1 //=== Target/TargetRegisterInfo.h - Target Register Information -*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file describes an abstract interface used to get information about a 11 // target machines register file. This information is used for a variety of 12 // purposed, especially register allocation. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #ifndef LLVM_TARGET_TARGETREGISTERINFO_H 17 #define LLVM_TARGET_TARGETREGISTERINFO_H 18 19 #include "llvm/MC/MCRegisterInfo.h" 20 #include "llvm/CodeGen/MachineBasicBlock.h" 21 #include "llvm/CodeGen/ValueTypes.h" 22 #include "llvm/ADT/ArrayRef.h" 23 #include "llvm/CallingConv.h" 24 #include <cassert> 25 #include <functional> 26 27 namespace llvm { 28 29 class BitVector; 30 class MachineFunction; 31 class RegScavenger; 32 template<class T> class SmallVectorImpl; 33 class raw_ostream; 34 35 class TargetRegisterClass { 36 public: 37 typedef const uint16_t* iterator; 38 typedef const uint16_t* const_iterator; 39 typedef const MVT::SimpleValueType* vt_iterator; 40 typedef const TargetRegisterClass* const * sc_iterator; 41 42 // Instance variables filled by tablegen, do not use! 43 const MCRegisterClass *MC; 44 const vt_iterator VTs; 45 const uint32_t *SubClassMask; 46 const uint16_t *SuperRegIndices; 47 const sc_iterator SuperClasses; 48 ArrayRef<uint16_t> (*OrderFunc)(const MachineFunction&); 49 50 /// getID() - Return the register class ID number. 51 /// getID()52 unsigned getID() const { return MC->getID(); } 53 54 /// getName() - Return the register class name for debugging. 55 /// getName()56 const char *getName() const { return MC->getName(); } 57 58 /// begin/end - Return all of the registers in this class. 59 /// begin()60 iterator begin() const { return MC->begin(); } end()61 iterator end() const { return MC->end(); } 62 63 /// getNumRegs - Return the number of registers in this class. 64 /// getNumRegs()65 unsigned getNumRegs() const { return MC->getNumRegs(); } 66 67 /// getRegister - Return the specified register in the class. 68 /// getRegister(unsigned i)69 unsigned getRegister(unsigned i) const { 70 return MC->getRegister(i); 71 } 72 73 /// contains - Return true if the specified register is included in this 74 /// register class. This does not include virtual registers. contains(unsigned Reg)75 bool contains(unsigned Reg) const { 76 return MC->contains(Reg); 77 } 78 79 /// contains - Return true if both registers are in this class. contains(unsigned Reg1,unsigned Reg2)80 bool contains(unsigned Reg1, unsigned Reg2) const { 81 return MC->contains(Reg1, Reg2); 82 } 83 84 /// getSize - Return the size of the register in bytes, which is also the size 85 /// of a stack slot allocated to hold a spilled copy of this register. getSize()86 unsigned getSize() const { return MC->getSize(); } 87 88 /// getAlignment - Return the minimum required alignment for a register of 89 /// this class. getAlignment()90 unsigned getAlignment() const { return MC->getAlignment(); } 91 92 /// getCopyCost - Return the cost of copying a value between two registers in 93 /// this class. A negative number means the register class is very expensive 94 /// to copy e.g. status flag register classes. getCopyCost()95 int getCopyCost() const { return MC->getCopyCost(); } 96 97 /// isAllocatable - Return true if this register class may be used to create 98 /// virtual registers. isAllocatable()99 bool isAllocatable() const { return MC->isAllocatable(); } 100 101 /// hasType - return true if this TargetRegisterClass has the ValueType vt. 102 /// hasType(EVT vt)103 bool hasType(EVT vt) const { 104 for(int i = 0; VTs[i] != MVT::Other; ++i) 105 if (EVT(VTs[i]) == vt) 106 return true; 107 return false; 108 } 109 110 /// vt_begin / vt_end - Loop over all of the value types that can be 111 /// represented by values in this register class. vt_begin()112 vt_iterator vt_begin() const { 113 return VTs; 114 } 115 vt_end()116 vt_iterator vt_end() const { 117 vt_iterator I = VTs; 118 while (*I != MVT::Other) ++I; 119 return I; 120 } 121 122 /// hasSubClass - return true if the specified TargetRegisterClass 123 /// is a proper sub-class of this TargetRegisterClass. hasSubClass(const TargetRegisterClass * RC)124 bool hasSubClass(const TargetRegisterClass *RC) const { 125 return RC != this && hasSubClassEq(RC); 126 } 127 128 /// hasSubClassEq - Returns true if RC is a sub-class of or equal to this 129 /// class. hasSubClassEq(const TargetRegisterClass * RC)130 bool hasSubClassEq(const TargetRegisterClass *RC) const { 131 unsigned ID = RC->getID(); 132 return (SubClassMask[ID / 32] >> (ID % 32)) & 1; 133 } 134 135 /// hasSuperClass - return true if the specified TargetRegisterClass is a 136 /// proper super-class of this TargetRegisterClass. hasSuperClass(const TargetRegisterClass * RC)137 bool hasSuperClass(const TargetRegisterClass *RC) const { 138 return