• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===-- tsan_rtl_thread.cc ------------------------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file is a part of ThreadSanitizer (TSan), a race detector.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "sanitizer_common/sanitizer_placement_new.h"
15 #include "tsan_rtl.h"
16 #include "tsan_mman.h"
17 #include "tsan_platform.h"
18 #include "tsan_report.h"
19 #include "tsan_sync.h"
20 
21 namespace __tsan {
22 
23 #ifndef TSAN_GO
24 const int kThreadQuarantineSize = 16;
25 #else
26 const int kThreadQuarantineSize = 64;
27 #endif
28 
MaybeReportThreadLeak(ThreadContext * tctx)29 static void MaybeReportThreadLeak(ThreadContext *tctx) {
30   if (tctx->detached)
31     return;
32   if (tctx->status != ThreadStatusCreated
33       && tctx->status != ThreadStatusRunning
34       && tctx->status != ThreadStatusFinished)
35     return;
36   ScopedReport rep(ReportTypeThreadLeak);
37   rep.AddThread(tctx);
38   OutputReport(rep);
39 }
40 
ThreadFinalize(ThreadState * thr)41 void ThreadFinalize(ThreadState *thr) {
42   CHECK_GT(thr->in_rtl, 0);
43   if (!flags()->report_thread_leaks)
44     return;
45   Context *ctx = CTX();
46   Lock l(&ctx->thread_mtx);
47   for (unsigned i = 0; i < kMaxTid; i++) {
48     ThreadContext *tctx = ctx->threads[i];
49     if (tctx == 0)
50       continue;
51     MaybeReportThreadLeak(tctx);
52   }
53 }
54 
ThreadDead(ThreadState * thr,ThreadContext * tctx)55 static void ThreadDead(ThreadState *thr, ThreadContext *tctx) {
56   Context *ctx = CTX();
57   CHECK_GT(thr->in_rtl, 0);
58   CHECK(tctx->status == ThreadStatusRunning
59       || tctx->status == ThreadStatusFinished);
60   DPrintf("#%d: ThreadDead uid=%zu\n", thr->tid, tctx->user_id);
61   tctx->status = ThreadStatusDead;
62   tctx->user_id = 0;
63   tctx->sync.Reset();
64 
65   // Put to dead list.
66   tctx->dead_next = 0;
67   if (ctx->dead_list_size == 0)
68     ctx->dead_list_head = tctx;
69   else
70     ctx->dead_list_tail->dead_next = tctx;
71   ctx->dead_list_tail = tctx;
72   ctx->dead_list_size++;
73 }
74 
ThreadCreate(ThreadState * thr,uptr pc,uptr uid,bool detached)75 int ThreadCreate(ThreadState *thr, uptr pc, uptr uid, bool detached) {
76   CHECK_GT(thr->in_rtl, 0);
77   Context *ctx = CTX();
78   Lock l(&ctx->thread_mtx);
79   StatInc(thr, StatThreadCreate);
80   int tid = -1;
81   ThreadContext *tctx = 0;
82   if (ctx->dead_list_size > kThreadQuarantineSize
83       || ctx->thread_seq >= kMaxTid) {
84     if (ctx->dead_list_size == 0) {
85       TsanPrintf("ThreadSanitizer: %d thread limit exceeded. Dying.\n",
86                  kMaxTid);
87       Die();
88     }
89     StatInc(thr, StatThreadReuse);
90     tctx = ctx->dead_list_head;
91     ctx->dead_list_head = tctx->dead_next;
92     ctx->dead_list_size--;
93     if (ctx->dead_list_size == 0) {
94       CHECK_EQ(tctx->dead_next, 0);
95       ctx->dead_list_head = 0;
96     }
97     CHECK_EQ(tctx->status, ThreadStatusDead);
98     tctx->status = ThreadStatusInvalid;
99     tctx->reuse_count++;
100     tctx->sync.Reset();
101     tid = tctx->tid;
102     DestroyAndFree(tctx->dead_info);
103   } else {
104     StatInc(thr, StatThreadMaxTid);
105     tid = ctx->thread_seq++;
106     void *mem = internal_alloc(MBlockThreadContex, sizeof(ThreadContext));
107     tctx = new(mem) ThreadContext(tid);
108     ctx->threads[tid] = tctx;
109   }
110   CHECK_NE(tctx, 0);
111   CHECK_GE(tid, 0);
112   CHECK_LT(tid, kMaxTid);
113   DPrintf("#%d: ThreadCreate tid=%d uid=%zu\n", thr->tid, tid, uid);
114   CHECK_EQ(tctx->status, ThreadStatusInvalid);
115   ctx->alive_threads++;
116   if (ctx->max_alive_threads < ctx->alive_threads) {
117     ctx->max_alive_threads++;
118     CHECK_EQ(ctx->max_alive_threads, ctx->alive_threads);
119     StatInc(thr, StatThreadMaxAlive);
120   }
121   tctx->status = ThreadStatusCreated;
122   tctx->thr = 0;
123   tctx->user_id = uid;
124   tctx->unique_id = ctx->unique_thread_seq++;
125   tctx->detached = detached;
126   if (tid) {
127     thr->fast_state.IncrementEpoch();
128     // Can't increment epoch w/o writing to the trace as well.
