)
1096   TYPE("lea32mem",            TYPE_LEA)
1097   TYPE("lea64_32mem",         TYPE_LEA)
1098   TYPE("lea64mem",            TYPE_LEA)
1099   TYPE("VR64",                TYPE_MM64)
1100   TYPE("i64imm",              TYPE_IMMv)
1101   TYPE("opaque32mem",         TYPE_M1616)
1102   TYPE("opaque48mem",         TYPE_M1632)
1103   TYPE("opaque80mem",         TYPE_M1664)
1104   TYPE("opaque512mem",        TYPE_M512)
1105   TYPE("SEGMENT_REG",         TYPE_SEGMENTREG)
1106   TYPE("DEBUG_REG",           TYPE_DEBUGREG)
1107   TYPE("CONTROL_REG",         TYPE_CONTROLREG)
1108   TYPE("offset8",             TYPE_MOFFS8)
1109   TYPE("offset16",            TYPE_MOFFS16)
1110   TYPE("offset32",            TYPE_MOFFS32)
1111   TYPE("offset64",            TYPE_MOFFS64)
1112   TYPE("VR256",               TYPE_XMM256)
1113   TYPE("GR16_NOAX",           TYPE_Rv)
1114   TYPE("GR32_NOAX",           TYPE_Rv)
1115   TYPE("GR64_NOAX",           TYPE_R64)
1116   TYPE("vx32mem",             TYPE_M32)
1117   TYPE("vy32mem",             TYPE_M32)
1118   TYPE("vx64mem",             TYPE_M64)
1119   TYPE("vy64mem",             TYPE_M64)
1120   errs() << "Unhandled type string " << s << "\n";
1121   llvm_unreachable("Unhandled type string");
1122 }
1123 #undef TYPE
1124 
1125 #define ENCODING(str, encoding) if (s == str) return encoding;
immediateEncodingFromString(const std::string & s,bool hasOpSizePrefix)1126 OperandEncoding RecognizableInstr::immediateEncodingFromString
1127   (const std::string &s,
1128    bool hasOpSizePrefix) {
1129   if(!hasOpSizePrefix) {
1130     // For instructions without an OpSize prefix, a declared 16-bit register or
1131     // immediate encoding is special.
1132     ENCODING("i16imm",        ENCODING_IW)
1133   }
1134   ENCODING("i32i8imm",        ENCODING_IB)
1135   ENCODING("u32u8imm",        ENCODING_IB)
1136   ENCODING("SSECC",           ENCODING_IB)
1137   ENCODING("AVXCC",           ENCODING_IB)
1138   ENCODING("i16imm",          ENCODING_Iv)
1139   ENCODING("i16i8imm",        ENCODING_IB)
1140   ENCODING("i32imm",          ENCODING_Iv)
1141   ENCODING("i64i32imm",       ENCODING_ID)
1142   ENCODING("i64i8imm",        ENCODING_IB)
1143   ENCODING("i8imm",           ENCODING_IB)
1144   // This is not a typo.  Instructions like BLENDVPD put
1145   // register IDs in 8-bit immediates nowadays.
1146   ENCODING("VR256",           ENCODING_IB)
1147   ENCODING("VR128",           ENCODING_IB)
1148   ENCODING("FR32",            ENCODING_IB)
1149   ENCODING("FR64",            ENCODING_IB)
1150   errs() << "Unhandled immediate encoding " << s << "\n";
1151   llvm_unreachable("Unhandled immediate encoding");
1152 }
1153 
rmRegisterEncodingFromString(const std::string & s,bool hasOpSizePrefix)1154 OperandEncoding RecognizableInstr::rmRegisterEncodingFromString
1155   (const std::string &s,
1156    bool hasOpSizePrefix) {
1157   ENCODING("GR16",            ENCODING_RM)
1158   ENCODING("GR32",            ENCODING_RM)
1159   ENCODING("GR64",            ENCODING_RM)
1160   ENCODING("GR8",             ENCODING_RM)
1161   ENCODING("VR128",           ENCODING_RM)
1162   ENCODING("FR64",            ENCODING_RM)
1163   ENCODING("FR32",            ENCODING_RM)
1164   ENCODING("VR64",            ENCODING_RM)
1165   ENCODING("VR256",           ENCODING_RM)
1166   errs() << "Unhandled R/M register encoding " << s << "\n";
1167   llvm_unreachable("Unhandled R/M register encoding");
1168 }
1169 
roRegisterEncodingFromString(const std::string & s,bool hasOpSizePrefix)1170 OperandEncoding RecognizableInstr::roRegisterEncodingFromString
1171   (const std::string &s,
1172    bool hasOpSizePrefix) {
1173   ENCODING("GR16",            ENCODING_REG)
1174   ENCODING("GR32",            ENCODING_REG)
1175   ENCODING("GR64",            ENCODING_REG)
1176   ENCODING("GR8",             ENCODING_REG)
1177   ENCODING("VR128",           ENCODING_REG)
1178   ENCODING("FR64",            ENCODING_REG)
1179   ENCODING("FR32",            ENCODING_REG)
1180   ENCODING("VR64",            ENCODING_REG)
1181   ENCODING("SEGMENT_REG",     ENCODING_REG)
1182   ENCODING("DEBUG_REG",       ENCODING_REG)
1183   ENCODING("CONTROL_REG",     ENCODING_REG)
1184   ENCODING("VR256",           ENCODING_REG)
1185   errs() << "Unhandled reg/opcode register encoding " << s << "\n";