RC->hasSubClass(this); 139 } 140 141 /// hasSuperClassEq - Returns true if RC is a super-class of or equal to this 142 /// class. hasSuperClassEq(const TargetRegisterClass * RC)143 bool hasSuperClassEq(const TargetRegisterClass *RC) const { 144 return RC->hasSubClassEq(this); 145 } 146 147 /// getSubClassMask - Returns a bit vector of subclasses, including this one. 148 /// The vector is indexed by class IDs, see hasSubClassEq() above for how to 149 /// use it. getSubClassMask()150 const uint32_t *getSubClassMask() const { 151 return SubClassMask; 152 } 153 154 /// getSuperRegIndices - Returns a 0-terminated list of sub-register indices 155 /// that project some super-register class into this register class. The list 156 /// has an entry for each Idx such that: 157 /// 158 /// There exists SuperRC where: 159 /// For all Reg in SuperRC: 160 /// this->contains(Reg:Idx) 161 /// getSuperRegIndices()162 const uint16_t *getSuperRegIndices() const { 163 return SuperRegIndices; 164 } 165 166 /// getSuperClasses - Returns a NULL terminated list of super-classes. The 167 /// classes are ordered by ID which is also a topological ordering from large 168 /// to small classes. The list does NOT include the current class. getSuperClasses()169 sc_iterator getSuperClasses() const { 170 return SuperClasses; 171 } 172 173 /// isASubClass - return true if this TargetRegisterClass is a subset 174 /// class of at least one other TargetRegisterClass. isASubClass()175 bool isASubClass() const { 176 return SuperClasses[0] != 0; 177 } 178 179 /// getRawAllocationOrder - Returns the preferred order for allocating 180 /// registers from this register class in MF. The raw order comes directly 181 /// from the .td file and may include reserved registers that are not 182 /// allocatable. Register allocators should also make sure to allocate 183 /// callee-saved registers only after all the volatiles are used. The 184 /// RegisterClassInfo class provides filtered allocation orders with 185 /// callee-saved registers moved to the end. 186 /// 187 /// The MachineFunction argument can be used to tune the allocatable 188 /// registers based on the characteristics of the function, subtarget, or 189 /// other criteria. 190 /// 191 /// By default, this method returns all registers in the class. 192 /// getRawAllocationOrder(const MachineFunction & MF)193 ArrayRef<uint16_t> getRawAllocationOrder(const MachineFunction &MF) const { 194 return OrderFunc ? OrderFunc(MF) : makeArrayRef(begin(), getNumRegs()); 195 } 196 }; 197 198 /// TargetRegisterInfoDesc - Extra information, not in MCRegisterDesc, about 199 /// registers. These are used by codegen, not by MC. 200 struct TargetRegisterInfoDesc { 201 unsigned CostPerUse; // Extra cost of instructions using register. 202 bool inAllocatableClass; // Register belongs to an allocatable regclass. 203 }; 204 205 /// Each TargetRegisterClass has a per register weight, and weight 206 /// limit which must be less than the limits of its pressure sets. 207 struct RegClassWeight { 208 unsigned RegWeight; 209 unsigned WeightLimit; 210 }; 211 212 /// TargetRegisterInfo base class - We assume that the target defines a static 213 /// array of TargetRegisterDesc objects that represent all of the machine 214 /// registers that the target has. As such, we simply have to track a pointer 215 /// to this array so that we can turn register number into a register 216 /// descriptor. 217 /// 218 class TargetRegisterInfo : public MCRegisterInfo { 219 public: 220 typedef const TargetRegisterClass * const * regclass_iterator; 221 private: 222 const TargetRegisterInfoDesc *InfoDesc; // Extra desc array for codegen 223 const char *const *SubRegIndexNames; // Names of subreg indexes. 224 regclass_iterator RegClassBegin, RegClassEnd; // List of regclasses 225 226 protected: 227 TargetRegisterInfo(const TargetRegisterInfoDesc *ID, 228 regclass_iterator RegClassBegin, 229 regclass_iterator RegClassEnd, 230 const char *const *subregindexnames); 231 virtual ~TargetRegisterInfo(); 232 public: 233 234 // Register numbers can represent physical registers, virtual registers, and 235 // sometimes stack slots. The unsigned values are divided into these ranges: 236 // 237 // 0 Not a register, can be used as a sentinel. 238 // [1;2^30) Physical registers assigned by TableGen. 239 // [2^30;2^31) Stack slots. (Rarely used.) 240 // [2^31;2^32) Virtual registers assigned by MachineRegisterInfo. 241 // 242 // Further sentinels can be allocated from the small negative integers. 243 // DenseMapInfo<unsigned> uses -1u and -2u. 244 245 /// isStackSlot - Sometimes it is useful the be able to store a non-negative 246 /// frame index in a variable that normally holds a register. isStackSlot() 247 /// returns true if Reg is in the range used for stack slots. 