129     TraceAddEvent(thr, thr->fast_state.epoch(), EventTypeMop, 0);
130     thr->clock.set(thr->tid, thr->fast_state.epoch());
131     thr->fast_synch_epoch = thr->fast_state.epoch();
132     thr->clock.release(&tctx->sync);
133     StatInc(thr, StatSyncRelease);
134 
135     tctx->creation_stack.ObtainCurrent(thr, pc);
136   }
137   return tid;
138 }
139 
ThreadStart(ThreadState * thr,int tid)140 void ThreadStart(ThreadState *thr, int tid) {
141   CHECK_GT(thr->in_rtl, 0);
142   uptr stk_addr = 0;
143   uptr stk_size = 0;
144   uptr tls_addr = 0;
145   uptr tls_size = 0;
146   GetThreadStackAndTls(tid == 0, &stk_addr, &stk_size, &tls_addr, &tls_size);
147 
148   if (tid) {
149     if (stk_addr && stk_size) {
150       MemoryResetRange(thr, /*pc=*/ 1, stk_addr, stk_size);
151     }
152 
153     if (tls_addr && tls_size) {
154       // Check that the thr object is in tls;
155       const uptr thr_beg = (uptr)thr;
156       const uptr thr_end = (uptr)thr + sizeof(*thr);
157       CHECK_GE(thr_beg, tls_addr);
158       CHECK_LE(thr_beg, tls_addr + tls_size);
159       CHECK_GE(thr_end, tls_addr);
160       CHECK_LE(thr_end, tls_addr + tls_size);
161       // Since the thr object is huge, skip it.
162       MemoryResetRange(thr, /*pc=*/ 2, tls_addr, thr_beg - tls_addr);
163       MemoryResetRange(thr, /*pc=*/ 2, thr_end, tls_addr + tls_size - thr_end);
164     }
165   }
166 
167   Lock l(&CTX()->thread_mtx);
168   ThreadContext *tctx = CTX()->threads[tid];
169   CHECK_NE(tctx, 0);
170   CHECK_EQ(tctx->status, ThreadStatusCreated);
171   tctx->status = ThreadStatusRunning;
172   tctx->epoch0 = tctx->epoch1 + 1;
173   tctx->epoch1 = (u64)-1;
174   new(thr) ThreadState(CTX(), tid, tctx->unique_id,
175       tctx->epoch0, stk_addr, stk_size,
176       tls_addr, tls_size);
177 #ifdef TSAN_GO
178   // Setup dynamic shadow stack.
179   const int kInitStackSize = 8;
180   thr->shadow_stack = (uptr*)internal_alloc(MBlockShadowStack,
181       kInitStackSize * sizeof(uptr));
182   thr->shadow_stack_pos = thr->shadow_stack;
183   thr->shadow_stack_end = thr->shadow_stack + kInitStackSize;
184 #endif
185   tctx->thr = thr;
186   thr->fast_synch_epoch = tctx->epoch0;
187   thr->clock.set(tid, tctx->epoch0);
188   thr->clock.acquire(&tctx->sync);
189   StatInc(thr, StatSyncAcquire);
190   DPrintf("#%d: ThreadStart epoch=%zu stk_addr=%zx stk_size=%zx "
191           "tls_addr=%zx tls_size=%zx\n",
192           tid, (uptr)tctx->epoch0, stk_addr, stk_size, tls_addr, tls_size);
193   thr->is_alive = true;
194 }
195 
ThreadFinish(ThreadState * thr)196 void ThreadFinish(ThreadState *thr) {
197   CHECK_GT(thr->in_rtl, 0);
198   StatInc(thr, StatThreadFinish);
199   // FIXME: Treat it as write.
200   if (thr->stk_addr && thr->stk_size)
201     MemoryResetRange(thr, /*pc=*/ 3, thr->stk_addr, thr->stk_size);
202   if (thr->tls_addr && thr->tls_size) {
203     const uptr thr_beg = (uptr)thr;
204     const uptr thr_end = (uptr)thr + sizeof(*thr);
205     // Since the thr object is huge, skip it.
