1 //===- InstCombine.h - Main InstCombine pass definition -------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9
10 #ifndef INSTCOMBINE_INSTCOMBINE_H
11 #define INSTCOMBINE_INSTCOMBINE_H
12
13 #include "InstCombineWorklist.h"
14 #include "llvm/IRBuilder.h"
15 #include "llvm/IntrinsicInst.h"
16 #include "llvm/Operator.h"
17 #include "llvm/Pass.h"
18 #include "llvm/Analysis/ValueTracking.h"
19 #include "llvm/Support/InstVisitor.h"
20 #include "llvm/Support/TargetFolder.h"
21
22 namespace llvm {
23 class CallSite;
24 class TargetData;
25 class TargetLibraryInfo;
26 class DbgDeclareInst;
27 class MemIntrinsic;
28 class MemSetInst;
29
30 /// SelectPatternFlavor - We can match a variety of different patterns for
31 /// select operations.
32 enum SelectPatternFlavor {
33 SPF_UNKNOWN = 0,
34 SPF_SMIN, SPF_UMIN,
35 SPF_SMAX, SPF_UMAX
36 //SPF_ABS - TODO.
37 };
38
39 /// getComplexity: Assign a complexity or rank value to LLVM Values...
40 /// 0 -> undef, 1 -> Const, 2 -> Other, 3 -> Arg, 3 -> Unary, 4 -> OtherInst
getComplexity(Value * V)41 static inline unsigned getComplexity(Value *V) {
42 if (isa<Instruction>(V)) {
43 if (BinaryOperator::isNeg(V) ||
44 BinaryOperator::isFNeg(V) ||
45 BinaryOperator::isNot(V))
46 return 3;
47 return 4;
48 }
49 if (isa<Argument>(V)) return 3;
50 return isa<Constant>(V) ? (isa<UndefValue>(V) ? 0 : 1) : 2;
51 }
52
53
54 /// InstCombineIRInserter - This is an IRBuilder insertion helper that works
55 /// just like the normal insertion helper, but also adds any new instructions
56 /// to the instcombine worklist.
57 class LLVM_LIBRARY_VISIBILITY InstCombineIRInserter
58 : public IRBuilderDefaultInserter<true> {
59 InstCombineWorklist &Worklist;
60 public:
InstCombineIRInserter(InstCombineWorklist & WL)61 InstCombineIRInserter(InstCombineWorklist &WL) : Worklist(WL) {}
62
InsertHelper(Instruction * I,const Twine & Name,BasicBlock * BB,BasicBlock::iterator InsertPt)63 void InsertHelper(Instruction *I, const Twine &Name,
64 BasicBlock *BB, BasicBlock::iterator InsertPt) const {
65 IRBuilderDefaultInserter<true>::InsertHelper(I, Name, BB, InsertPt);
66 Worklist.Add(I);
67 }
68 };
69
70 /// InstCombiner - The -instcombine pass.
71 class LLVM_LIBRARY_VISIBILITY InstCombiner
72 : public FunctionPass,
73 public InstVisitor<InstCombiner, Instruction*> {
74 TargetData *TD;
75 TargetLibraryInfo *TLI;
76 bool MadeIRChange;
77 public:
78 /// Worklist - All of the instructions that need to be simplified.
79 InstCombineWorklist Worklist;
80
81 /// Builder - This is an IRBuilder that automatically inserts new
82 /// instructions into the worklist when they are created.
