1
2 /* -----------------------------------------------------------------------------------------------------------
3 Software License for The Fraunhofer FDK AAC Codec Library for Android
4
5 � Copyright 1995 - 2012 Fraunhofer-Gesellschaft zur F�rderung der angewandten Forschung e.V.
6 All rights reserved.
7
8 1. INTRODUCTION
9 The Fraunhofer FDK AAC Codec Library for Android ("FDK AAC Codec") is software that implements
10 the MPEG Advanced Audio Coding ("AAC") encoding and decoding scheme for digital audio.
11 This FDK AAC Codec software is intended to be used on a wide variety of Android devices.
12
13 AAC's HE-AAC and HE-AAC v2 versions are regarded as today's most efficient general perceptual
14 audio codecs. AAC-ELD is considered the best-performing full-bandwidth communications codec by
15 independent studies and is widely deployed. AAC has been standardized by ISO and IEC as part
16 of the MPEG specifications.
17
18 Patent licenses for necessary patent claims for the FDK AAC Codec (including those of Fraunhofer)
19 may be obtained through Via Licensing (www.vialicensing.com) or through the respective patent owners
20 individually for the purpose of encoding or decoding bit streams in products that are compliant with
21 the ISO/IEC MPEG audio standards. Please note that most manufacturers of Android devices already license
22 these patent claims through Via Licensing or directly from the patent owners, and therefore FDK AAC Codec
23 software may already be covered under those patent licenses when it is used for those licensed purposes only.
24
25 Commercially-licensed AAC software libraries, including floating-point versions with enhanced sound quality,
26 are also available from Fraunhofer. Users are encouraged to check the Fraunhofer website for additional
27 applications information and documentation.
28
29 2. COPYRIGHT LICENSE
30
31 Redistribution and use in source and binary forms, with or without modification, are permitted without
32 payment of copyright license fees provided that you satisfy the following conditions:
33
34 You must retain the complete text of this software license in redistributions of the FDK AAC Codec or
35 your modifications thereto in source code form.
36
37 You must retain the complete text of this software license in the documentation and/or other materials
38 provided with redistributions of the FDK AAC Codec or your modifications thereto in binary form.
39 You must make available free of charge copies of the complete source code of the FDK AAC Codec and your
40 modifications thereto to recipients of copies in binary form.
41
42 The name of Fraunhofer may not be used to endorse or promote products derived from this library without
43 prior written permission.
44
45 You may not charge copyright license fees for anyone to use, copy or distribute the FDK AAC Codec
46 software or your modifications thereto.
47
48 Your modified versions of the FDK AAC Codec must carry prominent notices stating that you changed the software
49 and the date of any change. For modified versions of the FDK AAC Codec, the term
50 "Fraunhofer FDK AAC Codec Library for Android" must be replaced by the term
51 "Third-Party Modified Version of the Fraunhofer FDK AAC Codec Library for Android."
52
53 3. NO PATENT LICENSE
54
55 NO EXPRESS OR IMPLIED LICENSES TO ANY PATENT CLAIMS, including without limitation the patents of Fraunhofer,
56 ARE GRANTED BY THIS SOFTWARE LICENSE. Fraunhofer provides no warranty of patent non-infringement with
57 respect to this software.
58
59 You may use this FDK AAC Codec software or modifications thereto only for purposes that are authorized
60 by appropriate patent licenses.
61
62 4. DISCLAIMER
63
64 This FDK AAC Codec software is provided by Fraunhofer on behalf of the copyright holders and contributors
65 "AS IS" and WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES, including but not limited to the implied warranties
66 of merchantability and fitness for a particular purpose. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
67 CONTRIBUTORS BE LIABLE for any direct, indirect, incidental, special, exemplary, or consequential damages,
68 including but not limited to procurement of substitute goods or services; loss of use, data, or profits,
69 or business interruption, however caused and on any theory of liability, whether in contract, strict
70 liability, or tort (including negligence), arising in any way out of the use of this software, even if
71 advised of the possibility of such damage.