248 /// 249 /// Note that isVirtualRegister() and isPhysicalRegister() cannot handle stack 250 /// slots, so if a variable may contains a stack slot, always check 251 /// isStackSlot() first. 252 /// isStackSlot(unsigned Reg)253 static bool isStackSlot(unsigned Reg) { 254 return int(Reg) >= (1 << 30); 255 } 256 257 /// stackSlot2Index - Compute the frame index from a register value 258 /// representing a stack slot. stackSlot2Index(unsigned Reg)259 static int stackSlot2Index(unsigned Reg) { 260 assert(isStackSlot(Reg) && "Not a stack slot"); 261 return int(Reg - (1u << 30)); 262 } 263 264 /// index2StackSlot - Convert a non-negative frame index to a stack slot 265 /// register value. index2StackSlot(int FI)266 static unsigned index2StackSlot(int FI) { 267 assert(FI >= 0 && "Cannot hold a negative frame index."); 268 return FI + (1u << 30); 269 } 270 271 /// isPhysicalRegister - Return true if the specified register number is in 272 /// the physical register namespace. isPhysicalRegister(unsigned Reg)273 static bool isPhysicalRegister(unsigned Reg) { 274 assert(!isStackSlot(Reg) && "Not a register! Check isStackSlot() first."); 275 return int(Reg) > 0; 276 } 277 278 /// isVirtualRegister - Return true if the specified register number is in 279 /// the virtual register namespace. isVirtualRegister(unsigned Reg)280 static bool isVirtualRegister(unsigned Reg) { 281 assert(!isStackSlot(Reg) && "Not a register! Check isStackSlot() first."); 282 return int(Reg) < 0; 283 } 284 285 /// virtReg2Index - Convert a virtual register number to a 0-based index. 286 /// The first virtual register in a function will get the index 0. virtReg2Index(unsigned Reg)287 static unsigned virtReg2Index(unsigned Reg) { 288 assert(isVirtualRegister(Reg) && "Not a virtual register"); 289 return Reg & ~(1u << 31); 290 } 291 292 /// index2VirtReg - Convert a 0-based index to a virtual register number. 293 /// This is the inverse operation of VirtReg2IndexFunctor below. index2VirtReg(unsigned Index)294 static unsigned index2VirtReg(unsigned Index) { 295 return Index | (1u << 31); 296 } 297 298 /// getMinimalPhysRegClass - Returns the Register Class of a physical 299 /// register of the given type, picking the most sub register class of 300 /// the right type that contains this physreg. 301 const TargetRegisterClass * 302 getMinimalPhysRegClass(unsigned Reg, EVT VT = MVT::Other) const; 303 304 /// getAllocatableClass - Return the maximal subclass of the given register 305 /// class that is alloctable, or NULL. 306 const TargetRegisterClass * 307 getAllocatableClass(const TargetRegisterClass *RC) const; 308 309 /// getAllocatableSet - Returns a bitset indexed by register number 310 /// indicating if a register is allocatable or not. If a register class is 311 /// specified, returns the subset for the class. 312 BitVector getAllocatableSet(const MachineFunction &MF, 313 const TargetRegisterClass *RC = NULL) const; 314 315 /// getCostPerUse - Return the additional cost of using this register instead 316 /// of other registers in its class. getCostPerUse(unsigned RegNo)317 unsigned getCostPerUse(unsigned RegNo) const { 318 return InfoDesc[RegNo].CostPerUse; 319 } 320 321 /// isInAllocatableClass - Return true if the register is in the allocation 322 /// of any register class. isInAllocatableClass(unsigned RegNo)323 bool isInAllocatableClass(unsigned RegNo) const { 324 return InfoDesc[RegNo].inAllocatableClass; 325 } 326 327 /// getSubRegIndexName - Return the human-readable symbolic target-specific 328 /// name for the specified SubRegIndex. getSubRegIndexName(unsigned SubIdx)329 const char *getSubRegIndexName(unsigned SubIdx) const { 330 assert(SubIdx && "This is not a subregister index"); 331 return SubRegIndexNames[SubIdx-1]; 332 } 333 334 /// regsOverlap - Returns true if the two registers are equal or alias each 335 /// other. The registers may be virtual register. regsOverlap(unsigned regA,unsigned regB)336 bool regsOverlap(unsigned regA, unsigned regB) const { 337 if (regA == regB) return true; 338 if (isVirtualRegister(regA) || isVirtualRegister(regB)) 339 return false; 340 341 // Regunits are numerically ordered. Find a common unit. 342 MCRegUnitIterator RUA(regA, this); 343 MCRegUnitIterator RUB(regB, this); 344 do { 345 if (*RUA == *RUB) return true; 346 if (*RUA < *RUB) ++RUA; 347 else ++RUB; 348 } while (RUA.isValid() && RUB.isValid()); 349 return false; 350 } 351 352 /// hasRegUnit - Returns true if Reg contains RegUnit. hasRegUnit(unsigned Reg,unsigned RegUnit)353 bool hasRegUnit(unsigned Reg, unsigned RegUnit) const { 354 for (MCRegUnitIterator Units(Reg, this); Units.isValid(); ++Units) 355 if (*Units == RegUnit) 356 return true; 357 return false; 358 } 359 360 /// isSubRegister - Returns true if regB is a sub-register of regA. 361 /// isSubRegister(unsigned regA,unsigned regB)362 bool isSubRegister(unsigned regA, unsigned regB) const { 363 return isSuperRegister(regB, regA); 364 } 365 366 /// isSuperRegister - Returns true if regB is a super-register of regA. 367 /// isSuperRegister(unsigned RegA,unsigned RegB)368 bool isSuperRegister(unsigned RegA, unsigned RegB) const { 369 for (MCSuperRegIterator I(RegA, this); I.isValid(); ++I) 370 if (*I == RegB) 371 return true; 372 return false; 373 } 374 375 /// getCalleeSavedRegs - Return a null-terminated list of all of the 376 /// callee saved registers on this target. The register should be in the 377 /// order of desired callee-save stack frame offset. The first register is 378 /// closest to the incoming stack pointer if stack grows down, and vice versa. 