• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 
2 /*
3  * Copyright 2006 The Android Open Source Project
4  *
5  * Use of this source code is governed by a BSD-style license that can be
6  * found in the LICENSE file.
7  */
8 
9 
10 #ifndef SkTypes_DEFINED
11 #define SkTypes_DEFINED
12 
13 #include "SkPreConfig.h"
14 #include "SkUserConfig.h"
15 #include "SkPostConfig.h"
16 
17 #ifndef SK_IGNORE_STDINT_DOT_H
18     #include <stdint.h>
19 #endif
20 
21 #include <stdio.h>
22 
23 /** \file SkTypes.h
24 */
25 
26 /** See SkGraphics::GetVersion() to retrieve these at runtime
27  */
28 #define SKIA_VERSION_MAJOR  1
29 #define SKIA_VERSION_MINOR  0
30 #define SKIA_VERSION_PATCH  0
31 
32 /*
33     memory wrappers to be implemented by the porting layer (platform)
34 */
35 
36 /** Called internally if we run out of memory. The platform implementation must
37     not return, but should either throw an exception or otherwise exit.
38 */
39 SK_API extern void sk_out_of_memory(void);
40 /** Called internally if we hit an unrecoverable error.
41     The platform implementation must not return, but should either throw
42     an exception or otherwise exit.
43 */
44 SK_API extern void sk_throw(void);
45 
46 enum {
47     SK_MALLOC_TEMP  = 0x01, //!< hint to sk_malloc that the requested memory will be freed in the scope of the stack frame
48     SK_MALLOC_THROW = 0x02  //!< instructs sk_malloc to call sk_throw if the memory cannot be allocated.
49 };
50 /** Return a block of memory (at least 4-byte aligned) of at least the
51     specified size. If the requested memory cannot be returned, either
52     return null (if SK_MALLOC_TEMP bit is clear) or call sk_throw()
53     (if SK_MALLOC_TEMP bit is set). To free the memory, call sk_free().
54 */
55 SK_API extern void* sk_malloc_flags(size_t size, unsigned flags);
56 /** Same as sk_malloc(), but hard coded to pass SK_MALLOC_THROW as the flag
57 */
58 SK_API extern void* sk_malloc_throw(size_t size);
59 /** Same as standard realloc(), but this one never returns null on failure. It will throw
60     an exception if it fails.
61 */
62 SK_API extern void* sk_realloc_throw(void* buffer, size_t size);
63 /** Free memory returned by sk_malloc(). It is safe to pass null.
64 */
65 SK_API extern void sk_free(void*);
66 
67 // bzero is safer than memset, but we can't rely on it, so... sk_bzero()
sk_bzero(void * buffer,size_t size)68 static inline void sk_bzero(void* buffer, size_t size) {
69     memset(buffer, 0, size);
70 }
71 
72 ///////////////////////////////////////////////////////////////////////////////
73 
74 #ifdef SK_OVERRIDE_GLOBAL_NEW
75 #include <new>
76 
new(size_t size)77 inline void* operator new(size_t size) {
78     return sk_malloc_throw(size);
79 }
80 
delete(void * p)81 inline void operator delete(void* p) {
82     sk_free(p);
83 }
84 #endif
85 
86 ///////////////////////////////////////////////////////////////////////////////
87 
88 #define SK_INIT_TO_AVOID_WARNING    = 0
89 
90 #ifndef SkDebugf
91     void SkDebugf(const char format[], ...);
92 #endif
93 
94 #ifdef SK_DEBUG
95     #define SkASSERT(cond)              SK_DEBUGBREAK(cond)
96     #define SkDEBUGFAIL(message)        SkASSERT(false && message)
97     #define SkDEBUGCODE(code)           code
98     #define SkDECLAREPARAM(type, var)   , type var
99     #define SkPARAM(var)                , var
100 //  #define SkDEBUGF(args       )       SkDebugf##args
101     #define SkDEBUGF(args       )       SkDebugf args
102     #define SkAssertResult(cond)        SkASSERT(cond)
103 #else
104     #define SkASSERT(cond)
105     #define SkDEBUGFAIL(message)
106     #define SkDEBUGCODE(code)
107     #define SkDEBUGF(args)
108     #define SkDECLAREPARAM(type, var)
109     #define SkPARAM(var)
110 
111     // unlike SkASSERT, this guy executes its condition in the non-debug build
112     #define SkAssertResult(cond)        cond
113 #endif
114 
115 namespace {
116 
117 template <bool>
118 struct SkCompileAssert {
119 };
120 
121 }  // namespace
122 
123 #define SK_COMPILE_ASSERT(expr, msg) \
124     typedef SkCompileAssert<(bool(expr))> msg[bool(expr) ? 1 : -1]
125 
126 ///////////////////////////////////////////////////////////////////////
127 
128 /**
129  *  Fast type for signed 8 bits. Use for parameter passing and local variables,
130  *  not for storage.