72
73 5. CONTACT INFORMATION
74
75 Fraunhofer Institute for Integrated Circuits IIS
76 Attention: Audio and Multimedia Departments - FDK AAC LL
77 Am Wolfsmantel 33
78 91058 Erlangen, Germany
79
80 www.iis.fraunhofer.de/amm
81 amm-info@iis.fraunhofer.de
82 ----------------------------------------------------------------------------------------------------------- */
83
84 /******************************** MPEG Audio Encoder **************************
85
86 Initial author: M.Werner
87 contents/description: Psychoaccoustic configuration
88
89 ******************************************************************************/
90
91 #include "psy_configuration.h"
92 #include "adj_thr.h"
93 #include "aacEnc_rom.h"
94
95 #include "genericStds.h"
96
97 #include "FDK_trigFcts.h"
98
99 typedef struct{
100 LONG sampleRate;
101 const SFB_PARAM_LONG *paramLong;
102 const SFB_PARAM_SHORT *paramShort;
103 }SFB_INFO_TAB;
104
105
106 static const SFB_INFO_TAB sfbInfoTab[] = {
107 {8000, &p_FDKaacEnc_8000_long_1024, &p_FDKaacEnc_8000_short_128},
108 {11025, &p_FDKaacEnc_11025_long_1024, &p_FDKaacEnc_11025_short_128},
109 {12000, &p_FDKaacEnc_12000_long_1024, &p_FDKaacEnc_12000_short_128},
110 {16000, &p_FDKaacEnc_16000_long_1024, &p_FDKaacEnc_16000_short_128},
111 {22050, &p_FDKaacEnc_22050_long_1024, &p_FDKaacEnc_22050_short_128},
112 {24000, &p_FDKaacEnc_24000_long_1024, &p_FDKaacEnc_24000_short_128},
113 {32000, &p_FDKaacEnc_32000_long_1024, &p_FDKaacEnc_32000_short_128},
114 {44100, &p_FDKaacEnc_44100_long_1024, &p_FDKaacEnc_44100_short_128},
115 {48000, &p_FDKaacEnc_48000_long_1024, &p_FDKaacEnc_48000_short_128},
116 {64000, &p_FDKaacEnc_64000_long_1024, &p_FDKaacEnc_64000_short_128},
117 {88200, &p_FDKaacEnc_88200_long_1024, &p_FDKaacEnc_88200_short_128},
118 {96000, &p_FDKaacEnc_96000_long_1024, &p_FDKaacEnc_96000_short_128}
119
120 };
121
122 /* 22050 and 24000 Hz */
123 static const SFB_PARAM_LONG p_22050_long_512 = {
124 31,
125 { 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
126 4, 8, 8, 8, 12, 12, 12, 16, 20, 24,
127 28, 32, 32, 32, 32, 32, 32, 32, 32, 32,
128 32}
129 };
130
131 /* 32000 Hz */
132 static const SFB_PARAM_LONG p_32000_long_512 = {
133 37,
134 { 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
135 4, 4, 4, 4, 8, 8, 8, 8, 8, 12,
136 12, 12, 12, 16, 16, 16, 20, 24, 24, 28,
137 32, 32, 32, 32, 32, 32, 32}
138 };
139
140 /* 44100 Hz */
141 static const SFB_PARAM_LONG p_44100_long_512 = {
142 36,
143 {4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
144 4, 4, 4, 4, 4, 8, 8, 8, 8, 8,
145 12, 12, 12, 12, 16, 20, 24, 28, 32, 32,
146 32, 32, 32, 32, 32, 52}
147 };
148
149 static const SFB_INFO_TAB sfbInfoTabLD512[] = {
150 { 8000, &p_22050_long_512, NULL},