379 /// 380 virtual const uint16_t* getCalleeSavedRegs(const MachineFunction *MF = 0) 381 const = 0; 382 383 /// getCallPreservedMask - Return a mask of call-preserved registers for the 384 /// given calling convention on the current sub-target. The mask should 385 /// include all call-preserved aliases. This is used by the register 386 /// allocator to determine which registers can be live across a call. 387 /// 388 /// The mask is an array containing (TRI::getNumRegs()+31)/32 entries. 389 /// A set bit indicates that all bits of the corresponding register are 390 /// preserved across the function call. The bit mask is expected to be 391 /// sub-register complete, i.e. if A is preserved, so are all its 392 /// sub-registers. 393 /// 394 /// Bits are numbered from the LSB, so the bit for physical register Reg can 395 /// be found as (Mask[Reg / 32] >> Reg % 32) & 1. 396 /// 397 /// A NULL pointer means that no register mask will be used, and call 398 /// instructions should use implicit-def operands to indicate call clobbered 399 /// registers. 400 /// getCallPreservedMask(CallingConv::ID)401 virtual const uint32_t *getCallPreservedMask(CallingConv::ID) const { 402 // The default mask clobbers everything. All targets should override. 403 return 0; 404 } 405 406 /// getReservedRegs - Returns a bitset indexed by physical register number 407 /// indicating if a register is a special register that has particular uses 408 /// and should be considered unavailable at all times, e.g. SP, RA. This is 409 /// used by register scavenger to determine what registers are free. 410 virtual BitVector getReservedRegs(const MachineFunction &MF) const = 0; 411 412 /// getMatchingSuperReg - Return a super-register of the specified register 413 /// Reg so its sub-register of index SubIdx is Reg. getMatchingSuperReg(unsigned Reg,unsigned SubIdx,const TargetRegisterClass * RC)414 unsigned getMatchingSuperReg(unsigned Reg, unsigned SubIdx, 415 const TargetRegisterClass *RC) const { 416 return MCRegisterInfo::getMatchingSuperReg(Reg, SubIdx, RC->MC); 417 } 418 419 /// canCombineSubRegIndices - Given a register class and a list of 420 /// subregister indices, return true if it's possible to combine the 421 /// subregister indices into one that corresponds to a larger 422 /// subregister. Return the new subregister index by reference. Note the 423 /// new index may be zero if the given subregisters can be combined to 424 /// form the whole register. canCombineSubRegIndices(const TargetRegisterClass * RC,SmallVectorImpl<unsigned> & SubIndices,unsigned & NewSubIdx)425 virtual bool canCombineSubRegIndices(const TargetRegisterClass *RC, 426 SmallVectorImpl<unsigned> &SubIndices, 427 unsigned &NewSubIdx) const { 428 return 0; 429 } 430 431 /// getMatchingSuperRegClass - Return a subclass of the specified register 432 /// class A so that each register in it has a sub-register of the 433 /// specified sub-register index which is in the specified register class B. 434 /// 435 /// TableGen will synthesize missing A sub-classes. 436 virtual const TargetRegisterClass * 437 getMatchingSuperRegClass(const TargetRegisterClass *A, 438 const TargetRegisterClass *B, unsigned Idx) const; 439 440 /// getSubClassWithSubReg - Returns the largest legal sub-class of RC that 441 /// supports the sub-register index Idx. 442 /// If no such sub-class exists, return NULL. 443 /// If all registers in RC already have an Idx sub-register, return RC. 444 /// 445 /// TableGen generates a version of this function that is good enough in most 446 /// cases. Targets can override if they have constraints that TableGen 447 /// doesn't understand. For example, the x86 sub_8bit sub-register index is 448 /// supported by the full GR32 register class in 64-bit mode, but only by the 449 /// GR32_ABCD regiister class in 32-bit mode. 450 /// 451 /// TableGen will synthesize missing RC sub-classes. 452 virtual const TargetRegisterClass * getSubClassWithSubReg(const TargetRegisterClass * RC,unsigned Idx)453 getSubClassWithSubReg(const TargetRegisterClass *RC, unsigned Idx) const { 454 assert(Idx == 0 && "Target has no sub-registers"); 455 return RC; 456 } 457 458 /// composeSubRegIndices - Return the subregister index you get from composing 459 /// two subregister indices. 