131  */
132 typedef int S8CPU;
133 
134 /**
135  *  Fast type for unsigned 8 bits. Use for parameter passing and local
136  *  variables, not for storage
137  */
138 typedef unsigned U8CPU;
139 
140 /**
141  *  Fast type for signed 16 bits. Use for parameter passing and local variables,
142  *  not for storage
143  */
144 typedef int S16CPU;
145 
146 /**
147  *  Fast type for unsigned 16 bits. Use for parameter passing and local
148  *  variables, not for storage
149  */
150 typedef unsigned U16CPU;
151 
152 /**
153  *  Meant to be faster than bool (doesn't promise to be 0 or 1,
154  *  just 0 or non-zero
155  */
156 typedef int SkBool;
157 
158 /**
159  *  Meant to be a small version of bool, for storage purposes. Will be 0 or 1
160  */
161 typedef uint8_t SkBool8;
162 
163 #ifdef SK_DEBUG
164     SK_API int8_t      SkToS8(long);
165     SK_API uint8_t     SkToU8(size_t);
166     SK_API int16_t     SkToS16(long);
167     SK_API uint16_t    SkToU16(size_t);
168     SK_API int32_t     SkToS32(long);
169     SK_API uint32_t    SkToU32(size_t);
170 #else
171     #define SkToS8(x)   ((int8_t)(x))
172     #define SkToU8(x)   ((uint8_t)(x))
173     #define SkToS16(x)  ((int16_t)(x))
174     #define SkToU16(x)  ((uint16_t)(x))
175     #define SkToS32(x)  ((int32_t)(x))
176     #define SkToU32(x)  ((uint32_t)(x))
177 #endif
178 
179 /** Returns 0 or 1 based on the condition
180 */
181 #define SkToBool(cond)  ((cond) != 0)
182 
183 #define SK_MaxS16   32767
184 #define SK_MinS16   -32767
185 #define SK_MaxU16   0xFFFF
186 #define SK_MinU16   0
187 #define SK_MaxS32   0x7FFFFFFF
188 #define SK_MinS32   0x80000001
189 #define SK_MaxU32   0xFFFFFFFF
190 #define SK_MinU32   0
191 #define SK_NaN32    0x80000000
192 
193 /** Returns true if the value can be represented with signed 16bits
194  */
SkIsS16(long x)195 static inline bool SkIsS16(long x) {
196     return (int16_t)x == x;
197 }
198 
199 /** Returns true if the value can be represented with unsigned 16bits
200  */
SkIsU16(long x)201 static inline bool SkIsU16(long x) {
202     return (uint16_t)x == x;
203 }
204 
205 //////////////////////////////////////////////////////////////////////////////
206 #ifndef SK_OFFSETOF
207     #define SK_OFFSETOF(type, field)    ((char*)&(((type*)1)->field) - (char*)1)
208 #endif
209 
210 /** Returns the number of entries in an array (not a pointer)
211 */
212 #define SK_ARRAY_COUNT(array)       (sizeof(array) / sizeof(array[0]))
213 
214 /** Returns x rounded up to a multiple of 2
215 */
216 #define SkAlign2(x)     (((x) + 1) >> 1 << 1)
217 /** Returns x rounded up to a multiple of 4
218 */
219 #define SkAlign4(x)     (((x) + 3) >> 2 << 2)
220 
221 #define SkIsAlign4(x) (((x) & 3) == 0)
222 
223 typedef uint32_t SkFourByteTag;
224 #define SkSetFourByteTag(a, b, c, d)    (((a) << 24) | ((b) << 16) | ((c) << 8) | (d))
225 
226 /** 32 bit integer to hold a unicode value
227 */
228 typedef int32_t SkUnichar;
229 /** 32 bit value to hold a millisecond count
230 */
231 typedef uint32_t SkMSec;
232 /** 1 second measured in milliseconds
233 */
234 #define SK_MSec1 1000
235 /** maximum representable milliseconds
236 */
237 #define SK_MSecMax 0x7FFFFFFF