151 {11025, &p_22050_long_512, NULL},
152 {12000, &p_22050_long_512, NULL},
153 {16000, &p_22050_long_512, NULL},
154 {22050, &p_22050_long_512, NULL},
155 {24000, &p_22050_long_512, NULL},
156 {32000, &p_32000_long_512, NULL},
157 {44100, &p_44100_long_512, NULL},
158 {48000, &p_44100_long_512, NULL},
159 {64000, &p_44100_long_512, NULL},
160 {88200, &p_44100_long_512, NULL},
161 {96000, &p_44100_long_512, NULL},
162
163 };
164
165
166 /* 22050 and 24000 Hz */
167 static const SFB_PARAM_LONG p_22050_long_480 = {
168 30,
169 { 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
170 4, 8, 8, 8, 12, 12, 12, 16, 20, 24,
171 28, 32, 32, 32, 32, 32, 32, 32, 32, 32}
172 };
173
174 /* 32000 Hz */
175 static const SFB_PARAM_LONG p_32000_long_480 = {
176 37,
177 { 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
178 4, 4, 4, 4, 4, 4, 8, 8, 8, 8,
179 8, 8, 12, 12, 12, 16, 16, 20, 24, 32,
180 32, 32, 32, 32, 32, 32, 32}
181 };
182
183 /* 44100 Hz */
184 static const SFB_PARAM_LONG p_44100_long_480 = {
185 35,
186 { 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
187 4, 4, 4, 4, 8, 8, 8, 8, 8, 12,
188 12, 12, 12, 12, 16, 16, 24, 28, 32, 32,
189 32, 32, 32, 32, 48}
190 };
191
192 static const SFB_INFO_TAB sfbInfoTabLD480[] = {
193 { 8000, &p_22050_long_480, NULL},
194 {11025, &p_22050_long_480, NULL},
195 {12000, &p_22050_long_480, NULL},
196 {16000, &p_22050_long_480, NULL},
197 {22050, &p_22050_long_480, NULL},
198 {24000, &p_22050_long_480, NULL},
199 {32000, &p_32000_long_480, NULL},
200 {44100, &p_44100_long_480, NULL},
201 {48000, &p_44100_long_480, NULL},
202 {64000, &p_44100_long_480, NULL},
203 {88200, &p_44100_long_480, NULL},
204 {96000, &p_44100_long_480, NULL},
205
206 };
207
208 /* Fixed point precision definitions */
209 #define Q_BARCVAL (25)
210
FDKaacEnc_initSfbTable(LONG sampleRate,INT blockType,INT granuleLength,INT * sfbOffset,INT * sfbCnt)211 static AAC_ENCODER_ERROR FDKaacEnc_initSfbTable(LONG sampleRate, INT blockType, INT granuleLength, INT *sfbOffset, INT *sfbCnt)
212 {
213 INT i, specStartOffset = 0;
214 const UCHAR* sfbWidth = NULL;
215 const SFB_INFO_TAB *sfbInfo = NULL;
216 int size;
217
218 /*
219 select table
220 */
221 switch(granuleLength) {
222 case 1024:
223 case 960:
224 sfbInfo = sfbInfoTab;
225 size = (INT)(sizeof(sfbInfoTab)/sizeof(SFB_INFO_TAB));
226 break;
227 case 512:
228 sfbInfo = sfbInfoTabLD512;
229 size = sizeof(sfbInfoTabLD512);
230 break;
231 case 480:
232 sfbInfo = sfbInfoTabLD480;
233 size = sizeof(sfbInfoTabLD480);
234 break;
235 default:
236 return AAC_ENC_INVALID_FRAME_LENGTH;
237 }
238
239 for(i = 0; i < size; i++){
240 if(sfbInfo[i].sampleRate == sampleRate){
241 switch(blockType){
