1 //===--- SemaInit.cpp - Semantic Analysis for Initializers ----------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements semantic analysis for initializers.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "clang/Sema/Designator.h"
15 #include "clang/Sema/Initialization.h"
16 #include "clang/Sema/Lookup.h"
17 #include "clang/Sema/SemaInternal.h"
18 #include "clang/Lex/Preprocessor.h"
19 #include "clang/AST/ASTContext.h"
20 #include "clang/AST/DeclObjC.h"
21 #include "clang/AST/ExprCXX.h"
22 #include "clang/AST/ExprObjC.h"
23 #include "clang/AST/TypeLoc.h"
24 #include "llvm/ADT/APInt.h"
25 #include "llvm/ADT/SmallString.h"
26 #include "llvm/Support/ErrorHandling.h"
27 #include "llvm/Support/raw_ostream.h"
28 #include <map>
29 using namespace clang;
30
31 //===----------------------------------------------------------------------===//
32 // Sema Initialization Checking
33 //===----------------------------------------------------------------------===//
34
IsStringInit(Expr * Init,const ArrayType * AT,ASTContext & Context)35 static Expr *IsStringInit(Expr *Init, const ArrayType *AT,
36 ASTContext &Context) {
37 if (!isa<ConstantArrayType>(AT) && !isa<IncompleteArrayType>(AT))
38 return 0;
39
40 // See if this is a string literal or @encode.
41 Init = Init->IgnoreParens();
42
43 // Handle @encode, which is a narrow string.
44 if (isa<ObjCEncodeExpr>(Init) && AT->getElementType()->isCharType())
45 return Init;
46
47 // Otherwise we can only handle string literals.
48 StringLiteral *SL = dyn_cast<StringLiteral>(Init);
49 if (SL == 0) return 0;
50
51 QualType ElemTy = Context.getCanonicalType(AT->getElementType());
52
53 switch (SL->getKind()) {
54 case StringLiteral::Ascii:
55 case StringLiteral::UTF8:
56 // char array can be initialized with a narrow string.
57 // Only allow char x[] = "foo"; not char x[] = L"foo";
58 return ElemTy->isCharType() ? Init : 0;
59 case StringLiteral::UTF16:
60 return ElemTy->isChar16Type() ? Init : 0;
61 case StringLiteral::UTF32:
62 return ElemTy->isChar32Type() ? Init : 0;
63 case StringLiteral::Wide:
64 // wchar_t array can be initialized with a wide string: C99 6.7.8p15 (with
65 // correction from DR343): "An array with element type compatible with a
66 // qualified or unqualified version of wchar_t may be initialized by a wide
67 // string literal, optionally enclosed in braces."
68 if (Context.typesAreCompatible(Context.getWCharType(),
69 ElemTy.getUnqualifiedType()))
70 return Init;
71
72 return 0;
73 }
74
75 llvm_unreachable("missed a StringLiteral kind?");
76 }
77
IsStringInit(Expr * init,QualType declType,ASTContext & Context)78 static Expr *IsStringInit(Expr *init, QualType declType, ASTContext &Context) {
79 const ArrayType *arrayType = Context.getAsArrayType(declType);
80 if (!arrayType) return 0;
81
82 return IsStringInit(init, arrayType, Context);
83 }
84
CheckStringInit(Expr * Str,QualType & DeclT,const ArrayType * AT,Sema & S)85 static void CheckStringInit(Expr *Str, QualType &DeclT, const ArrayType *AT,
86 Sema &S) {
87 // Get the length of the string as parsed.
88 uint64_t StrLength =
89 cast<ConstantArrayType>(Str->getType())->getSize().getZExtValue();
90
91
92 if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT)) {
93 // C99 6.7.8p14. We have an array of character type with unknown size
94 // being initialized to a string literal.
95 llvm::APInt ConstVal(32, StrLength);
96 // Return a new array type (C99 6.7.8p22).
97 DeclT = S.Context.getConstantArrayType(IAT->getElementType(),
98 ConstVal,
99 ArrayType::Normal, 0);
100 return;
101 }
102
103 const ConstantArrayType *CAT = cast<ConstantArrayType>(AT);
104
105 // We have an array of character type with known size. However,
106 // the size may be smaller or larger than the string we are initializing.
107 // FIXME: Avoid truncation for 64-bit length strings.
108 if (S.getLangOpts().CPlusPlus) {
109 if (StringLiteral *SL = dyn_cast<StringLiteral>(Str)) {
110 // For Pascal strings it's OK to strip off the terminating null character,
111 // so the example below is valid:
112 //
113 // unsigned char a[2] = "\pa";
114 if (SL->isPascal())
115 StrLength--;
116 }
117
118 // [dcl.init.string]p2
119 if (StrLength > CAT->getSize().getZExtValue())
120 S.Diag(Str->getLocStart(),
121 diag::err_initializer_string_for_char_array_too_long)
122 << Str->getSourceRange();
123 } else {
124 // C99 6.7.8p14.
125 if (StrLength-1 > CAT->getSize().getZExtValue())
126 S.Diag(Str->getLocStart(),
127 diag::warn_initializer_string_for_char_array_too_long)
128 << Str->getSourceRange();
129 }
130
131 // Set the type to the actual size that we are initializing. If we have
132 // something like:
133 // char x[1] = "foo";
134 // then this will set the string literal's type to char[1].
135 Str->setType(DeclT);
136 }
137
138 //===----------------------------------------------------------------------===//
139 // Semantic checking for initializer lists.
140 //===----------------------------------------------------------------------===//
141
142 /// @brief Semantic checking for initializer lists.
143 ///
144 /// The InitListChecker class contains a set of routines that each
145 /// handle the initialization of a certain kind of entity, e.g.,
146 /// arrays, vectors, struct/union types, scalars, etc. The
147 /// InitListChecker itself performs a recursive walk of the subobject
148 /// structure of the type to be initialized, while stepping through
149 /// the initializer list one element at a time. The IList and Index
150 /// parameters to each of the Check* routines contain the active
151 /// (syntactic) initializer list and the index into that initializer
152 /// list that represents the current initializer. Each routine is
153 /// responsible for moving that Index forward as it consumes elements.
154 ///
155 /// Each Check* routine also has a StructuredList/StructuredIndex
156 /// arguments, which contains the current "structured" (semantic)
157 /// initializer list and the index into that initializer list where we
158 /// are copying initializers as we map them over to the semantic
159 /// list. Once we have completed our recursive walk of the subobject
160 /// structure, we will have constructed a full semantic initializer
161 /// list.
162 ///
163 /// C99 designators cause changes in the initializer list traversal,
164 /// because they make the initialization "jump" into a specific
165 /// subobject and then continue the initialization from that
166 /// point. CheckDesignatedInitializer() recursively steps into the
167 /// designated subobject and manages backing out the recursion to
168 /// initialize the subobjects after the one designated.
169 namespace {
170 class InitListChecker {
171 Sema &SemaRef;
172 bool hadError;
173 bool VerifyOnly; // no diagnostics, no structure building
174 bool AllowBraceElision;
175 llvm::DenseMap<InitListExpr *, InitListExpr *> SyntacticToSemantic;
176 InitListExpr *FullyStructuredList;
177
178 void CheckImplicitInitList(const InitializedEntity &Entity,
179 InitListExpr *ParentIList, QualType T,
180 unsigned &Index, InitListExpr *StructuredList,
181 unsigned &StructuredIndex);
182 void CheckExplicitInitList(const InitializedEntity &Entity,
183 InitListExpr *IList, QualType &T,
184 unsigned &Index, InitListExpr *StructuredList,
185 unsigned &StructuredIndex,
186 bool TopLevelObject = false);
187 void CheckListElementTypes(const InitializedEntity &Entity,
188 InitListExpr *IList, QualType &DeclType,
189 bool SubobjectIsDesignatorContext,
190 unsigned &Index,
191 InitListExpr *StructuredList,
192 unsigned &StructuredIndex,
193 bool TopLevelObject = false);
194 void CheckSubElementType(const InitializedEntity &Entity,
195 InitListExpr *IList, QualType ElemType,
196 unsigned &Index,
197 InitListExpr *StructuredList,
198 unsigned &StructuredIndex);
199 void CheckComplexType(const InitializedEntity &Entity,
200 InitListExpr *IList, QualType DeclType,
201 unsigned &Index,
202 InitListExpr *StructuredList,
203 unsigned &StructuredIndex);
204 void CheckScalarType(const InitializedEntity &Entity,
205 InitListExpr *IList, QualType DeclType,
206 unsigned &Index,
207 InitListExpr *StructuredList,
208 unsigned &StructuredIndex);
209 void CheckReferenceType(const InitializedEntity &Entity,
210 InitListExpr *IList, QualType DeclType,
211 unsigned &Index,
212 InitListExpr *StructuredList,
213 unsigned &StructuredIndex);
214 void CheckVectorType(const InitializedEntity &Entity,
215 InitListExpr *IList, QualType DeclType, unsigned &Index,
216 InitListExpr *StructuredList,
217 unsigned &StructuredIndex);
218 void CheckStructUnionTypes(const InitializedEntity &Entity,
219 InitListExpr *IList, QualType DeclType,
220 RecordDecl::field_iterator Field,
221 bool SubobjectIsDesignatorContext, unsigned &Index,
222 InitListExpr *StructuredList,
223 unsigned &StructuredIndex,
224 bool TopLevelObject = false);
225 void CheckArrayType(const InitializedEntity &Entity,
226 InitListExpr *IList, QualType &DeclType,
227 llvm::APSInt elementIndex,
228 bool SubobjectIsDesignatorContext, unsigned &Index,
229 InitListExpr *StructuredList,
230 unsigned &StructuredIndex);
231 bool CheckDesignatedInitializer(const InitializedEntity &Entity,
232 InitListExpr *IList, DesignatedInitExpr *DIE,
233 unsigned DesigIdx,
234 QualType &CurrentObjectType,
235 RecordDecl::field_iterator *NextField,
236 llvm::APSInt *NextElementIndex,
237 unsigned &Index,
238 InitListExpr *StructuredList,
239 unsigned &StructuredIndex,
240 bool FinishSubobjectInit,
241 bool TopLevelObject);
242 InitListExpr *getStructuredSubobjectInit(InitListExpr *IList, unsigned Index,
243 QualType CurrentObjectType,
244 InitListExpr *StructuredList,
245 unsigned StructuredIndex,
246 SourceRange InitRange);
247 void UpdateStructuredListElement(InitListExpr *StructuredList,
248 unsigned &StructuredIndex,
249 Expr *expr);
250 int numArrayElements(QualType DeclType);
251 int numStructUnionElements(QualType DeclType);
252
253 void FillInValueInitForField(unsigned Init, FieldDecl *Field,
254 const InitializedEntity &ParentEntity,
255 InitListExpr *ILE, bool &RequiresSecondPass);
256 void FillInValueInitializations(const InitializedEntity &Entity,
257 InitListExpr *ILE, bool &RequiresSecondPass);
258 bool CheckFlexibleArrayInit(const InitializedEntity &Entity,
259 Expr *InitExpr, FieldDecl *Field,
260 bool TopLevelObject);
261 void CheckValueInitializable(const InitializedEntity &Entity);
262
263 public:
264 InitListChecker(Sema &S, const InitializedEntity &Entity,
265 InitListExpr *IL, QualType &T, bool VerifyOnly,
266 bool AllowBraceElision);
HadError()267 bool HadError() { return hadError; }
268
269 // @brief Retrieves the fully-structured initializer list used for
270 // semantic analysis and code generation.
getFullyStructuredList() const271 InitListExpr *getFullyStructuredList() const { return FullyStructuredList; }
272 };
273 } // end anonymous namespace
274
CheckValueInitializable(const InitializedEntity & Entity)275 void InitListChecker::CheckValueInitializable(const InitializedEntity &Entity) {
276 assert(VerifyOnly &&
277 "CheckValueInitializable is only inteded for verification mode.");
278
279 SourceLocation Loc;
280 InitializationKind Kind = InitializationKind::CreateValue(Loc, Loc, Loc,
281 true);
282 InitializationSequence InitSeq(SemaRef, Entity, Kind, 0, 0);
283 if (InitSeq.Failed())
284 hadError = true;
285 }
286
FillInValueInitForField(unsigned Init,FieldDecl * Field,const InitializedEntity & ParentEntity,InitListExpr * ILE,bool & RequiresSecondPass)287 void InitListChecker::FillInValueInitForField(unsigned Init, FieldDecl *Field,
288 const InitializedEntity &ParentEntity,
289 InitListExpr *ILE,
290 bool &RequiresSecondPass) {
291 SourceLocation Loc = ILE->getLocStart();
292 unsigned NumInits = ILE->getNumInits();
293 InitializedEntity MemberEntity
294 = InitializedEntity::InitializeMember(Field, &ParentEntity);
295 if (Init >= NumInits || !ILE->getInit(Init)) {
296 // FIXME: We probably don't need to handle references
297 // specially here, since value-initialization of references is
298 // handled in InitializationSequence.
299 if (Field->getType()->isReferenceType()) {
300 // C++ [dcl.init.aggr]p9:
301 // If an incomplete or empty initializer-list leaves a
302 // member of reference type uninitialized, the program is
303 // ill-formed.
304 SemaRef.Diag(Loc, diag::err_init_reference_member_uninitialized)
305 << Field->getType()
306 << ILE->getSyntacticForm()->getSourceRange();
307 SemaRef.Diag(Field->getLocation(),
308 diag::note_uninit_reference_member);
309 hadError = true;
310 return;
311 }
312
313 InitializationKind Kind = InitializationKind::CreateValue(Loc, Loc, Loc,
314 true);
315 InitializationSequence InitSeq(SemaRef, MemberEntity, Kind, 0, 0);
316 if (!InitSeq) {
317 InitSeq.Diagnose(SemaRef, MemberEntity, Kind, 0, 0);
318 hadError = true;
319 return;
320 }
321
322 ExprResult MemberInit
323 = InitSeq.Perform(SemaRef, MemberEntity, Kind, MultiExprArg());
324 if (MemberInit.isInvalid()) {
325 hadError = true;
326 return;
327 }
328
329 if (hadError) {
330 // Do nothing
331 } else if (Init < NumInits) {
332 ILE->setInit(Init, MemberInit.takeAs<Expr>());
333 } else if (InitSeq.isConstructorInitialization()) {
334 // Value-initialization requires a constructor call, so
335 // extend the initializer list to include the constructor
336 // call and make a note that we'll need to take another pass
337 // through the initializer list.
338 ILE->updateInit(SemaRef.Context, Init, MemberInit.takeAs<Expr>());
339 RequiresSecondPass = true;
340 }
341 } else if (InitListExpr *InnerILE
342 = dyn_cast<InitListExpr>(ILE->getInit(Init)))
343 FillInValueInitializations(MemberEntity, InnerILE,
344 RequiresSecondPass);
345 }
346
347 /// Recursively replaces NULL values within the given initializer list
348 /// with expressions that perform value-initialization of the
349 /// appropriate type.
350 void
FillInValueInitializations(const InitializedEntity & Entity,InitListExpr * ILE,bool & RequiresSecondPass)351 InitListChecker::FillInValueInitializations(const InitializedEntity &Entity,
352 InitListExpr *ILE,
353 bool &RequiresSecondPass) {
354 assert((ILE->getType() != SemaRef.Context.VoidTy) &&
355 "Should not have void type");
356 SourceLocation Loc = ILE->getLocStart();
357 if (ILE->getSyntacticForm())
358 Loc = ILE->getSyntacticForm()->getLocStart();
359
360 if (const RecordType *RType = ILE->getType()->getAs<RecordType>()) {
361 if (RType->getDecl()->isUnion() &&
362 ILE->getInitializedFieldInUnion())
363 FillInValueInitForField(0, ILE->getInitializedFieldInUnion(),
364 Entity, ILE, RequiresSecondPass);
365 else {
366 unsigned Init = 0;
367 for (RecordDecl::field_iterator
368 Field = RType->getDecl()->field_begin(),
369 FieldEnd = RType->getDecl()->field_end();
370 Field != FieldEnd; ++Field) {
371 if (Field->isUnnamedBitfield())
372 continue;
373
374 if (hadError)
375 return;
376
377 FillInValueInitForField(Init, *Field, Entity, ILE, RequiresSecondPass);
378 if (hadError)
379 return;
380
381 ++Init;
382
383 // Only look at the first initialization of a union.
384 if (RType->getDecl()->isUnion())
385 break;
386 }
387 }
388
389 return;
390 }
391
392 QualType ElementType;
393
394 InitializedEntity ElementEntity = Entity;
395 unsigned NumInits = ILE->getNumInits();
396 unsigned NumElements = NumInits;
397 if (const ArrayType *AType = SemaRef.Context.getAsArrayType(ILE->getType())) {
398 ElementType = AType->getElementType();
399 if (const ConstantArrayType *CAType = dyn_cast<ConstantArrayType>(AType))
400 NumElements = CAType->getSize().getZExtValue();
401 ElementEntity = InitializedEntity::InitializeElement(SemaRef.Context,
402 0, Entity);
403 } else if (const VectorType *VType = ILE->getType()->getAs<VectorType>()) {
404 ElementType = VType->getElementType();
405 NumElements = VType->getNumElements();
406 ElementEntity = InitializedEntity::InitializeElement(SemaRef.Context,
407 0, Entity);
408 } else
409 ElementType = ILE->getType();
410
411
412 for (unsigned Init = 0; Init != NumElements; ++Init) {
413 if (hadError)
414 return;
415
416 if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement ||
417 ElementEntity.getKind() == InitializedEntity::EK_VectorElement)
418 ElementEntity.setElementIndex(Init);
419
420 Expr *InitExpr = (Init < NumInits ? ILE->getInit(Init) : 0);
421 if (!InitExpr && !ILE->hasArrayFiller()) {
422 InitializationKind Kind = InitializationKind::CreateValue(Loc, Loc, Loc,
423 true);
424 InitializationSequence InitSeq(SemaRef, ElementEntity, Kind, 0, 0);
425 if (!InitSeq) {
426 InitSeq.Diagnose(SemaRef, ElementEntity, Kind, 0, 0);
427 hadError = true;
428 return;
429 }
430
431 ExprResult ElementInit
432 = InitSeq.Perform(SemaRef, ElementEntity, Kind, MultiExprArg());
433 if (ElementInit.isInvalid()) {
434 hadError = true;
435 return;
436 }
437
438 if (hadError) {
439 // Do nothing
440 } else if (Init < NumInits) {
441 // For arrays, just set the expression used for value-initialization
442 // of the "holes" in the array.
443 if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement)
444 ILE->setArrayFiller(ElementInit.takeAs<Expr>());
445 else
446 ILE->setInit(Init, ElementInit.takeAs<Expr>());
447 } else {
448 // For arrays, just set the expression used for value-initialization
449 // of the rest of elements and exit.
450 if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement) {
451 ILE->setArrayFiller(ElementInit.takeAs<Expr>());
452 return;
453 }
454
455 if (InitSeq.isConstructorInitialization()) {
456 // Value-initialization requires a constructor call, so
457 // extend the initializer list to include the constructor
458 // call and make a note that we'll need to take another pass
459 // through the initializer list.
460 ILE->updateInit(SemaRef.Context, Init, ElementInit.takeAs<Expr>());
461 RequiresSecondPass = true;
462 }
463 }
464 } else if (InitListExpr *InnerILE
465 = dyn_cast_or_null<InitListExpr>(InitExpr))
466 FillInValueInitializations(ElementEntity, InnerILE, RequiresSecondPass);
467 }
468 }
469
470
InitListChecker(Sema & S,const InitializedEntity & Entity,InitListExpr * IL,QualType & T,bool VerifyOnly,bool AllowBraceElision)471 InitListChecker::InitListChecker(Sema &S, const InitializedEntity &Entity,
472 InitListExpr *IL, QualType &T,
473 bool VerifyOnly, bool AllowBraceElision)
474 : SemaRef(S), VerifyOnly(VerifyOnly), AllowBraceElision(AllowBraceElision) {
475 hadError = false;
476
477 unsigned newIndex = 0;
478 unsigned newStructuredIndex = 0;
479 FullyStructuredList
480 = getStructuredSubobjectInit(IL, newIndex, T, 0, 0, IL->getSourceRange());
481 CheckExplicitInitList(Entity, IL, T, newIndex,
482 FullyStructuredList, newStructuredIndex,
483 /*TopLevelObject=*/true);
484
485 if (!hadError && !VerifyOnly) {
486 bool RequiresSecondPass = false;
487 FillInValueInitializations(Entity, FullyStructuredList, RequiresSecondPass);
488 if (RequiresSecondPass && !hadError)
489 FillInValueInitializations(Entity, FullyStructuredList,
490 RequiresSecondPass);
491 }
492 }
493
numArrayElements(QualType DeclType)494 int InitListChecker::numArrayElements(QualType DeclType) {
495 // FIXME: use a proper constant
496 int maxElements = 0x7FFFFFFF;
497 if (const ConstantArrayType *CAT =
498 SemaRef.Context.getAsConstantArrayType(DeclType)) {
499 maxElements = static_cast<int>(CAT->getSize().getZExtValue());
500 }
501 return maxElements;
502 }
503
numStructUnionElements(QualType DeclType)504 int InitListChecker::numStructUnionElements(QualType DeclType) {
505 RecordDecl *structDecl = DeclType->getAs<RecordType>()->getDecl();
506 int InitializableMembers = 0;
507 for (RecordDecl::field_iterator
508 Field = structDecl->field_begin(),
509 FieldEnd = structDecl->field_end();
510 Field != FieldEnd; ++Field) {
511 if (!Field->isUnnamedBitfield())
512 ++InitializableMembers;
513 }
514 if (structDecl->isUnion())
515 return std::min(InitializableMembers, 1);
516 return InitializableMembers - structDecl->hasFlexibleArrayMember();
517 }
518
CheckImplicitInitList(const InitializedEntity & Entity,InitListExpr * ParentIList,QualType T,unsigned & Index,InitListExpr * StructuredList,unsigned & StructuredIndex)519 void InitListChecker::CheckImplicitInitList(const InitializedEntity &Entity,
520 InitListExpr *ParentIList,
521 QualType T, unsigned &Index,
522 InitListExpr *StructuredList,
523 unsigned &StructuredIndex) {
524 int maxElements = 0;
525
526 if (T->isArrayType())
527 maxElements = numArrayElements(T);
528 else if (T->isRecordType())
529 maxElements = numStructUnionElements(T);
530 else if (T->isVectorType())
531 maxElements = T->getAs<VectorType>()->getNumElements();
532 else
533 llvm_unreachable("CheckImplicitInitList(): Illegal type");
534
535 if (maxElements == 0) {
536 if (!VerifyOnly)
537 SemaRef.Diag(ParentIList->getInit(Index)->getLocStart(),
538 diag::err_implicit_empty_initializer);
539 ++Index;
540 hadError = true;
541 return;
542 }
543
544 // Build a structured initializer list corresponding to this subobject.
545 InitListExpr *StructuredSubobjectInitList
546 = getStructuredSubobjectInit(ParentIList, Index, T, StructuredList,
547 StructuredIndex,
548 SourceRange(ParentIList->getInit(Index)->getLocStart(),
549 ParentIList->getSourceRange().getEnd()));
550 unsigned StructuredSubobjectInitIndex = 0;
551
552 // Check the element types and build the structural subobject.
553 unsigned StartIndex = Index;
554 CheckListElementTypes(Entity, ParentIList, T,
555 /*SubobjectIsDesignatorContext=*/false, Index,
556 StructuredSubobjectInitList,
557 StructuredSubobjectInitIndex);
558
559 if (VerifyOnly) {
560 if (!AllowBraceElision && (T->isArrayType() || T->isRecordType()))
561 hadError = true;
562 } else {
563 StructuredSubobjectInitList->setType(T);
564
565 unsigned EndIndex = (Index == StartIndex? StartIndex : Index - 1);
566 // Update the structured sub-object initializer so that it's ending
567 // range corresponds with the end of the last initializer it used.