460 /// 461 /// If R:a:b is the same register as R:c, then composeSubRegIndices(a, b) 462 /// returns c. Note that composeSubRegIndices does not tell you about illegal 463 /// compositions. If R does not have a subreg a, or R:a does not have a subreg 464 /// b, composeSubRegIndices doesn't tell you. 465 /// 466 /// The ARM register Q0 has two D subregs dsub_0:D0 and dsub_1:D1. It also has 467 /// ssub_0:S0 - ssub_3:S3 subregs. 468 /// If you compose subreg indices dsub_1, ssub_0 you get ssub_2. 469 /// composeSubRegIndices(unsigned a,unsigned b)470 virtual unsigned composeSubRegIndices(unsigned a, unsigned b) const { 471 // This default implementation is correct for most targets. 472 return b; 473 } 474 475 /// getCommonSuperRegClass - Find a common super-register class if it exists. 476 /// 477 /// Find a register class, SuperRC and two sub-register indices, PreA and 478 /// PreB, such that: 479 /// 480 /// 1. PreA + SubA == PreB + SubB (using composeSubRegIndices()), and 481 /// 482 /// 2. For all Reg in SuperRC: Reg:PreA in RCA and Reg:PreB in RCB, and 483 /// 484 /// 3. SuperRC->getSize() >= max(RCA->getSize(), RCB->getSize()). 485 /// 486 /// SuperRC will be chosen such that no super-class of SuperRC satisfies the 487 /// requirements, and there is no register class with a smaller spill size 488 /// that satisfies the requirements. 489 /// 490 /// SubA and SubB must not be 0. Use getMatchingSuperRegClass() instead. 491 /// 492 /// Either of the PreA and PreB sub-register indices may be returned as 0. In 493 /// that case, the returned register class will be a sub-class of the 494 /// corresponding argument register class. 495 /// 496 /// The function returns NULL if no register class can be found. 497 /// 498 const TargetRegisterClass* 499 getCommonSuperRegClass(const TargetRegisterClass *RCA, unsigned SubA, 500 const TargetRegisterClass *RCB, unsigned SubB, 501 unsigned &PreA, unsigned &PreB) const; 502 503 //===--------------------------------------------------------------------===// 504 // Register Class Information 505 // 506 507 /// Register class iterators 508 /// regclass_begin()509 regclass_iterator regclass_begin() const { return RegClassBegin; } regclass_end()510 regclass_iterator regclass_end() const { return RegClassEnd; } 511 getNumRegClasses()512 unsigned getNumRegClasses() const { 513 return (unsigned)(regclass_end()-regclass_begin()); 514 } 515 516 /// getRegClass - Returns the register class associated with the enumeration 517 /// value. See class MCOperandInfo. getRegClass(unsigned i)518 const TargetRegisterClass *getRegClass(unsigned i) const { 519 assert(i < getNumRegClasses() && "Register Class ID out of range"); 520 return RegClassBegin[i]; 521 } 522 523 /// getCommonSubClass - find the largest common subclass of A and B. Return 524 /// NULL if there is no common subclass. 525 const TargetRegisterClass * 526 getCommonSubClass(const TargetRegisterClass *A, 527 const TargetRegisterClass *B) const; 528 529 /// getPointerRegClass - Returns a TargetRegisterClass used for pointer 530 /// values. If a target supports multiple different pointer register classes, 531 /// kind specifies which one is indicated. 532 virtual const TargetRegisterClass * 533 getPointerRegClass(const MachineFunction &MF, unsigned Kind=0) const { 534 llvm_unreachable("Target didn't implement getPointerRegClass!"); 535 } 536 537 /// getCrossCopyRegClass - Returns a legal register class to copy a register 538 /// in the specified class to or from. If it is possible to copy the register 539 /// directly without using a cross register class copy, return the specified 540 /// RC. Returns NULL if it is not possible to copy between a two registers of 541 /// the specified class. 542 virtual const TargetRegisterClass * getCrossCopyRegClass(const TargetRegisterClass * RC)543 getCrossCopyRegClass(const TargetRegisterClass *RC) const { 544 return RC; 545 } 546 547 /// getLargestLegalSuperClass - Returns the largest super class of RC that is 548 /// legal to use in the current sub-target and has the same spill size. 549 /// The returned register class can be used to create virtual registers which 550 /// means that all its registers can be copied and spilled. 551 virtual const TargetRegisterClass* getLargestLegalSuperClass(const TargetRegisterClass * RC)552 getLargestLegalSuperClass(const TargetRegisterClass *RC) const { 553 /// The default implementation is very conservative and doesn't allow the 554 /// register allocator to inflate register classes. 555 return RC; 556 } 557 558 /// getRegPressureLimit - Return the register pressure "high water mark" for 559 /// the specific register class. The scheduler is in high register pressure 560 /// mode (for the specific register class) if it goes over the limit. 