242 case LONG_WINDOW:
243 case START_WINDOW:
244 case STOP_WINDOW:
245 sfbWidth = sfbInfo[i].paramLong->sfbWidth;
246 *sfbCnt = sfbInfo[i].paramLong->sfbCnt;
247 break;
248 case SHORT_WINDOW:
249 sfbWidth = sfbInfo[i].paramShort->sfbWidth;
250 *sfbCnt = sfbInfo[i].paramShort->sfbCnt;
251 granuleLength /= TRANS_FAC;
252 break;
253 }
254 break;
255 }
256 }
257 if (i == size) {
258 return AAC_ENC_UNSUPPORTED_SAMPLINGRATE;
259 }
260
261 /*
262 calc sfb offsets
263 */
264 for(i = 0; i < *sfbCnt; i++){
265 sfbOffset[i] = specStartOffset;
266 specStartOffset += sfbWidth[i];
267 if (specStartOffset >= granuleLength) {
268 i++;
269 break;
270 }
271 }
272 *sfbCnt = fixMin(i,*sfbCnt);
273 sfbOffset[*sfbCnt] = fixMin(specStartOffset,granuleLength);
274
275 return AAC_ENC_OK;
276 }
277
278
279 /*****************************************************************************
280
281 functionname: FDKaacEnc_BarcLineValue
282 description: Calculates barc value for one frequency line
283 returns: barc value of line
284 input: number of lines in transform, index of line to check, Fs
285 output:
286
287 *****************************************************************************/
FDKaacEnc_BarcLineValue(INT noOfLines,INT fftLine,LONG samplingFreq)288 static FIXP_DBL FDKaacEnc_BarcLineValue(INT noOfLines, INT fftLine, LONG samplingFreq)
289 {
290
291 FIXP_DBL FOURBY3EM4 = (FIXP_DBL)0x45e7b273; /* 4.0/3 * 0.0001 in q43 */
292 FIXP_DBL PZZZ76 = (FIXP_DBL)0x639d5e4a; /* 0.00076 in q41 */
293 FIXP_DBL ONE3P3 = (FIXP_DBL)0x35333333; /* 13.3 in q26 */
294 FIXP_DBL THREEP5 = (FIXP_DBL)0x1c000000; /* 3.5 in q27 */
295 FIXP_DBL INV480 = (FIXP_DBL)0x44444444; // 1/480 in q39
296
297 FIXP_DBL center_freq, x1, x2;
298 FIXP_DBL bvalFFTLine, atan1, atan2;
299
300 /* Theoritical maximum of center_freq (samp_freq*0.5) is 96khz * 0.5 = 48000 */
301 /* Theoritical maximum of x1 is 1.3333333e-4f * center_freq = 6.4, can keep in q28 */
302 /* Theoritical maximum of x2 is 0.00076f * center_freq = 36.48, can keep in q25 */
303
304 center_freq = fftLine * samplingFreq; /* q11 or q8 */
305
306 switch (noOfLines) {
307 case 1024:
308 center_freq = center_freq << 2; /* q13 */
309 break;
310 case 128:
311 center_freq = center_freq << 5; /* q13 */
312 break;
313 case 512:
314 center_freq = (fftLine * samplingFreq) << 3; // q13
315 break;
316 case 480:
317 center_freq = fMult(center_freq, INV480) << 4; // q13
318 break;
319 default:
320 center_freq = (FIXP_DBL)0;
321 }
322
323 x1 = fMult(center_freq, FOURBY3EM4); /* q13 * q43 - (DFRACT_BITS-1) = q25 */
324 x2 = fMult(center_freq, PZZZ76) << 2; /* q13 * q41 - (DFRACT_BITS-1) + 2 = q25 */
325
326 atan1 = fixp_atan(x1);
327 atan2 = fixp_atan(x2);
328