568 if (EndIndex < ParentIList->getNumInits()) {
569 SourceLocation EndLoc
570 = ParentIList->getInit(EndIndex)->getSourceRange().getEnd();
571 StructuredSubobjectInitList->setRBraceLoc(EndLoc);
572 }
573
574 // Complain about missing braces.
575 if (T->isArrayType() || T->isRecordType()) {
576 SemaRef.Diag(StructuredSubobjectInitList->getLocStart(),
577 AllowBraceElision ? diag::warn_missing_braces :
578 diag::err_missing_braces)
579 << StructuredSubobjectInitList->getSourceRange()
580 << FixItHint::CreateInsertion(
581 StructuredSubobjectInitList->getLocStart(), "{")
582 << FixItHint::CreateInsertion(
583 SemaRef.PP.getLocForEndOfToken(
584 StructuredSubobjectInitList->getLocEnd()),
585 "}");
586 if (!AllowBraceElision)
587 hadError = true;
588 }
589 }
590 }
591
CheckExplicitInitList(const InitializedEntity & Entity,InitListExpr * IList,QualType & T,unsigned & Index,InitListExpr * StructuredList,unsigned & StructuredIndex,bool TopLevelObject)592 void InitListChecker::CheckExplicitInitList(const InitializedEntity &Entity,
593 InitListExpr *IList, QualType &T,
594 unsigned &Index,
595 InitListExpr *StructuredList,
596 unsigned &StructuredIndex,
597 bool TopLevelObject) {
598 assert(IList->isExplicit() && "Illegal Implicit InitListExpr");
599 if (!VerifyOnly) {
600 SyntacticToSemantic[IList] = StructuredList;
601 StructuredList->setSyntacticForm(IList);
602 }
603 CheckListElementTypes(Entity, IList, T, /*SubobjectIsDesignatorContext=*/true,
604 Index, StructuredList, StructuredIndex, TopLevelObject);
605 if (!VerifyOnly) {
606 QualType ExprTy = T;
607 if (!ExprTy->isArrayType())
608 ExprTy = ExprTy.getNonLValueExprType(SemaRef.Context);
609 IList->setType(ExprTy);
610 StructuredList->setType(ExprTy);
611 }
612 if (hadError)
613 return;
614
615 if (Index < IList->getNumInits()) {
616 // We have leftover initializers
617 if (VerifyOnly) {
618 if (SemaRef.getLangOpts().CPlusPlus ||
619 (SemaRef.getLangOpts().OpenCL &&
620 IList->getType()->isVectorType())) {
621 hadError = true;
622 }
623 return;
624 }
625
626 if (StructuredIndex == 1 &&
627 IsStringInit(StructuredList->getInit(0), T, SemaRef.Context)) {
628 unsigned DK = diag::warn_excess_initializers_in_char_array_initializer;
629 if (SemaRef.getLangOpts().CPlusPlus) {
630 DK = diag::err_excess_initializers_in_char_array_initializer;
631 hadError = true;
632 }
633 // Special-case
634 SemaRef.Diag(IList->getInit(Index)->getLocStart(), DK)
635 << IList->getInit(Index)->getSourceRange();
636 } else if (!T->isIncompleteType()) {
637 // Don't complain for incomplete types, since we'll get an error
638 // elsewhere
639 QualType CurrentObjectType = StructuredList->getType();
640 int initKind =
641 CurrentObjectType->isArrayType()? 0 :
642 CurrentObjectType->isVectorType()? 1 :
643 CurrentObjectType->isScalarType()? 2 :
644 CurrentObjectType->isUnionType()? 3 :
645 4;
646
647 unsigned DK = diag::warn_excess_initializers;
648 if (SemaRef.getLangOpts().CPlusPlus) {
649 DK = diag::err_excess_initializers;
650 hadError = true;
651 }
652 if (SemaRef.getLangOpts().OpenCL && initKind == 1) {
653 DK = diag::err_excess_initializers;
654 hadError = true;
655 }
656
657 SemaRef.Diag(IList->getInit(Index)->getLocStart(), DK)
658 << initKind << IList->getInit(Index)->getSourceRange();
659 }
660 }
661
662 if (!VerifyOnly && T->isScalarType() && IList->getNumInits() == 1 &&
663 !TopLevelObject)
664 SemaRef.Diag(IList->getLocStart(), diag::warn_braces_around_scalar_init)
665 << IList->getSourceRange()
666 << FixItHint::CreateRemoval(IList->getLocStart())
667 << FixItHint::CreateRemoval(IList->getLocEnd());
668 }
669
CheckListElementTypes(const InitializedEntity & Entity,InitListExpr * IList,QualType & DeclType,bool SubobjectIsDesignatorContext,unsigned & Index,InitListExpr * StructuredList,unsigned & StructuredIndex,bool TopLevelObject)670 void InitListChecker::CheckListElementTypes(const InitializedEntity &Entity,
671 InitListExpr *IList,
672 QualType &DeclType,
673 bool SubobjectIsDesignatorContext,
674 unsigned &Index,
675 InitListExpr *StructuredList,
676 unsigned &StructuredIndex,
677 bool TopLevelObject) {
678 if (DeclType->isAnyComplexType() && SubobjectIsDesignatorContext) {
679 // Explicitly braced initializer for complex type can be real+imaginary
680 // parts.
681 CheckComplexType(Entity, IList, DeclType, Index,
682 StructuredList, StructuredIndex);
683 } else if (DeclType->isScalarType()) {
684 CheckScalarType(Entity, IList, DeclType, Index,
685 StructuredList, StructuredIndex);
686 } else if (DeclType->isVectorType()) {
687 CheckVectorType(Entity, IList, DeclType, Index,
688 StructuredList, StructuredIndex);
689 } else if (DeclType->isRecordType()) {
690 assert(DeclType->isAggregateType() &&
691 "non-aggregate records should be handed in CheckSubElementType");
692 RecordDecl *RD = DeclType->getAs<RecordType>()->getDecl();
693 CheckStructUnionTypes(Entity, IList, DeclType, RD->field_begin(),
694 SubobjectIsDesignatorContext, Index,
695 StructuredList, StructuredIndex,
696 TopLevelObject);
697 } else if (DeclType->isArrayType()) {
698 llvm::APSInt Zero(
699 SemaRef.Context.getTypeSize(SemaRef.Context.getSizeType()),
700 false);
701 CheckArrayType(Entity, IList, DeclType, Zero,
702 SubobjectIsDesignatorContext, Index,
703 StructuredList, StructuredIndex);
704 } else if (DeclType->isVoidType() || DeclType->isFunctionType()) {
705 // This type is invalid, issue a diagnostic.
706 ++Index;
707 if (!VerifyOnly)
708 SemaRef.Diag(IList->getLocStart(), diag::err_illegal_initializer_type)
709 << DeclType;
710 hadError = true;
711 } else if (DeclType->isReferenceType()) {
712 CheckReferenceType(Entity, IList, DeclType, Index,
713 StructuredList, StructuredIndex);
714 } else if (DeclType->isObjCObjectType()) {
715 if (!VerifyOnly)
716 SemaRef.Diag(IList->getLocStart(), diag::err_init_objc_class)
717 << DeclType;
718 hadError = true;
719 } else {
720 if (!VerifyOnly)
721 SemaRef.Diag(IList->getLocStart(), diag::err_illegal_initializer_type)
722 << DeclType;
723 hadError = true;
724 }
725 }
726
CheckSubElementType(const InitializedEntity & Entity,InitListExpr * IList,QualType ElemType,unsigned & Index,InitListExpr * StructuredList,unsigned & StructuredIndex)727 void InitListChecker::CheckSubElementType(const InitializedEntity &Entity,
728 InitListExpr *IList,
729 QualType ElemType,
730 unsigned &Index,
731 InitListExpr *StructuredList,
732 unsigned &StructuredIndex) {
733 Expr *expr = IList->getInit(Index);
734 if (InitListExpr *SubInitList = dyn_cast<InitListExpr>(expr)) {
735 if (!ElemType->isRecordType() || ElemType->isAggregateType()) {
736 unsigned newIndex = 0;
737 unsigned newStructuredIndex = 0;
738 InitListExpr *newStructuredList
739 = getStructuredSubobjectInit(IList, Index, ElemType,
740 StructuredList, StructuredIndex,
741 SubInitList->getSourceRange());
742 CheckExplicitInitList(Entity, SubInitList, ElemType, newIndex,
743 newStructuredList, newStructuredIndex);
744 ++StructuredIndex;
745 ++Index;
746 return;
747 }
748 assert(SemaRef.getLangOpts().CPlusPlus &&
749 "non-aggregate records are only possible in C++");
750 // C++ initialization is handled later.
751 }
752
753 if (ElemType->isScalarType()) {
754 return CheckScalarType(Entity, IList, ElemType, Index,
755 StructuredList, StructuredIndex);
756 } else if (ElemType->isReferenceType()) {
757 return CheckReferenceType(Entity, IList, ElemType, Index,
758 StructuredList, StructuredIndex);
759 }
760
761 if (const ArrayType *arrayType = SemaRef.Context.getAsArrayType(ElemType)) {
762 // arrayType can be incomplete if we're initializing a flexible
763 // array member. There's nothing we can do with the completed
764 // type here, though.
765
766 if (Expr *Str = IsStringInit(expr, arrayType, SemaRef.Context)) {
767 if (!VerifyOnly) {
768 CheckStringInit(Str, ElemType, arrayType, SemaRef);
769 UpdateStructuredListElement(StructuredList, StructuredIndex, Str);
770 }
771 ++Index;
772 return;
773 }
774
775 // Fall through for subaggregate initialization.
776
777 } else if (SemaRef.getLangOpts().CPlusPlus) {
778 // C++ [dcl.init.aggr]p12:
779 // All implicit type conversions (clause 4) are considered when
780 // initializing the aggregate member with an initializer from
781 // an initializer-list. If the initializer can initialize a
782 // member, the member is initialized. [...]
783
784 // FIXME: Better EqualLoc?
785 InitializationKind Kind =
786 InitializationKind::CreateCopy(expr->getLocStart(), SourceLocation());
787 InitializationSequence Seq(SemaRef, Entity, Kind, &expr, 1);
788
789 if (Seq) {
790 if (!VerifyOnly) {
791 ExprResult Result =
792 Seq.Perform(SemaRef, Entity, Kind, MultiExprArg(&expr, 1));
793 if (Result.isInvalid())
794 hadError = true;
795
796 UpdateStructuredListElement(StructuredList, StructuredIndex,
797 Result.takeAs<Expr>());
798 }
799 ++Index;
800 return;
801 }
802
803 // Fall through for subaggregate initialization
804 } else {
805 // C99 6.7.8p13:
806 //
807 // The initializer for a structure or union object that has
808 // automatic storage duration shall be either an initializer
809 // list as described below, or a single expression that has
810 // compatible structure or union type. In the latter case, the
811 // initial value of the object, including unnamed members, is
812 // that of the expression.
813 ExprResult ExprRes = SemaRef.Owned(expr);
814 if ((ElemType->isRecordType() || ElemType->isVectorType()) &&
815 SemaRef.CheckSingleAssignmentConstraints(ElemType, ExprRes,
816 !VerifyOnly)
817 == Sema::Compatible) {
818 if (ExprRes.isInvalid())
819 hadError = true;
820 else {
821 ExprRes = SemaRef.DefaultFunctionArrayLvalueConversion(ExprRes.take());
822 if (ExprRes.isInvalid())
823 hadError = true;
824 }
825 UpdateStructuredListElement(StructuredList, StructuredIndex,
826 ExprRes.takeAs<Expr>());
827 ++Index;
828 return;
829 }
830 ExprRes.release();
831 // Fall through for subaggregate initialization
832 }
833
834 // C++ [dcl.init.aggr]p12:
835 //
836 // [...] Otherwise, if the member is itself a non-empty
837 // subaggregate, brace elision is assumed and the initializer is
838 // considered for the initialization of the first member of
839 // the subaggregate.
840 if (!SemaRef.getLangOpts().OpenCL &&
841 (ElemType->isAggregateType() || ElemType->isVectorType())) {
842 CheckImplicitInitList(Entity, IList, ElemType, Index, StructuredList,
843 StructuredIndex);
844 ++StructuredIndex;
845 } else {
846 if (!VerifyOnly) {
847 // We cannot initialize this element, so let
848 // PerformCopyInitialization produce the appropriate diagnostic.
849 SemaRef.PerformCopyInitialization(Entity, SourceLocation(),
850 SemaRef.Owned(expr),
851 /*TopLevelOfInitList=*/true);
852 }
853 hadError = true;
854 ++Index;
855 ++StructuredIndex;
856 }
857 }
858
CheckComplexType(const InitializedEntity & Entity,InitListExpr * IList,QualType DeclType,unsigned & Index,InitListExpr * StructuredList,unsigned & StructuredIndex)859 void InitListChecker::CheckComplexType(const InitializedEntity &Entity,
860 InitListExpr *IList, QualType DeclType,
861 unsigned &Index,
862 InitListExpr *StructuredList,
863 unsigned &StructuredIndex) {
864 assert(Index == 0 && "Index in explicit init list must be zero");
865
866 // As an extension, clang supports complex initializers, which initialize
867 // a complex number component-wise. When an explicit initializer list for
868 // a complex number contains two two initializers, this extension kicks in:
869 // it exepcts the initializer list to contain two elements convertible to
870 // the element type of the complex type. The first element initializes
871 // the real part, and the second element intitializes the imaginary part.
872
873 if (IList->getNumInits() != 2)
874 return CheckScalarType(Entity, IList, DeclType, Index, StructuredList,
875 StructuredIndex);
876
877 // This is an extension in C. (The builtin _Complex type does not exist
878 // in the C++ standard.)
879 if (!SemaRef.getLangOpts().CPlusPlus && !VerifyOnly)
880 SemaRef.Diag(IList->getLocStart(), diag::ext_complex_component_init)
881 << IList->getSourceRange();
882
883 // Initialize the complex number.
884 QualType elementType = DeclType->getAs<ComplexType>()->getElementType();
885 InitializedEntity ElementEntity =
886 InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
887
888 for (unsigned i = 0; i < 2; ++i) {
889 ElementEntity.setElementIndex(Index);
890 CheckSubElementType(ElementEntity, IList, elementType, Index,
891 StructuredList, StructuredIndex);
892 }
893 }
894
895
CheckScalarType(const InitializedEntity & Entity,InitListExpr * IList,QualType DeclType,unsigned & Index,InitListExpr * StructuredList,unsigned & StructuredIndex)896 void InitListChecker::CheckScalarType(const InitializedEntity &Entity,
897 InitListExpr *IList, QualType DeclType,
898 unsigned &Index,
899 InitListExpr *StructuredList,
900 unsigned &StructuredIndex) {
901 if (Index >= IList->getNumInits()) {
902 if (!VerifyOnly)
903 SemaRef.Diag(IList->getLocStart(),
904 SemaRef.getLangOpts().CPlusPlus0x ?
905 diag::warn_cxx98_compat_empty_scalar_initializer :
906 diag::err_empty_scalar_initializer)
907 << IList->getSourceRange();
908 hadError = !SemaRef.getLangOpts().CPlusPlus0x;
909 ++Index;
910 ++StructuredIndex;
911 return;
912 }
913
914 Expr *expr = IList->getInit(Index);
915 if (InitListExpr *SubIList = dyn_cast<InitListExpr>(expr)) {
916 if (!VerifyOnly)
917 SemaRef.Diag(SubIList->getLocStart(),
918 diag::warn_many_braces_around_scalar_init)
919 << SubIList->getSourceRange();
920
921 CheckScalarType(Entity, SubIList, DeclType, Index, StructuredList,
922 StructuredIndex);
923 return;
924 } else if (isa<DesignatedInitExpr>(expr)) {
925 if (!VerifyOnly)
926 SemaRef.Diag(expr->getLocStart(),
927 diag::err_designator_for_scalar_init)
928 << DeclType << expr->getSourceRange();
929 hadError = true;
930 ++Index;
931 ++StructuredIndex;
932 return;
933 }
934
935 if (VerifyOnly) {
936 if (!SemaRef.CanPerformCopyInitialization(Entity, SemaRef.Owned(expr)))
937 hadError = true;
938 ++Index;
939 return;
940 }
941
942 ExprResult Result =
943 SemaRef.PerformCopyInitialization(Entity, expr->getLocStart(),
944 SemaRef.Owned(expr),
945 /*TopLevelOfInitList=*/true);
946
947 Expr *ResultExpr = 0;
948
949 if (Result.isInvalid())
950 hadError = true; // types weren't compatible.
951 else {
952 ResultExpr = Result.takeAs<Expr>();
953
954 if (ResultExpr != expr) {
955 // The type was promoted, update initializer list.
956 IList->setInit(Index, ResultExpr);
957 }
958 }
959 if (hadError)
960 ++StructuredIndex;
961 else
962 UpdateStructuredListElement(StructuredList, StructuredIndex, ResultExpr);
963 ++Index;
964 }
965
CheckReferenceType(const InitializedEntity & Entity,InitListExpr * IList,QualType DeclType,unsigned & Index,InitListExpr * StructuredList,unsigned & StructuredIndex)966 void InitListChecker::CheckReferenceType(const InitializedEntity &Entity,
967 InitListExpr *IList, QualType DeclType,
968 unsigned &Index,
969 InitListExpr *StructuredList,
970 unsigned &StructuredIndex) {
971 if (Index >= IList->getNumInits()) {
972 // FIXME: It would be wonderful if we could point at the actual member. In
973 // general, it would be useful to pass location information down the stack,
974 // so that we know the location (or decl) of the "current object" being
975 // initialized.
976 if (!VerifyOnly)
977 SemaRef.Diag(IList->getLocStart(),
978 diag::err_init_reference_member_uninitialized)
979 << DeclType
980 << IList->getSourceRange();
981 hadError = true;
982 ++Index;
983 ++StructuredIndex;
984 return;
985 }
986
987 Expr *expr = IList->getInit(Index);
988 if (isa<InitListExpr>(expr) && !SemaRef.getLangOpts().CPlusPlus0x) {
989 if (!VerifyOnly)
990 SemaRef.Diag(IList->getLocStart(), diag::err_init_non_aggr_init_list)
991 << DeclType << IList->getSourceRange();
992 hadError = true;
993 ++Index;
994 ++StructuredIndex;
995 return;
996 }
997
998 if (VerifyOnly) {
999 if (!SemaRef.CanPerformCopyInitialization(Entity, SemaRef.Owned(expr)))
1000 hadError = true;
1001 ++Index;
1002 return;
1003 }
1004
1005 ExprResult Result =
1006 SemaRef.PerformCopyInitialization(Entity, expr->getLocStart(),
1007 SemaRef.Owned(expr),
1008 /*TopLevelOfInitList=*/true);
1009
1010 if (Result.isInvalid())
1011 hadError = true;
1012
1013 expr = Result.takeAs<Expr>();
1014 IList->setInit(Index, expr);
1015
1016 if (hadError)
1017 ++StructuredIndex;
1018 else
1019 UpdateStructuredListElement(StructuredList, StructuredIndex, expr);
1020 ++Index;
1021 }
1022
CheckVectorType(const InitializedEntity & Entity,InitListExpr * IList,QualType DeclType,unsigned & Index,InitListExpr * StructuredList,unsigned & StructuredIndex)1023 void InitListChecker::CheckVectorType(const InitializedEntity &Entity,
1024 InitListExpr *IList, QualType DeclType,
1025 unsigned &Index,
1026 InitListExpr *StructuredList,
1027 unsigned &StructuredIndex) {
1028 const VectorType *VT = DeclType->getAs<VectorType>();
1029 unsigned maxElements = VT->getNumElements();
1030 unsigned numEltsInit = 0;
1031 QualType elementType = VT->getElementType();
1032
1033 if (Index >= IList->getNumInits()) {
1034 // Make sure the element type can be value-initialized.
1035 if (VerifyOnly)
1036 CheckValueInitializable(
1037 InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity));
1038 return;
1039 }
1040
1041 if (!SemaRef.getLangOpts().OpenCL) {
1042 // If the initializing element is a vector, try to copy-initialize
1043 // instead of breaking it apart (which is doomed to failure anyway).
1044 Expr *Init = IList->getInit(Index);
1045 if (!isa<InitListExpr>(Init) && Init->getType()->isVectorType()) {
1046 if (VerifyOnly) {
1047 if (!SemaRef.CanPerformCopyInitialization(Entity, SemaRef.Owned(Init)))
1048 hadError = true;
1049 ++Index;
1050 return;
1051 }
1052
1053 ExprResult Result =
1054 SemaRef.PerformCopyInitialization(Entity, Init->getLocStart(),
1055 SemaRef.Owned(Init),
1056 /*TopLevelOfInitList=*/true);
1057
1058 Expr *ResultExpr = 0;
1059 if (Result.isInvalid())
1060 hadError = true; // types weren't compatible.
1061 else {
1062 ResultExpr = Result.takeAs<Expr>();
1063
1064 if (ResultExpr != Init) {
1065 // The type was promoted, update initializer list.
1066 IList->setInit(Index, ResultExpr);
1067 }
1068 }
1069 if (hadError)
1070 ++StructuredIndex;
1071 else
1072 UpdateStructuredListElement(StructuredList, StructuredIndex,
1073 ResultExpr);
1074 ++Index;
1075 return;
1076 }
1077
1078 InitializedEntity ElementEntity =
1079 InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
1080
1081 for (unsigned i = 0; i < maxElements; ++i, ++numEltsInit) {
1082 // Don't attempt to go past the end of the init list
1083 if (Index >= IList->getNumInits()) {
1084 if (VerifyOnly)
1085 CheckValueInitializable(ElementEntity);
1086 break;
1087 }
1088
1089 ElementEntity.setElementIndex(Index);
1090 CheckSubElementType(ElementEntity, IList, elementType, Index,
1091 StructuredList, StructuredIndex);
1092 }
1093 return;
1094 }
1095
1096 InitializedEntity ElementEntity =
1097 InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
1098
1099 // OpenCL initializers allows vectors to be constructed from vectors.
1100 for (unsigned i = 0; i < maxElements; ++i) {
1101 // Don't attempt to go past the end of the init list
1102 if (Index >= IList->getNumInits())
1103 break;
1104
1105 ElementEntity.setElementIndex(Index);
1106
1107 QualType IType = IList->getInit(Index)->getType();
1108 if (!IType->isVectorType()) {
1109 CheckSubElementType(ElementEntity, IList, elementType, Index,
1110 StructuredList, StructuredIndex);
1111 ++numEltsInit;
1112 } else {
1113 QualType VecType;
1114 const VectorType *IVT = IType->getAs<VectorType>();
1115 unsigned numIElts = IVT->getNumElements();
1116
1117 if (IType->isExtVectorType())
1118 VecType = SemaRef.Context.getExtVectorType(elementType, numIElts);
1119 else
1120 VecType = SemaRef.Context.getVectorType(elementType, numIElts,
1121 IVT->getVectorKind());
1122 CheckSubElementType(ElementEntity, IList, VecType, Index,
1123 StructuredList, StructuredIndex);
1124 numEltsInit += numIElts;
1125 }
1126 }
1127
1128 // OpenCL requires all elements to be initialized.
1129 if (numEltsInit != maxElements) {
1130 if (!VerifyOnly)
1131 SemaRef.Diag(IList->getLocStart(),
1132 diag::err_vector_incorrect_num_initializers)
1133 << (numEltsInit < maxElements) << maxElements << numEltsInit;
1134 hadError = true;
1135 }
1136 }
1137
CheckArrayType(const InitializedEntity & Entity,InitListExpr * IList,QualType & DeclType,llvm::APSInt elementIndex,bool SubobjectIsDesignatorContext,unsigned & Index,InitListExpr * StructuredList,unsigned & StructuredIndex)1138 void InitListChecker::CheckArrayType(const InitializedEntity &Entity,
1139 InitListExpr *IList, QualType &DeclType,
1140 llvm::APSInt elementIndex,
1141 bool SubobjectIsDesignatorContext,
1142 unsigned &Index,
1143 InitListExpr *StructuredList,
1144 unsigned &StructuredIndex) {
1145 const ArrayType *arrayType = SemaRef.Context.getAsArrayType(DeclType);
1146
1147 // Check for the special-case of initializing an array with a string.