206     MemoryResetRange(thr, /*pc=*/ 4, thr->tls_addr, thr_beg - thr->tls_addr);
207     MemoryResetRange(thr, /*pc=*/ 5,
208         thr_end, thr->tls_addr + thr->tls_size - thr_end);
209   }
210   thr->is_alive = false;
211   Context *ctx = CTX();
212   Lock l(&ctx->thread_mtx);
213   ThreadContext *tctx = ctx->threads[thr->tid];
214   CHECK_NE(tctx, 0);
215   CHECK_EQ(tctx->status, ThreadStatusRunning);
216   CHECK_GT(ctx->alive_threads, 0);
217   ctx->alive_threads--;
218   if (tctx->detached) {
219     ThreadDead(thr, tctx);
220   } else {
221     thr->fast_state.IncrementEpoch();
222     // Can't increment epoch w/o writing to the trace as well.
223     TraceAddEvent(thr, thr->fast_state.epoch(), EventTypeMop, 0);
224     thr->clock.set(thr->tid, thr->fast_state.epoch());
225     thr->fast_synch_epoch = thr->fast_state.epoch();
226     thr->clock.release(&tctx->sync);
227     StatInc(thr, StatSyncRelease);
228     tctx->status = ThreadStatusFinished;
229   }
230 
231   // Save from info about the thread.
232   tctx->dead_info = new(internal_alloc(MBlockDeadInfo, sizeof(ThreadDeadInfo)))
233       ThreadDeadInfo();
234   internal_memcpy(&tctx->dead_info->trace.events[0],
235       &thr->trace.events[0], sizeof(thr->trace.events));
236   for (int i = 0; i < kTraceParts; i++) {
237     tctx->dead_info->trace.headers[i].stack0.CopyFrom(
238         thr->trace.headers[i].stack0);
239   }
240   tctx->epoch1 = thr->fast_state.epoch();
241 
242 #ifndef TSAN_GO
243   AlloctorThreadFinish(thr);
244 #endif
245   thr->~ThreadState();
246   StatAggregate(ctx->stat, thr->stat);
247   tctx->thr = 0;
248 }
249 
ThreadTid(ThreadState * thr,uptr pc,uptr uid)250 int ThreadTid(ThreadState *thr, uptr pc, uptr uid) {
251   CHECK_GT(thr->in_rtl, 0);
252   Context *ctx = CTX();
253   Lock l(&ctx->thread_mtx);
254   int res = -1;
255   for (unsigned tid = 0; tid < kMaxTid; tid++) {
256     ThreadContext *tctx = ctx->threads[tid];
257     if (tctx != 0 && tctx->user_id == uid
258         && tctx->status != ThreadStatusInvalid) {
259       tctx->user_id = 0;
260       res = tid;
261       break;
262     }
263   }
264   DPrintf("#%d: ThreadTid uid=%zu tid=%d\n", thr->tid, uid, res);
265   return res;
266 }
267 
ThreadJoin(ThreadState * thr,uptr pc,int tid)268 void ThreadJoin(ThreadState *thr, uptr pc, int tid) {
269   CHECK_GT(thr->in_rtl, 0);
270   CHECK_GT(tid, 0);
271   CHECK_LT(tid, kMaxTid);
272   DPrintf("#%d: ThreadJoin tid=%d\n", thr->tid, tid);
273   Context *ctx = CTX();
274   Lock l(&ctx->thread_mtx);
275   ThreadContext *tctx = ctx->threads[tid];
276   if (tctx->status == ThreadStatusInvalid) {
277     TsanPrintf("ThreadSanitizer: join of non-existent thread\n");
278     return;
279   }
280   CHECK_EQ(tctx->detached, false);
281   CHECK_EQ(tctx->status, ThreadStatusFinished);
282   thr->clock.acquire(&tctx->sync);
283   StatInc(thr, StatSyncAcquire);
284   ThreadDead(thr, tctx);
285 }
286 
ThreadDetach(ThreadState * thr,uptr pc,int tid)287 void ThreadDetach(ThreadState *thr, uptr pc, int tid) {
288   CHECK_GT(thr->in_rtl, 0);
289   CHECK_GT(tid, 0);
290   CHECK_LT(tid, kMaxTid);
291   Context *ctx = CTX();
292   Lock l(&ctx->thread_mtx);
293   ThreadContext *tctx = ctx->threads[tid];
294   if (tctx->status == ThreadStatusInvalid) {
295     TsanPrintf("ThreadSanitizer: detach of non-existent thread\n");
296     return;
297   }
298   if (tctx->status == ThreadStatusFinished) {
299     ThreadDead(thr, tctx);
300   } else {
301     tctx->detached = true;
302   }
303 }
304 
ThreadFinalizerGoroutine(ThreadState * thr)305 void ThreadFinalizerGoroutine(ThreadState *thr) {