329 /* q25 (q26 * q30 - (DFRACT_BITS-1)) + q25 (q27 * q30 * q30) */
330 bvalFFTLine = fMult(ONE3P3, atan2) + fMult(THREEP5, fMult(atan1, atan1));
331 return(bvalFFTLine);
332
333 }
334
335 /*
336 do not consider energies below a certain input signal level,
337 i.e. of -96dB or 1 bit at 16 bit PCM resolution,
338 might need to be configurable to e.g. 24 bit PCM Input or a lower
339 resolution for low bit rates
340 */
FDKaacEnc_InitMinPCMResolution(int numPb,int * pbOffset,FIXP_DBL * sfbPCMquantThreshold)341 static void FDKaacEnc_InitMinPCMResolution(int numPb,
342 int *pbOffset,
343 FIXP_DBL *sfbPCMquantThreshold)
344 {
345 /* PCM_QUANT_NOISE = FDKpow(10.0f, - 20.f / 10.0f) * ABS_LOW * NORM_PCM_ENERGY * FDKpow(2,PCM_QUANT_THR_SCALE) */
346 #define PCM_QUANT_NOISE ((FIXP_DBL)0x00547062)
347
348 for( int i = 0; i < numPb; i++ ) {
349 sfbPCMquantThreshold[i] = (pbOffset[i+1] - pbOffset[i]) * PCM_QUANT_NOISE;
350 }
351 }
352
getMaskFactor(const FIXP_DBL dbVal_fix,const INT dbVal_e,const FIXP_DBL ten_fix,const INT ten_e)353 static FIXP_DBL getMaskFactor(
354 const FIXP_DBL dbVal_fix,
355 const INT dbVal_e,
356 const FIXP_DBL ten_fix,
357 const INT ten_e
358 )
359 {
360 INT q_msk;
361 FIXP_DBL mask_factor;
362
363 mask_factor = fPow(ten_fix, DFRACT_BITS-1-ten_e, -dbVal_fix, DFRACT_BITS-1-dbVal_e, &q_msk);
364 q_msk = fixMin(DFRACT_BITS-1,fixMax(-(DFRACT_BITS-1),q_msk));
365
366 if ( (q_msk>0) && (mask_factor>(FIXP_DBL)MAXVAL_DBL>>q_msk) ) {
367 mask_factor = (FIXP_DBL)MAXVAL_DBL;
368 }
369 else {
370 mask_factor = scaleValue(mask_factor, q_msk);
371 }
372
373 return (mask_factor);
374 }
375
FDKaacEnc_initSpreading(INT numPb,FIXP_DBL * pbBarcValue,FIXP_DBL * pbMaskLoFactor,FIXP_DBL * pbMaskHiFactor,FIXP_DBL * pbMaskLoFactorSprEn,FIXP_DBL * pbMaskHiFactorSprEn,const LONG bitrate,const INT blockType)376 static void FDKaacEnc_initSpreading(INT numPb,
377 FIXP_DBL *pbBarcValue,
378 FIXP_DBL *pbMaskLoFactor,
379 FIXP_DBL *pbMaskHiFactor,
380 FIXP_DBL *pbMaskLoFactorSprEn,
381 FIXP_DBL *pbMaskHiFactorSprEn,
382 const LONG bitrate,
383 const INT blockType)
384
385 {
386 INT i;
387 FIXP_DBL MASKLOWSPREN, MASKHIGHSPREN;
388
389 FIXP_DBL MASKHIGH = (FIXP_DBL)0x30000000; /* 1.5 in q29 */
390 FIXP_DBL MASKLOW = (FIXP_DBL)0x60000000; /* 3.0 in q29 */
391 FIXP_DBL MASKLOWSPRENLONG = (FIXP_DBL)0x60000000; /* 3.0 in q29 */
392 FIXP_DBL MASKHIGHSPRENLONG = (FIXP_DBL)0x40000000; /* 2.0 in q29 */
393 FIXP_DBL MASKHIGHSPRENLONGLOWBR = (FIXP_DBL)0x30000000; /* 1.5 in q29 */
394 FIXP_DBL MASKLOWSPRENSHORT = (FIXP_DBL)0x40000000; /* 2.0 in q29 */
395 FIXP_DBL MASKHIGHSPRENSHORT = (FIXP_DBL)0x30000000; /* 1.5 in q29 */
396 FIXP_DBL TEN = (FIXP_DBL)0x50000000; /* 10.0 in q27 */
397