238 /** Returns a < b for milliseconds, correctly handling wrap-around from 0xFFFFFFFF to 0
239 */
240 #define SkMSec_LT(a, b)     ((int32_t)(a) - (int32_t)(b) < 0)
241 /** Returns a <= b for milliseconds, correctly handling wrap-around from 0xFFFFFFFF to 0
242 */
243 #define SkMSec_LE(a, b)     ((int32_t)(a) - (int32_t)(b) <= 0)
244 
245 /****************************************************************************
246     The rest of these only build with C++
247 */
248 #ifdef __cplusplus
249 
250 /** Faster than SkToBool for integral conditions. Returns 0 or 1
251 */
Sk32ToBool(uint32_t n)252 static inline int Sk32ToBool(uint32_t n) {
253     return (n | (0-n)) >> 31;
254 }
255 
SkTSwap(T & a,T & b)256 template <typename T> inline void SkTSwap(T& a, T& b) {
257     T c(a);
258     a = b;
259     b = c;
260 }
261 
SkAbs32(int32_t value)262 static inline int32_t SkAbs32(int32_t value) {
263 #ifdef SK_CPU_HAS_CONDITIONAL_INSTR
264     if (value < 0)
265         value = -value;
266     return value;
267 #else
268     int32_t mask = value >> 31;
269     return (value ^ mask) - mask;
270 #endif
271 }
272 
SkMax32(int32_t a,int32_t b)273 static inline int32_t SkMax32(int32_t a, int32_t b) {
274     if (a < b)
275         a = b;
276     return a;
277 }
278 
SkMin32(int32_t a,int32_t b)279 static inline int32_t SkMin32(int32_t a, int32_t b) {
280     if (a > b)
281         a = b;
282     return a;
283 }
284 
SkSign32(int32_t a)285 static inline int32_t SkSign32(int32_t a) {
286     return (a >> 31) | ((unsigned) -a >> 31);
287 }
288 
SkFastMin32(int32_t value,int32_t max)289 static inline int32_t SkFastMin32(int32_t value, int32_t max) {
290 #ifdef SK_CPU_HAS_CONDITIONAL_INSTR
291     if (value > max)
292         value = max;
293     return value;
294 #else
295     int diff = max - value;
296     // clear diff if it is negative (clear if value > max)
297     diff &= (diff >> 31);
298     return value + diff;
299 #endif
300 }
301 
302 /** Returns signed 32 bit value pinned between min and max, inclusively
303 */
SkPin32(int32_t value,int32_t min,int32_t max)304 static inline int32_t SkPin32(int32_t value, int32_t min, int32_t max) {
305 #ifdef SK_CPU_HAS_CONDITIONAL_INSTR
306     if (value < min)
307         value = min;
308     if (value > max)
309         value = max;
310 #else
311     if (value < min)
312         value = min;
313     else if (value > max)
314         value = max;
315 #endif
316     return value;
317 }
318 
SkSetClearShift(uint32_t bits,bool cond,unsigned shift)319 static inline uint32_t SkSetClearShift(uint32_t bits, bool cond,
320                                        unsigned shift) {
321     SkASSERT((int)cond == 0 || (int)cond == 1);
322     return (bits & ~(1 << shift)) | ((int)cond << shift);
323 }
324 
SkSetClearMask(uint32_t bits,bool cond,uint32_t mask)325 static inline uint32_t SkSetClearMask(uint32_t bits, bool cond,
326                                       uint32_t mask) {
327     return cond ? bits | mask : bits & ~mask;
328 }
329 
330 ///////////////////////////////////////////////////////////////////////////////
331 
332 /** Use to combine multiple bits in a bitmask in a type safe way.