83 typedef IRBuilder<true, TargetFolder, InstCombineIRInserter> BuilderTy;
84 BuilderTy *Builder;
85
86 static char ID; // Pass identification, replacement for typeid
InstCombiner()87 InstCombiner() : FunctionPass(ID), TD(0), Builder(0) {
88 initializeInstCombinerPass(*PassRegistry::getPassRegistry());
89 }
90
91 public:
92 virtual bool runOnFunction(Function &F);
93
94 bool DoOneIteration(Function &F, unsigned ItNum);
95
96 virtual void getAnalysisUsage(AnalysisUsage &AU) const;
97
getTargetData()98 TargetData *getTargetData() const { return TD; }
99
getTargetLibraryInfo()100 TargetLibraryInfo *getTargetLibraryInfo() const { return TLI; }
101
102 // Visitation implementation - Implement instruction combining for different
103 // instruction types. The semantics are as follows:
104 // Return Value:
105 // null - No change was made
106 // I - Change was made, I is still valid, I may be dead though
107 // otherwise - Change was made, replace I with returned instruction
108 //
109 Instruction *visitAdd(BinaryOperator &I);
110 Instruction *visitFAdd(BinaryOperator &I);
111 Value *OptimizePointerDifference(Value *LHS, Value *RHS, Type *Ty);
112 Instruction *visitSub(BinaryOperator &I);
113 Instruction *visitFSub(BinaryOperator &I);
114 Instruction *visitMul(BinaryOperator &I);
115 Instruction *visitFMul(BinaryOperator &I);
116 Instruction *visitURem(BinaryOperator &I);
117 Instruction *visitSRem(BinaryOperator &I);
118 Instruction *visitFRem(BinaryOperator &I);
119 bool SimplifyDivRemOfSelect(BinaryOperator &I);
120 Instruction *commonRemTransforms(BinaryOperator &I);
121 Instruction *commonIRemTransforms(BinaryOperator &I);
122 Instruction *commonDivTransforms(BinaryOperator &I);
123 Instruction *commonIDivTransforms(BinaryOperator &I);
124 Instruction *visitUDiv(BinaryOperator &I);
125 Instruction *visitSDiv(BinaryOperator &I);
126 Instruction *visitFDiv(BinaryOperator &I);
127 Value *FoldAndOfICmps(ICmpInst *LHS, ICmpInst *RHS);
128 Value *FoldAndOfFCmps(FCmpInst *LHS, FCmpInst *RHS);
129 Instruction *visitAnd(BinaryOperator &I);
130 Value *FoldOrOfICmps(ICmpInst *LHS, ICmpInst *RHS);
131 Value *FoldOrOfFCmps(FCmpInst *LHS, FCmpInst *RHS);
132 Instruction *FoldOrWithConstants(BinaryOperator &I, Value *Op,
133 Value *A, Value *B, Value *C);
134 Instruction *visitOr (BinaryOperator &I);
135 Instruction *visitXor(BinaryOperator &I);
136 Instruction *visitShl(BinaryOperator &I);
137 Instruction *visitAShr(BinaryOperator &I);
138 Instruction *visitLShr(BinaryOperator &I);
139 Instruction *commonShiftTransforms(BinaryOperator &I);
140 Instruction *FoldFCmp_IntToFP_Cst(FCmpInst &I, Instruction *LHSI,
141 Constant *RHSC);
142 Instruction *FoldCmpLoadFromIndexedGlobal(GetElementPtrInst *GEP,
143 GlobalVariable *GV, CmpInst &ICI,
144 ConstantInt *AndCst = 0);
145 Instruction *visitFCmpInst(FCmpInst &I);
146 Instruction *visitICmpInst(ICmpInst &I);
147 Instruction *visitICmpInstWithCastAndCast(ICmpInst &ICI);
148 Instruction *visitICmpInstWithInstAndIntCst(ICmpInst &ICI,
149 Instruction *LHS,
150 ConstantInt *RHS);
151 Instruction *FoldICmpDivCst(ICmpInst &ICI, BinaryOperator *DivI,
152 ConstantInt *DivRHS);