1148 if (Index < IList->getNumInits()) {
1149 if (Expr *Str = IsStringInit(IList->getInit(Index), arrayType,
1150 SemaRef.Context)) {
1151 // We place the string literal directly into the resulting
1152 // initializer list. This is the only place where the structure
1153 // of the structured initializer list doesn't match exactly,
1154 // because doing so would involve allocating one character
1155 // constant for each string.
1156 if (!VerifyOnly) {
1157 CheckStringInit(Str, DeclType, arrayType, SemaRef);
1158 UpdateStructuredListElement(StructuredList, StructuredIndex, Str);
1159 StructuredList->resizeInits(SemaRef.Context, StructuredIndex);
1160 }
1161 ++Index;
1162 return;
1163 }
1164 }
1165 if (const VariableArrayType *VAT = dyn_cast<VariableArrayType>(arrayType)) {
1166 // Check for VLAs; in standard C it would be possible to check this
1167 // earlier, but I don't know where clang accepts VLAs (gcc accepts
1168 // them in all sorts of strange places).
1169 if (!VerifyOnly)
1170 SemaRef.Diag(VAT->getSizeExpr()->getLocStart(),
1171 diag::err_variable_object_no_init)
1172 << VAT->getSizeExpr()->getSourceRange();
1173 hadError = true;
1174 ++Index;
1175 ++StructuredIndex;
1176 return;
1177 }
1178
1179 // We might know the maximum number of elements in advance.
1180 llvm::APSInt maxElements(elementIndex.getBitWidth(),
1181 elementIndex.isUnsigned());
1182 bool maxElementsKnown = false;
1183 if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(arrayType)) {
1184 maxElements = CAT->getSize();
1185 elementIndex = elementIndex.extOrTrunc(maxElements.getBitWidth());
1186 elementIndex.setIsUnsigned(maxElements.isUnsigned());
1187 maxElementsKnown = true;
1188 }
1189
1190 QualType elementType = arrayType->getElementType();
1191 while (Index < IList->getNumInits()) {
1192 Expr *Init = IList->getInit(Index);
1193 if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Init)) {
1194 // If we're not the subobject that matches up with the '{' for
1195 // the designator, we shouldn't be handling the
1196 // designator. Return immediately.
1197 if (!SubobjectIsDesignatorContext)
1198 return;
1199
1200 // Handle this designated initializer. elementIndex will be
1201 // updated to be the next array element we'll initialize.
1202 if (CheckDesignatedInitializer(Entity, IList, DIE, 0,
1203 DeclType, 0, &elementIndex, Index,
1204 StructuredList, StructuredIndex, true,
1205 false)) {
1206 hadError = true;
1207 continue;
1208 }
1209
1210 if (elementIndex.getBitWidth() > maxElements.getBitWidth())
1211 maxElements = maxElements.extend(elementIndex.getBitWidth());
1212 else if (elementIndex.getBitWidth() < maxElements.getBitWidth())
1213 elementIndex = elementIndex.extend(maxElements.getBitWidth());
1214 elementIndex.setIsUnsigned(maxElements.isUnsigned());
1215
1216 // If the array is of incomplete type, keep track of the number of
1217 // elements in the initializer.
1218 if (!maxElementsKnown && elementIndex > maxElements)
1219 maxElements = elementIndex;
1220
1221 continue;
1222 }
1223
1224 // If we know the maximum number of elements, and we've already
1225 // hit it, stop consuming elements in the initializer list.
1226 if (maxElementsKnown && elementIndex == maxElements)
1227 break;
1228
1229 InitializedEntity ElementEntity =
1230 InitializedEntity::InitializeElement(SemaRef.Context, StructuredIndex,
1231 Entity);
1232 // Check this element.
1233 CheckSubElementType(ElementEntity, IList, elementType, Index,
1234 StructuredList, StructuredIndex);
1235 ++elementIndex;
1236
1237 // If the array is of incomplete type, keep track of the number of
1238 // elements in the initializer.
1239 if (!maxElementsKnown && elementIndex > maxElements)
1240 maxElements = elementIndex;
1241 }
1242 if (!hadError && DeclType->isIncompleteArrayType() && !VerifyOnly) {
1243 // If this is an incomplete array type, the actual type needs to
1244 // be calculated here.
1245 llvm::APSInt Zero(maxElements.getBitWidth(), maxElements.isUnsigned());
1246 if (maxElements == Zero) {
1247 // Sizing an array implicitly to zero is not allowed by ISO C,
1248 // but is supported by GNU.
1249 SemaRef.Diag(IList->getLocStart(),
1250 diag::ext_typecheck_zero_array_size);
1251 }
1252
1253 DeclType = SemaRef.Context.getConstantArrayType(elementType, maxElements,
1254 ArrayType::Normal, 0);
1255 }
1256 if (!hadError && VerifyOnly) {
1257 // Check if there are any members of the array that get value-initialized.
1258 // If so, check if doing that is possible.
1259 // FIXME: This needs to detect holes left by designated initializers too.
1260 if (maxElementsKnown && elementIndex < maxElements)
1261 CheckValueInitializable(InitializedEntity::InitializeElement(
1262 SemaRef.Context, 0, Entity));
1263 }
1264 }
1265
CheckFlexibleArrayInit(const InitializedEntity & Entity,Expr * InitExpr,FieldDecl * Field,bool TopLevelObject)1266 bool InitListChecker::CheckFlexibleArrayInit(const InitializedEntity &Entity,
1267 Expr *InitExpr,
1268 FieldDecl *Field,
1269 bool TopLevelObject) {
1270 // Handle GNU flexible array initializers.
1271 unsigned FlexArrayDiag;
1272 if (isa<InitListExpr>(InitExpr) &&
1273 cast<InitListExpr>(InitExpr)->getNumInits() == 0) {
1274 // Empty flexible array init always allowed as an extension
1275 FlexArrayDiag = diag::ext_flexible_array_init;
1276 } else if (SemaRef.getLangOpts().CPlusPlus) {
1277 // Disallow flexible array init in C++; it is not required for gcc
1278 // compatibility, and it needs work to IRGen correctly in general.
1279 FlexArrayDiag = diag::err_flexible_array_init;
1280 } else if (!TopLevelObject) {
1281 // Disallow flexible array init on non-top-level object
1282 FlexArrayDiag = diag::err_flexible_array_init;
1283 } else if (Entity.getKind() != InitializedEntity::EK_Variable) {
1284 // Disallow flexible array init on anything which is not a variable.
1285 FlexArrayDiag = diag::err_flexible_array_init;
1286 } else if (cast<VarDecl>(Entity.getDecl())->hasLocalStorage()) {
1287 // Disallow flexible array init on local variables.
1288 FlexArrayDiag = diag::err_flexible_array_init;
1289 } else {
1290 // Allow other cases.
1291 FlexArrayDiag = diag::ext_flexible_array_init;
1292 }
1293
1294 if (!VerifyOnly) {
1295 SemaRef.Diag(InitExpr->getLocStart(),
1296 FlexArrayDiag)
1297 << InitExpr->getLocStart();
1298 SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
1299 << Field;
1300 }
1301
1302 return FlexArrayDiag != diag::ext_flexible_array_init;
1303 }
1304
CheckStructUnionTypes(const InitializedEntity & Entity,InitListExpr * IList,QualType DeclType,RecordDecl::field_iterator Field,bool SubobjectIsDesignatorContext,unsigned & Index,InitListExpr * StructuredList,unsigned & StructuredIndex,bool TopLevelObject)1305 void InitListChecker::CheckStructUnionTypes(const InitializedEntity &Entity,
1306 InitListExpr *IList,
1307 QualType DeclType,
1308 RecordDecl::field_iterator Field,
1309 bool SubobjectIsDesignatorContext,
1310 unsigned &Index,
1311 InitListExpr *StructuredList,
1312 unsigned &StructuredIndex,
1313 bool TopLevelObject) {
1314 RecordDecl* structDecl = DeclType->getAs<RecordType>()->getDecl();
1315
1316 // If the record is invalid, some of it's members are invalid. To avoid
1317 // confusion, we forgo checking the intializer for the entire record.
1318 if (structDecl->isInvalidDecl()) {
1319 hadError = true;
1320 return;
1321 }
1322
1323 if (DeclType->isUnionType() && IList->getNumInits() == 0) {
1324 // Value-initialize the first named member of the union.
1325 RecordDecl *RD = DeclType->getAs<RecordType>()->getDecl();
1326 for (RecordDecl::field_iterator FieldEnd = RD->field_end();
1327 Field != FieldEnd; ++Field) {
1328 if (Field->getDeclName()) {
1329 if (VerifyOnly)
1330 CheckValueInitializable(
1331 InitializedEntity::InitializeMember(*Field, &Entity));
1332 else
1333 StructuredList->setInitializedFieldInUnion(*Field);
1334 break;
1335 }
1336 }
1337 return;
1338 }
1339
1340 // If structDecl is a forward declaration, this loop won't do
1341 // anything except look at designated initializers; That's okay,
1342 // because an error should get printed out elsewhere. It might be
1343 // worthwhile to skip over the rest of the initializer, though.
1344 RecordDecl *RD = DeclType->getAs<RecordType>()->getDecl();
1345 RecordDecl::field_iterator FieldEnd = RD->field_end();
1346 bool InitializedSomething = false;
1347 bool CheckForMissingFields = true;
1348 while (Index < IList->getNumInits()) {
1349 Expr *Init = IList->getInit(Index);
1350
1351 if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Init)) {
1352 // If we're not the subobject that matches up with the '{' for
1353 // the designator, we shouldn't be handling the
1354 // designator. Return immediately.
1355 if (!SubobjectIsDesignatorContext)
1356 return;
1357
1358 // Handle this designated initializer. Field will be updated to
1359 // the next field that we'll be initializing.
1360 if (CheckDesignatedInitializer(Entity, IList, DIE, 0,
1361 DeclType, &Field, 0, Index,
1362 StructuredList, StructuredIndex,
1363 true, TopLevelObject))
1364 hadError = true;
1365
1366 InitializedSomething = true;
1367
1368 // Disable check for missing fields when designators are used.
1369 // This matches gcc behaviour.
1370 CheckForMissingFields = false;
1371 continue;
1372 }
1373
1374 if (Field == FieldEnd) {
1375 // We've run out of fields. We're done.
1376 break;
1377 }
1378
1379 // We've already initialized a member of a union. We're done.
1380 if (InitializedSomething && DeclType->isUnionType())
1381 break;
1382
1383 // If we've hit the flexible array member at the end, we're done.
1384 if (Field->getType()->isIncompleteArrayType())
1385 break;
1386
1387 if (Field->isUnnamedBitfield()) {
1388 // Don't initialize unnamed bitfields, e.g. "int : 20;"
1389 ++Field;
1390 continue;
1391 }
1392
1393 // Make sure we can use this declaration.
1394 bool InvalidUse;
1395 if (VerifyOnly)
1396 InvalidUse = !SemaRef.CanUseDecl(*Field);
1397 else
1398 InvalidUse = SemaRef.DiagnoseUseOfDecl(*Field,
1399 IList->getInit(Index)->getLocStart());
1400 if (InvalidUse) {
1401 ++Index;
1402 ++Field;
1403 hadError = true;
1404 continue;
1405 }
1406
1407 InitializedEntity MemberEntity =
1408 InitializedEntity::InitializeMember(*Field, &Entity);
1409 CheckSubElementType(MemberEntity, IList, Field->getType(), Index,
1410 StructuredList, StructuredIndex);
1411 InitializedSomething = true;
1412
1413 if (DeclType->isUnionType() && !VerifyOnly) {
1414 // Initialize the first field within the union.
1415 StructuredList->setInitializedFieldInUnion(*Field);
1416 }
1417
1418 ++Field;
1419 }
1420
1421 // Emit warnings for missing struct field initializers.
1422 if (!VerifyOnly && InitializedSomething && CheckForMissingFields &&
1423 Field != FieldEnd && !Field->getType()->isIncompleteArrayType() &&
1424 !DeclType->isUnionType()) {
1425 // It is possible we have one or more unnamed bitfields remaining.
1426 // Find first (if any) named field and emit warning.
1427 for (RecordDecl::field_iterator it = Field, end = RD->field_end();
1428 it != end; ++it) {
1429 if (!it->isUnnamedBitfield()) {
1430 SemaRef.Diag(IList->getSourceRange().getEnd(),
1431 diag::warn_missing_field_initializers) << it->getName();
1432 break;
1433 }
1434 }
1435 }
1436
1437 // Check that any remaining fields can be value-initialized.
1438 if (VerifyOnly && Field != FieldEnd && !DeclType->isUnionType() &&
1439 !Field->getType()->isIncompleteArrayType()) {
1440 // FIXME: Should check for holes left by designated initializers too.
1441 for (; Field != FieldEnd && !hadError; ++Field) {
1442 if (!Field->isUnnamedBitfield())
1443 CheckValueInitializable(
1444 InitializedEntity::InitializeMember(*Field, &Entity));
1445 }
1446 }
1447
1448 if (Field == FieldEnd || !Field->getType()->isIncompleteArrayType() ||
1449 Index >= IList->getNumInits())
1450 return;
1451
1452 if (CheckFlexibleArrayInit(Entity, IList->getInit(Index), *Field,
1453 TopLevelObject)) {
1454 hadError = true;
1455 ++Index;
1456 return;
1457 }
1458
1459 InitializedEntity MemberEntity =
1460 InitializedEntity::InitializeMember(*Field, &Entity);
1461
1462 if (isa<InitListExpr>(IList->getInit(Index)))
1463 CheckSubElementType(MemberEntity, IList, Field->getType(), Index,
1464 StructuredList, StructuredIndex);
1465 else
1466 CheckImplicitInitList(MemberEntity, IList, Field->getType(), Index,
1467 StructuredList, StructuredIndex);
1468 }
1469
1470 /// \brief Expand a field designator that refers to a member of an
1471 /// anonymous struct or union into a series of field designators that
1472 /// refers to the field within the appropriate subobject.
1473 ///
ExpandAnonymousFieldDesignator(Sema & SemaRef,DesignatedInitExpr * DIE,unsigned DesigIdx,IndirectFieldDecl * IndirectField)1474 static void ExpandAnonymousFieldDesignator(Sema &SemaRef,
1475 DesignatedInitExpr *DIE,
1476 unsigned DesigIdx,
1477 IndirectFieldDecl *IndirectField) {
1478 typedef DesignatedInitExpr::Designator Designator;
1479
1480 // Build the replacement designators.
1481 SmallVector<Designator, 4> Replacements;
1482 for (IndirectFieldDecl::chain_iterator PI = IndirectField->chain_begin(),
1483 PE = IndirectField->chain_end(); PI != PE; ++PI) {
1484 if (PI + 1 == PE)
1485 Replacements.push_back(Designator((IdentifierInfo *)0,
1486 DIE->getDesignator(DesigIdx)->getDotLoc(),
1487 DIE->getDesignator(DesigIdx)->getFieldLoc()));
1488 else
1489 Replacements.push_back(Designator((IdentifierInfo *)0, SourceLocation(),
1490 SourceLocation()));
1491 assert(isa<FieldDecl>(*PI));
1492 Replacements.back().setField(cast<FieldDecl>(*PI));
1493 }
1494
1495 // Expand the current designator into the set of replacement
1496 // designators, so we have a full subobject path down to where the
1497 // member of the anonymous struct/union is actually stored.
1498 DIE->ExpandDesignator(SemaRef.Context, DesigIdx, &Replacements[0],
1499 &Replacements[0] + Replacements.size());
1500 }
1501
1502 /// \brief Given an implicit anonymous field, search the IndirectField that
1503 /// corresponds to FieldName.
FindIndirectFieldDesignator(FieldDecl * AnonField,IdentifierInfo * FieldName)1504 static IndirectFieldDecl *FindIndirectFieldDesignator(FieldDecl *AnonField,
1505 IdentifierInfo *FieldName) {
1506 if (!FieldName)
1507 return 0;
1508
1509 assert(AnonField->isAnonymousStructOrUnion());
1510 Decl *NextDecl = AnonField->getNextDeclInContext();
1511 while (IndirectFieldDecl *IF =
1512 dyn_cast_or_null<IndirectFieldDecl>(NextDecl)) {
1513 if (FieldName == IF->getAnonField()->getIdentifier())
1514 return IF;
1515 NextDecl = NextDecl->getNextDeclInContext();
1516 }
1517 return 0;
1518 }
1519
CloneDesignatedInitExpr(Sema & SemaRef,DesignatedInitExpr * DIE)1520 static DesignatedInitExpr *CloneDesignatedInitExpr(Sema &SemaRef,
1521 DesignatedInitExpr *DIE) {
1522 unsigned NumIndexExprs = DIE->getNumSubExprs() - 1;
1523 SmallVector<Expr*, 4> IndexExprs(NumIndexExprs);
1524 for (unsigned I = 0; I < NumIndexExprs; ++I)
1525 IndexExprs[I] = DIE->getSubExpr(I + 1);
1526 return DesignatedInitExpr::Create(SemaRef.Context, DIE->designators_begin(),
1527 DIE->size(), IndexExprs,
1528 DIE->getEqualOrColonLoc(),
1529 DIE->usesGNUSyntax(), DIE->getInit());
1530 }
1531
1532 namespace {
1533
1534 // Callback to only accept typo corrections that are for field members of
1535 // the given struct or union.
1536 class FieldInitializerValidatorCCC : public CorrectionCandidateCallback {
1537 public:
FieldInitializerValidatorCCC(RecordDecl * RD)1538 explicit FieldInitializerValidatorCCC(RecordDecl *RD)
1539 : Record(RD) {}
1540
ValidateCandidate(const TypoCorrection & candidate)1541 virtual bool ValidateCandidate(const TypoCorrection &candidate) {
1542 FieldDecl *FD = candidate.getCorrectionDeclAs<FieldDecl>();
1543 return FD && FD->getDeclContext()->getRedeclContext()->Equals(Record);
1544 }
1545
1546 private:
1547 RecordDecl *Record;
1548 };
1549
1550 }
1551
1552 /// @brief Check the well-formedness of a C99 designated initializer.
1553 ///
1554 /// Determines whether the designated initializer @p DIE, which
1555 /// resides at the given @p Index within the initializer list @p
1556 /// IList, is well-formed for a current object of type @p DeclType
1557 /// (C99 6.7.8). The actual subobject that this designator refers to
1558 /// within the current subobject is returned in either
1559 /// @p NextField or @p NextElementIndex (whichever is appropriate).
1560 ///
1561 /// @param IList The initializer list in which this designated
1562 /// initializer occurs.
1563 ///
1564 /// @param DIE The designated initializer expression.
1565 ///
1566 /// @param DesigIdx The index of the current designator.
1567 ///
1568 /// @param CurrentObjectType The type of the "current object" (C99 6.7.8p17),
1569 /// into which the designation in @p DIE should refer.
1570 ///
1571 /// @param NextField If non-NULL and the first designator in @p DIE is
1572 /// a field, this will be set to the field declaration corresponding
1573 /// to the field named by the designator.
1574 ///
1575 /// @param NextElementIndex If non-NULL and the first designator in @p
1576 /// DIE is an array designator or GNU array-range designator, this
1577 /// will be set to the last index initialized by this designator.
1578 ///
1579 /// @param Index Index into @p IList where the designated initializer
1580 /// @p DIE occurs.
1581 ///
1582 /// @param StructuredList The initializer list expression that
1583 /// describes all of the subobject initializers in the order they'll
1584 /// actually be initialized.
1585 ///
1586 /// @returns true if there was an error, false otherwise.
1587 bool
CheckDesignatedInitializer(const InitializedEntity & Entity,InitListExpr * IList,DesignatedInitExpr * DIE,unsigned DesigIdx,QualType & CurrentObjectType,RecordDecl::field_iterator * NextField,llvm::APSInt * NextElementIndex,unsigned & Index,InitListExpr * StructuredList,unsigned & StructuredIndex,bool FinishSubobjectInit,bool TopLevelObject)1588 InitListChecker::CheckDesignatedInitializer(const InitializedEntity &Entity,
1589 InitListExpr *IList,
1590 DesignatedInitExpr *DIE,
1591 unsigned DesigIdx,
1592 QualType &CurrentObjectType,
1593 RecordDecl::field_iterator *NextField,
1594 llvm::APSInt *NextElementIndex,
1595 unsigned &Index,
1596 InitListExpr *StructuredList,
1597 unsigned &StructuredIndex,
1598 bool FinishSubobjectInit,
1599 bool TopLevelObject) {
1600 if (DesigIdx == DIE->size()) {
1601 // Check the actual initialization for the designated object type.
1602 bool prevHadError = hadError;
1603
1604 // Temporarily remove the designator expression from the
1605 // initializer list that the child calls see, so that we don't try
1606 // to re-process the designator.
1607 unsigned OldIndex = Index;
1608 IList->setInit(OldIndex, DIE->getInit());
1609
1610 CheckSubElementType(Entity, IList, CurrentObjectType, Index,
1611 StructuredList, StructuredIndex);
1612
1613 // Restore the designated initializer expression in the syntactic
1614 // form of the initializer list.
1615 if (IList->getInit(OldIndex) != DIE->getInit())
1616 DIE->setInit(IList->getInit(OldIndex));
1617 IList->setInit(OldIndex, DIE);
1618
1619 return hadError && !prevHadError;
1620 }
1621
1622 DesignatedInitExpr::Designator *D = DIE->getDesignator(DesigIdx);
1623 bool IsFirstDesignator = (DesigIdx == 0);
1624 if (!VerifyOnly) {
1625 assert((IsFirstDesignator || StructuredList) &&
1626 "Need a non-designated initializer list to start from");
1627
1628 // Determine the structural initializer list that corresponds to the
1629 // current subobject.
1630 StructuredList = IsFirstDesignator? SyntacticToSemantic.lookup(IList)
1631 : getStructuredSubobjectInit(IList, Index, CurrentObjectType,
1632 StructuredList, StructuredIndex,
1633 SourceRange(D->getStartLocation(),
1634 DIE->getSourceRange().getEnd()));
1635 assert(StructuredList && "Expected a structured initializer list");
1636 }
1637
1638 if (D->isFieldDesignator()) {
1639 // C99 6.7.8p7:
1640 //
1641 // If a designator has the form
1642 //
1643 // . identifier
1644 //
1645 // then the current object (defined below) shall have
1646 // structure or union type and the identifier shall be the
1647 // name of a member of that type.
1648 const RecordType *RT = CurrentObjectType->getAs<RecordType>();
1649 if (!RT) {
1650 SourceLocation Loc = D->getDotLoc();
1651 if (Loc.isInvalid())
1652 Loc = D->getFieldLoc();
1653 if (!VerifyOnly)
1654 SemaRef.Diag(Loc, diag::err_field_designator_non_aggr)
1655 << SemaRef.getLangOpts().CPlusPlus << CurrentObjectType;
1656 ++Index;
1657 return true;
1658 }
1659
1660 // Note: we perform a linear search of the fields here, despite
1661 // the fact that we have a faster lookup method, because we always
1662 // need to compute the field's index.
1663 FieldDecl *KnownField = D->getField();
1664 IdentifierInfo *FieldName = D->getFieldName();
1665 unsigned FieldIndex = 0;
1666 RecordDecl::field_iterator
1667 Field = RT->getDecl()->field_begin(),
1668 FieldEnd = RT->getDecl()->field_end();
1669 for (; Field != FieldEnd; ++Field) {
1670 if (Field->isUnnamedBitfield())
1671 continue;
1672
1673 // If we find a field representing an anonymous field, look in the
1674 // IndirectFieldDecl that follow for the designated initializer.
1675 if (!KnownField && Field->isAnonymousStructOrUnion()) {
1676 if (IndirectFieldDecl *IF =
1677 FindIndirectFieldDesignator(*Field, FieldName)) {
1678 // In verify mode, don't modify the original.