333  */
334 template <typename T>
SkTBitOr(T a,T b)335 T SkTBitOr(T a, T b) {
336     return (T)(a | b);
337 }
338 
339 /**
340  *  Use to cast a pointer to a different type, and maintaining strict-aliasing
341  */
SkTCast(const void * ptr)342 template <typename Dst> Dst SkTCast(const void* ptr) {
343     union {
344         const void* src;
345         Dst dst;
346     } data;
347     data.src = ptr;
348     return data.dst;
349 }
350 
351 //////////////////////////////////////////////////////////////////////////////
352 
353 /** \class SkNoncopyable
354 
355 SkNoncopyable is the base class for objects that may do not want to
356 be copied. It hides its copy-constructor and its assignment-operator.
357 */
358 class SK_API SkNoncopyable {
359 public:
SkNoncopyable()360     SkNoncopyable() {}
361 
362 private:
363     SkNoncopyable(const SkNoncopyable&);
364     SkNoncopyable& operator=(const SkNoncopyable&);
365 };
366 
367 class SkAutoFree : SkNoncopyable {
368 public:
SkAutoFree()369     SkAutoFree() : fPtr(NULL) {}
SkAutoFree(void * ptr)370     explicit SkAutoFree(void* ptr) : fPtr(ptr) {}
~SkAutoFree()371     ~SkAutoFree() { sk_free(fPtr); }
372 
373     /** Return the currently allocate buffer, or null
374     */
get()375     void* get() const { return fPtr; }
376 
377     /** Assign a new ptr allocated with sk_malloc (or null), and return the
378         previous ptr. Note it is the caller's responsibility to sk_free the
379         returned ptr.
380     */
set(void * ptr)381     void* set(void* ptr) {
382         void* prev = fPtr;
383         fPtr = ptr;
384         return prev;
385     }
386 
387     /** Transfer ownership of the current ptr to the caller, setting the
388         internal reference to null. Note the caller is reponsible for calling
389         sk_free on the returned address.
390     */
detach()391     void* detach() { return this->set(NULL); }
392 
393     /** Free the current buffer, and set the internal reference to NULL. Same
394         as calling sk_free(detach())
395     */
free()396     void free() {
397         sk_free(fPtr);
398         fPtr = NULL;
399     }
400 
401 private:
402     void* fPtr;
403     // illegal
404     SkAutoFree(const SkAutoFree&);
405     SkAutoFree& operator=(const SkAutoFree&);
406 };
407 
408 /**
409  *  Manage an allocated block of heap memory. This object is the sole manager of
410  *  the lifetime of the block, so the caller must not call sk_free() or delete
411  *  on the block, unless detach() was called.
412  */
413 class SkAutoMalloc : public SkNoncopyable {
414 public:
415     explicit SkAutoMalloc(size_t size = 0) {
416         fPtr = size ? sk_malloc_throw(size) : NULL;
417         fSize = size;
418     }
419 
~SkAutoMalloc()420     ~SkAutoMalloc() {
421         sk_free(fPtr);
422     }
423 
424     /**
425      *  Passed to reset to specify what happens if the requested size is smaller
426      *  than the current size (and the current block was dynamically allocated).
427      */
428     enum OnShrink {
429         /**
430          *  If the requested size is smaller than the current size, and the
431          *  current block is dynamically allocated, free the old block and
432          *  malloc a new block of the smaller size.
433          */
434         kAlloc_OnShrink,
435 
436         /**
437          *  If the requested size is smaller than the current size, and the
438          *  current block is dynamically allocated, just return the old
439          *  block.
440          */
441         kReuse_OnShrink,
442     };
443 
444     /**
445      *  Reallocates the block to a new size. The ptr may or may not change.