153 Instruction *FoldICmpShrCst(ICmpInst &ICI, BinaryOperator *DivI,
154 ConstantInt *DivRHS);
155 Instruction *FoldICmpAddOpCst(ICmpInst &ICI, Value *X, ConstantInt *CI,
156 ICmpInst::Predicate Pred, Value *TheAdd);
157 Instruction *FoldGEPICmp(GEPOperator *GEPLHS, Value *RHS,
158 ICmpInst::Predicate Cond, Instruction &I);
159 Instruction *FoldShiftByConstant(Value *Op0, ConstantInt *Op1,
160 BinaryOperator &I);
161 Instruction *commonCastTransforms(CastInst &CI);
162 Instruction *commonPointerCastTransforms(CastInst &CI);
163 Instruction *visitTrunc(TruncInst &CI);
164 Instruction *visitZExt(ZExtInst &CI);
165 Instruction *visitSExt(SExtInst &CI);
166 Instruction *visitFPTrunc(FPTruncInst &CI);
167 Instruction *visitFPExt(CastInst &CI);
168 Instruction *visitFPToUI(FPToUIInst &FI);
169 Instruction *visitFPToSI(FPToSIInst &FI);
170 Instruction *visitUIToFP(CastInst &CI);
171 Instruction *visitSIToFP(CastInst &CI);
172 Instruction *visitPtrToInt(PtrToIntInst &CI);
173 Instruction *visitIntToPtr(IntToPtrInst &CI);
174 Instruction *visitBitCast(BitCastInst &CI);
175 Instruction *FoldSelectOpOp(SelectInst &SI, Instruction *TI,
176 Instruction *FI);
177 Instruction *FoldSelectIntoOp(SelectInst &SI, Value*, Value*);
178 Instruction *FoldSPFofSPF(Instruction *Inner, SelectPatternFlavor SPF1,
179 Value *A, Value *B, Instruction &Outer,
180 SelectPatternFlavor SPF2, Value *C);
181 Instruction *visitSelectInst(SelectInst &SI);
182 Instruction *visitSelectInstWithICmp(SelectInst &SI, ICmpInst *ICI);
183 Instruction *visitCallInst(CallInst &CI);
184 Instruction *visitInvokeInst(InvokeInst &II);
185
186 Instruction *SliceUpIllegalIntegerPHI(PHINode &PN);
187 Instruction *visitPHINode(PHINode &PN);
188 Instruction *visitGetElementPtrInst(GetElementPtrInst &GEP);
189 Instruction *visitAllocaInst(AllocaInst &AI);
190 Instruction *visitAllocSite(Instruction &FI);
191 Instruction *visitFree(CallInst &FI);
192 Instruction *visitLoadInst(LoadInst &LI);
193 Instruction *visitStoreInst(StoreInst &SI);
194 Instruction *visitBranchInst(BranchInst &BI);
195 Instruction *visitSwitchInst(SwitchInst &SI);
196 Instruction *visitInsertElementInst(InsertElementInst &IE);
197 Instruction *visitExtractElementInst(ExtractElementInst &EI);
198 Instruction *visitShuffleVectorInst(ShuffleVectorInst &SVI);
199 Instruction *visitExtractValueInst(ExtractValueInst &EV);
200 Instruction *visitLandingPadInst(LandingPadInst &LI);
201
202 // visitInstruction - Specify what to return for unhandled instructions...
visitInstruction(Instruction & I)203 Instruction *visitInstruction(Instruction &I) { return 0; }
204
205 private:
206 bool ShouldChangeType(Type *From, Type *To) const;
207 Value *dyn_castNegVal(Value *V) const;
208 Value *dyn_castFNegVal(Value *V) const;
209 Type *FindElementAtOffset(Type *Ty, int64_t Offset,
210 SmallVectorImpl<Value*> &NewIndices);
211 Instruction *FoldOpIntoSelect(Instruction &Op, SelectInst *SI);
212
213 /// ShouldOptimizeCast - Return true if the cast from "V to Ty" actually
214 /// results in any code being generated and is interesting to optimize out. If
215 /// the cast can be eliminated by some other simple transformation, we prefer
216 /// to do the simplification first.