398 if (blockType != SHORT_WINDOW)
399 {
400 MASKLOWSPREN = MASKLOWSPRENLONG;
401 MASKHIGHSPREN = (bitrate>20000)?MASKHIGHSPRENLONG:MASKHIGHSPRENLONGLOWBR;
402 }
403 else
404 {
405 MASKLOWSPREN = MASKLOWSPRENSHORT;
406 MASKHIGHSPREN = MASKHIGHSPRENSHORT;
407 }
408
409 for(i=0; i<numPb; i++)
410 {
411 if (i > 0)
412 {
413 pbMaskHiFactor[i] = getMaskFactor(
414 fMult(MASKHIGH, (pbBarcValue[i] - pbBarcValue[i-1])), 23,
415 TEN, 27);
416
417 pbMaskLoFactor[i-1] = getMaskFactor(
418 fMult(MASKLOW, (pbBarcValue[i] - pbBarcValue[i-1])), 23,
419 TEN, 27);
420
421 pbMaskHiFactorSprEn[i] = getMaskFactor(
422 fMult(MASKHIGHSPREN, (pbBarcValue[i] - pbBarcValue[i-1])), 23,
423 TEN, 27);
424
425 pbMaskLoFactorSprEn[i-1] = getMaskFactor(
426 fMult(MASKLOWSPREN, (pbBarcValue[i] - pbBarcValue[i-1])), 23,
427 TEN, 27);
428 }
429 else
430 {
431 pbMaskHiFactor[i] = (FIXP_DBL)0;
432 pbMaskLoFactor[numPb-1] = (FIXP_DBL)0;
433 pbMaskHiFactorSprEn[i] = (FIXP_DBL)0;
434 pbMaskLoFactorSprEn[numPb-1] = (FIXP_DBL)0;
435 }
436 }
437 }
438
FDKaacEnc_initBarcValues(INT numPb,INT * pbOffset,INT numLines,INT samplingFrequency,FIXP_DBL * pbBval)439 static void FDKaacEnc_initBarcValues(INT numPb,
440 INT *pbOffset,
441 INT numLines,
442 INT samplingFrequency,
443 FIXP_DBL *pbBval)
444 {
445 INT i;
446 FIXP_DBL MAX_BARC = (FIXP_DBL)0x30000000; /* 24.0 in q25 */
447
448 for(i=0; i<numPb; i++)
449 {
450 FIXP_DBL v1, v2, cur_bark;
451 v1 = FDKaacEnc_BarcLineValue(numLines, pbOffset[i], samplingFrequency);
452 v2 = FDKaacEnc_BarcLineValue(numLines, pbOffset[i+1], samplingFrequency);
453 cur_bark = (v1 >> 1) + (v2 >> 1);
454 pbBval[i] = fixMin(cur_bark, MAX_BARC);
455 }
456 }
457
FDKaacEnc_initMinSnr(const LONG bitrate,const LONG samplerate,const INT numLines,const INT * sfbOffset,const INT sfbActive,const INT blockType,FIXP_DBL * sfbMinSnrLdData)458 static void FDKaacEnc_initMinSnr(const LONG bitrate,
459 const LONG samplerate,
460 const INT numLines,
461 const INT *sfbOffset,
462 const INT sfbActive,
463 const INT blockType,
464 FIXP_DBL *sfbMinSnrLdData)
465 {
466 INT sfb;
467
468 /* Fix conversion variables */
469 INT qbfac, qperwin, qdiv, qpeprt_const, qpeprt;
470 INT qtmp, qsnr, sfbWidth;
471
472 FIXP_DBL MAX_BARC = (FIXP_DBL)0x30000000; /* 24.0 in q25 */
473 FIXP_DBL MAX_BARCP1 = (FIXP_DBL)0x32000000; /* 25.0 in q25 */
474 FIXP_DBL BITS2PEFAC = (FIXP_DBL)0x4b851eb8; /* 1.18 in q30 */
475 FIXP_DBL PERS2P4 = (FIXP_DBL)0x624dd2f2; /* 0.024 in q36 */
476 FIXP_DBL ONEP5 = (FIXP_DBL)0x60000000; /* 1.5 in q30 */
477 FIXP_DBL MAX_SNR = (FIXP_DBL)0x33333333; /* 0.8 in q30 */
478 FIXP_DBL MIN_SNR = (FIXP_DBL)0x003126e9; /* 0.003 in q30 */
479
480 FIXP_DBL barcFactor, pePerWindow, pePart, barcWidth;