1186   llvm_unreachable("Unhandled reg/opcode register encoding");
1187 }
1188 
vvvvRegisterEncodingFromString(const std::string & s,bool hasOpSizePrefix)1189 OperandEncoding RecognizableInstr::vvvvRegisterEncodingFromString
1190   (const std::string &s,
1191    bool hasOpSizePrefix) {
1192   ENCODING("GR32",            ENCODING_VVVV)
1193   ENCODING("GR64",            ENCODING_VVVV)
1194   ENCODING("FR32",            ENCODING_VVVV)
1195   ENCODING("FR64",            ENCODING_VVVV)
1196   ENCODING("VR128",           ENCODING_VVVV)
1197   ENCODING("VR256",           ENCODING_VVVV)
1198   errs() << "Unhandled VEX.vvvv register encoding " << s << "\n";
1199   llvm_unreachable("Unhandled VEX.vvvv register encoding");
1200 }
1201 
memoryEncodingFromString(const std::string & s,bool hasOpSizePrefix)1202 OperandEncoding RecognizableInstr::memoryEncodingFromString
1203   (const std::string &s,
1204    bool hasOpSizePrefix) {
1205   ENCODING("i16mem",          ENCODING_RM)
1206   ENCODING("i32mem",          ENCODING_RM)
1207   ENCODING("i64mem",          ENCODING_RM)
1208   ENCODING("i8mem",           ENCODING_RM)
1209   ENCODING("ssmem",           ENCODING_RM)
1210   ENCODING("sdmem",           ENCODING_RM)
1211   ENCODING("f128mem",         ENCODING_RM)
1212   ENCODING("f256mem",         ENCODING_RM)
1213   ENCODING("f64mem",          ENCODING_RM)
1214   ENCODING("f32mem",          ENCODING_RM)
1215   ENCODING("i128mem",         ENCODING_RM)
1216   ENCODING("i256mem",         ENCODING_RM)
1217   ENCODING("f80mem",          ENCODING_RM)
1218   ENCODING("lea32mem",        ENCODING_RM)
1219   ENCODING("lea64_32mem",     ENCODING_RM)
1220   ENCODING("lea64mem",        ENCODING_RM)
1221   ENCODING("opaque32mem",     ENCODING_RM)
1222   ENCODING("opaque48mem",     ENCODING_RM)
1223   ENCODING("opaque80mem",     ENCODING_RM)
1224   ENCODING("opaque512mem",    ENCODING_RM)
1225   ENCODING("vx32mem",         ENCODING_RM)
1226   ENCODING("vy32mem",         ENCODING_RM)
1227   ENCODING("vx64mem",         ENCODING_RM)
1228   ENCODING("vy64mem",         ENCODING_RM)
1229   errs() << "Unhandled memory encoding " << s << "\n";
1230   llvm_unreachable("Unhandled memory encoding");
1231 }
1232 
relocationEncodingFromString(const std::string & s,bool hasOpSizePrefix)1233 OperandEncoding RecognizableInstr::relocationEncodingFromString
1234   (const std::string &s,
1235    bool hasOpSizePrefix) {
1236   if(!hasOpSizePrefix) {
1237     // For instructions without an OpSize prefix, a declared 16-bit register or
1238     // immediate encoding is special.
1239     ENCODING("i16imm",        ENCODING_IW)
1240   }
1241   ENCODING("i16imm",          ENCODING_Iv)
1242   ENCODING("i16i8imm",        ENCODING_IB)
1243   ENCODING("i32imm",          ENCODING_Iv)
1244   ENCODING("i32i8imm",        ENCODING_IB)
1245   ENCODING("i64i32imm",       ENCODING_ID)
1246   ENCODING("i64i8imm",        ENCODING_IB)
1247   ENCODING("i8imm",           ENCODING_IB)
1248   ENCODING("i64i32imm_pcrel", ENCODING_ID)
1249   ENCODING("i16imm_pcrel",    ENCODING_IW)
1250   ENCODING("i32imm_pcrel",    ENCODING_ID)
1251   ENCODING("brtarget",        ENCODING_Iv)
1252   ENCODING("brtarget8",       ENCODING_IB)
1253   ENCODING("i64imm",          ENCODING_IO)
1254   ENCODING("offset8",         ENCODING_Ia)
1255   ENCODING("offset16",        ENCODING_Ia)
1256   ENCODING("offset32",        ENCODING_Ia)
1257   ENCODING("offset64",        ENCODING_Ia)
1258   errs() << "Unhandled relocation encoding " << s << "\n";
1259   llvm_unreachable("Unhandled relocation encoding");
1260 }
1261 
opcodeModifierEncodingFromString(const std::string & s,bool hasOpSizePrefix)1262 OperandEncoding RecognizableInstr::opcodeModifierEncodingFromString
1263   (const std::string &s,
1264    bool hasOpSizePrefix) {
1265   ENCODING("RST",             ENCODING_I)
1266   ENCODING("GR32",            ENCODING_Rv)
1267   ENCODING("GR64",            ENCODING_RO)
1268   ENCODING("GR16",            ENCODING_Rv)
1269   ENCODING("GR8",             ENCODING_RB)
1270   ENCODING("GR16_NOAX",       ENCODING_Rv)
1271   ENCODING("GR32_NOAX",       ENCODING_Rv)
1272   ENCODING("GR64_NOAX",       ENCODING_RO)
1273   errs() << "Unhandled opcode modifier encoding " << s << "\n";
1274   llvm_unreachable("Unhandled opcode modifier encoding");
1275 }
1276 #undef ENCODING
1277