217 bool ShouldOptimizeCast(Instruction::CastOps opcode,const Value *V,
218 Type *Ty);
219
220 Instruction *visitCallSite(CallSite CS);
221 Instruction *tryOptimizeCall(CallInst *CI, const TargetData *TD);
222 bool transformConstExprCastCall(CallSite CS);
223 Instruction *transformCallThroughTrampoline(CallSite CS,
224 IntrinsicInst *Tramp);
225 Instruction *transformZExtICmp(ICmpInst *ICI, Instruction &CI,
226 bool DoXform = true);
227 Instruction *transformSExtICmp(ICmpInst *ICI, Instruction &CI);
228 bool WillNotOverflowSignedAdd(Value *LHS, Value *RHS);
229 Value *EmitGEPOffset(User *GEP);
230
231 public:
232 // InsertNewInstBefore - insert an instruction New before instruction Old
233 // in the program. Add the new instruction to the worklist.
234 //
InsertNewInstBefore(Instruction * New,Instruction & Old)235 Instruction *InsertNewInstBefore(Instruction *New, Instruction &Old) {
236 assert(New && New->getParent() == 0 &&
237 "New instruction already inserted into a basic block!");
238 BasicBlock *BB = Old.getParent();
239 BB->getInstList().insert(&Old, New); // Insert inst
240 Worklist.Add(New);
241 return New;
242 }
243
244 // InsertNewInstWith - same as InsertNewInstBefore, but also sets the
245 // debug loc.
246 //
InsertNewInstWith(Instruction * New,Instruction & Old)247 Instruction *InsertNewInstWith(Instruction *New, Instruction &Old) {
248 New->setDebugLoc(Old.getDebugLoc());
249 return InsertNewInstBefore(New, Old);
250 }
251
252 // ReplaceInstUsesWith - This method is to be used when an instruction is
253 // found to be dead, replacable with another preexisting expression. Here
254 // we add all uses of I to the worklist, replace all uses of I with the new
255 // value, then return I, so that the inst combiner will know that I was
256 // modified.
257 //
ReplaceInstUsesWith(Instruction & I,Value * V)258 Instruction *ReplaceInstUsesWith(Instruction &I, Value *V) {
259 Worklist.AddUsersToWorkList(I); // Add all modified instrs to worklist.
260
261 // If we are replacing the instruction with itself, this must be in a
262 // segment of unreachable code, so just clobber the instruction.
263 if (&I == V)
264 V = UndefValue::get(I.getType());
265
266 DEBUG(errs() << "IC: Replacing " << I << "\n"
267 " with " << *V << '\n');
268
269 I.replaceAllUsesWith(V);
270 return &I;
271 }
272
273 // EraseInstFromFunction - When dealing with an instruction that has side
274 // effects or produces a void value, we can't rely on DCE to delete the
275 // instruction. Instead, visit methods should return the value returned by
276 // this function.
EraseInstFromFunction(Instruction & I)277 Instruction *EraseInstFromFunction(Instruction &I) {
278 DEBUG(errs() << "IC: ERASE " << I << '\n');
279
280 assert(I.use_empty() && "Cannot erase instruction that is used!");
281 // Make sure that we reprocess all operands now that we reduced their
282 // use counts.
283 if (I.getNumOperands() < 8) {
284 for (User::op_iterator i = I.op_begin(), e = I.op_end(); i != e; ++i)
285 if (Instruction *Op = dyn_cast<Instruction>(*i))
286 Worklist.Add(Op);
287 }
288 Worklist.Remove(&I);
289 I.eraseFromParent();
290 MadeIRChange = true;
291 return 0; // Don't do anything with FI
292 }
293
294 void ComputeMaskedBits(Value *V, APInt &KnownZero,
295 APInt &KnownOne, unsigned Depth = 0) const {
296 return llvm::ComputeMaskedBits(V, KnownZero, KnownOne, TD, Depth);
297 }
298
299 bool MaskedValueIsZero(Value *V, const APInt &Mask,
300 unsigned Depth = 0) const {
301 return llvm::MaskedValueIsZero(V, Mask, TD, Depth);
302 }
303 unsigned ComputeNumSignBits(Value *Op, unsigned Depth = 0) const {
304 return llvm::ComputeNumSignBits(Op, TD, Depth);
305 }
306
307 private:
308
309 /// SimplifyAssociativeOrCommutative - This performs a few simplifications for
310 /// operators which are associative or commutative.