481 FIXP_DBL pePart_const, tmp, snr, one_qsnr, one_point5;
482
483 /* relative number of active barks */
484 barcFactor = fDivNorm(fixMin(FDKaacEnc_BarcLineValue(numLines, sfbOffset[sfbActive], samplerate), MAX_BARC),
485 MAX_BARCP1, &qbfac);
486
487 qbfac = DFRACT_BITS-1-qbfac;
488
489 pePerWindow = fDivNorm(bitrate, samplerate, &qperwin);
490 qperwin = DFRACT_BITS-1-qperwin;
491 pePerWindow = fMult(pePerWindow, BITS2PEFAC); qperwin = qperwin + 30 - (DFRACT_BITS-1);
492 pePerWindow = fMult(pePerWindow, PERS2P4); qperwin = qperwin + 36 - (DFRACT_BITS-1);
493
494 switch (numLines) {
495 case 1024:
496 qperwin = qperwin - 10;
497 break;
498 case 128:
499 qperwin = qperwin - 7;
500 break;
501 case 512:
502 qperwin = qperwin - 9;
503 break;
504 case 480:
505 qperwin = qperwin - 9;
506 pePerWindow = fMult(pePerWindow, FL2FXCONST_DBL(480.f/512.f));
507 break;
508 }
509
510 /* for short blocks it is assumed that more bits are available */
511 if (blockType == SHORT_WINDOW)
512 {
513 pePerWindow = fMult(pePerWindow, ONEP5);
514 qperwin = qperwin + 30 - (DFRACT_BITS-1);
515 }
516 pePart_const = fDivNorm(pePerWindow, barcFactor, &qdiv); qpeprt_const = qperwin - qbfac + DFRACT_BITS-1-qdiv;
517
518 for (sfb = 0; sfb < sfbActive; sfb++)
519 {
520 barcWidth = FDKaacEnc_BarcLineValue(numLines, sfbOffset[sfb+1], samplerate) -
521 FDKaacEnc_BarcLineValue(numLines, sfbOffset[sfb], samplerate);
522
523 /* adapt to sfb bands */
524 pePart = fMult(pePart_const, barcWidth); qpeprt = qpeprt_const + 25 - (DFRACT_BITS-1);
525
526 /* pe -> snr calculation */
527 sfbWidth = (sfbOffset[sfb+1] - sfbOffset[sfb]);
528 pePart = fDivNorm(pePart, sfbWidth, &qdiv); qpeprt += DFRACT_BITS-1-qdiv;
529
530 tmp = f2Pow(pePart, DFRACT_BITS-1-qpeprt, &qtmp);
531 qtmp = DFRACT_BITS-1-qtmp;
532
533 /* Subtract 1.5 */
534 qsnr = fixMin(qtmp, 30);
535 tmp = tmp >> (qtmp - qsnr);
536
537 if((30+1-qsnr) > (DFRACT_BITS-1))
538 one_point5 = (FIXP_DBL)0;
539 else
540 one_point5 = (FIXP_DBL)(ONEP5 >> (30+1-qsnr));
541
542 snr = (tmp>>1) - (one_point5); qsnr -= 1;
543
544 /* max(snr, 1.0) */
545 if(qsnr > 0)
546 one_qsnr = (FIXP_DBL)(1 << qsnr);
547 else
548 one_qsnr = (FIXP_DBL)0;
549
550 snr = fixMax(one_qsnr, snr);
551
552 /* 1/snr */
553 snr = fDivNorm(one_qsnr, snr, &qsnr);
554 qsnr = DFRACT_BITS-1-qsnr;
555 snr = (qsnr > 30)? (snr>>(qsnr-30)):snr;
556
557 /* upper limit is -1 dB */
558 snr = (snr > MAX_SNR) ? MAX_SNR : snr;
559
560 /* lower limit is -25 dB */
561 snr = (snr < MIN_SNR) ? MIN_SNR : snr;
562 snr = snr << 1;
563
564 sfbMinSnrLdData[sfb] = CalcLdData(snr);
565 }
566 }
567
FDKaacEnc_InitPsyConfiguration(INT bitrate,INT samplerate,INT bandwidth,INT blocktype,INT granuleLength,INT useIS,PSY_CONFIGURATION * psyConf,FB_TYPE filterbank)568 AAC_ENCODER_ERROR FDKaacEnc_InitPsyConfiguration(INT bitrate,