561 /// 562 /// Note: this is the old register pressure model that relies on a manually 563 /// specified representative register class per value type. getRegPressureLimit(const TargetRegisterClass * RC,MachineFunction & MF)564 virtual unsigned getRegPressureLimit(const TargetRegisterClass *RC, 565 MachineFunction &MF) const { 566 return 0; 567 } 568 569 // Get the weight in units of pressure for this register class. 570 virtual const RegClassWeight &getRegClassWeight( 571 const TargetRegisterClass *RC) const = 0; 572 573 /// Get the number of dimensions of register pressure. 574 virtual unsigned getNumRegPressureSets() const = 0; 575 576 /// Get the name of this register unit pressure set. 577 virtual const char *getRegPressureSetName(unsigned Idx) const = 0; 578 579 /// Get the register unit pressure limit for this dimension. 580 /// This limit must be adjusted dynamically for reserved registers. 581 virtual unsigned getRegPressureSetLimit(unsigned Idx) const = 0; 582 583 /// Get the dimensions of register pressure impacted by this register class. 584 /// Returns a -1 terminated array of pressure set IDs. 585 virtual const int *getRegClassPressureSets( 586 const TargetRegisterClass *RC) const = 0; 587 588 /// getRawAllocationOrder - Returns the register allocation order for a 589 /// specified register class with a target-dependent hint. The returned list 590 /// may contain reserved registers that cannot be allocated. 591 /// 592 /// Register allocators need only call this function to resolve 593 /// target-dependent hints, but it should work without hinting as well. 594 virtual ArrayRef<uint16_t> getRawAllocationOrder(const TargetRegisterClass * RC,unsigned HintType,unsigned HintReg,const MachineFunction & MF)595 getRawAllocationOrder(const TargetRegisterClass *RC, 596 unsigned HintType, unsigned HintReg, 597 const MachineFunction &MF) const { 598 return RC->getRawAllocationOrder(MF); 599 } 600 601 /// ResolveRegAllocHint - Resolves the specified register allocation hint 602 /// to a physical register. Returns the physical register if it is successful. ResolveRegAllocHint(unsigned Type,unsigned Reg,const MachineFunction & MF)603 virtual unsigned ResolveRegAllocHint(unsigned Type, unsigned Reg, 604 const MachineFunction &MF) const { 605 if (Type == 0 && Reg && isPhysicalRegister(Reg)) 606 return Reg; 607 return 0; 608 } 609 610 /// avoidWriteAfterWrite - Return true if the register allocator should avoid 611 /// writing a register from RC in two consecutive instructions. 612 /// This can avoid pipeline stalls on certain architectures. 613 /// It does cause increased register pressure, though. avoidWriteAfterWrite(const TargetRegisterClass * RC)614 virtual bool avoidWriteAfterWrite(const TargetRegisterClass *RC) const { 615 return false; 616 } 617 618 /// UpdateRegAllocHint - A callback to allow target a chance to update 619 /// register allocation hints when a register is "changed" (e.g. coalesced) 620 /// to another register. e.g. On ARM, some virtual registers should target 621 /// register pairs, if one of pair is coalesced to another register, the 622 /// allocation hint of the other half of the pair should be changed to point 623 /// to the new register. UpdateRegAllocHint(unsigned Reg,unsigned NewReg,MachineFunction & MF)624 virtual void UpdateRegAllocHint(unsigned Reg, unsigned NewReg, 625 MachineFunction &MF) const { 626 // Do nothing. 627 } 628 629 /// requiresRegisterScavenging - returns true if the target requires (and can 630 /// make use of) the register scavenger. requiresRegisterScavenging(const MachineFunction & MF)631 virtual bool requiresRegisterScavenging(const MachineFunction &MF) const { 632 return false; 633 } 634 635 /// useFPForScavengingIndex - returns true if the target wants to use 636 /// frame pointer based accesses to spill to the scavenger emergency spill 637 /// slot. useFPForScavengingIndex(const MachineFunction & MF)638 virtual bool useFPForScavengingIndex(const MachineFunction &MF) const { 639 return true; 640 } 641 642 /// requiresFrameIndexScavenging - returns true if the target requires post 643 /// PEI scavenging of registers for materializing frame index constants. requiresFrameIndexScavenging(const MachineFunction & MF)644 virtual bool requiresFrameIndexScavenging(const MachineFunction &MF) const { 645 return false; 646 } 647 648 /// requiresVirtualBaseRegisters - Returns true if the target wants the 649 /// LocalStackAllocation pass to be run and virtual base registers 650 /// used for more efficient stack access. requiresVirtualBaseRegisters(const MachineFunction & MF)651 virtual bool requiresVirtualBaseRegisters(const MachineFunction &MF) const { 652 return false; 653 } 654 655 /// hasReservedSpillSlot - Return true if target has reserved a spill slot in 656 /// the stack frame of the given function for the specified register. e.g. On 657 /// x86, if the frame