311 bool SimplifyAssociativeOrCommutative(BinaryOperator &I);
312
313 /// SimplifyUsingDistributiveLaws - This tries to simplify binary operations
314 /// which some other binary operation distributes over either by factorizing
315 /// out common terms (eg "(A*B)+(A*C)" -> "A*(B+C)") or expanding out if this
316 /// results in simplifications (eg: "A & (B | C) -> (A&B) | (A&C)" if this is
317 /// a win). Returns the simplified value, or null if it didn't simplify.
318 Value *SimplifyUsingDistributiveLaws(BinaryOperator &I);
319
320 /// SimplifyDemandedUseBits - Attempts to replace V with a simpler value
321 /// based on the demanded bits.
322 Value *SimplifyDemandedUseBits(Value *V, APInt DemandedMask,
323 APInt& KnownZero, APInt& KnownOne,
324 unsigned Depth);
325 bool SimplifyDemandedBits(Use &U, APInt DemandedMask,
326 APInt& KnownZero, APInt& KnownOne,
327 unsigned Depth=0);
328
329 /// SimplifyDemandedInstructionBits - Inst is an integer instruction that
330 /// SimplifyDemandedBits knows about. See if the instruction has any
331 /// properties that allow us to simplify its operands.
332 bool SimplifyDemandedInstructionBits(Instruction &Inst);
333
334 Value *SimplifyDemandedVectorElts(Value *V, APInt DemandedElts,
335 APInt& UndefElts, unsigned Depth = 0);
336
337 // FoldOpIntoPhi - Given a binary operator, cast instruction, or select
338 // which has a PHI node as operand #0, see if we can fold the instruction
339 // into the PHI (which is only possible if all operands to the PHI are
340 // constants).
341 //
342 Instruction *FoldOpIntoPhi(Instruction &I);
343
344 // FoldPHIArgOpIntoPHI - If all operands to a PHI node are the same "unary"
345 // operator and they all are only used by the PHI, PHI together their
346 // inputs, and do the operation once, to the result of the PHI.
347 Instruction *FoldPHIArgOpIntoPHI(PHINode &PN);
348 Instruction *FoldPHIArgBinOpIntoPHI(PHINode &PN);
349 Instruction *FoldPHIArgGEPIntoPHI(PHINode &PN);
350 Instruction *FoldPHIArgLoadIntoPHI(PHINode &PN);
351
352
353 Instruction *OptAndOp(Instruction *Op, ConstantInt *OpRHS,
354 ConstantInt *AndRHS, BinaryOperator &TheAnd);
355
356 Value *FoldLogicalPlusAnd(Value *LHS, Value *RHS, ConstantInt *Mask,
357 bool isSub, Instruction &I);
358 Value *InsertRangeTest(Value *V, Constant *Lo, Constant *Hi,
359 bool isSigned, bool Inside);
360 Instruction *PromoteCastOfAllocation(BitCastInst &CI, AllocaInst &AI);
361 Instruction *MatchBSwap(BinaryOperator &I);
362 bool SimplifyStoreAtEndOfBlock(StoreInst &SI);
363 Instruction *SimplifyMemTransfer(MemIntrinsic *MI);
364 Instruction *SimplifyMemSet(MemSetInst *MI);
365
366
367 Value *EvaluateInDifferentType(Value *V, Type *Ty, bool isSigned);
368 };
369
370
371
372 } // end namespace llvm.
373
374 #endif
375