• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright (c) 2011 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 
6 // Windows Timer Primer
7 //
8 // A good article:  http://www.ddj.com/windows/184416651
9 // A good mozilla bug:  http://bugzilla.mozilla.org/show_bug.cgi?id=363258
10 //
11 // The default windows timer, GetSystemTimeAsFileTime is not very precise.
12 // It is only good to ~15.5ms.
13 //
14 // QueryPerformanceCounter is the logical choice for a high-precision timer.
15 // However, it is known to be buggy on some hardware.  Specifically, it can
16 // sometimes "jump".  On laptops, QPC can also be very expensive to call.
17 // It's 3-4x slower than timeGetTime() on desktops, but can be 10x slower
18 // on laptops.  A unittest exists which will show the relative cost of various
19 // timers on any system.
20 //
21 // The next logical choice is timeGetTime().  timeGetTime has a precision of
22 // 1ms, but only if you call APIs (timeBeginPeriod()) which affect all other
23 // applications on the system.  By default, precision is only 15.5ms.
24 // Unfortunately, we don't want to call timeBeginPeriod because we don't
25 // want to affect other applications.  Further, on mobile platforms, use of
26 // faster multimedia timers can hurt battery life.  See the intel
27 // article about this here:
28 // http://softwarecommunity.intel.com/articles/eng/1086.htm
29 //
30 // To work around all this, we're going to generally use timeGetTime().  We
31 // will only increase the system-wide timer if we're not running on battery
32 // power.  Using timeBeginPeriod(1) is a requirement in order to make our
33 // message loop waits have the same resolution that our time measurements
34 // do.  Otherwise, WaitForSingleObject(..., 1) will no less than 15ms when
35 // there is nothing else to waken the Wait.
36 
37 #include "base/time.h"
38 
39 #pragma comment(lib, "winmm.lib")
40 #include <windows.h>
41 #include <mmsystem.h>
42 
43 #include "base/basictypes.h"
44 #include "base/logging.h"
45 #include "base/cpu.h"
46 #include "base/memory/singleton.h"
47 #include "base/synchronization/lock.h"
48 
49 using base::Time;
50 using base::TimeDelta;
51 using base::TimeTicks;
52 
53 namespace {
54 
55 // From MSDN, FILETIME "Contains a 64-bit value representing the number of
56 // 100-nanosecond intervals since January 1, 1601 (UTC)."
FileTimeToMicroseconds(const FILETIME & ft)57 int64 FileTimeToMicroseconds(const FILETIME& ft) {
58   // Need to bit_cast to fix alignment, then divide by 10 to convert
59   // 100-nanoseconds to milliseconds. This only works on little-endian
60   // machines.
61   return bit_cast<int64, FILETIME>(ft) / 10;
62 }
63 
MicrosecondsToFileTime(int64 us,FILETIME * ft)64 void MicrosecondsToFileTime(int64 us, FILETIME* ft) {
65   DCHECK(us >= 0) << "Time is less than 0, negative values are not "
66       "representable in FILETIME";
67 
68   // Multiply by 10 to convert milliseconds to 100-nanoseconds. Bit_cast will
69   // handle alignment problems. This only works on little-endian machines.
70   *ft = bit_cast<FILETIME, int64>(us * 10);
71 }
72 
CurrentWallclockMicroseconds()73 int64 CurrentWallclockMicroseconds() {
74   FILETIME ft;
75   ::GetSystemTimeAsFileTime(&ft);
76   return FileTimeToMicroseconds(ft);
77 }
78 
79 // Time between resampling the un-granular clock for this API.  60 seconds.
80 const int kMaxMillisecondsToAvoidDrift = 60 * Time::kMillisecondsPerSecond;
81 
82 int64 initial_time = 0;
83 TimeTicks initial_ticks;
84 
InitializeClock()85 void InitializeClock() {
86   initial_ticks = TimeTicks::Now();
87   initial_time = CurrentWallclockMicroseconds();
88 }
89 
90 }  // namespace
91 
92 // Time -----------------------------------------------------------------------
93 
94 // The internal representation of Time uses FILETIME, whose epoch is 1601-01-01
95 // 00:00:00 UTC.  ((1970-1601)*365+89)*24*60*60*1000*1000, where 89 is the
96 // number of leap year days between 1601 and 1970: (1970-1601)/4 excluding
97 // 1700, 1800, and 1900.