1679 if (VerifyOnly)
1680 DIE = CloneDesignatedInitExpr(SemaRef, DIE);
1681 ExpandAnonymousFieldDesignator(SemaRef, DIE, DesigIdx, IF);
1682 D = DIE->getDesignator(DesigIdx);
1683 break;
1684 }
1685 }
1686 if (KnownField && KnownField == *Field)
1687 break;
1688 if (FieldName && FieldName == Field->getIdentifier())
1689 break;
1690
1691 ++FieldIndex;
1692 }
1693
1694 if (Field == FieldEnd) {
1695 if (VerifyOnly) {
1696 ++Index;
1697 return true; // No typo correction when just trying this out.
1698 }
1699
1700 // There was no normal field in the struct with the designated
1701 // name. Perform another lookup for this name, which may find
1702 // something that we can't designate (e.g., a member function),
1703 // may find nothing, or may find a member of an anonymous
1704 // struct/union.
1705 DeclContext::lookup_result Lookup = RT->getDecl()->lookup(FieldName);
1706 FieldDecl *ReplacementField = 0;
1707 if (Lookup.first == Lookup.second) {
1708 // Name lookup didn't find anything. Determine whether this
1709 // was a typo for another field name.
1710 FieldInitializerValidatorCCC Validator(RT->getDecl());
1711 TypoCorrection Corrected = SemaRef.CorrectTypo(
1712 DeclarationNameInfo(FieldName, D->getFieldLoc()),
1713 Sema::LookupMemberName, /*Scope=*/0, /*SS=*/0, Validator,
1714 RT->getDecl());
1715 if (Corrected) {
1716 std::string CorrectedStr(
1717 Corrected.getAsString(SemaRef.getLangOpts()));
1718 std::string CorrectedQuotedStr(
1719 Corrected.getQuoted(SemaRef.getLangOpts()));
1720 ReplacementField = Corrected.getCorrectionDeclAs<FieldDecl>();
1721 SemaRef.Diag(D->getFieldLoc(),
1722 diag::err_field_designator_unknown_suggest)
1723 << FieldName << CurrentObjectType << CorrectedQuotedStr
1724 << FixItHint::CreateReplacement(D->getFieldLoc(), CorrectedStr);
1725 SemaRef.Diag(ReplacementField->getLocation(),
1726 diag::note_previous_decl) << CorrectedQuotedStr;
1727 hadError = true;
1728 } else {
1729 SemaRef.Diag(D->getFieldLoc(), diag::err_field_designator_unknown)
1730 << FieldName << CurrentObjectType;
1731 ++Index;
1732 return true;
1733 }
1734 }
1735
1736 if (!ReplacementField) {
1737 // Name lookup found something, but it wasn't a field.
1738 SemaRef.Diag(D->getFieldLoc(), diag::err_field_designator_nonfield)
1739 << FieldName;
1740 SemaRef.Diag((*Lookup.first)->getLocation(),
1741 diag::note_field_designator_found);
1742 ++Index;
1743 return true;
1744 }
1745
1746 if (!KnownField) {
1747 // The replacement field comes from typo correction; find it
1748 // in the list of fields.
1749 FieldIndex = 0;
1750 Field = RT->getDecl()->field_begin();
1751 for (; Field != FieldEnd; ++Field) {
1752 if (Field->isUnnamedBitfield())
1753 continue;
1754
1755 if (ReplacementField == *Field ||
1756 Field->getIdentifier() == ReplacementField->getIdentifier())
1757 break;
1758
1759 ++FieldIndex;
1760 }
1761 }
1762 }
1763
1764 // All of the fields of a union are located at the same place in
1765 // the initializer list.
1766 if (RT->getDecl()->isUnion()) {
1767 FieldIndex = 0;
1768 if (!VerifyOnly)
1769 StructuredList->setInitializedFieldInUnion(*Field);
1770 }
1771
1772 // Make sure we can use this declaration.
1773 bool InvalidUse;
1774 if (VerifyOnly)
1775 InvalidUse = !SemaRef.CanUseDecl(*Field);
1776 else
1777 InvalidUse = SemaRef.DiagnoseUseOfDecl(*Field, D->getFieldLoc());
1778 if (InvalidUse) {
1779 ++Index;
1780 return true;
1781 }
1782
1783 if (!VerifyOnly) {
1784 // Update the designator with the field declaration.
1785 D->setField(*Field);
1786
1787 // Make sure that our non-designated initializer list has space
1788 // for a subobject corresponding to this field.
1789 if (FieldIndex >= StructuredList->getNumInits())
1790 StructuredList->resizeInits(SemaRef.Context, FieldIndex + 1);
1791 }
1792
1793 // This designator names a flexible array member.
1794 if (Field->getType()->isIncompleteArrayType()) {
1795 bool Invalid = false;
1796 if ((DesigIdx + 1) != DIE->size()) {
1797 // We can't designate an object within the flexible array
1798 // member (because GCC doesn't allow it).
1799 if (!VerifyOnly) {
1800 DesignatedInitExpr::Designator *NextD
1801 = DIE->getDesignator(DesigIdx + 1);
1802 SemaRef.Diag(NextD->getStartLocation(),
1803 diag::err_designator_into_flexible_array_member)
1804 << SourceRange(NextD->getStartLocation(),
1805 DIE->getSourceRange().getEnd());
1806 SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
1807 << *Field;
1808 }
1809 Invalid = true;
1810 }
1811
1812 if (!hadError && !isa<InitListExpr>(DIE->getInit()) &&
1813 !isa<StringLiteral>(DIE->getInit())) {
1814 // The initializer is not an initializer list.
1815 if (!VerifyOnly) {
1816 SemaRef.Diag(DIE->getInit()->getLocStart(),
1817 diag::err_flexible_array_init_needs_braces)
1818 << DIE->getInit()->getSourceRange();
1819 SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
1820 << *Field;
1821 }
1822 Invalid = true;
1823 }
1824
1825 // Check GNU flexible array initializer.
1826 if (!Invalid && CheckFlexibleArrayInit(Entity, DIE->getInit(), *Field,
1827 TopLevelObject))
1828 Invalid = true;
1829
1830 if (Invalid) {
1831 ++Index;
1832 return true;
1833 }
1834
1835 // Initialize the array.
1836 bool prevHadError = hadError;
1837 unsigned newStructuredIndex = FieldIndex;
1838 unsigned OldIndex = Index;
1839 IList->setInit(Index, DIE->getInit());
1840
1841 InitializedEntity MemberEntity =
1842 InitializedEntity::InitializeMember(*Field, &Entity);
1843 CheckSubElementType(MemberEntity, IList, Field->getType(), Index,
1844 StructuredList, newStructuredIndex);
1845
1846 IList->setInit(OldIndex, DIE);
1847 if (hadError && !prevHadError) {
1848 ++Field;
1849 ++FieldIndex;
1850 if (NextField)
1851 *NextField = Field;
1852 StructuredIndex = FieldIndex;
1853 return true;
1854 }
1855 } else {
1856 // Recurse to check later designated subobjects.
1857 QualType FieldType = Field->getType();
1858 unsigned newStructuredIndex = FieldIndex;
1859
1860 InitializedEntity MemberEntity =
1861 InitializedEntity::InitializeMember(*Field, &Entity);
1862 if (CheckDesignatedInitializer(MemberEntity, IList, DIE, DesigIdx + 1,
1863 FieldType, 0, 0, Index,
1864 StructuredList, newStructuredIndex,
1865 true, false))
1866 return true;
1867 }
1868
1869 // Find the position of the next field to be initialized in this
1870 // subobject.
1871 ++Field;
1872 ++FieldIndex;
1873
1874 // If this the first designator, our caller will continue checking
1875 // the rest of this struct/class/union subobject.
1876 if (IsFirstDesignator) {
1877 if (NextField)
1878 *NextField = Field;
1879 StructuredIndex = FieldIndex;
1880 return false;
1881 }
1882
1883 if (!FinishSubobjectInit)
1884 return false;
1885
1886 // We've already initialized something in the union; we're done.
1887 if (RT->getDecl()->isUnion())
1888 return hadError;
1889
1890 // Check the remaining fields within this class/struct/union subobject.
1891 bool prevHadError = hadError;
1892
1893 CheckStructUnionTypes(Entity, IList, CurrentObjectType, Field, false, Index,
1894 StructuredList, FieldIndex);
1895 return hadError && !prevHadError;
1896 }
1897
1898 // C99 6.7.8p6:
1899 //
1900 // If a designator has the form
1901 //
1902 // [ constant-expression ]
1903 //
1904 // then the current object (defined below) shall have array
1905 // type and the expression shall be an integer constant
1906 // expression. If the array is of unknown size, any
1907 // nonnegative value is valid.
1908 //
1909 // Additionally, cope with the GNU extension that permits
1910 // designators of the form
1911 //
1912 // [ constant-expression ... constant-expression ]
1913 const ArrayType *AT = SemaRef.Context.getAsArrayType(CurrentObjectType);
1914 if (!AT) {
1915 if (!VerifyOnly)
1916 SemaRef.Diag(D->getLBracketLoc(), diag::err_array_designator_non_array)
1917 << CurrentObjectType;
1918 ++Index;
1919 return true;
1920 }
1921
1922 Expr *IndexExpr = 0;
1923 llvm::APSInt DesignatedStartIndex, DesignatedEndIndex;
1924 if (D->isArrayDesignator()) {
1925 IndexExpr = DIE->getArrayIndex(*D);
1926 DesignatedStartIndex = IndexExpr->EvaluateKnownConstInt(SemaRef.Context);
1927 DesignatedEndIndex = DesignatedStartIndex;
1928 } else {
1929 assert(D->isArrayRangeDesignator() && "Need array-range designator");
1930
1931 DesignatedStartIndex =
1932 DIE->getArrayRangeStart(*D)->EvaluateKnownConstInt(SemaRef.Context);
1933 DesignatedEndIndex =
1934 DIE->getArrayRangeEnd(*D)->EvaluateKnownConstInt(SemaRef.Context);
1935 IndexExpr = DIE->getArrayRangeEnd(*D);
1936
1937 // Codegen can't handle evaluating array range designators that have side
1938 // effects, because we replicate the AST value for each initialized element.
1939 // As such, set the sawArrayRangeDesignator() bit if we initialize multiple
1940 // elements with something that has a side effect, so codegen can emit an
1941 // "error unsupported" error instead of miscompiling the app.
1942 if (DesignatedStartIndex.getZExtValue()!=DesignatedEndIndex.getZExtValue()&&
1943 DIE->getInit()->HasSideEffects(SemaRef.Context) && !VerifyOnly)
1944 FullyStructuredList->sawArrayRangeDesignator();
1945 }
1946
1947 if (isa<ConstantArrayType>(AT)) {
1948 llvm::APSInt MaxElements(cast<ConstantArrayType>(AT)->getSize(), false);
1949 DesignatedStartIndex
1950 = DesignatedStartIndex.extOrTrunc(MaxElements.getBitWidth());
1951 DesignatedStartIndex.setIsUnsigned(MaxElements.isUnsigned());
1952 DesignatedEndIndex
1953 = DesignatedEndIndex.extOrTrunc(MaxElements.getBitWidth());
1954 DesignatedEndIndex.setIsUnsigned(MaxElements.isUnsigned());
1955 if (DesignatedEndIndex >= MaxElements) {
1956 if (!VerifyOnly)
1957 SemaRef.Diag(IndexExpr->getLocStart(),
1958 diag::err_array_designator_too_large)
1959 << DesignatedEndIndex.toString(10) << MaxElements.toString(10)
1960 << IndexExpr->getSourceRange();
1961 ++Index;
1962 return true;
1963 }
1964 } else {
1965 // Make sure the bit-widths and signedness match.
1966 if (DesignatedStartIndex.getBitWidth() > DesignatedEndIndex.getBitWidth())
1967 DesignatedEndIndex
1968 = DesignatedEndIndex.extend(DesignatedStartIndex.getBitWidth());
1969 else if (DesignatedStartIndex.getBitWidth() <
1970 DesignatedEndIndex.getBitWidth())
1971 DesignatedStartIndex
1972 = DesignatedStartIndex.extend(DesignatedEndIndex.getBitWidth());
1973 DesignatedStartIndex.setIsUnsigned(true);
1974 DesignatedEndIndex.setIsUnsigned(true);
1975 }
1976
1977 // Make sure that our non-designated initializer list has space
1978 // for a subobject corresponding to this array element.
1979 if (!VerifyOnly &&
1980 DesignatedEndIndex.getZExtValue() >= StructuredList->getNumInits())
1981 StructuredList->resizeInits(SemaRef.Context,
1982 DesignatedEndIndex.getZExtValue() + 1);
1983
1984 // Repeatedly perform subobject initializations in the range
1985 // [DesignatedStartIndex, DesignatedEndIndex].
1986
1987 // Move to the next designator
1988 unsigned ElementIndex = DesignatedStartIndex.getZExtValue();
1989 unsigned OldIndex = Index;
1990
1991 InitializedEntity ElementEntity =
1992 InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
1993
1994 while (DesignatedStartIndex <= DesignatedEndIndex) {
1995 // Recurse to check later designated subobjects.
1996 QualType ElementType = AT->getElementType();
1997 Index = OldIndex;
1998
1999 ElementEntity.setElementIndex(ElementIndex);
2000 if (CheckDesignatedInitializer(ElementEntity, IList, DIE, DesigIdx + 1,
2001 ElementType, 0, 0, Index,
2002 StructuredList, ElementIndex,
2003 (DesignatedStartIndex == DesignatedEndIndex),
2004 false))
2005 return true;
2006
2007 // Move to the next index in the array that we'll be initializing.
2008 ++DesignatedStartIndex;
2009 ElementIndex = DesignatedStartIndex.getZExtValue();
2010 }
2011
2012 // If this the first designator, our caller will continue checking
2013 // the rest of this array subobject.
2014 if (IsFirstDesignator) {
2015 if (NextElementIndex)
2016 *NextElementIndex = DesignatedStartIndex;
2017 StructuredIndex = ElementIndex;
2018 return false;
2019 }
2020
2021 if (!FinishSubobjectInit)
2022 return false;
2023
2024 // Check the remaining elements within this array subobject.
2025 bool prevHadError = hadError;
2026 CheckArrayType(Entity, IList, CurrentObjectType, DesignatedStartIndex,
2027 /*SubobjectIsDesignatorContext=*/false, Index,
2028 StructuredList, ElementIndex);
2029 return hadError && !prevHadError;
2030 }
2031
2032 // Get the structured initializer list for a subobject of type
2033 // @p CurrentObjectType.
2034 InitListExpr *
getStructuredSubobjectInit(InitListExpr * IList,unsigned Index,QualType CurrentObjectType,InitListExpr * StructuredList,unsigned StructuredIndex,SourceRange InitRange)2035 InitListChecker::getStructuredSubobjectInit(InitListExpr *IList, unsigned Index,
2036 QualType CurrentObjectType,
2037 InitListExpr *StructuredList,
2038 unsigned StructuredIndex,
2039 SourceRange InitRange) {
2040 if (VerifyOnly)
2041 return 0; // No structured list in verification-only mode.
2042 Expr *ExistingInit = 0;
2043 if (!StructuredList)
2044 ExistingInit = SyntacticToSemantic.lookup(IList);
2045 else if (StructuredIndex < StructuredList->getNumInits())
2046 ExistingInit = StructuredList->getInit(StructuredIndex);
2047
2048 if (InitListExpr *Result = dyn_cast_or_null<InitListExpr>(ExistingInit))
2049 return Result;
2050
2051 if (ExistingInit) {
2052 // We are creating an initializer list that initializes the
2053 // subobjects of the current object, but there was already an
2054 // initialization that completely initialized the current
2055 // subobject, e.g., by a compound literal:
2056 //
2057 // struct X { int a, b; };
2058 // struct X xs[] = { [0] = (struct X) { 1, 2 }, [0].b = 3 };
2059 //
2060 // Here, xs[0].a == 0 and xs[0].b == 3, since the second,
2061 // designated initializer re-initializes the whole
2062 // subobject [0], overwriting previous initializers.
2063 SemaRef.Diag(InitRange.getBegin(),
2064 diag::warn_subobject_initializer_overrides)
2065 << InitRange;
2066 SemaRef.Diag(ExistingInit->getLocStart(),
2067 diag::note_previous_initializer)
2068 << /*FIXME:has side effects=*/0
2069 << ExistingInit->getSourceRange();
2070 }
2071
2072 InitListExpr *Result
2073 = new (SemaRef.Context) InitListExpr(SemaRef.Context,
2074 InitRange.getBegin(), MultiExprArg(),
2075 InitRange.getEnd());
2076
2077 QualType ResultType = CurrentObjectType;
2078 if (!ResultType->isArrayType())
2079 ResultType = ResultType.getNonLValueExprType(SemaRef.Context);
2080 Result->setType(ResultType);
2081
2082 // Pre-allocate storage for the structured initializer list.
2083 unsigned NumElements = 0;
2084 unsigned NumInits = 0;
2085 bool GotNumInits = false;
2086 if (!StructuredList) {
2087 NumInits = IList->getNumInits();
2088 GotNumInits = true;
2089 } else if (Index < IList->getNumInits()) {
2090 if (InitListExpr *SubList = dyn_cast<InitListExpr>(IList->getInit(Index))) {
2091 NumInits = SubList->getNumInits();
2092 GotNumInits = true;
2093 }
2094 }
2095
2096 if (const ArrayType *AType
2097 = SemaRef.Context.getAsArrayType(CurrentObjectType)) {
2098 if (const ConstantArrayType *CAType = dyn_cast<ConstantArrayType>(AType)) {
2099 NumElements = CAType->getSize().getZExtValue();
2100 // Simple heuristic so that we don't allocate a very large
2101 // initializer with many empty entries at the end.
2102 if (GotNumInits && NumElements > NumInits)
2103 NumElements = 0;
2104 }
2105 } else if (const VectorType *VType = CurrentObjectType->getAs<VectorType>())
2106 NumElements = VType->getNumElements();
2107 else if (const RecordType *RType = CurrentObjectType->getAs<RecordType>()) {
2108 RecordDecl *RDecl = RType->getDecl();
2109 if (RDecl->isUnion())
2110 NumElements = 1;
2111 else
2112 NumElements = std::distance(RDecl->field_begin(),
2113 RDecl->field_end());
2114 }
2115
2116 Result->reserveInits(SemaRef.Context, NumElements);
2117
2118 // Link this new initializer list into the structured initializer
2119 // lists.
2120 if (StructuredList)
2121 StructuredList->updateInit(SemaRef.Context, StructuredIndex, Result);
2122 else {
2123 Result->setSyntacticForm(IList);
2124 SyntacticToSemantic[IList] = Result;
2125 }
2126
2127 return Result;
2128 }
2129
2130 /// Update the initializer at index @p StructuredIndex within the
2131 /// structured initializer list to the value @p expr.
UpdateStructuredListElement(InitListExpr * StructuredList,unsigned & StructuredIndex,Expr * expr)2132 void InitListChecker::UpdateStructuredListElement(InitListExpr *StructuredList,
2133 unsigned &StructuredIndex,
2134 Expr *expr) {
2135 // No structured initializer list to update
2136 if (!StructuredList)
2137 return;
2138
2139 if (Expr *PrevInit = StructuredList->updateInit(SemaRef.Context,
2140 StructuredIndex, expr)) {
2141 // This initializer overwrites a previous initializer. Warn.
2142 SemaRef.Diag(expr->getLocStart(),
2143 diag::warn_initializer_overrides)
2144 << expr->getSourceRange();
2145 SemaRef.Diag(PrevInit->getLocStart(),
2146 diag::note_previous_initializer)
2147 << /*FIXME:has side effects=*/0
2148 << PrevInit->getSourceRange();
2149 }
2150
2151 ++StructuredIndex;
2152 }
2153
2154 /// Check that the given Index expression is a valid array designator
2155 /// value. This is essentially just a wrapper around
2156 /// VerifyIntegerConstantExpression that also checks for negative values
2157 /// and produces a reasonable diagnostic if there is a
2158 /// failure. Returns the index expression, possibly with an implicit cast
2159 /// added, on success. If everything went okay, Value will receive the
2160 /// value of the constant expression.
2161 static ExprResult
CheckArrayDesignatorExpr(Sema & S,Expr * Index,llvm::APSInt & Value)2162 CheckArrayDesignatorExpr(Sema &S, Expr *Index, llvm::APSInt &Value) {
2163 SourceLocation Loc = Index->getLocStart();
2164
2165 // Make sure this is an integer constant expression.
2166 ExprResult Result = S.VerifyIntegerConstantExpression(Index, &Value);
2167 if (Result.isInvalid())
2168 return Result;
2169
2170 if (Value.isSigned() && Value.isNegative())
2171 return S.Diag(Loc, diag::err_array_designator_negative)
2172 << Value.toString(10) << Index->getSourceRange();
2173
2174 Value.setIsUnsigned(true);
2175 return Result;
2176 }
2177
ActOnDesignatedInitializer(Designation & Desig,SourceLocation Loc,bool GNUSyntax,ExprResult Init)2178 ExprResult Sema::ActOnDesignatedInitializer(Designation &Desig,
2179 SourceLocation Loc,
2180 bool GNUSyntax,
2181 ExprResult Init) {
2182 typedef DesignatedInitExpr::Designator ASTDesignator;
2183
2184 bool Invalid = false;
2185 SmallVector<ASTDesignator, 32> Designators;
2186 SmallVector<Expr *, 32> InitExpressions;
2187
2188 // Build designators and check array designator expressions.
2189 for (unsigned Idx = 0; Idx < Desig.getNumDesignators(); ++Idx) {
2190 const Designator &D = Desig.getDesignator(Idx);
2191 switch (D.getKind()) {
2192 case Designator::FieldDesignator:
2193 Designators.push_back(ASTDesignator(D.getField(), D.getDotLoc(),
2194 D.getFieldLoc()));
2195 break;
2196
2197 case Designator::ArrayDesignator: {
2198 Expr *Index = static_cast<Expr *>(D.getArrayIndex());
2199 llvm::APSInt IndexValue;
2200 if (!Index->isTypeDependent() && !Index->isValueDependent())
2201 Index = CheckArrayDesignatorExpr(*this, Index, IndexValue).take();
2202 if (!Index)
2203 Invalid = true;
2204 else {
2205 Designators.push_back(ASTDesignator(InitExpressions.size(),
2206 D.getLBracketLoc(),
2207 D.getRBracketLoc()));
2208 InitExpressions.push_back(Index);
2209 }
2210 break;
2211 }
2212
2213 case Designator::ArrayRangeDesignator: {
2214 Expr *StartIndex = static_cast<Expr *>(D.getArrayRangeStart());
2215 Expr *EndIndex = static_cast<Expr *>(D.getArrayRangeEnd());
2216 llvm::APSInt StartValue;
2217 llvm::APSInt EndValue;
2218 bool StartDependent = StartIndex->isTypeDependent() ||
2219 StartIndex->isValueDependent();
2220 bool EndDependent = EndIndex->isTypeDependent() ||
2221 EndIndex->isValueDependent();
2222 if (!StartDependent)
2223 StartIndex =
2224 CheckArrayDesignatorExpr(*this, StartIndex, StartValue).take();
2225 if (!EndDependent)
2226 EndIndex = CheckArrayDesignatorExpr(*this, EndIndex, EndValue).take();
2227
2228 if (!StartIndex || !EndIndex)
2229 Invalid = true;
2230 else {
2231 // Make sure we're comparing values with the same bit width.
2232 if (StartDependent || EndDependent) {
2233 // Nothing to compute.