446      */
447     void* reset(size_t size, OnShrink shrink = kAlloc_OnShrink) {
448         if (size == fSize || (kReuse_OnShrink == shrink && size < fSize)) {
449             return fPtr;
450         }
451 
452         sk_free(fPtr);
453         fPtr = size ? sk_malloc_throw(size) : NULL;
454         fSize = size;
455 
456         return fPtr;
457     }
458 
459     /**
460      *  Releases the block back to the heap
461      */
free()462     void free() {
463         this->reset(0);
464     }
465 
466     /**
467      *  Return the allocated block.
468      */
get()469     void* get() { return fPtr; }
get()470     const void* get() const { return fPtr; }
471 
472    /** Transfer ownership of the current ptr to the caller, setting the
473        internal reference to null. Note the caller is reponsible for calling
474        sk_free on the returned address.
475     */
detach()476     void* detach() {
477         void* ptr = fPtr;
478         fPtr = NULL;
479         fSize = 0;
480         return ptr;
481     }
482 
483 private:
484     void*   fPtr;
485     size_t  fSize;  // can be larger than the requested size (see kReuse)
486 };
487 
488 /**
489  *  Manage an allocated block of memory. If the requested size is <= kSize, then
490  *  the allocation will come from the stack rather than the heap. This object
491  *  is the sole manager of the lifetime of the block, so the caller must not
492  *  call sk_free() or delete on the block.
493  */
494 template <size_t kSize> class SkAutoSMalloc : SkNoncopyable {
495 public:
496     /**
497      *  Creates initially empty storage. get() returns a ptr, but it is to
498      *  a zero-byte allocation. Must call reset(size) to return an allocated
499      *  block.
500      */
SkAutoSMalloc()501     SkAutoSMalloc() {
502         fPtr = fStorage;
503         fSize = 0;
504     }
505 
506     /**
507      *  Allocate a block of the specified size. If size <= kSize, then the
508      *  allocation will come from the stack, otherwise it will be dynamically
509      *  allocated.
510      */
SkAutoSMalloc(size_t size)511     explicit SkAutoSMalloc(size_t size) {
512         fPtr = fStorage;
513         fSize = 0;
514         this->reset(size);
515     }
516 
517     /**
518      *  Free the allocated block (if any). If the block was small enought to
519      *  have been allocated on the stack (size <= kSize) then this does nothing.
520      */
~SkAutoSMalloc()521     ~SkAutoSMalloc() {
522         if (fPtr != (void*)fStorage) {
523             sk_free(fPtr);
524         }
525     }
526 
527     /**
528      *  Return the allocated block. May return non-null even if the block is
529      *  of zero size. Since this may be on the stack or dynamically allocated,
530      *  the caller must not call sk_free() on it, but must rely on SkAutoSMalloc
531      *  to manage it.
532      */
get()533     void* get() const { return fPtr; }
534 
535     /**
536      *  Return a new block of the requested size, freeing (as necessary) any
537      *  previously allocated block. As with the constructor, if size <= kSize
538      *  then the return block may be allocated locally, rather than from the
539      *  heap.
540      */
541     void* reset(size_t size,
542                 SkAutoMalloc::OnShrink shrink = SkAutoMalloc::kAlloc_OnShrink) {
543         if (size == fSize || (SkAutoMalloc::kReuse_OnShrink == shrink &&
544                               size < fSize)) {
545             return fPtr;
546         }
547 
548         if (fPtr != (void*)fStorage) {
549             sk_free(fPtr);
550         }
551 
552         if (size <= kSize) {
553             fPtr = fStorage;
554         } else {
555             fPtr = sk_malloc_flags(size, SK_MALLOC_THROW | SK_MALLOC_TEMP);
556         }
557         return fPtr;
558     }
559 
560 private:
561     void*       fPtr;
562     size_t      fSize;  // can be larger than the requested size (see kReuse)
563     uint32_t    fStorage[(kSize + 3) >> 2];
564 };
565 
566 #endif /* C++ */
567 
568 #endif
569