register is required, the first fixed stack object is 658 /// reserved as its spill slot. This tells PEI not to create a new stack frame 659 /// object for the given register. It should be called only after 660 /// processFunctionBeforeCalleeSavedScan(). hasReservedSpillSlot(const MachineFunction & MF,unsigned Reg,int & FrameIdx)661 virtual bool hasReservedSpillSlot(const MachineFunction &MF, unsigned Reg, 662 int &FrameIdx) const { 663 return false; 664 } 665 666 /// trackLivenessAfterRegAlloc - returns true if the live-ins should be tracked 667 /// after register allocation. trackLivenessAfterRegAlloc(const MachineFunction & MF)668 virtual bool trackLivenessAfterRegAlloc(const MachineFunction &MF) const { 669 return false; 670 } 671 672 /// needsStackRealignment - true if storage within the function requires the 673 /// stack pointer to be aligned more than the normal calling convention calls 674 /// for. needsStackRealignment(const MachineFunction & MF)675 virtual bool needsStackRealignment(const MachineFunction &MF) const { 676 return false; 677 } 678 679 /// getFrameIndexInstrOffset - Get the offset from the referenced frame 680 /// index in the instruction, if there is one. getFrameIndexInstrOffset(const MachineInstr * MI,int Idx)681 virtual int64_t getFrameIndexInstrOffset(const MachineInstr *MI, 682 int Idx) const { 683 return 0; 684 } 685 686 /// needsFrameBaseReg - Returns true if the instruction's frame index 687 /// reference would be better served by a base register other than FP 688 /// or SP. Used by LocalStackFrameAllocation to determine which frame index 689 /// references it should create new base registers for. needsFrameBaseReg(MachineInstr * MI,int64_t Offset)690 virtual bool needsFrameBaseReg(MachineInstr *MI, int64_t Offset) const { 691 return false; 692 } 693 694 /// materializeFrameBaseRegister - Insert defining instruction(s) for 695 /// BaseReg to be a pointer to FrameIdx before insertion point I. materializeFrameBaseRegister(MachineBasicBlock * MBB,unsigned BaseReg,int FrameIdx,int64_t Offset)696 virtual void materializeFrameBaseRegister(MachineBasicBlock *MBB, 697 unsigned BaseReg, int FrameIdx, 698 int64_t Offset) const { 699 llvm_unreachable("materializeFrameBaseRegister does not exist on this " 700 "target"); 701 } 702 703 /// resolveFrameIndex - Resolve a frame index operand of an instruction 704 /// to reference the indicated base register plus offset instead. resolveFrameIndex(MachineBasicBlock::iterator I,unsigned BaseReg,int64_t Offset)705 virtual void resolveFrameIndex(MachineBasicBlock::iterator I, 706 unsigned BaseReg, int64_t Offset) const { 707 llvm_unreachable("resolveFrameIndex does not exist on this target"); 708 } 709 710 /// isFrameOffsetLegal - Determine whether a given offset immediate is 711 /// encodable to resolve a frame index. isFrameOffsetLegal(const MachineInstr * MI,int64_t Offset)712 virtual bool isFrameOffsetLegal(const MachineInstr *MI, 713 int64_t Offset) const { 714 llvm_unreachable("isFrameOffsetLegal does not exist on this target"); 715 } 716 717 /// eliminateCallFramePseudoInstr - This method is called during prolog/epilog 718 /// code insertion to eliminate call frame setup and destroy pseudo 719 /// instructions (but only if the Target is using them). It is responsible 720 /// for eliminating these instructions, replacing them with concrete 721 /// instructions. This method need only be implemented if using call frame 722 /// setup/destroy pseudo instructions. 723 /// 724 virtual void eliminateCallFramePseudoInstr(MachineFunction & MF,MachineBasicBlock & MBB,MachineBasicBlock::iterator MI)725 eliminateCallFramePseudoInstr(MachineFunction &MF, 726 MachineBasicBlock &MBB, 727 MachineBasicBlock::iterator MI) const { 728 llvm_unreachable("Call Frame Pseudo Instructions do not exist on this " 729 "target!"); 730 } 731 732 733 /// saveScavengerRegister - Spill the register so it can be used by the 734 /// register scavenger. Return true if the register was spilled, false 735 /// otherwise. If this function does not spill the register, the scavenger 736 /// will instead spill it to the emergency spill slot. 737 /// saveScavengerRegister(MachineBasicBlock & MBB,MachineBasicBlock::iterator I,MachineBasicBlock::iterator & UseMI,const TargetRegisterClass * RC,unsigned Reg)738 virtual bool saveScavengerRegister(MachineBasicBlock &MBB, 739 MachineBasicBlock::iterator I, 740 MachineBasicBlock::iterator &UseMI, 741 const TargetRegisterClass *RC, 742 unsigned Reg) const { 743 return false; 744 } 745 746 /// eliminateFrameIndex - This method must be overriden to eliminate abstract 747 /// frame indices from instructions which may use them. The instruction 748 /// referenced by the iterator contains an MO_FrameIndex operand which must be 749 /// eliminated by this method. This method may modify or replace the 750 /// specified instruction, as long as it keeps the iterator pointing at the 751 /// finished product. SPAdj is the SP adjustment due to call frame setup 752 /// instruction. 