2234 } else if (StartValue.getBitWidth() > EndValue.getBitWidth())
2235 EndValue = EndValue.extend(StartValue.getBitWidth());
2236 else if (StartValue.getBitWidth() < EndValue.getBitWidth())
2237 StartValue = StartValue.extend(EndValue.getBitWidth());
2238
2239 if (!StartDependent && !EndDependent && EndValue < StartValue) {
2240 Diag(D.getEllipsisLoc(), diag::err_array_designator_empty_range)
2241 << StartValue.toString(10) << EndValue.toString(10)
2242 << StartIndex->getSourceRange() << EndIndex->getSourceRange();
2243 Invalid = true;
2244 } else {
2245 Designators.push_back(ASTDesignator(InitExpressions.size(),
2246 D.getLBracketLoc(),
2247 D.getEllipsisLoc(),
2248 D.getRBracketLoc()));
2249 InitExpressions.push_back(StartIndex);
2250 InitExpressions.push_back(EndIndex);
2251 }
2252 }
2253 break;
2254 }
2255 }
2256 }
2257
2258 if (Invalid || Init.isInvalid())
2259 return ExprError();
2260
2261 // Clear out the expressions within the designation.
2262 Desig.ClearExprs(*this);
2263
2264 DesignatedInitExpr *DIE
2265 = DesignatedInitExpr::Create(Context,
2266 Designators.data(), Designators.size(),
2267 InitExpressions, Loc, GNUSyntax,
2268 Init.takeAs<Expr>());
2269
2270 if (!getLangOpts().C99)
2271 Diag(DIE->getLocStart(), diag::ext_designated_init)
2272 << DIE->getSourceRange();
2273
2274 return Owned(DIE);
2275 }
2276
2277 //===----------------------------------------------------------------------===//
2278 // Initialization entity
2279 //===----------------------------------------------------------------------===//
2280
InitializedEntity(ASTContext & Context,unsigned Index,const InitializedEntity & Parent)2281 InitializedEntity::InitializedEntity(ASTContext &Context, unsigned Index,
2282 const InitializedEntity &Parent)
2283 : Parent(&Parent), Index(Index)
2284 {
2285 if (const ArrayType *AT = Context.getAsArrayType(Parent.getType())) {
2286 Kind = EK_ArrayElement;
2287 Type = AT->getElementType();
2288 } else if (const VectorType *VT = Parent.getType()->getAs<VectorType>()) {
2289 Kind = EK_VectorElement;
2290 Type = VT->getElementType();
2291 } else {
2292 const ComplexType *CT = Parent.getType()->getAs<ComplexType>();
2293 assert(CT && "Unexpected type");
2294 Kind = EK_ComplexElement;
2295 Type = CT->getElementType();
2296 }
2297 }
2298
InitializeBase(ASTContext & Context,CXXBaseSpecifier * Base,bool IsInheritedVirtualBase)2299 InitializedEntity InitializedEntity::InitializeBase(ASTContext &Context,
2300 CXXBaseSpecifier *Base,
2301 bool IsInheritedVirtualBase)
2302 {
2303 InitializedEntity Result;
2304 Result.Kind = EK_Base;
2305 Result.Base = reinterpret_cast<uintptr_t>(Base);
2306 if (IsInheritedVirtualBase)
2307 Result.Base |= 0x01;
2308
2309 Result.Type = Base->getType();
2310 return Result;
2311 }
2312
getName() const2313 DeclarationName InitializedEntity::getName() const {
2314 switch (getKind()) {
2315 case EK_Parameter: {
2316 ParmVarDecl *D = reinterpret_cast<ParmVarDecl*>(Parameter & ~0x1);
2317 return (D ? D->getDeclName() : DeclarationName());
2318 }
2319
2320 case EK_Variable:
2321 case EK_Member:
2322 return VariableOrMember->getDeclName();
2323
2324 case EK_LambdaCapture:
2325 return Capture.Var->getDeclName();
2326
2327 case EK_Result:
2328 case EK_Exception:
2329 case EK_New:
2330 case EK_Temporary:
2331 case EK_Base:
2332 case EK_Delegating:
2333 case EK_ArrayElement:
2334 case EK_VectorElement:
2335 case EK_ComplexElement:
2336 case EK_BlockElement:
2337 return DeclarationName();
2338 }
2339
2340 llvm_unreachable("Invalid EntityKind!");
2341 }
2342
getDecl() const2343 DeclaratorDecl *InitializedEntity::getDecl() const {
2344 switch (getKind()) {
2345 case EK_Variable:
2346 case EK_Member:
2347 return VariableOrMember;
2348
2349 case EK_Parameter:
2350 return reinterpret_cast<ParmVarDecl*>(Parameter & ~0x1);
2351
2352 case EK_Result:
2353 case EK_Exception:
2354 case EK_New:
2355 case EK_Temporary:
2356 case EK_Base:
2357 case EK_Delegating:
2358 case EK_ArrayElement:
2359 case EK_VectorElement:
2360 case EK_ComplexElement:
2361 case EK_BlockElement:
2362 case EK_LambdaCapture:
2363 return 0;
2364 }
2365
2366 llvm_unreachable("Invalid EntityKind!");
2367 }
2368
allowsNRVO() const2369 bool InitializedEntity::allowsNRVO() const {
2370 switch (getKind()) {
2371 case EK_Result:
2372 case EK_Exception:
2373 return LocAndNRVO.NRVO;
2374
2375 case EK_Variable:
2376 case EK_Parameter:
2377 case EK_Member:
2378 case EK_New:
2379 case EK_Temporary:
2380 case EK_Base:
2381 case EK_Delegating:
2382 case EK_ArrayElement:
2383 case EK_VectorElement:
2384 case EK_ComplexElement:
2385 case EK_BlockElement:
2386 case EK_LambdaCapture:
2387 break;
2388 }
2389
2390 return false;
2391 }
2392
2393 //===----------------------------------------------------------------------===//
2394 // Initialization sequence
2395 //===----------------------------------------------------------------------===//
2396
Destroy()2397 void InitializationSequence::Step::Destroy() {
2398 switch (Kind) {
2399 case SK_ResolveAddressOfOverloadedFunction:
2400 case SK_CastDerivedToBaseRValue:
2401 case SK_CastDerivedToBaseXValue:
2402 case SK_CastDerivedToBaseLValue:
2403 case SK_BindReference:
2404 case SK_BindReferenceToTemporary:
2405 case SK_ExtraneousCopyToTemporary:
2406 case SK_UserConversion:
2407 case SK_QualificationConversionRValue:
2408 case SK_QualificationConversionXValue:
2409 case SK_QualificationConversionLValue:
2410 case SK_ListInitialization:
2411 case SK_ListConstructorCall:
2412 case SK_UnwrapInitList:
2413 case SK_RewrapInitList:
2414 case SK_ConstructorInitialization:
2415 case SK_ZeroInitialization:
2416 case SK_CAssignment:
2417 case SK_StringInit:
2418 case SK_ObjCObjectConversion:
2419 case SK_ArrayInit:
2420 case SK_ParenthesizedArrayInit:
2421 case SK_PassByIndirectCopyRestore:
2422 case SK_PassByIndirectRestore:
2423 case SK_ProduceObjCObject:
2424 case SK_StdInitializerList:
2425 break;
2426
2427 case SK_ConversionSequence:
2428 delete ICS;
2429 }
2430 }
2431
isDirectReferenceBinding() const2432 bool InitializationSequence::isDirectReferenceBinding() const {
2433 return !Steps.empty() && Steps.back().Kind == SK_BindReference;
2434 }
2435
isAmbiguous() const2436 bool InitializationSequence::isAmbiguous() const {
2437 if (!Failed())
2438 return false;
2439
2440 switch (getFailureKind()) {
2441 case FK_TooManyInitsForReference:
2442 case FK_ArrayNeedsInitList:
2443 case FK_ArrayNeedsInitListOrStringLiteral:
2444 case FK_AddressOfOverloadFailed: // FIXME: Could do better
2445 case FK_NonConstLValueReferenceBindingToTemporary:
2446 case FK_NonConstLValueReferenceBindingToUnrelated:
2447 case FK_RValueReferenceBindingToLValue:
2448 case FK_ReferenceInitDropsQualifiers:
2449 case FK_ReferenceInitFailed:
2450 case FK_ConversionFailed:
2451 case FK_ConversionFromPropertyFailed:
2452 case FK_TooManyInitsForScalar:
2453 case FK_ReferenceBindingToInitList:
2454 case FK_InitListBadDestinationType:
2455 case FK_DefaultInitOfConst:
2456 case FK_Incomplete:
2457 case FK_ArrayTypeMismatch:
2458 case FK_NonConstantArrayInit:
2459 case FK_ListInitializationFailed:
2460 case FK_VariableLengthArrayHasInitializer:
2461 case FK_PlaceholderType:
2462 case FK_InitListElementCopyFailure:
2463 case FK_ExplicitConstructor:
2464 return false;
2465
2466 case FK_ReferenceInitOverloadFailed:
2467 case FK_UserConversionOverloadFailed:
2468 case FK_ConstructorOverloadFailed:
2469 case FK_ListConstructorOverloadFailed:
2470 return FailedOverloadResult == OR_Ambiguous;
2471 }
2472
2473 llvm_unreachable("Invalid EntityKind!");
2474 }
2475
isConstructorInitialization() const2476 bool InitializationSequence::isConstructorInitialization() const {
2477 return !Steps.empty() && Steps.back().Kind == SK_ConstructorInitialization;
2478 }
2479
2480 void
2481 InitializationSequence
AddAddressOverloadResolutionStep(FunctionDecl * Function,DeclAccessPair Found,bool HadMultipleCandidates)2482 ::AddAddressOverloadResolutionStep(FunctionDecl *Function,
2483 DeclAccessPair Found,
2484 bool HadMultipleCandidates) {
2485 Step S;
2486 S.Kind = SK_ResolveAddressOfOverloadedFunction;
2487 S.Type = Function->getType();
2488 S.Function.HadMultipleCandidates = HadMultipleCandidates;
2489 S.Function.Function = Function;
2490 S.Function.FoundDecl = Found;
2491 Steps.push_back(S);
2492 }
2493
AddDerivedToBaseCastStep(QualType BaseType,ExprValueKind VK)2494 void InitializationSequence::AddDerivedToBaseCastStep(QualType BaseType,
2495 ExprValueKind VK) {
2496 Step S;
2497 switch (VK) {
2498 case VK_RValue: S.Kind = SK_CastDerivedToBaseRValue; break;
2499 case VK_XValue: S.Kind = SK_CastDerivedToBaseXValue; break;
2500 case VK_LValue: S.Kind = SK_CastDerivedToBaseLValue; break;
2501 }
2502 S.Type = BaseType;
2503 Steps.push_back(S);
2504 }
2505
AddReferenceBindingStep(QualType T,bool BindingTemporary)2506 void InitializationSequence::AddReferenceBindingStep(QualType T,
2507 bool BindingTemporary) {
2508 Step S;
2509 S.Kind = BindingTemporary? SK_BindReferenceToTemporary : SK_BindReference;
2510 S.Type = T;
2511 Steps.push_back(S);
2512 }
2513
AddExtraneousCopyToTemporary(QualType T)2514 void InitializationSequence::AddExtraneousCopyToTemporary(QualType T) {
2515 Step S;
2516 S.Kind = SK_ExtraneousCopyToTemporary;
2517 S.Type = T;
2518 Steps.push_back(S);
2519 }
2520
2521 void
AddUserConversionStep(FunctionDecl * Function,DeclAccessPair FoundDecl,QualType T,bool HadMultipleCandidates)2522 InitializationSequence::AddUserConversionStep(FunctionDecl *Function,
2523 DeclAccessPair FoundDecl,
2524 QualType T,
2525 bool HadMultipleCandidates) {
2526 Step S;
2527 S.Kind = SK_UserConversion;
2528 S.Type = T;
2529 S.Function.HadMultipleCandidates = HadMultipleCandidates;
2530 S.Function.Function = Function;
2531 S.Function.FoundDecl = FoundDecl;
2532 Steps.push_back(S);
2533 }
2534
AddQualificationConversionStep(QualType Ty,ExprValueKind VK)2535 void InitializationSequence::AddQualificationConversionStep(QualType Ty,
2536 ExprValueKind VK) {
2537 Step S;
2538 S.Kind = SK_QualificationConversionRValue; // work around a gcc warning
2539 switch (VK) {
2540 case VK_RValue:
2541 S.Kind = SK_QualificationConversionRValue;
2542 break;
2543 case VK_XValue:
2544 S.Kind = SK_QualificationConversionXValue;
2545 break;
2546 case VK_LValue:
2547 S.Kind = SK_QualificationConversionLValue;
2548 break;
2549 }
2550 S.Type = Ty;
2551 Steps.push_back(S);
2552 }
2553
AddConversionSequenceStep(const ImplicitConversionSequence & ICS,QualType T)2554 void InitializationSequence::AddConversionSequenceStep(
2555 const ImplicitConversionSequence &ICS,
2556 QualType T) {
2557 Step S;
2558 S.Kind = SK_ConversionSequence;
2559 S.Type = T;
2560 S.ICS = new ImplicitConversionSequence(ICS);
2561 Steps.push_back(S);
2562 }
2563
AddListInitializationStep(QualType T)2564 void InitializationSequence::AddListInitializationStep(QualType T) {
2565 Step S;
2566 S.Kind = SK_ListInitialization;
2567 S.Type = T;
2568 Steps.push_back(S);
2569 }
2570
2571 void
2572 InitializationSequence
AddConstructorInitializationStep(CXXConstructorDecl * Constructor,AccessSpecifier Access,QualType T,bool HadMultipleCandidates,bool FromInitList,bool AsInitList)2573 ::AddConstructorInitializationStep(CXXConstructorDecl *Constructor,
2574 AccessSpecifier Access,
2575 QualType T,
2576 bool HadMultipleCandidates,
2577 bool FromInitList, bool AsInitList) {
2578 Step S;
2579 S.Kind = FromInitList && !AsInitList ? SK_ListConstructorCall
2580 : SK_ConstructorInitialization;
2581 S.Type = T;
2582 S.Function.HadMultipleCandidates = HadMultipleCandidates;
2583 S.Function.Function = Constructor;
2584 S.Function.FoundDecl = DeclAccessPair::make(Constructor, Access);
2585 Steps.push_back(S);
2586 }
2587
AddZeroInitializationStep(QualType T)2588 void InitializationSequence::AddZeroInitializationStep(QualType T) {
2589 Step S;
2590 S.Kind = SK_ZeroInitialization;
2591 S.Type = T;
2592 Steps.push_back(S);
2593 }
2594
AddCAssignmentStep(QualType T)2595 void InitializationSequence::AddCAssignmentStep(QualType T) {
2596 Step S;
2597 S.Kind = SK_CAssignment;
2598 S.Type = T;
2599 Steps.push_back(S);
2600 }
2601
AddStringInitStep(QualType T)2602 void InitializationSequence::AddStringInitStep(QualType T) {
2603 Step S;
2604 S.Kind = SK_StringInit;
2605 S.Type = T;
2606 Steps.push_back(S);
2607 }
2608
AddObjCObjectConversionStep(QualType T)2609 void InitializationSequence::AddObjCObjectConversionStep(QualType T) {
2610 Step S;
2611 S.Kind = SK_ObjCObjectConversion;
2612 S.Type = T;
2613 Steps.push_back(S);
2614 }
2615
AddArrayInitStep(QualType T)2616 void InitializationSequence::AddArrayInitStep(QualType T) {
2617 Step S;
2618 S.Kind = SK_ArrayInit;
2619 S.Type = T;
2620 Steps.push_back(S);
2621 }
2622
AddParenthesizedArrayInitStep(QualType T)2623 void InitializationSequence::AddParenthesizedArrayInitStep(QualType T) {
2624 Step S;
2625 S.Kind = SK_ParenthesizedArrayInit;
2626 S.Type = T;
2627 Steps.push_back(S);
2628 }
2629
AddPassByIndirectCopyRestoreStep(QualType type,bool shouldCopy)2630 void InitializationSequence::AddPassByIndirectCopyRestoreStep(QualType type,
2631 bool shouldCopy) {
2632 Step s;
2633 s.Kind = (shouldCopy ? SK_PassByIndirectCopyRestore
2634 : SK_PassByIndirectRestore);
2635 s.Type = type;
2636 Steps.push_back(s);
2637 }
2638
AddProduceObjCObjectStep(QualType T)2639 void InitializationSequence::AddProduceObjCObjectStep(QualType T) {
2640 Step S;
2641 S.Kind = SK_ProduceObjCObject;
2642 S.Type = T;
2643 Steps.push_back(S);
2644 }
2645
AddStdInitializerListConstructionStep(QualType T)2646 void InitializationSequence::AddStdInitializerListConstructionStep(QualType T) {
2647 Step S;
2648 S.Kind = SK_StdInitializerList;
2649 S.Type = T;
2650 Steps.push_back(S);
2651 }
2652
RewrapReferenceInitList(QualType T,InitListExpr * Syntactic)2653 void InitializationSequence::RewrapReferenceInitList(QualType T,
2654 InitListExpr *Syntactic) {
2655 assert(Syntactic->getNumInits() == 1 &&
2656 "Can only rewrap trivial init lists.");
2657 Step S;
2658 S.Kind = SK_UnwrapInitList;
2659 S.Type = Syntactic->getInit(0)->getType();
2660 Steps.insert(Steps.begin(), S);
2661
2662 S.Kind = SK_RewrapInitList;
2663 S.Type = T;
2664 S.WrappingSyntacticList = Syntactic;
2665 Steps.push_back(S);
2666 }
2667
SetOverloadFailure(FailureKind Failure,OverloadingResult Result)2668 void InitializationSequence::SetOverloadFailure(FailureKind Failure,
2669 OverloadingResult Result) {
2670 setSequenceKind(FailedSequence);
2671 this->Failure = Failure;
2672 this->FailedOverloadResult = Result;
2673 }
2674
2675 //===----------------------------------------------------------------------===//
2676 // Attempt initialization
2677 //===----------------------------------------------------------------------===//
2678
MaybeProduceObjCObject(Sema & S,InitializationSequence & Sequence,const InitializedEntity & Entity)2679 static void MaybeProduceObjCObject(Sema &S,
2680 InitializationSequence &Sequence,
2681 const InitializedEntity &Entity) {
2682 if (!S.getLangOpts().ObjCAutoRefCount) return;
2683
2684 /// When initializing a parameter, produce the value if it's marked
2685 /// __attribute__((ns_consumed)).
2686 if (Entity.getKind() == InitializedEntity::EK_Parameter) {
2687 if (!Entity.isParameterConsumed())
2688 return;
2689
2690 assert(Entity.getType()->isObjCRetainableType() &&
2691 "consuming an object of unretainable type?");
2692 Sequence.AddProduceObjCObjectStep(Entity.getType());
2693
2694 /// When initializing a return value, if the return type is a
2695 /// retainable type, then returns need to immediately retain the
2696 /// object. If an autorelease is required, it will be done at the
2697 /// last instant.
2698 } else if (Entity.getKind() == InitializedEntity::EK_Result) {
2699 if (!Entity.getType()->isObjCRetainableType())
2700 return;
2701
2702 Sequence.AddProduceObjCObjectStep(Entity.getType());
2703 }
2704 }
2705
2706 /// \brief When initializing from init list via constructor, handle
2707 /// initialization of an object of type std::initializer_list<T>.
2708 ///
2709 /// \return true if we have handled initialization of an object of type
2710 /// std::initializer_list<T>, false otherwise.
TryInitializerListConstruction(Sema & S,InitListExpr * List,QualType DestType,InitializationSequence & Sequence)2711 static bool TryInitializerListConstruction(Sema &S,
2712 InitListExpr *List,
2713 QualType DestType,
2714 InitializationSequence &Sequence) {
2715 QualType E;
2716 if (!S.isStdInitializerList(DestType, &E))
2717 return false;
2718
2719 // Check that each individual element can be copy-constructed. But since we
2720 // have no place to store further information, we'll recalculate everything
2721 // later.
2722 InitializedEntity HiddenArray = InitializedEntity::InitializeTemporary(
2723 S.Context.getConstantArrayType(E,
2724 llvm::APInt(S.Context.getTypeSize(S.Context.getSizeType()),
2725 List->getNumInits()),
2726 ArrayType::Normal, 0));
2727 InitializedEntity Element = InitializedEntity::InitializeElement(S.Context,
2728 0, HiddenArray);
2729 for (unsigned i = 0, n = List->getNumInits(); i < n; ++i) {
2730 Element.setElementIndex(i);
2731 if (!S.CanPerformCopyInitialization(Element, List->getInit(i))) {
2732 Sequence.SetFailed(
2733 InitializationSequence::FK_InitListElementCopyFailure);
2734 return true;
2735 }
2736 }
2737 Sequence.AddStdInitializerListConstructionStep(DestType);
2738 return true;
2739 }
2740
2741 static OverloadingResult
ResolveConstructorOverload(Sema & S,SourceLocation DeclLoc,Expr ** Args,unsigned NumArgs,OverloadCandidateSet & CandidateSet,DeclContext::lookup_iterator Con,DeclContext::lookup_iterator ConEnd,OverloadCandidateSet::iterator & Best,bool CopyInitializing,bool AllowExplicit,bool OnlyListConstructors,bool InitListSyntax)2742 ResolveConstructorOverload(Sema &S, SourceLocation DeclLoc,
2743 Expr **Args, unsigned NumArgs,
2744 OverloadCandidateSet &CandidateSet,
2745 DeclContext::lookup_iterator Con,
2746 DeclContext::lookup_iterator ConEnd,
2747 OverloadCandidateSet::iterator &Best,
2748 bool CopyInitializing, bool AllowExplicit,
2749 bool OnlyListConstructors, bool InitListSyntax) {
2750 CandidateSet.clear();
2751
2752 for (; Con != ConEnd; ++Con) {
2753 NamedDecl *D = *Con;
2754 DeclAccessPair FoundDecl = DeclAccessPair::make(D, D->getAccess());
2755 bool SuppressUserConversions = false;
2756
2757 // Find the constructor (which may be a template).
2758 CXXConstructorDecl *Constructor = 0;
2759 FunctionTemplateDecl *ConstructorTmpl = dyn_cast<FunctionTemplateDecl>(D);
2760 if (ConstructorTmpl)
2761 Constructor = cast<CXXConstructorDecl>(
2762 ConstructorTmpl->getTemplatedDecl());
2763 else {
2764 Constructor = cast<CXXConstructorDecl>(D);
2765
2766 // If we're performing copy initialization using a copy constructor, we
2767 // suppress user-defined conversions on the arguments. We do the same for
2768 // move constructors.
2769 if ((CopyInitializing || (InitListSyntax && NumArgs == 1)) &&
2770 Constructor->isCopyOrMoveConstructor())
2771 SuppressUserConversions = true;
2772 }
2773
2774 if (!Constructor->isInvalidDecl() &&
2775 (AllowExplicit || !Constructor->isExplicit()) &&
2776 (!OnlyListConstructors || S.isInitListConstructor(Constructor))) {
2777 if (ConstructorTmpl)
2778 S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl,
2779 /*ExplicitArgs*/ 0,
2780 llvm::makeArrayRef(Args, NumArgs),
2781 CandidateSet, SuppressUserConversions);
2782 else {
2783 // C++ [over.match.copy]p1:
2784 // - When initializing a temporary to be bound to the first parameter
2785 // of a constructor that takes a reference to possibly cv-qualified
2786 // T as its first argument, called with a single argument in the
2787 // context of direct-initialization, explicit conversion functions
2788 // are also considered.
2789 bool AllowExplicitConv = AllowExplicit && !CopyInitializing &&
2790 NumArgs == 1 &&
2791 Constructor->isCopyOrMoveConstructor();
2792 S.AddOverloadCandidate(Constructor, FoundDecl,
2793 llvm::makeArrayRef(Args, NumArgs), CandidateSet,
2794 SuppressUserConversions,
2795 /*PartialOverloading=*/false,
2796 /*AllowExplicit=*/AllowExplicitConv);
2797 }
2798 }
2799 }
2800
2801 // Perform overload resolution and return the result.
2802 return CandidateSet.BestViableFunction(S, DeclLoc, Best);
2803 }
2804
2805 /// \brief Attempt initialization by constructor (C++ [dcl.init]), which
2806 /// enumerates the constructors of the initialized entity and performs overload
2807 /// resolution to select the best.