98 // static
99 const int64 Time::kTimeTToMicrosecondsOffset = GG_INT64_C(11644473600000000);
100 
101 bool Time::high_resolution_timer_enabled_ = false;
102 
103 // static
Now()104 Time Time::Now() {
105   if (initial_time == 0)
106     InitializeClock();
107 
108   // We implement time using the high-resolution timers so that we can get
109   // timeouts which are smaller than 10-15ms.  If we just used
110   // CurrentWallclockMicroseconds(), we'd have the less-granular timer.
111   //
112   // To make this work, we initialize the clock (initial_time) and the
113   // counter (initial_ctr).  To compute the initial time, we can check
114   // the number of ticks that have elapsed, and compute the delta.
115   //
116   // To avoid any drift, we periodically resync the counters to the system
117   // clock.
118   while (true) {
119     TimeTicks ticks = TimeTicks::Now();
120 
121     // Calculate the time elapsed since we started our timer
122     TimeDelta elapsed = ticks - initial_ticks;
123 
124     // Check if enough time has elapsed that we need to resync the clock.
125     if (elapsed.InMilliseconds() > kMaxMillisecondsToAvoidDrift) {
126       InitializeClock();
127       continue;
128     }
129 
130     return Time(elapsed + Time(initial_time));
131   }
132 }
133 
134 // static
NowFromSystemTime()135 Time Time::NowFromSystemTime() {
136   // Force resync.
137   InitializeClock();
138   return Time(initial_time);
139 }
140 
141 // static
FromFileTime(FILETIME ft)142 Time Time::FromFileTime(FILETIME ft) {
143   return Time(FileTimeToMicroseconds(ft));
144 }
145 
ToFileTime() const146 FILETIME Time::ToFileTime() const {
147   FILETIME utc_ft;
148   MicrosecondsToFileTime(us_, &utc_ft);
149   return utc_ft;
150 }
151 
152 // static
EnableHighResolutionTimer(bool enable)153 void Time::EnableHighResolutionTimer(bool enable) {
154   // Test for single-threaded access.
155   static PlatformThreadId my_thread = PlatformThread::CurrentId();
156   DCHECK(PlatformThread::CurrentId() == my_thread);
157 
158   if (high_resolution_timer_enabled_ == enable)
159     return;
160 
161   high_resolution_timer_enabled_ = enable;
162 }
163 
164 // static
ActivateHighResolutionTimer(bool activate)165 bool Time::ActivateHighResolutionTimer(bool activate) {
166   if (!high_resolution_timer_enabled_)
167     return false;
168 
169   // Using anything other than 1ms makes timers granular
170   // to that interval.
171   const int kMinTimerIntervalMs = 1;
172   MMRESULT result;
173   if (activate)
174     result = timeBeginPeriod(kMinTimerIntervalMs);
175   else
176     result = timeEndPeriod(kMinTimerIntervalMs);
177   return result == TIMERR_NOERROR;
178 }
179 
180 // static
FromExploded(bool is_local,const Exploded & exploded)181 Time Time::FromExploded(bool is_local, const Exploded& exploded) {
182   // Create the system struct representing our exploded time. It will either be
183   // in local time or UTC.
184   SYSTEMTIME st;
185   st.wYear = exploded.year;
186   st.wMonth = exploded.month;
187   st.wDayOfWeek = exploded.day_of_week;
188   st.wDay = exploded.day_of_month;
189   st.wHour = exploded.hour;
190   st.wMinute = exploded.minute;
191   st.wSecond = exploded.second;
192   st.wMilliseconds = exploded.millisecond;
193 
194   // Convert to FILETIME.
195   FILETIME ft;
196   if (!SystemTimeToFileTime(&st, &ft)) {
197     NOTREACHED() << "Unable to convert time";
198     return Time(0);
199   }
200 
201   // Ensure that it's in UTC.
202   if (is_local) {
203     FILETIME utc_ft;
204     LocalFileTimeToFileTime(&ft, &utc_ft);
205     return Time(FileTimeToMicroseconds(utc_ft));
206   }
207   return Time(FileTimeToMicroseconds(ft));
208 }
209 
Explode(bool is_local,Exploded * exploded) const210 void Time::Explode(bool is_local, Exploded* exploded) const {
211   // FILETIME in UTC.