306   thr->clock.Disable(thr->tid);
307 }
308 
MemoryAccessRange(ThreadState * thr,uptr pc,uptr addr,uptr size,bool is_write)309 void MemoryAccessRange(ThreadState *thr, uptr pc, uptr addr,
310                        uptr size, bool is_write) {
311   if (size == 0)
312     return;
313 
314   u64 *shadow_mem = (u64*)MemToShadow(addr);
315   DPrintf2("#%d: MemoryAccessRange: @%p %p size=%d is_write=%d\n",
316       thr->tid, (void*)pc, (void*)addr,
317       (int)size, is_write);
318 
319 #if TSAN_DEBUG
320   if (!IsAppMem(addr)) {
321     TsanPrintf("Access to non app mem %zx\n", addr);
322     DCHECK(IsAppMem(addr));
323   }
324   if (!IsAppMem(addr + size - 1)) {
325     TsanPrintf("Access to non app mem %zx\n", addr + size - 1);
326     DCHECK(IsAppMem(addr + size - 1));
327   }
328   if (!IsShadowMem((uptr)shadow_mem)) {
329     TsanPrintf("Bad shadow addr %p (%zx)\n", shadow_mem, addr);
330     DCHECK(IsShadowMem((uptr)shadow_mem));
331   }
332   if (!IsShadowMem((uptr)(shadow_mem + size * kShadowCnt / 8 - 1))) {
333     TsanPrintf("Bad shadow addr %p (%zx)\n",
334                shadow_mem + size * kShadowCnt / 8 - 1, addr + size - 1);
335     DCHECK(IsShadowMem((uptr)(shadow_mem + size * kShadowCnt / 8 - 1)));
336   }
337 #endif
338 
339   StatInc(thr, StatMopRange);
340 
341   FastState fast_state = thr->fast_state;
342   if (fast_state.GetIgnoreBit())
343     return;
344 
345   fast_state.IncrementEpoch();
346   thr->fast_state = fast_state;
347   TraceAddEvent(thr, fast_state.epoch(), EventTypeMop, pc);
348 
349   bool unaligned = (addr % kShadowCell) != 0;
350 
351   // Handle unaligned beginning, if any.
352   for (; addr % kShadowCell && size; addr++, size--) {
353     int const kAccessSizeLog = 0;
354     Shadow cur(fast_state);
355     cur.SetWrite(is_write);
356     cur.SetAddr0AndSizeLog(addr & (kShadowCell - 1), kAccessSizeLog);
357     MemoryAccessImpl(thr, addr, kAccessSizeLog, is_write, fast_state,
358         shadow_mem, cur);
359   }
360   if (unaligned)
361     shadow_mem += kShadowCnt;
362   // Handle middle part, if any.
363   for (; size >= kShadowCell; addr += kShadowCell, size -= kShadowCell) {
364     int const kAccessSizeLog = 3;
365     Shadow cur(fast_state);
366     cur.SetWrite(is_write);
367     cur.SetAddr0AndSizeLog(0, kAccessSizeLog);
368     MemoryAccessImpl(thr, addr, kAccessSizeLog, is_write, fast_state,
369         shadow_mem, cur);
370     shadow_mem += kShadowCnt;
371   }
372   // Handle ending, if any.
373   for (; size; addr++, size--) {
374     int const kAccessSizeLog = 0;
375     Shadow cur(fast_state);
376     cur.SetWrite(is_write);
377     cur.SetAddr0AndSizeLog(addr & (kShadowCell - 1), kAccessSizeLog);
378     MemoryAccessImpl(thr, addr, kAccessSizeLog, is_write, fast_state,
379         shadow_mem, cur);
380   }
381 }
382 
MemoryRead1Byte(ThreadState * thr,uptr pc,uptr addr)383 void MemoryRead1Byte(ThreadState *thr, uptr pc, uptr addr) {
384   MemoryAccess(thr, pc, addr, 0, 0);
385 }
386 
MemoryWrite1Byte(ThreadState * thr,uptr pc,uptr addr)387 void MemoryWrite1Byte(ThreadState *thr, uptr pc, uptr addr) {
388   MemoryAccess(thr, pc, addr, 0, 1);
389 }
390 
MemoryRead8Byte(ThreadState * thr,uptr pc,uptr addr)391 void MemoryRead8Byte(ThreadState *thr, uptr pc, uptr addr) {
392   MemoryAccess(thr, pc, addr, 3, 0);
393 }
394 
MemoryWrite8Byte(ThreadState * thr,uptr pc,uptr addr)395 void MemoryWrite8Byte(ThreadState *thr, uptr pc, uptr addr) {
396   MemoryAccess(thr, pc, addr, 3, 1);
397 }
398 }  // namespace __tsan
399