2808 /// If InitListSyntax is true, this is list-initialization of a non-aggregate
2809 /// class type.
TryConstructorInitialization(Sema & S,const InitializedEntity & Entity,const InitializationKind & Kind,Expr ** Args,unsigned NumArgs,QualType DestType,InitializationSequence & Sequence,bool InitListSyntax=false)2810 static void TryConstructorInitialization(Sema &S,
2811 const InitializedEntity &Entity,
2812 const InitializationKind &Kind,
2813 Expr **Args, unsigned NumArgs,
2814 QualType DestType,
2815 InitializationSequence &Sequence,
2816 bool InitListSyntax = false) {
2817 assert((!InitListSyntax || (NumArgs == 1 && isa<InitListExpr>(Args[0]))) &&
2818 "InitListSyntax must come with a single initializer list argument.");
2819
2820 // Check constructor arguments for self reference.
2821 if (DeclaratorDecl *DD = Entity.getDecl())
2822 // Parameters arguments are occassionially constructed with itself,
2823 // for instance, in recursive functions. Skip them.
2824 if (!isa<ParmVarDecl>(DD))
2825 for (unsigned i = 0; i < NumArgs; ++i)
2826 S.CheckSelfReference(DD, Args[i]);
2827
2828 // The type we're constructing needs to be complete.
2829 if (S.RequireCompleteType(Kind.getLocation(), DestType, 0)) {
2830 Sequence.setIncompleteTypeFailure(DestType);
2831 return;
2832 }
2833
2834 const RecordType *DestRecordType = DestType->getAs<RecordType>();
2835 assert(DestRecordType && "Constructor initialization requires record type");
2836 CXXRecordDecl *DestRecordDecl
2837 = cast<CXXRecordDecl>(DestRecordType->getDecl());
2838
2839 // Build the candidate set directly in the initialization sequence
2840 // structure, so that it will persist if we fail.
2841 OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet();
2842
2843 // Determine whether we are allowed to call explicit constructors or
2844 // explicit conversion operators.
2845 bool AllowExplicit = Kind.AllowExplicit() || InitListSyntax;
2846 bool CopyInitialization = Kind.getKind() == InitializationKind::IK_Copy;
2847
2848 // - Otherwise, if T is a class type, constructors are considered. The
2849 // applicable constructors are enumerated, and the best one is chosen
2850 // through overload resolution.
2851 DeclContext::lookup_iterator ConStart, ConEnd;
2852 llvm::tie(ConStart, ConEnd) = S.LookupConstructors(DestRecordDecl);
2853
2854 OverloadingResult Result = OR_No_Viable_Function;
2855 OverloadCandidateSet::iterator Best;
2856 bool AsInitializerList = false;
2857
2858 // C++11 [over.match.list]p1:
2859 // When objects of non-aggregate type T are list-initialized, overload
2860 // resolution selects the constructor in two phases:
2861 // - Initially, the candidate functions are the initializer-list
2862 // constructors of the class T and the argument list consists of the
2863 // initializer list as a single argument.
2864 if (InitListSyntax) {
2865 InitListExpr *ILE = cast<InitListExpr>(Args[0]);
2866 AsInitializerList = true;
2867
2868 // If the initializer list has no elements and T has a default constructor,
2869 // the first phase is omitted.
2870 if (ILE->getNumInits() != 0 ||
2871 (!DestRecordDecl->hasDeclaredDefaultConstructor() &&
2872 !DestRecordDecl->needsImplicitDefaultConstructor()))
2873 Result = ResolveConstructorOverload(S, Kind.getLocation(), Args, NumArgs,
2874 CandidateSet, ConStart, ConEnd, Best,
2875 CopyInitialization, AllowExplicit,
2876 /*OnlyListConstructor=*/true,
2877 InitListSyntax);
2878
2879 // Time to unwrap the init list.
2880 Args = ILE->getInits();
2881 NumArgs = ILE->getNumInits();
2882 }
2883
2884 // C++11 [over.match.list]p1:
2885 // - If no viable initializer-list constructor is found, overload resolution
2886 // is performed again, where the candidate functions are all the
2887 // constructors of the class T and the argument list consists of the
2888 // elements of the initializer list.
2889 if (Result == OR_No_Viable_Function) {
2890 AsInitializerList = false;
2891 Result = ResolveConstructorOverload(S, Kind.getLocation(), Args, NumArgs,
2892 CandidateSet, ConStart, ConEnd, Best,
2893 CopyInitialization, AllowExplicit,
2894 /*OnlyListConstructors=*/false,
2895 InitListSyntax);
2896 }
2897 if (Result) {
2898 Sequence.SetOverloadFailure(InitListSyntax ?
2899 InitializationSequence::FK_ListConstructorOverloadFailed :
2900 InitializationSequence::FK_ConstructorOverloadFailed,
2901 Result);
2902 return;
2903 }
2904
2905 // C++11 [dcl.init]p6:
2906 // If a program calls for the default initialization of an object
2907 // of a const-qualified type T, T shall be a class type with a
2908 // user-provided default constructor.
2909 if (Kind.getKind() == InitializationKind::IK_Default &&
2910 Entity.getType().isConstQualified() &&
2911 !cast<CXXConstructorDecl>(Best->Function)->isUserProvided()) {
2912 Sequence.SetFailed(InitializationSequence::FK_DefaultInitOfConst);
2913 return;
2914 }
2915
2916 // C++11 [over.match.list]p1:
2917 // In copy-list-initialization, if an explicit constructor is chosen, the
2918 // initializer is ill-formed.
2919 CXXConstructorDecl *CtorDecl = cast<CXXConstructorDecl>(Best->Function);
2920 if (InitListSyntax && !Kind.AllowExplicit() && CtorDecl->isExplicit()) {
2921 Sequence.SetFailed(InitializationSequence::FK_ExplicitConstructor);
2922 return;
2923 }
2924
2925 // Add the constructor initialization step. Any cv-qualification conversion is
2926 // subsumed by the initialization.
2927 bool HadMultipleCandidates = (CandidateSet.size() > 1);
2928 Sequence.AddConstructorInitializationStep(CtorDecl,
2929 Best->FoundDecl.getAccess(),
2930 DestType, HadMultipleCandidates,
2931 InitListSyntax, AsInitializerList);
2932 }
2933
2934 static bool
ResolveOverloadedFunctionForReferenceBinding(Sema & S,Expr * Initializer,QualType & SourceType,QualType & UnqualifiedSourceType,QualType UnqualifiedTargetType,InitializationSequence & Sequence)2935 ResolveOverloadedFunctionForReferenceBinding(Sema &S,
2936 Expr *Initializer,
2937 QualType &SourceType,
2938 QualType &UnqualifiedSourceType,
2939 QualType UnqualifiedTargetType,
2940 InitializationSequence &Sequence) {
2941 if (S.Context.getCanonicalType(UnqualifiedSourceType) ==
2942 S.Context.OverloadTy) {
2943 DeclAccessPair Found;
2944 bool HadMultipleCandidates = false;
2945 if (FunctionDecl *Fn
2946 = S.ResolveAddressOfOverloadedFunction(Initializer,
2947 UnqualifiedTargetType,
2948 false, Found,
2949 &HadMultipleCandidates)) {
2950 Sequence.AddAddressOverloadResolutionStep(Fn, Found,
2951 HadMultipleCandidates);
2952 SourceType = Fn->getType();
2953 UnqualifiedSourceType = SourceType.getUnqualifiedType();
2954 } else if (!UnqualifiedTargetType->isRecordType()) {
2955 Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
2956 return true;
2957 }
2958 }
2959 return false;
2960 }
2961
2962 static void TryReferenceInitializationCore(Sema &S,
2963 const InitializedEntity &Entity,
2964 const InitializationKind &Kind,
2965 Expr *Initializer,
2966 QualType cv1T1, QualType T1,
2967 Qualifiers T1Quals,
2968 QualType cv2T2, QualType T2,
2969 Qualifiers T2Quals,
2970 InitializationSequence &Sequence);
2971
2972 static void TryValueInitialization(Sema &S,
2973 const InitializedEntity &Entity,
2974 const InitializationKind &Kind,
2975 InitializationSequence &Sequence,
2976 InitListExpr *InitList = 0);
2977
2978 static void TryListInitialization(Sema &S,
2979 const InitializedEntity &Entity,
2980 const InitializationKind &Kind,
2981 InitListExpr *InitList,
2982 InitializationSequence &Sequence);
2983
2984 /// \brief Attempt list initialization of a reference.
TryReferenceListInitialization(Sema & S,const InitializedEntity & Entity,const InitializationKind & Kind,InitListExpr * InitList,InitializationSequence & Sequence)2985 static void TryReferenceListInitialization(Sema &S,
2986 const InitializedEntity &Entity,
2987 const InitializationKind &Kind,
2988 InitListExpr *InitList,
2989 InitializationSequence &Sequence)
2990 {
2991 // First, catch C++03 where this isn't possible.
2992 if (!S.getLangOpts().CPlusPlus0x) {
2993 Sequence.SetFailed(InitializationSequence::FK_ReferenceBindingToInitList);
2994 return;
2995 }
2996
2997 QualType DestType = Entity.getType();
2998 QualType cv1T1 = DestType->getAs<ReferenceType>()->getPointeeType();
2999 Qualifiers T1Quals;
3000 QualType T1 = S.Context.getUnqualifiedArrayType(cv1T1, T1Quals);
3001
3002 // Reference initialization via an initializer list works thus:
3003 // If the initializer list consists of a single element that is
3004 // reference-related to the referenced type, bind directly to that element
3005 // (possibly creating temporaries).
3006 // Otherwise, initialize a temporary with the initializer list and
3007 // bind to that.
3008 if (InitList->getNumInits() == 1) {
3009 Expr *Initializer = InitList->getInit(0);
3010 QualType cv2T2 = Initializer->getType();
3011 Qualifiers T2Quals;
3012 QualType T2 = S.Context.getUnqualifiedArrayType(cv2T2, T2Quals);
3013
3014 // If this fails, creating a temporary wouldn't work either.
3015 if (ResolveOverloadedFunctionForReferenceBinding(S, Initializer, cv2T2, T2,
3016 T1, Sequence))
3017 return;
3018
3019 SourceLocation DeclLoc = Initializer->getLocStart();
3020 bool dummy1, dummy2, dummy3;
3021 Sema::ReferenceCompareResult RefRelationship
3022 = S.CompareReferenceRelationship(DeclLoc, cv1T1, cv2T2, dummy1,
3023 dummy2, dummy3);
3024 if (RefRelationship >= Sema::Ref_Related) {
3025 // Try to bind the reference here.
3026 TryReferenceInitializationCore(S, Entity, Kind, Initializer, cv1T1, T1,
3027 T1Quals, cv2T2, T2, T2Quals, Sequence);
3028 if (Sequence)
3029 Sequence.RewrapReferenceInitList(cv1T1, InitList);
3030 return;
3031 }
3032 }
3033
3034 // Not reference-related. Create a temporary and bind to that.
3035 InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(cv1T1);
3036
3037 TryListInitialization(S, TempEntity, Kind, InitList, Sequence);
3038 if (Sequence) {
3039 if (DestType->isRValueReferenceType() ||
3040 (T1Quals.hasConst() && !T1Quals.hasVolatile()))
3041 Sequence.AddReferenceBindingStep(cv1T1, /*bindingTemporary=*/true);
3042 else
3043 Sequence.SetFailed(
3044 InitializationSequence::FK_NonConstLValueReferenceBindingToTemporary);
3045 }
3046 }
3047
3048 /// \brief Attempt list initialization (C++0x [dcl.init.list])
TryListInitialization(Sema & S,const InitializedEntity & Entity,const InitializationKind & Kind,InitListExpr * InitList,InitializationSequence & Sequence)3049 static void TryListInitialization(Sema &S,
3050 const InitializedEntity &Entity,
3051 const InitializationKind &Kind,
3052 InitListExpr *InitList,
3053 InitializationSequence &Sequence) {
3054 QualType DestType = Entity.getType();
3055
3056 // C++ doesn't allow scalar initialization with more than one argument.
3057 // But C99 complex numbers are scalars and it makes sense there.
3058 if (S.getLangOpts().CPlusPlus && DestType->isScalarType() &&
3059 !DestType->isAnyComplexType() && InitList->getNumInits() > 1) {
3060 Sequence.SetFailed(InitializationSequence::FK_TooManyInitsForScalar);
3061 return;
3062 }
3063 if (DestType->isReferenceType()) {
3064 TryReferenceListInitialization(S, Entity, Kind, InitList, Sequence);
3065 return;
3066 }
3067 if (DestType->isRecordType()) {
3068 if (S.RequireCompleteType(InitList->getLocStart(), DestType, 0)) {
3069 Sequence.setIncompleteTypeFailure(DestType);
3070 return;
3071 }
3072
3073 // C++11 [dcl.init.list]p3:
3074 // - If T is an aggregate, aggregate initialization is performed.
3075 if (!DestType->isAggregateType()) {
3076 if (S.getLangOpts().CPlusPlus0x) {
3077 // - Otherwise, if the initializer list has no elements and T is a
3078 // class type with a default constructor, the object is
3079 // value-initialized.
3080 if (InitList->getNumInits() == 0) {
3081 CXXRecordDecl *RD = DestType->getAsCXXRecordDecl();
3082 if (RD->hasDeclaredDefaultConstructor() ||
3083 RD->needsImplicitDefaultConstructor()) {
3084 TryValueInitialization(S, Entity, Kind, Sequence, InitList);
3085 return;
3086 }
3087 }
3088
3089 // - Otherwise, if T is a specialization of std::initializer_list<E>,
3090 // an initializer_list object constructed [...]
3091 if (TryInitializerListConstruction(S, InitList, DestType, Sequence))
3092 return;
3093
3094 // - Otherwise, if T is a class type, constructors are considered.
3095 Expr *Arg = InitList;
3096 TryConstructorInitialization(S, Entity, Kind, &Arg, 1, DestType,
3097 Sequence, /*InitListSyntax*/true);
3098 } else
3099 Sequence.SetFailed(
3100 InitializationSequence::FK_InitListBadDestinationType);
3101 return;
3102 }
3103 }
3104
3105 InitListChecker CheckInitList(S, Entity, InitList,
3106 DestType, /*VerifyOnly=*/true,
3107 Kind.getKind() != InitializationKind::IK_DirectList ||
3108 !S.getLangOpts().CPlusPlus0x);
3109 if (CheckInitList.HadError()) {
3110 Sequence.SetFailed(InitializationSequence::FK_ListInitializationFailed);
3111 return;
3112 }
3113
3114 // Add the list initialization step with the built init list.
3115 Sequence.AddListInitializationStep(DestType);
3116 }
3117
3118 /// \brief Try a reference initialization that involves calling a conversion
3119 /// function.
TryRefInitWithConversionFunction(Sema & S,const InitializedEntity & Entity,const InitializationKind & Kind,Expr * Initializer,bool AllowRValues,InitializationSequence & Sequence)3120 static OverloadingResult TryRefInitWithConversionFunction(Sema &S,
3121 const InitializedEntity &Entity,
3122 const InitializationKind &Kind,
3123 Expr *Initializer,
3124 bool AllowRValues,
3125 InitializationSequence &Sequence) {
3126 QualType DestType = Entity.getType();
3127 QualType cv1T1 = DestType->getAs<ReferenceType>()->getPointeeType();
3128 QualType T1 = cv1T1.getUnqualifiedType();
3129 QualType cv2T2 = Initializer->getType();
3130 QualType T2 = cv2T2.getUnqualifiedType();
3131
3132 bool DerivedToBase;
3133 bool ObjCConversion;
3134 bool ObjCLifetimeConversion;
3135 assert(!S.CompareReferenceRelationship(Initializer->getLocStart(),
3136 T1, T2, DerivedToBase,
3137 ObjCConversion,
3138 ObjCLifetimeConversion) &&
3139 "Must have incompatible references when binding via conversion");
3140 (void)DerivedToBase;
3141 (void)ObjCConversion;
3142 (void)ObjCLifetimeConversion;
3143
3144 // Build the candidate set directly in the initialization sequence
3145 // structure, so that it will persist if we fail.
3146 OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet();
3147 CandidateSet.clear();
3148
3149 // Determine whether we are allowed to call explicit constructors or
3150 // explicit conversion operators.
3151 bool AllowExplicit = Kind.AllowExplicit();
3152 bool AllowExplicitConvs = Kind.allowExplicitConversionFunctions();
3153
3154 const RecordType *T1RecordType = 0;
3155 if (AllowRValues && (T1RecordType = T1->getAs<RecordType>()) &&
3156 !S.RequireCompleteType(Kind.getLocation(), T1, 0)) {
3157 // The type we're converting to is a class type. Enumerate its constructors
3158 // to see if there is a suitable conversion.
3159 CXXRecordDecl *T1RecordDecl = cast<CXXRecordDecl>(T1RecordType->getDecl());
3160
3161 DeclContext::lookup_iterator Con, ConEnd;
3162 for (llvm::tie(Con, ConEnd) = S.LookupConstructors(T1RecordDecl);
3163 Con != ConEnd; ++Con) {
3164 NamedDecl *D = *Con;
3165 DeclAccessPair FoundDecl = DeclAccessPair::make(D, D->getAccess());
3166
3167 // Find the constructor (which may be a template).
3168 CXXConstructorDecl *Constructor = 0;
3169 FunctionTemplateDecl *ConstructorTmpl = dyn_cast<FunctionTemplateDecl>(D);
3170 if (ConstructorTmpl)
3171 Constructor = cast<CXXConstructorDecl>(
3172 ConstructorTmpl->getTemplatedDecl());
3173 else
3174 Constructor = cast<CXXConstructorDecl>(D);
3175
3176 if (!Constructor->isInvalidDecl() &&
3177 Constructor->isConvertingConstructor(AllowExplicit)) {
3178 if (ConstructorTmpl)
3179 S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl,
3180 /*ExplicitArgs*/ 0,
3181 Initializer, CandidateSet,
3182 /*SuppressUserConversions=*/true);
3183 else
3184 S.AddOverloadCandidate(Constructor, FoundDecl,
3185 Initializer, CandidateSet,
3186 /*SuppressUserConversions=*/true);
3187 }
3188 }
3189 }
3190 if (T1RecordType && T1RecordType->getDecl()->isInvalidDecl())
3191 return OR_No_Viable_Function;
3192
3193 const RecordType *T2RecordType = 0;
3194 if ((T2RecordType = T2->getAs<RecordType>()) &&
3195 !S.RequireCompleteType(Kind.getLocation(), T2, 0)) {
3196 // The type we're converting from is a class type, enumerate its conversion
3197 // functions.
3198 CXXRecordDecl *T2RecordDecl = cast<CXXRecordDecl>(T2RecordType->getDecl());
3199
3200 const UnresolvedSetImpl *Conversions
3201 = T2RecordDecl->getVisibleConversionFunctions();
3202 for (UnresolvedSetImpl::const_iterator I = Conversions->begin(),
3203 E = Conversions->end(); I != E; ++I) {
3204 NamedDecl *D = *I;
3205 CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
3206 if (isa<UsingShadowDecl>(D))
3207 D = cast<UsingShadowDecl>(D)->getTargetDecl();
3208
3209 FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D);
3210 CXXConversionDecl *Conv;
3211 if (ConvTemplate)
3212 Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
3213 else
3214 Conv = cast<CXXConversionDecl>(D);
3215
3216 // If the conversion function doesn't return a reference type,
3217 // it can't be considered for this conversion unless we're allowed to
3218 // consider rvalues.
3219 // FIXME: Do we need to make sure that we only consider conversion
3220 // candidates with reference-compatible results? That might be needed to
3221 // break recursion.
3222 if ((AllowExplicitConvs || !Conv->isExplicit()) &&
3223 (AllowRValues || Conv->getConversionType()->isLValueReferenceType())){
3224 if (ConvTemplate)
3225 S.AddTemplateConversionCandidate(ConvTemplate, I.getPair(),
3226 ActingDC, Initializer,
3227 DestType, CandidateSet);
3228 else
3229 S.AddConversionCandidate(Conv, I.getPair(), ActingDC,
3230 Initializer, DestType, CandidateSet);
3231 }
3232 }
3233 }
3234 if (T2RecordType && T2RecordType->getDecl()->isInvalidDecl())
3235 return OR_No_Viable_Function;
3236
3237 SourceLocation DeclLoc = Initializer->getLocStart();
3238
3239 // Perform overload resolution. If it fails, return the failed result.
3240 OverloadCandidateSet::iterator Best;
3241 if (OverloadingResult Result
3242 = CandidateSet.BestViableFunction(S, DeclLoc, Best, true))
3243 return Result;
3244
3245 FunctionDecl *Function = Best->Function;
3246
3247 // This is the overload that will actually be used for the initialization, so
3248 // mark it as used.
3249 S.MarkFunctionReferenced(DeclLoc, Function);
3250
3251 // Compute the returned type of the conversion.
3252 if (isa<CXXConversionDecl>(Function))
3253 T2 = Function->getResultType();
3254 else
3255 T2 = cv1T1;
3256
3257 // Add the user-defined conversion step.
3258 bool HadMultipleCandidates = (CandidateSet.size() > 1);
3259 Sequence.AddUserConversionStep(Function, Best->FoundDecl,
3260 T2.getNonLValueExprType(S.Context),
3261 HadMultipleCandidates);
3262
3263 // Determine whether we need to perform derived-to-base or
3264 // cv-qualification adjustments.
3265 ExprValueKind VK = VK_RValue;
3266 if (T2->isLValueReferenceType())
3267 VK = VK_LValue;
3268 else if (const RValueReferenceType *RRef = T2->getAs<RValueReferenceType>())
3269 VK = RRef->getPointeeType()->isFunctionType() ? VK_LValue : VK_XValue;
3270
3271 bool NewDerivedToBase = false;
3272 bool NewObjCConversion = false;
3273 bool NewObjCLifetimeConversion = false;
3274 Sema::ReferenceCompareResult NewRefRelationship
3275 = S.CompareReferenceRelationship(DeclLoc, T1,
3276 T2.getNonLValueExprType(S.Context),
3277 NewDerivedToBase, NewObjCConversion,
3278 NewObjCLifetimeConversion);
3279 if (NewRefRelationship == Sema::Ref_Incompatible) {
3280 // If the type we've converted to is not reference-related to the
3281 // type we're looking for, then there is another conversion step
3282 // we need to perform to produce a temporary of the right type
3283 // that we'll be binding to.
3284 ImplicitConversionSequence ICS;
3285 ICS.setStandard();
3286 ICS.Standard = Best->FinalConversion;
3287 T2 = ICS.Standard.getToType(2);
3288 Sequence.AddConversionSequenceStep(ICS, T2);
3289 } else if (NewDerivedToBase)
3290 Sequence.AddDerivedToBaseCastStep(
3291 S.Context.getQualifiedType(T1,
3292 T2.getNonReferenceType().getQualifiers()),
3293 VK);
3294 else if (NewObjCConversion)
3295 Sequence.AddObjCObjectConversionStep(
3296 S.Context.getQualifiedType(T1,
3297 T2.getNonReferenceType().getQualifiers()));
3298
3299 if (cv1T1.getQualifiers() != T2.getNonReferenceType().getQualifiers())
3300 Sequence.AddQualificationConversionStep(cv1T1, VK);
3301
3302 Sequence.AddReferenceBindingStep(cv1T1, !T2->isReferenceType());
3303 return OR_Success;
3304 }
3305
3306 static void CheckCXX98CompatAccessibleCopy(Sema &S,
3307 const InitializedEntity &Entity,
3308 Expr *CurInitExpr);
3309
3310 /// \brief Attempt reference initialization (C++0x [dcl.init.ref])
TryReferenceInitialization(Sema & S,const InitializedEntity & Entity,const InitializationKind & Kind,Expr * Initializer,InitializationSequence & Sequence)3311 static void TryReferenceInitialization(Sema &S,
3312 const InitializedEntity &Entity,
3313 const InitializationKind &Kind,
3314 Expr *Initializer,
3315 InitializationSequence &Sequence) {
3316 QualType DestType = Entity.getType();
3317 QualType cv1T1 = DestType->getAs<ReferenceType>()->getPointeeType();
3318 Qualifiers T1Quals;
3319 QualType T1 = S.Context.getUnqualifiedArrayType(cv1T1, T1Quals);
3320 QualType cv2T2 = Initializer->getType();
3321 Qualifiers T2Quals;
3322 QualType T2 = S.Context.getUnqualifiedArrayType(cv2T2, T2Quals);
3323
3324 // If the initializer is the address of an overloaded function, try
3325 // to resolve the overloaded function. If all goes well, T2 is the
3326 // type of the resulting function.