212   FILETIME utc_ft;
213   MicrosecondsToFileTime(us_, &utc_ft);
214 
215   // FILETIME in local time if necessary.
216   BOOL success = TRUE;
217   FILETIME ft;
218   if (is_local)
219     success = FileTimeToLocalFileTime(&utc_ft, &ft);
220   else
221     ft = utc_ft;
222 
223   // FILETIME in SYSTEMTIME (exploded).
224   SYSTEMTIME st;
225   if (!success || !FileTimeToSystemTime(&ft, &st)) {
226     NOTREACHED() << "Unable to convert time, don't know why";
227     ZeroMemory(exploded, sizeof(exploded));
228     return;
229   }
230 
231   exploded->year = st.wYear;
232   exploded->month = st.wMonth;
233   exploded->day_of_week = st.wDayOfWeek;
234   exploded->day_of_month = st.wDay;
235   exploded->hour = st.wHour;
236   exploded->minute = st.wMinute;
237   exploded->second = st.wSecond;
238   exploded->millisecond = st.wMilliseconds;
239 }
240 
241 // TimeTicks ------------------------------------------------------------------
242 namespace {
243 
244 // We define a wrapper to adapt between the __stdcall and __cdecl call of the
245 // mock function, and to avoid a static constructor.  Assigning an import to a
246 // function pointer directly would require setup code to fetch from the IAT.
timeGetTimeWrapper()247 DWORD timeGetTimeWrapper() {
248   return timeGetTime();
249 }
250 
251 DWORD (*tick_function)(void) = &timeGetTimeWrapper;
252 
253 // Accumulation of time lost due to rollover (in milliseconds).
254 int64 rollover_ms = 0;
255 
256 // The last timeGetTime value we saw, to detect rollover.
257 DWORD last_seen_now = 0;
258 
259 // Lock protecting rollover_ms and last_seen_now.
260 // Note: this is a global object, and we usually avoid these. However, the time
261 // code is low-level, and we don't want to use Singletons here (it would be too
262 // easy to use a Singleton without even knowing it, and that may lead to many
263 // gotchas). Its impact on startup time should be negligible due to low-level
264 // nature of time code.
265 base::Lock rollover_lock;
266 
267 // We use timeGetTime() to implement TimeTicks::Now().  This can be problematic
268 // because it returns the number of milliseconds since Windows has started,
269 // which will roll over the 32-bit value every ~49 days.  We try to track
270 // rollover ourselves, which works if TimeTicks::Now() is called at least every
271 // 49 days.
RolloverProtectedNow()272 TimeDelta RolloverProtectedNow() {
273   base::AutoLock locked(rollover_lock);
274   // We should hold the lock while calling tick_function to make sure that
275   // we keep last_seen_now stay correctly in sync.
276   DWORD now = tick_function();
277   if (now < last_seen_now)
278     rollover_ms += 0x100000000I64;  // ~49.7 days.
279   last_seen_now = now;
280   return TimeDelta::FromMilliseconds(now + rollover_ms);
281 }
282 
283 // Overview of time counters:
284 // (1) CPU cycle counter. (Retrieved via RDTSC)
285 // The CPU counter provides the highest resolution time stamp and is the least
286 // expensive to retrieve. However, the CPU counter is unreliable and should not
287 // be used in production. Its biggest issue is that it is per processor and it
288 // is not synchronized between processors. Also, on some computers, the counters
289 // will change frequency due to thermal and power changes, and stop in some
290 // states.
291 //
292 // (2) QueryPerformanceCounter (QPC). The QPC counter provides a high-
293 // resolution (100 nanoseconds) time stamp but is comparatively more expensive
294 // to retrieve. What QueryPerformanceCounter actually does is up to the HAL.
295 // (with some help from ACPI).
296 // According to http://blogs.msdn.com/oldnewthing/archive/2005/09/02/459952.aspx
297 // in the worst case, it gets the counter from the rollover interrupt on the
298 // programmable interrupt timer. In best cases, the HAL may conclude that the
299 // RDTSC counter runs at a constant frequency, then it uses that instead. On
300 // multiprocessor machines, it will try to verify the values returned from
301 // RDTSC on each processor are consistent with each other, and apply a handful
302 // of workarounds for known buggy hardware. In other words, QPC is supposed to
303 // give consistent result on a multiprocessor computer, but it is unreliable in
304 // reality due to bugs in BIOS or HAL on some, especially old computers.