569 INT samplerate,
570 INT bandwidth,
571 INT blocktype,
572 INT granuleLength,
573 INT useIS,
574 PSY_CONFIGURATION *psyConf,
575 FB_TYPE filterbank)
576 {
577 AAC_ENCODER_ERROR ErrorStatus;
578 INT sfb;
579 FIXP_DBL sfbBarcVal[MAX_SFB];
580 const INT frameLengthLong = granuleLength;
581 const INT frameLengthShort = granuleLength/TRANS_FAC;
582
583 FDKmemclear(psyConf, sizeof(PSY_CONFIGURATION));
584 psyConf->granuleLength = granuleLength;
585 psyConf->filterbank = filterbank;
586
587 psyConf->allowIS = (useIS) && ( (bitrate/bandwidth) < 5 );
588
589 /* init sfb table */
590 ErrorStatus = FDKaacEnc_initSfbTable(samplerate,blocktype,granuleLength,psyConf->sfbOffset,&psyConf->sfbCnt);
591 if (ErrorStatus != AAC_ENC_OK)
592 return ErrorStatus;
593
594 /* calculate barc values for each pb */
595 FDKaacEnc_initBarcValues(psyConf->sfbCnt,
596 psyConf->sfbOffset,
597 psyConf->sfbOffset[psyConf->sfbCnt],
598 samplerate,
599 sfbBarcVal);
600
601 FDKaacEnc_InitMinPCMResolution(psyConf->sfbCnt,
602 psyConf->sfbOffset,
603 psyConf->sfbPcmQuantThreshold);
604
605 /* calculate spreading function */
606 FDKaacEnc_initSpreading(psyConf->sfbCnt,
607 sfbBarcVal,
608 psyConf->sfbMaskLowFactor,
609 psyConf->sfbMaskHighFactor,
610 psyConf->sfbMaskLowFactorSprEn,
611 psyConf->sfbMaskHighFactorSprEn,
612 bitrate,
613 blocktype);
614
615 /* init ratio */
616
617 psyConf->maxAllowedIncreaseFactor = 2; /* integer */
618 psyConf->minRemainingThresholdFactor = (FIXP_SGL)0x0148; /* FL2FXCONST_SGL(0.01f); */ /* fract */
619
620 psyConf->clipEnergy = (FIXP_DBL)0x773593ff; /* FL2FXCONST_DBL(1.0e9*NORM_PCM_ENERGY); */
621
622 if (blocktype!=SHORT_WINDOW) {
623 psyConf->lowpassLine = (INT)((2*bandwidth*frameLengthLong)/samplerate);
624 psyConf->lowpassLineLFE = LFE_LOWPASS_LINE;
625 }
626 else {
627 psyConf->lowpassLine = (INT)((2*bandwidth*frameLengthShort)/samplerate);
628 psyConf->lowpassLineLFE = 0; /* LFE only in lonf blocks */
629 /* psyConf->clipEnergy /= (TRANS_FAC * TRANS_FAC); */
630 psyConf->clipEnergy >>= 6;
631 }
632
633 for (sfb = 0; sfb < psyConf->sfbCnt; sfb++){
634 if (psyConf->sfbOffset[sfb] >= psyConf->lowpassLine)
635 break;
636 }
637 psyConf->sfbActive = sfb;
638
639 for (sfb = 0; sfb < psyConf->sfbCnt; sfb++){
640 if (psyConf->sfbOffset[sfb] >= psyConf->lowpassLineLFE)
641 break;
642 }
643 psyConf->sfbActiveLFE = sfb;
644
645 /* calculate minSnr */
646 FDKaacEnc_initMinSnr(bitrate,
647 samplerate,
648 psyConf->sfbOffset[psyConf->sfbCnt],
649 psyConf->sfbOffset,
650 psyConf->sfbActive,
651 blocktype,
652 psyConf->sfbMinSnrLdData);
653
654 return AAC_ENC_OK;
655 }
656
657