3327 if (ResolveOverloadedFunctionForReferenceBinding(S, Initializer, cv2T2, T2,
3328 T1, Sequence))
3329 return;
3330
3331 // Delegate everything else to a subfunction.
3332 TryReferenceInitializationCore(S, Entity, Kind, Initializer, cv1T1, T1,
3333 T1Quals, cv2T2, T2, T2Quals, Sequence);
3334 }
3335
3336 /// \brief Reference initialization without resolving overloaded functions.
TryReferenceInitializationCore(Sema & S,const InitializedEntity & Entity,const InitializationKind & Kind,Expr * Initializer,QualType cv1T1,QualType T1,Qualifiers T1Quals,QualType cv2T2,QualType T2,Qualifiers T2Quals,InitializationSequence & Sequence)3337 static void TryReferenceInitializationCore(Sema &S,
3338 const InitializedEntity &Entity,
3339 const InitializationKind &Kind,
3340 Expr *Initializer,
3341 QualType cv1T1, QualType T1,
3342 Qualifiers T1Quals,
3343 QualType cv2T2, QualType T2,
3344 Qualifiers T2Quals,
3345 InitializationSequence &Sequence) {
3346 QualType DestType = Entity.getType();
3347 SourceLocation DeclLoc = Initializer->getLocStart();
3348 // Compute some basic properties of the types and the initializer.
3349 bool isLValueRef = DestType->isLValueReferenceType();
3350 bool isRValueRef = !isLValueRef;
3351 bool DerivedToBase = false;
3352 bool ObjCConversion = false;
3353 bool ObjCLifetimeConversion = false;
3354 Expr::Classification InitCategory = Initializer->Classify(S.Context);
3355 Sema::ReferenceCompareResult RefRelationship
3356 = S.CompareReferenceRelationship(DeclLoc, cv1T1, cv2T2, DerivedToBase,
3357 ObjCConversion, ObjCLifetimeConversion);
3358
3359 // C++0x [dcl.init.ref]p5:
3360 // A reference to type "cv1 T1" is initialized by an expression of type
3361 // "cv2 T2" as follows:
3362 //
3363 // - If the reference is an lvalue reference and the initializer
3364 // expression
3365 // Note the analogous bullet points for rvlaue refs to functions. Because
3366 // there are no function rvalues in C++, rvalue refs to functions are treated
3367 // like lvalue refs.
3368 OverloadingResult ConvOvlResult = OR_Success;
3369 bool T1Function = T1->isFunctionType();
3370 if (isLValueRef || T1Function) {
3371 if (InitCategory.isLValue() &&
3372 (RefRelationship >= Sema::Ref_Compatible_With_Added_Qualification ||
3373 (Kind.isCStyleOrFunctionalCast() &&
3374 RefRelationship == Sema::Ref_Related))) {
3375 // - is an lvalue (but is not a bit-field), and "cv1 T1" is
3376 // reference-compatible with "cv2 T2," or
3377 //
3378 // Per C++ [over.best.ics]p2, we don't diagnose whether the lvalue is a
3379 // bit-field when we're determining whether the reference initialization
3380 // can occur. However, we do pay attention to whether it is a bit-field
3381 // to decide whether we're actually binding to a temporary created from
3382 // the bit-field.
3383 if (DerivedToBase)
3384 Sequence.AddDerivedToBaseCastStep(
3385 S.Context.getQualifiedType(T1, T2Quals),
3386 VK_LValue);
3387 else if (ObjCConversion)
3388 Sequence.AddObjCObjectConversionStep(
3389 S.Context.getQualifiedType(T1, T2Quals));
3390
3391 if (T1Quals != T2Quals)
3392 Sequence.AddQualificationConversionStep(cv1T1, VK_LValue);
3393 bool BindingTemporary = T1Quals.hasConst() && !T1Quals.hasVolatile() &&
3394 (Initializer->getBitField() || Initializer->refersToVectorElement());
3395 Sequence.AddReferenceBindingStep(cv1T1, BindingTemporary);
3396 return;
3397 }
3398
3399 // - has a class type (i.e., T2 is a class type), where T1 is not
3400 // reference-related to T2, and can be implicitly converted to an
3401 // lvalue of type "cv3 T3," where "cv1 T1" is reference-compatible
3402 // with "cv3 T3" (this conversion is selected by enumerating the
3403 // applicable conversion functions (13.3.1.6) and choosing the best
3404 // one through overload resolution (13.3)),
3405 // If we have an rvalue ref to function type here, the rhs must be
3406 // an rvalue.
3407 if (RefRelationship == Sema::Ref_Incompatible && T2->isRecordType() &&
3408 (isLValueRef || InitCategory.isRValue())) {
3409 ConvOvlResult = TryRefInitWithConversionFunction(S, Entity, Kind,
3410 Initializer,
3411 /*AllowRValues=*/isRValueRef,
3412 Sequence);
3413 if (ConvOvlResult == OR_Success)
3414 return;
3415 if (ConvOvlResult != OR_No_Viable_Function) {
3416 Sequence.SetOverloadFailure(
3417 InitializationSequence::FK_ReferenceInitOverloadFailed,
3418 ConvOvlResult);
3419 }
3420 }
3421 }
3422
3423 // - Otherwise, the reference shall be an lvalue reference to a
3424 // non-volatile const type (i.e., cv1 shall be const), or the reference
3425 // shall be an rvalue reference.
3426 if (isLValueRef && !(T1Quals.hasConst() && !T1Quals.hasVolatile())) {
3427 if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy)
3428 Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
3429 else if (ConvOvlResult && !Sequence.getFailedCandidateSet().empty())
3430 Sequence.SetOverloadFailure(
3431 InitializationSequence::FK_ReferenceInitOverloadFailed,
3432 ConvOvlResult);
3433 else
3434 Sequence.SetFailed(InitCategory.isLValue()
3435 ? (RefRelationship == Sema::Ref_Related
3436 ? InitializationSequence::FK_ReferenceInitDropsQualifiers
3437 : InitializationSequence::FK_NonConstLValueReferenceBindingToUnrelated)
3438 : InitializationSequence::FK_NonConstLValueReferenceBindingToTemporary);
3439
3440 return;
3441 }
3442
3443 // - If the initializer expression
3444 // - is an xvalue, class prvalue, array prvalue, or function lvalue and
3445 // "cv1 T1" is reference-compatible with "cv2 T2"
3446 // Note: functions are handled below.
3447 if (!T1Function &&
3448 (RefRelationship >= Sema::Ref_Compatible_With_Added_Qualification ||
3449 (Kind.isCStyleOrFunctionalCast() &&
3450 RefRelationship == Sema::Ref_Related)) &&
3451 (InitCategory.isXValue() ||
3452 (InitCategory.isPRValue() && T2->isRecordType()) ||
3453 (InitCategory.isPRValue() && T2->isArrayType()))) {
3454 ExprValueKind ValueKind = InitCategory.isXValue()? VK_XValue : VK_RValue;
3455 if (InitCategory.isPRValue() && T2->isRecordType()) {
3456 // The corresponding bullet in C++03 [dcl.init.ref]p5 gives the
3457 // compiler the freedom to perform a copy here or bind to the
3458 // object, while C++0x requires that we bind directly to the
3459 // object. Hence, we always bind to the object without making an
3460 // extra copy. However, in C++03 requires that we check for the
3461 // presence of a suitable copy constructor:
3462 //
3463 // The constructor that would be used to make the copy shall
3464 // be callable whether or not the copy is actually done.
3465 if (!S.getLangOpts().CPlusPlus0x && !S.getLangOpts().MicrosoftExt)
3466 Sequence.AddExtraneousCopyToTemporary(cv2T2);
3467 else if (S.getLangOpts().CPlusPlus0x)
3468 CheckCXX98CompatAccessibleCopy(S, Entity, Initializer);
3469 }
3470
3471 if (DerivedToBase)
3472 Sequence.AddDerivedToBaseCastStep(S.Context.getQualifiedType(T1, T2Quals),
3473 ValueKind);
3474 else if (ObjCConversion)
3475 Sequence.AddObjCObjectConversionStep(
3476 S.Context.getQualifiedType(T1, T2Quals));
3477
3478 if (T1Quals != T2Quals)
3479 Sequence.AddQualificationConversionStep(cv1T1, ValueKind);
3480 Sequence.AddReferenceBindingStep(cv1T1,
3481 /*bindingTemporary=*/InitCategory.isPRValue());
3482 return;
3483 }
3484
3485 // - has a class type (i.e., T2 is a class type), where T1 is not
3486 // reference-related to T2, and can be implicitly converted to an
3487 // xvalue, class prvalue, or function lvalue of type "cv3 T3",
3488 // where "cv1 T1" is reference-compatible with "cv3 T3",
3489 if (T2->isRecordType()) {
3490 if (RefRelationship == Sema::Ref_Incompatible) {
3491 ConvOvlResult = TryRefInitWithConversionFunction(S, Entity,
3492 Kind, Initializer,
3493 /*AllowRValues=*/true,
3494 Sequence);
3495 if (ConvOvlResult)
3496 Sequence.SetOverloadFailure(
3497 InitializationSequence::FK_ReferenceInitOverloadFailed,
3498 ConvOvlResult);
3499
3500 return;
3501 }
3502
3503 Sequence.SetFailed(InitializationSequence::FK_ReferenceInitDropsQualifiers);
3504 return;
3505 }
3506
3507 // - Otherwise, a temporary of type "cv1 T1" is created and initialized
3508 // from the initializer expression using the rules for a non-reference
3509 // copy initialization (8.5). The reference is then bound to the
3510 // temporary. [...]
3511
3512 // Determine whether we are allowed to call explicit constructors or
3513 // explicit conversion operators.
3514 bool AllowExplicit = Kind.AllowExplicit();
3515
3516 InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(cv1T1);
3517
3518 ImplicitConversionSequence ICS
3519 = S.TryImplicitConversion(Initializer, TempEntity.getType(),
3520 /*SuppressUserConversions*/ false,
3521 AllowExplicit,
3522 /*FIXME:InOverloadResolution=*/false,
3523 /*CStyle=*/Kind.isCStyleOrFunctionalCast(),
3524 /*AllowObjCWritebackConversion=*/false);
3525
3526 if (ICS.isBad()) {
3527 // FIXME: Use the conversion function set stored in ICS to turn
3528 // this into an overloading ambiguity diagnostic. However, we need
3529 // to keep that set as an OverloadCandidateSet rather than as some
3530 // other kind of set.
3531 if (ConvOvlResult && !Sequence.getFailedCandidateSet().empty())
3532 Sequence.SetOverloadFailure(
3533 InitializationSequence::FK_ReferenceInitOverloadFailed,
3534 ConvOvlResult);
3535 else if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy)
3536 Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
3537 else
3538 Sequence.SetFailed(InitializationSequence::FK_ReferenceInitFailed);
3539 return;
3540 } else {
3541 Sequence.AddConversionSequenceStep(ICS, TempEntity.getType());
3542 }
3543
3544 // [...] If T1 is reference-related to T2, cv1 must be the
3545 // same cv-qualification as, or greater cv-qualification
3546 // than, cv2; otherwise, the program is ill-formed.
3547 unsigned T1CVRQuals = T1Quals.getCVRQualifiers();
3548 unsigned T2CVRQuals = T2Quals.getCVRQualifiers();
3549 if (RefRelationship == Sema::Ref_Related &&
3550 (T1CVRQuals | T2CVRQuals) != T1CVRQuals) {
3551 Sequence.SetFailed(InitializationSequence::FK_ReferenceInitDropsQualifiers);
3552 return;
3553 }
3554
3555 // [...] If T1 is reference-related to T2 and the reference is an rvalue
3556 // reference, the initializer expression shall not be an lvalue.
3557 if (RefRelationship >= Sema::Ref_Related && !isLValueRef &&
3558 InitCategory.isLValue()) {
3559 Sequence.SetFailed(
3560 InitializationSequence::FK_RValueReferenceBindingToLValue);
3561 return;
3562 }
3563
3564 Sequence.AddReferenceBindingStep(cv1T1, /*bindingTemporary=*/true);
3565 return;
3566 }
3567
3568 /// \brief Attempt character array initialization from a string literal
3569 /// (C++ [dcl.init.string], C99 6.7.8).
TryStringLiteralInitialization(Sema & S,const InitializedEntity & Entity,const InitializationKind & Kind,Expr * Initializer,InitializationSequence & Sequence)3570 static void TryStringLiteralInitialization(Sema &S,
3571 const InitializedEntity &Entity,
3572 const InitializationKind &Kind,
3573 Expr *Initializer,
3574 InitializationSequence &Sequence) {
3575 Sequence.AddStringInitStep(Entity.getType());
3576 }
3577
3578 /// \brief Attempt value initialization (C++ [dcl.init]p7).
TryValueInitialization(Sema & S,const InitializedEntity & Entity,const InitializationKind & Kind,InitializationSequence & Sequence,InitListExpr * InitList)3579 static void TryValueInitialization(Sema &S,
3580 const InitializedEntity &Entity,
3581 const InitializationKind &Kind,
3582 InitializationSequence &Sequence,
3583 InitListExpr *InitList) {
3584 assert((!InitList || InitList->getNumInits() == 0) &&
3585 "Shouldn't use value-init for non-empty init lists");
3586
3587 // C++98 [dcl.init]p5, C++11 [dcl.init]p7:
3588 //
3589 // To value-initialize an object of type T means:
3590 QualType T = Entity.getType();
3591
3592 // -- if T is an array type, then each element is value-initialized;
3593 T = S.Context.getBaseElementType(T);
3594
3595 if (const RecordType *RT = T->getAs<RecordType>()) {
3596 if (CXXRecordDecl *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
3597 bool NeedZeroInitialization = true;
3598 if (!S.getLangOpts().CPlusPlus0x) {
3599 // C++98:
3600 // -- if T is a class type (clause 9) with a user-declared constructor
3601 // (12.1), then the default constructor for T is called (and the
3602 // initialization is ill-formed if T has no accessible default
3603 // constructor);
3604 if (ClassDecl->hasUserDeclaredConstructor())
3605 NeedZeroInitialization = false;
3606 } else {
3607 // C++11:
3608 // -- if T is a class type (clause 9) with either no default constructor
3609 // (12.1 [class.ctor]) or a default constructor that is user-provided
3610 // or deleted, then the object is default-initialized;
3611 CXXConstructorDecl *CD = S.LookupDefaultConstructor(ClassDecl);
3612 if (!CD || !CD->getCanonicalDecl()->isDefaulted() || CD->isDeleted())
3613 NeedZeroInitialization = false;
3614 }
3615
3616 // -- if T is a (possibly cv-qualified) non-union class type without a
3617 // user-provided or deleted default constructor, then the object is
3618 // zero-initialized and, if T has a non-trivial default constructor,
3619 // default-initialized;
3620 // FIXME: The 'non-union' here is a defect (not yet assigned an issue
3621 // number). Update the quotation when the defect is resolved.
3622 if (NeedZeroInitialization)
3623 Sequence.AddZeroInitializationStep(Entity.getType());
3624
3625 // If this is list-value-initialization, pass the empty init list on when
3626 // building the constructor call. This affects the semantics of a few
3627 // things (such as whether an explicit default constructor can be called).
3628 Expr *InitListAsExpr = InitList;
3629 Expr **Args = InitList ? &InitListAsExpr : 0;
3630 unsigned NumArgs = InitList ? 1 : 0;
3631 bool InitListSyntax = InitList;
3632
3633 return TryConstructorInitialization(S, Entity, Kind, Args, NumArgs, T,
3634 Sequence, InitListSyntax);
3635 }
3636 }
3637
3638 Sequence.AddZeroInitializationStep(Entity.getType());
3639 }
3640
3641 /// \brief Attempt default initialization (C++ [dcl.init]p6).
TryDefaultInitialization(Sema & S,const InitializedEntity & Entity,const InitializationKind & Kind,InitializationSequence & Sequence)3642 static void TryDefaultInitialization(Sema &S,
3643 const InitializedEntity &Entity,
3644 const InitializationKind &Kind,
3645 InitializationSequence &Sequence) {
3646 assert(Kind.getKind() == InitializationKind::IK_Default);
3647
3648 // C++ [dcl.init]p6:
3649 // To default-initialize an object of type T means:
3650 // - if T is an array type, each element is default-initialized;
3651 QualType DestType = S.Context.getBaseElementType(Entity.getType());
3652
3653 // - if T is a (possibly cv-qualified) class type (Clause 9), the default
3654 // constructor for T is called (and the initialization is ill-formed if
3655 // T has no accessible default constructor);
3656 if (DestType->isRecordType() && S.getLangOpts().CPlusPlus) {
3657 TryConstructorInitialization(S, Entity, Kind, 0, 0, DestType, Sequence);
3658 return;
3659 }
3660
3661 // - otherwise, no initialization is performed.
3662
3663 // If a program calls for the default initialization of an object of
3664 // a const-qualified type T, T shall be a class type with a user-provided
3665 // default constructor.
3666 if (DestType.isConstQualified() && S.getLangOpts().CPlusPlus) {
3667 Sequence.SetFailed(InitializationSequence::FK_DefaultInitOfConst);
3668 return;
3669 }
3670
3671 // If the destination type has a lifetime property, zero-initialize it.
3672 if (DestType.getQualifiers().hasObjCLifetime()) {
3673 Sequence.AddZeroInitializationStep(Entity.getType());
3674 return;
3675 }
3676 }
3677
3678 /// \brief Attempt a user-defined conversion between two types (C++ [dcl.init]),
3679 /// which enumerates all conversion functions and performs overload resolution
3680 /// to select the best.
TryUserDefinedConversion(Sema & S,const InitializedEntity & Entity,const InitializationKind & Kind,Expr * Initializer,InitializationSequence & Sequence)3681 static void TryUserDefinedConversion(Sema &S,
3682 const InitializedEntity &Entity,
3683 const InitializationKind &Kind,
3684 Expr *Initializer,
3685 InitializationSequence &Sequence) {
3686 QualType DestType = Entity.getType();
3687 assert(!DestType->isReferenceType() && "References are handled elsewhere");
3688 QualType SourceType = Initializer->getType();
3689 assert((DestType->isRecordType() || SourceType->isRecordType()) &&
3690 "Must have a class type to perform a user-defined conversion");
3691
3692 // Build the candidate set directly in the initialization sequence
3693 // structure, so that it will persist if we fail.
3694 OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet();
3695 CandidateSet.clear();
3696
3697 // Determine whether we are allowed to call explicit constructors or
3698 // explicit conversion operators.
3699 bool AllowExplicit = Kind.AllowExplicit();
3700
3701 if (const RecordType *DestRecordType = DestType->getAs<RecordType>()) {
3702 // The type we're converting to is a class type. Enumerate its constructors
3703 // to see if there is a suitable conversion.
3704 CXXRecordDecl *DestRecordDecl
3705 = cast<CXXRecordDecl>(DestRecordType->getDecl());
3706
3707 // Try to complete the type we're converting to.
3708 if (!S.RequireCompleteType(Kind.getLocation(), DestType, 0)) {
3709 DeclContext::lookup_iterator Con, ConEnd;
3710 for (llvm::tie(Con, ConEnd) = S.LookupConstructors(DestRecordDecl);
3711 Con != ConEnd; ++Con) {
3712 NamedDecl *D = *Con;
3713 DeclAccessPair FoundDecl = DeclAccessPair::make(D, D->getAccess());
3714
3715 // Find the constructor (which may be a template).
3716 CXXConstructorDecl *Constructor = 0;
3717 FunctionTemplateDecl *ConstructorTmpl
3718 = dyn_cast<FunctionTemplateDecl>(D);
3719 if (ConstructorTmpl)
3720 Constructor = cast<CXXConstructorDecl>(
3721 ConstructorTmpl->getTemplatedDecl());
3722 else
3723 Constructor = cast<CXXConstructorDecl>(D);
3724
3725 if (!Constructor->isInvalidDecl() &&
3726 Constructor->isConvertingConstructor(AllowExplicit)) {
3727 if (ConstructorTmpl)
3728 S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl,
3729 /*ExplicitArgs*/ 0,
3730 Initializer, CandidateSet,
3731 /*SuppressUserConversions=*/true);
3732 else
3733 S.AddOverloadCandidate(Constructor, FoundDecl,
3734 Initializer, CandidateSet,
3735 /*SuppressUserConversions=*/true);
3736 }
3737 }
3738 }
3739 }
3740
3741 SourceLocation DeclLoc = Initializer->getLocStart();
3742
3743 if (const RecordType *SourceRecordType = SourceType->getAs<RecordType>()) {
3744 // The type we're converting from is a class type, enumerate its conversion
3745 // functions.
3746
3747 // We can only enumerate the conversion functions for a complete type; if
3748 // the type isn't complete, simply skip this step.
3749 if (!S.RequireCompleteType(DeclLoc, SourceType, 0)) {
3750 CXXRecordDecl *SourceRecordDecl
3751 = cast<CXXRecordDecl>(SourceRecordType->getDecl());
3752
3753 const UnresolvedSetImpl *Conversions
3754 = SourceRecordDecl->getVisibleConversionFunctions();
3755 for (UnresolvedSetImpl::const_iterator I = Conversions->begin(),
3756 E = Conversions->end();
3757 I != E; ++I) {
3758 NamedDecl *D = *I;
3759 CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
3760 if (isa<UsingShadowDecl>(D))
3761 D = cast<UsingShadowDecl>(D)->getTargetDecl();
3762
3763 FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D);
3764 CXXConversionDecl *Conv;
3765 if (ConvTemplate)
3766 Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
3767 else
3768 Conv = cast<CXXConversionDecl>(D);
3769
3770 if (AllowExplicit || !Conv->isExplicit()) {
3771 if (ConvTemplate)
3772 S.AddTemplateConversionCandidate(ConvTemplate, I.getPair(),
3773 ActingDC, Initializer, DestType,
3774 CandidateSet);
3775 else
3776 S.AddConversionCandidate(Conv, I.getPair(), ActingDC,
3777 Initializer, DestType, CandidateSet);
3778 }
3779 }
3780 }
3781 }
3782
3783 // Perform overload resolution. If it fails, return the failed result.
3784 OverloadCandidateSet::iterator Best;
3785 if (OverloadingResult Result
3786 = CandidateSet.BestViableFunction(S, DeclLoc, Best, true)) {
3787 Sequence.SetOverloadFailure(
3788 InitializationSequence::FK_UserConversionOverloadFailed,
3789 Result);
3790 return;
3791 }
3792
3793 FunctionDecl *Function = Best->Function;
3794 S.MarkFunctionReferenced(DeclLoc, Function);
3795 bool HadMultipleCandidates = (CandidateSet.size() > 1);
3796
3797 if (isa<CXXConstructorDecl>(Function)) {
3798 // Add the user-defined conversion step. Any cv-qualification conversion is
3799 // subsumed by the initialization. Per DR5, the created temporary is of the
3800 // cv-unqualified type of the destination.
3801 Sequence.AddUserConversionStep(Function, Best->FoundDecl,
3802 DestType.getUnqualifiedType(),
3803 HadMultipleCandidates);
3804 return;
3805 }
3806
3807 // Add the user-defined conversion step that calls the conversion function.
3808 QualType ConvType = Function->getCallResultType();
3809 if (ConvType->getAs<RecordType>()) {
3810 // If we're converting to a class type, there may be an copy of
3811 // the resulting temporary object (possible to create an object of
3812 // a base class type). That copy is not a separate conversion, so
3813 // we just make a note of the actual destination type (possibly a
3814 // base class of the type returned by the conversion function) and
3815 // let the user-defined conversion step handle the conversion.