305 // With recent updates on HAL and newer BIOS, QPC is getting more reliable but
306 // it should be used with caution.
307 //
308 // (3) System time. The system time provides a low-resolution (typically 10ms
309 // to 55 milliseconds) time stamp but is comparatively less expensive to
310 // retrieve and more reliable.
311 class HighResNowSingleton {
312  public:
GetInstance()313   static HighResNowSingleton* GetInstance() {
314     return Singleton<HighResNowSingleton>::get();
315   }
316 
IsUsingHighResClock()317   bool IsUsingHighResClock() {
318     return ticks_per_microsecond_ != 0.0;
319   }
320 
DisableHighResClock()321   void DisableHighResClock() {
322     ticks_per_microsecond_ = 0.0;
323   }
324 
Now()325   TimeDelta Now() {
326     if (IsUsingHighResClock())
327       return TimeDelta::FromMicroseconds(UnreliableNow());
328 
329     // Just fallback to the slower clock.
330     return RolloverProtectedNow();
331   }
332 
GetQPCDriftMicroseconds()333   int64 GetQPCDriftMicroseconds() {
334     if (!IsUsingHighResClock())
335       return 0;
336 
337     return abs((UnreliableNow() - ReliableNow()) - skew_);
338   }
339 
340  private:
HighResNowSingleton()341   HighResNowSingleton()
342     : ticks_per_microsecond_(0.0),
343       skew_(0) {
344     InitializeClock();
345 
346     // On Athlon X2 CPUs (e.g. model 15) QueryPerformanceCounter is
347     // unreliable.  Fallback to low-res clock.
348     base::CPU cpu;
349     if (cpu.vendor_name() == "AuthenticAMD" && cpu.family() == 15)
350       DisableHighResClock();
351   }
352 
353   // Synchronize the QPC clock with GetSystemTimeAsFileTime.
InitializeClock()354   void InitializeClock() {
355     LARGE_INTEGER ticks_per_sec = {0};
356     if (!QueryPerformanceFrequency(&ticks_per_sec))
357       return;  // Broken, we don't guarantee this function works.
358     ticks_per_microsecond_ = static_cast<float>(ticks_per_sec.QuadPart) /
359       static_cast<float>(Time::kMicrosecondsPerSecond);
360 
361     skew_ = UnreliableNow() - ReliableNow();
362   }
363 
364   // Get the number of microseconds since boot in an unreliable fashion.
UnreliableNow()365   int64 UnreliableNow() {
366     LARGE_INTEGER now;
367     QueryPerformanceCounter(&now);
368     return static_cast<int64>(now.QuadPart / ticks_per_microsecond_);
369   }
370 
371   // Get the number of microseconds since boot in a reliable fashion.
ReliableNow()372   int64 ReliableNow() {
373     return RolloverProtectedNow().InMicroseconds();
374   }
375 
376   // Cached clock frequency -> microseconds. This assumes that the clock
377   // frequency is faster than one microsecond (which is 1MHz, should be OK).
378   float ticks_per_microsecond_;  // 0 indicates QPF failed and we're broken.
379   int64 skew_;  // Skew between lo-res and hi-res clocks (for debugging).
380 
381   friend struct DefaultSingletonTraits<HighResNowSingleton>;
382 };
383 
384 }  // namespace
385 
386 // static
SetMockTickFunction(TickFunctionType ticker)387 TimeTicks::TickFunctionType TimeTicks::SetMockTickFunction(
388     TickFunctionType ticker) {
389   TickFunctionType old = tick_function;
390   tick_function = ticker;
391   return old;
392 }
393 
394 // static
Now()395 TimeTicks TimeTicks::Now() {
396   return TimeTicks() + RolloverProtectedNow();
397 }
398 
399 // static
HighResNow()400 TimeTicks TimeTicks::HighResNow() {
401   return TimeTicks() + HighResNowSingleton::GetInstance()->Now();
402 }
403 
404 // static
GetQPCDriftMicroseconds()405 int64 TimeTicks::GetQPCDriftMicroseconds() {
406   return HighResNowSingleton::GetInstance()->GetQPCDriftMicroseconds();
407 }
408 
409 // static
IsHighResClockWorking()410 bool TimeTicks::IsHighResClockWorking() {
411   return HighResNowSingleton::GetInstance()->IsUsingHighResClock();
412 }
413