753 virtual void eliminateFrameIndex(MachineBasicBlock::iterator MI, 754 int SPAdj, RegScavenger *RS=NULL) const = 0; 755 756 //===--------------------------------------------------------------------===// 757 /// Debug information queries. 758 759 /// getFrameRegister - This method should return the register used as a base 760 /// for values allocated in the current stack frame. 761 virtual unsigned getFrameRegister(const MachineFunction &MF) const = 0; 762 763 /// getCompactUnwindRegNum - This function maps the register to the number for 764 /// compact unwind encoding. Return -1 if the register isn't valid. getCompactUnwindRegNum(unsigned,bool)765 virtual int getCompactUnwindRegNum(unsigned, bool) const { 766 return -1; 767 } 768 }; 769 770 771 //===----------------------------------------------------------------------===// 772 // SuperRegClassIterator 773 //===----------------------------------------------------------------------===// 774 // 775 // Iterate over the possible super-registers for a given register class. The 776 // iterator will visit a list of pairs (Idx, Mask) corresponding to the 777 // possible classes of super-registers. 778 // 779 // Each bit mask will have at least one set bit, and each set bit in Mask 780 // corresponds to a SuperRC such that: 781 // 782 // For all Reg in SuperRC: Reg:Idx is in RC. 783 // 784 // The iterator can include (O, RC->getSubClassMask()) as the first entry which 785 // also satisfies the above requirement, assuming Reg:0 == Reg. 786 // 787 class SuperRegClassIterator { 788 const unsigned RCMaskWords; 789 unsigned SubReg; 790 const uint16_t *Idx; 791 const uint32_t *Mask; 792 793 public: 794 /// Create a SuperRegClassIterator that visits all the super-register classes 795 /// of RC. When IncludeSelf is set, also include the (0, sub-classes) entry. 796 SuperRegClassIterator(const TargetRegisterClass *RC, 797 const TargetRegisterInfo *TRI, 798 bool IncludeSelf = false) 799 : RCMaskWords((TRI->getNumRegClasses() + 31) / 32), 800 SubReg(0), 801 Idx(RC->getSuperRegIndices()), 802 Mask(RC->getSubClassMask()) { 803 if (!IncludeSelf) 804 ++*this; 805 } 806 807 /// Returns true if this iterator is still pointing at a valid entry. isValid()808 bool isValid() const { return Idx; } 809 810 /// Returns the current sub-register index. getSubReg()811 unsigned getSubReg() const { return SubReg; } 812 813 /// Returns the bit mask if register classes that getSubReg() projects into 814 /// RC. getMask()815 const uint32_t *getMask() const { return Mask; } 816 817 /// Advance iterator to the next entry. 818 void operator++() { 819 assert(isValid() && "Cannot move iterator past end."); 820 Mask += RCMaskWords; 821 SubReg = *Idx++; 822 if (!SubReg) 823 Idx = 0; 824 } 825 }; 826 827 // This is useful when building IndexedMaps keyed on virtual registers 828 struct VirtReg2IndexFunctor : public std::unary_function<unsigned, unsigned> { operatorVirtReg2IndexFunctor829 unsigned operator()(unsigned Reg) const { 830 return TargetRegisterInfo::virtReg2Index(Reg); 831 } 832 }; 833 834 /// PrintReg - Helper class for printing registers on a raw_ostream. 835 /// Prints virtual and physical registers with or without a TRI instance. 836 /// 837 /// The format is: 838 /// %noreg - NoRegister 839 /// %vreg5 - a virtual register. 840 /// %vreg5:sub_8bit - a virtual register with sub-register index (with TRI). 841 /// %EAX - a physical register 842 /// %physreg17 - a physical register when no TRI instance given. 843 /// 844 /// Usage: OS << PrintReg(Reg, TRI) << '\n'; 845 /// 846 class PrintReg { 847 const TargetRegisterInfo *TRI; 848 unsigned Reg; 849 unsigned SubIdx; 850 public: 851 PrintReg(unsigned reg, const TargetRegisterInfo *tri = 0, unsigned subidx = 0) TRI(tri)852 : TRI(tri), Reg(reg), SubIdx(subidx) {} 853 void print(raw_ostream&) const; 854 }; 855 856 static inline raw_ostream &operator<<(raw_ostream &OS, const PrintReg &PR) { 857 PR.print(OS); 858 return OS; 859 } 860 861 /// PrintRegUnit - Helper class for printing register units on a raw_ostream. 862 /// 863 /// Register units are named after their root registers: 864 /// 865 /// AL - Single root. 866 /// FP0~ST7 - Dual roots. 867 /// 868 /// Usage: OS << PrintRegUnit(Unit, TRI) << '\n'; 869 /// 870 class PrintRegUnit { 871 const TargetRegisterInfo *TRI; 872 unsigned Unit; 873 public: PrintRegUnit(unsigned unit,const TargetRegisterInfo * tri)874 PrintRegUnit(unsigned unit, const TargetRegisterInfo *tri) 875 : TRI(tri), Unit(unit) {} 876 void print(raw_ostream&) const; 877 }; 878 879 static inline raw_ostream &operator<<(raw_ostream &OS, const PrintRegUnit &PR) { 880 PR.print(OS); 881 return OS; 882 } 883 884 } // End llvm namespace 885 886 #endif 887