3816 Sequence.AddUserConversionStep(Function, Best->FoundDecl, DestType,
3817 HadMultipleCandidates);
3818 return;
3819 }
3820
3821 Sequence.AddUserConversionStep(Function, Best->FoundDecl, ConvType,
3822 HadMultipleCandidates);
3823
3824 // If the conversion following the call to the conversion function
3825 // is interesting, add it as a separate step.
3826 if (Best->FinalConversion.First || Best->FinalConversion.Second ||
3827 Best->FinalConversion.Third) {
3828 ImplicitConversionSequence ICS;
3829 ICS.setStandard();
3830 ICS.Standard = Best->FinalConversion;
3831 Sequence.AddConversionSequenceStep(ICS, DestType);
3832 }
3833 }
3834
3835 /// The non-zero enum values here are indexes into diagnostic alternatives.
3836 enum InvalidICRKind { IIK_okay, IIK_nonlocal, IIK_nonscalar };
3837
3838 /// Determines whether this expression is an acceptable ICR source.
isInvalidICRSource(ASTContext & C,Expr * e,bool isAddressOf)3839 static InvalidICRKind isInvalidICRSource(ASTContext &C, Expr *e,
3840 bool isAddressOf) {
3841 // Skip parens.
3842 e = e->IgnoreParens();
3843
3844 // Skip address-of nodes.
3845 if (UnaryOperator *op = dyn_cast<UnaryOperator>(e)) {
3846 if (op->getOpcode() == UO_AddrOf)
3847 return isInvalidICRSource(C, op->getSubExpr(), /*addressof*/ true);
3848
3849 // Skip certain casts.
3850 } else if (CastExpr *ce = dyn_cast<CastExpr>(e)) {
3851 switch (ce->getCastKind()) {
3852 case CK_Dependent:
3853 case CK_BitCast:
3854 case CK_LValueBitCast:
3855 case CK_NoOp:
3856 return isInvalidICRSource(C, ce->getSubExpr(), isAddressOf);
3857
3858 case CK_ArrayToPointerDecay:
3859 return IIK_nonscalar;
3860
3861 case CK_NullToPointer:
3862 return IIK_okay;
3863
3864 default:
3865 break;
3866 }
3867
3868 // If we have a declaration reference, it had better be a local variable.
3869 } else if (isa<DeclRefExpr>(e)) {
3870 if (!isAddressOf) return IIK_nonlocal;
3871
3872 VarDecl *var = dyn_cast<VarDecl>(cast<DeclRefExpr>(e)->getDecl());
3873 if (!var) return IIK_nonlocal;
3874
3875 return (var->hasLocalStorage() ? IIK_okay : IIK_nonlocal);
3876
3877 // If we have a conditional operator, check both sides.
3878 } else if (ConditionalOperator *cond = dyn_cast<ConditionalOperator>(e)) {
3879 if (InvalidICRKind iik = isInvalidICRSource(C, cond->getLHS(), isAddressOf))
3880 return iik;
3881
3882 return isInvalidICRSource(C, cond->getRHS(), isAddressOf);
3883
3884 // These are never scalar.
3885 } else if (isa<ArraySubscriptExpr>(e)) {
3886 return IIK_nonscalar;
3887
3888 // Otherwise, it needs to be a null pointer constant.
3889 } else {
3890 return (e->isNullPointerConstant(C, Expr::NPC_ValueDependentIsNull)
3891 ? IIK_okay : IIK_nonlocal);
3892 }
3893
3894 return IIK_nonlocal;
3895 }
3896
3897 /// Check whether the given expression is a valid operand for an
3898 /// indirect copy/restore.
checkIndirectCopyRestoreSource(Sema & S,Expr * src)3899 static void checkIndirectCopyRestoreSource(Sema &S, Expr *src) {
3900 assert(src->isRValue());
3901
3902 InvalidICRKind iik = isInvalidICRSource(S.Context, src, false);
3903 if (iik == IIK_okay) return;
3904
3905 S.Diag(src->getExprLoc(), diag::err_arc_nonlocal_writeback)
3906 << ((unsigned) iik - 1) // shift index into diagnostic explanations
3907 << src->getSourceRange();
3908 }
3909
3910 /// \brief Determine whether we have compatible array types for the
3911 /// purposes of GNU by-copy array initialization.
hasCompatibleArrayTypes(ASTContext & Context,const ArrayType * Dest,const ArrayType * Source)3912 static bool hasCompatibleArrayTypes(ASTContext &Context,
3913 const ArrayType *Dest,
3914 const ArrayType *Source) {
3915 // If the source and destination array types are equivalent, we're
3916 // done.
3917 if (Context.hasSameType(QualType(Dest, 0), QualType(Source, 0)))
3918 return true;
3919
3920 // Make sure that the element types are the same.
3921 if (!Context.hasSameType(Dest->getElementType(), Source->getElementType()))
3922 return false;
3923
3924 // The only mismatch we allow is when the destination is an
3925 // incomplete array type and the source is a constant array type.
3926 return Source->isConstantArrayType() && Dest->isIncompleteArrayType();
3927 }
3928
tryObjCWritebackConversion(Sema & S,InitializationSequence & Sequence,const InitializedEntity & Entity,Expr * Initializer)3929 static bool tryObjCWritebackConversion(Sema &S,
3930 InitializationSequence &Sequence,
3931 const InitializedEntity &Entity,
3932 Expr *Initializer) {
3933 bool ArrayDecay = false;
3934 QualType ArgType = Initializer->getType();
3935 QualType ArgPointee;
3936 if (const ArrayType *ArgArrayType = S.Context.getAsArrayType(ArgType)) {
3937 ArrayDecay = true;
3938 ArgPointee = ArgArrayType->getElementType();
3939 ArgType = S.Context.getPointerType(ArgPointee);
3940 }
3941
3942 // Handle write-back conversion.
3943 QualType ConvertedArgType;
3944 if (!S.isObjCWritebackConversion(ArgType, Entity.getType(),
3945 ConvertedArgType))
3946 return false;
3947
3948 // We should copy unless we're passing to an argument explicitly
3949 // marked 'out'.
3950 bool ShouldCopy = true;
3951 if (ParmVarDecl *param = cast_or_null<ParmVarDecl>(Entity.getDecl()))
3952 ShouldCopy = (param->getObjCDeclQualifier() != ParmVarDecl::OBJC_TQ_Out);
3953
3954 // Do we need an lvalue conversion?
3955 if (ArrayDecay || Initializer->isGLValue()) {
3956 ImplicitConversionSequence ICS;
3957 ICS.setStandard();
3958 ICS.Standard.setAsIdentityConversion();
3959
3960 QualType ResultType;
3961 if (ArrayDecay) {
3962 ICS.Standard.First = ICK_Array_To_Pointer;
3963 ResultType = S.Context.getPointerType(ArgPointee);
3964 } else {
3965 ICS.Standard.First = ICK_Lvalue_To_Rvalue;
3966 ResultType = Initializer->getType().getNonLValueExprType(S.Context);
3967 }
3968
3969 Sequence.AddConversionSequenceStep(ICS, ResultType);
3970 }
3971
3972 Sequence.AddPassByIndirectCopyRestoreStep(Entity.getType(), ShouldCopy);
3973 return true;
3974 }
3975
InitializationSequence(Sema & S,const InitializedEntity & Entity,const InitializationKind & Kind,Expr ** Args,unsigned NumArgs)3976 InitializationSequence::InitializationSequence(Sema &S,
3977 const InitializedEntity &Entity,
3978 const InitializationKind &Kind,
3979 Expr **Args,
3980 unsigned NumArgs)
3981 : FailedCandidateSet(Kind.getLocation()) {
3982 ASTContext &Context = S.Context;
3983
3984 // C++0x [dcl.init]p16:
3985 // The semantics of initializers are as follows. The destination type is
3986 // the type of the object or reference being initialized and the source
3987 // type is the type of the initializer expression. The source type is not
3988 // defined when the initializer is a braced-init-list or when it is a
3989 // parenthesized list of expressions.
3990 QualType DestType = Entity.getType();
3991
3992 if (DestType->isDependentType() ||
3993 Expr::hasAnyTypeDependentArguments(llvm::makeArrayRef(Args, NumArgs))) {
3994 SequenceKind = DependentSequence;
3995 return;
3996 }
3997
3998 // Almost everything is a normal sequence.
3999 setSequenceKind(NormalSequence);
4000
4001 for (unsigned I = 0; I != NumArgs; ++I)
4002 if (Args[I]->getType()->isNonOverloadPlaceholderType()) {
4003 // FIXME: should we be doing this here?
4004 ExprResult result = S.CheckPlaceholderExpr(Args[I]);
4005 if (result.isInvalid()) {
4006 SetFailed(FK_PlaceholderType);
4007 return;
4008 }
4009 Args[I] = result.take();
4010 }
4011
4012
4013 QualType SourceType;
4014 Expr *Initializer = 0;
4015 if (NumArgs == 1) {
4016 Initializer = Args[0];
4017 if (!isa<InitListExpr>(Initializer))
4018 SourceType = Initializer->getType();
4019 }
4020
4021 // - If the initializer is a (non-parenthesized) braced-init-list, the
4022 // object is list-initialized (8.5.4).
4023 if (Kind.getKind() != InitializationKind::IK_Direct) {
4024 if (InitListExpr *InitList = dyn_cast_or_null<InitListExpr>(Initializer)) {
4025 TryListInitialization(S, Entity, Kind, InitList, *this);
4026 return;
4027 }
4028 }
4029
4030 // - If the destination type is a reference type, see 8.5.3.
4031 if (DestType->isReferenceType()) {
4032 // C++0x [dcl.init.ref]p1:
4033 // A variable declared to be a T& or T&&, that is, "reference to type T"
4034 // (8.3.2), shall be initialized by an object, or function, of type T or
4035 // by an object that can be converted into a T.
4036 // (Therefore, multiple arguments are not permitted.)
4037 if (NumArgs != 1)
4038 SetFailed(FK_TooManyInitsForReference);
4039 else
4040 TryReferenceInitialization(S, Entity, Kind, Args[0], *this);
4041 return;
4042 }
4043
4044 // - If the initializer is (), the object is value-initialized.
4045 if (Kind.getKind() == InitializationKind::IK_Value ||
4046 (Kind.getKind() == InitializationKind::IK_Direct && NumArgs == 0)) {
4047 TryValueInitialization(S, Entity, Kind, *this);
4048 return;
4049 }
4050
4051 // Handle default initialization.
4052 if (Kind.getKind() == InitializationKind::IK_Default) {
4053 TryDefaultInitialization(S, Entity, Kind, *this);
4054 return;
4055 }
4056
4057 // - If the destination type is an array of characters, an array of
4058 // char16_t, an array of char32_t, or an array of wchar_t, and the
4059 // initializer is a string literal, see 8.5.2.
4060 // - Otherwise, if the destination type is an array, the program is
4061 // ill-formed.
4062 if (const ArrayType *DestAT = Context.getAsArrayType(DestType)) {
4063 if (Initializer && isa<VariableArrayType>(DestAT)) {
4064 SetFailed(FK_VariableLengthArrayHasInitializer);
4065 return;
4066 }
4067
4068 if (Initializer && IsStringInit(Initializer, DestAT, Context)) {
4069 TryStringLiteralInitialization(S, Entity, Kind, Initializer, *this);
4070 return;
4071 }
4072
4073 // Note: as an GNU C extension, we allow initialization of an
4074 // array from a compound literal that creates an array of the same
4075 // type, so long as the initializer has no side effects.
4076 if (!S.getLangOpts().CPlusPlus && Initializer &&
4077 isa<CompoundLiteralExpr>(Initializer->IgnoreParens()) &&
4078 Initializer->getType()->isArrayType()) {
4079 const ArrayType *SourceAT
4080 = Context.getAsArrayType(Initializer->getType());
4081 if (!hasCompatibleArrayTypes(S.Context, DestAT, SourceAT))
4082 SetFailed(FK_ArrayTypeMismatch);
4083 else if (Initializer->HasSideEffects(S.Context))
4084 SetFailed(FK_NonConstantArrayInit);
4085 else {
4086 AddArrayInitStep(DestType);
4087 }
4088 }
4089 // Note: as a GNU C++ extension, we allow list-initialization of a
4090 // class member of array type from a parenthesized initializer list.
4091 else if (S.getLangOpts().CPlusPlus &&
4092 Entity.getKind() == InitializedEntity::EK_Member &&
4093 Initializer && isa<InitListExpr>(Initializer)) {
4094 TryListInitialization(S, Entity, Kind, cast<InitListExpr>(Initializer),
4095 *this);
4096 AddParenthesizedArrayInitStep(DestType);
4097 } else if (DestAT->getElementType()->isAnyCharacterType())
4098 SetFailed(FK_ArrayNeedsInitListOrStringLiteral);
4099 else
4100 SetFailed(FK_ArrayNeedsInitList);
4101
4102 return;
4103 }
4104
4105 // Determine whether we should consider writeback conversions for
4106 // Objective-C ARC.
4107 bool allowObjCWritebackConversion = S.getLangOpts().ObjCAutoRefCount &&
4108 Entity.getKind() == InitializedEntity::EK_Parameter;
4109
4110 // We're at the end of the line for C: it's either a write-back conversion
4111 // or it's a C assignment. There's no need to check anything else.
4112 if (!S.getLangOpts().CPlusPlus) {
4113 // If allowed, check whether this is an Objective-C writeback conversion.
4114 if (allowObjCWritebackConversion &&
4115 tryObjCWritebackConversion(S, *this, Entity, Initializer)) {
4116 return;
4117 }
4118
4119 // Handle initialization in C
4120 AddCAssignmentStep(DestType);
4121 MaybeProduceObjCObject(S, *this, Entity);
4122 return;
4123 }
4124
4125 assert(S.getLangOpts().CPlusPlus);
4126
4127 // - If the destination type is a (possibly cv-qualified) class type:
4128 if (DestType->isRecordType()) {
4129 // - If the initialization is direct-initialization, or if it is
4130 // copy-initialization where the cv-unqualified version of the
4131 // source type is the same class as, or a derived class of, the
4132 // class of the destination, constructors are considered. [...]
4133 if (Kind.getKind() == InitializationKind::IK_Direct ||
4134 (Kind.getKind() == InitializationKind::IK_Copy &&
4135 (Context.hasSameUnqualifiedType(SourceType, DestType) ||
4136 S.IsDerivedFrom(SourceType, DestType))))
4137 TryConstructorInitialization(S, Entity, Kind, Args, NumArgs,
4138 Entity.getType(), *this);
4139 // - Otherwise (i.e., for the remaining copy-initialization cases),
4140 // user-defined conversion sequences that can convert from the source
4141 // type to the destination type or (when a conversion function is
4142 // used) to a derived class thereof are enumerated as described in
4143 // 13.3.1.4, and the best one is chosen through overload resolution
4144 // (13.3).
4145 else
4146 TryUserDefinedConversion(S, Entity, Kind, Initializer, *this);
4147 return;
4148 }
4149
4150 if (NumArgs > 1) {
4151 SetFailed(FK_TooManyInitsForScalar);
4152 return;
4153 }
4154 assert(NumArgs == 1 && "Zero-argument case handled above");
4155
4156 // - Otherwise, if the source type is a (possibly cv-qualified) class
4157 // type, conversion functions are considered.
4158 if (!SourceType.isNull() && SourceType->isRecordType()) {
4159 TryUserDefinedConversion(S, Entity, Kind, Initializer, *this);
4160 MaybeProduceObjCObject(S, *this, Entity);
4161 return;
4162 }
4163
4164 // - Otherwise, the initial value of the object being initialized is the
4165 // (possibly converted) value of the initializer expression. Standard
4166 // conversions (Clause 4) will be used, if necessary, to convert the
4167 // initializer expression to the cv-unqualified version of the
4168 // destination type; no user-defined conversions are considered.
4169
4170 ImplicitConversionSequence ICS
4171 = S.TryImplicitConversion(Initializer, Entity.getType(),
4172 /*SuppressUserConversions*/true,
4173 /*AllowExplicitConversions*/ false,
4174 /*InOverloadResolution*/ false,
4175 /*CStyle=*/Kind.isCStyleOrFunctionalCast(),
4176 allowObjCWritebackConversion);
4177
4178 if (ICS.isStandard() &&
4179 ICS.Standard.Second == ICK_Writeback_Conversion) {
4180 // Objective-C ARC writeback conversion.
4181
4182 // We should copy unless we're passing to an argument explicitly
4183 // marked 'out'.
4184 bool ShouldCopy = true;
4185 if (ParmVarDecl *Param = cast_or_null<ParmVarDecl>(Entity.getDecl()))
4186 ShouldCopy = (Param->getObjCDeclQualifier() != ParmVarDecl::OBJC_TQ_Out);
4187
4188 // If there was an lvalue adjustment, add it as a separate conversion.
4189 if (ICS.Standard.First == ICK_Array_To_Pointer ||
4190 ICS.Standard.First == ICK_Lvalue_To_Rvalue) {
4191 ImplicitConversionSequence LvalueICS;
4192 LvalueICS.setStandard();
4193 LvalueICS.Standard.setAsIdentityConversion();
4194 LvalueICS.Standard.setAllToTypes(ICS.Standard.getToType(0));
4195 LvalueICS.Standard.First = ICS.Standard.First;
4196 AddConversionSequenceStep(LvalueICS, ICS.Standard.getToType(0));
4197 }
4198
4199 AddPassByIndirectCopyRestoreStep(Entity.getType(), ShouldCopy);
4200 } else if (ICS.isBad()) {
4201 DeclAccessPair dap;
4202 if (Initializer->getType() == Context.OverloadTy &&
4203 !S.ResolveAddressOfOverloadedFunction(Initializer
4204 , DestType, false, dap))
4205 SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
4206 else
4207 SetFailed(InitializationSequence::FK_ConversionFailed);
4208 } else {
4209 AddConversionSequenceStep(ICS, Entity.getType());
4210
4211 MaybeProduceObjCObject(S, *this, Entity);
4212 }
4213 }
4214
~InitializationSequence()4215 InitializationSequence::~InitializationSequence() {
4216 for (SmallVectorImpl<Step>::iterator Step = Steps.begin(),
4217 StepEnd = Steps.end();
4218 Step != StepEnd; ++Step)
4219 Step->Destroy();
4220 }
4221
4222 //===----------------------------------------------------------------------===//
4223 // Perform initialization
4224 //===----------------------------------------------------------------------===//
4225 static Sema::AssignmentAction
getAssignmentAction(const InitializedEntity & Entity)4226 getAssignmentAction(const InitializedEntity &Entity) {
4227 switch(Entity.getKind()) {
4228 case InitializedEntity::EK_Variable:
4229 case InitializedEntity::EK_New:
4230 case InitializedEntity::EK_Exception:
4231 case InitializedEntity::EK_Base:
4232 case InitializedEntity::EK_Delegating:
4233 return Sema::AA_Initializing;
4234
4235 case InitializedEntity::EK_Parameter:
4236 if (Entity.getDecl() &&
4237 isa<ObjCMethodDecl>(Entity.getDecl()->getDeclContext()))
4238 return Sema::AA_Sending;
4239
4240 return Sema::AA_Passing;
4241
4242 case InitializedEntity::EK_Result:
4243 return Sema::AA_Returning;
4244
4245 case InitializedEntity::EK_Temporary:
4246 // FIXME: Can we tell apart casting vs. converting?
4247 return Sema::AA_Casting;
4248
4249 case InitializedEntity::EK_Member:
4250 case InitializedEntity::EK_ArrayElement:
4251 case InitializedEntity::EK_VectorElement:
4252 case InitializedEntity::EK_ComplexElement:
4253 case InitializedEntity::EK_BlockElement:
4254 case InitializedEntity::EK_LambdaCapture:
4255 return Sema::AA_Initializing;
4256 }
4257
4258 llvm_unreachable("Invalid EntityKind!");
4259 }
4260
4261 /// \brief Whether we should binding a created object as a temporary when
4262 /// initializing the given entity.
shouldBindAsTemporary(const InitializedEntity & Entity)4263 static bool shouldBindAsTemporary(const InitializedEntity &Entity) {
4264 switch (Entity.getKind()) {
4265 case InitializedEntity::EK_ArrayElement:
4266 case InitializedEntity::EK_Member:
4267 case InitializedEntity::EK_Result:
4268 case InitializedEntity::EK_New:
4269 case InitializedEntity::EK_Variable:
4270 case InitializedEntity::EK_Base:
4271 case InitializedEntity::EK_Delegating:
4272 case InitializedEntity::EK_VectorElement:
4273 case InitializedEntity::EK_ComplexElement:
4274 case InitializedEntity::EK_Exception:
4275 case InitializedEntity::EK_BlockElement:
4276 case InitializedEntity::EK_LambdaCapture:
4277 return false;
4278
4279 case InitializedEntity::EK_Parameter:
4280 case InitializedEntity::EK_Temporary:
4281 return true;
4282 }
4283
4284 llvm_unreachable("missed an InitializedEntity kind?");
4285 }
4286
4287 /// \brief Whether the given entity, when initialized with an object
4288 /// created for that initialization, requires destruction.
shouldDestroyTemporary(const InitializedEntity & Entity)4289 static bool shouldDestroyTemporary(const InitializedEntity &Entity) {
4290 switch (Entity.getKind()) {
4291 case InitializedEntity::EK_Member:
4292 case InitializedEntity::EK_Result:
4293 case InitializedEntity::EK_New:
4294 case InitializedEntity::EK_Base:
4295 case InitializedEntity::EK_Delegating:
4296 case InitializedEntity::EK_VectorElement:
4297 case InitializedEntity::EK_ComplexElement:
4298 case InitializedEntity::EK_BlockElement:
4299 case InitializedEntity::EK_LambdaCapture:
4300 return false;
4301
4302 case InitializedEntity::EK_Variable:
4303 case InitializedEntity::EK_Parameter:
4304 case InitializedEntity::EK_Temporary:
4305 case InitializedEntity::EK_ArrayElement:
4306 case InitializedEntity::EK_Exception:
4307 return true;
4308 }
4309
4310 llvm_unreachable("missed an InitializedEntity kind?");
4311 }
4312
4313 /// \brief Look for copy and move constructors and constructor templates, for
4314 /// copying an object via direct-initialization (per C++11 [dcl.init]p16).
LookupCopyAndMoveConstructors(Sema & S,OverloadCandidateSet & CandidateSet,CXXRecordDecl * Class,Expr * CurInitExpr)4315 static void LookupCopyAndMoveConstructors(Sema &S,
4316 OverloadCandidateSet &CandidateSet,
4317 CXXRecordDecl *Class,
4318 Expr *CurInitExpr) {
4319 DeclContext::lookup_iterator Con, ConEnd;
4320 for (llvm::tie(Con, ConEnd) = S.LookupConstructors(Class);
4321 Con != ConEnd; ++Con) {
4322 CXXConstructorDecl *Constructor = 0;
4323
4324 if ((Constructor = dyn_cast<CXXConstructorDecl>(*Con))) {
4325 // Handle copy/moveconstructors, only.
4326 if (!Constructor || Constructor->isInvalidDecl() ||
4327 !Constructor->isCopyOrMoveConstructor() ||
4328 !Constructor->isConvertingConstructor(/*AllowExplicit=*/true))
4329 continue;
4330
4331 DeclAccessPair FoundDecl
4332 = DeclAccessPair::make(Constructor, Constructor->getAccess());
4333 S.AddOverloadCandidate(Constructor, FoundDecl,
4334 CurInitExpr, CandidateSet);
4335 continue;
4336 }
4337
4338 // Handle constructor templates.
4339 FunctionTemplateDecl *ConstructorTmpl = cast<FunctionTemplateDecl>(*Con);
4340 if (ConstructorTmpl->isInvalidDecl())
4341 continue;
4342
4343 Constructor = cast<CXXConstructorDecl>(
4344 ConstructorTmpl->getTemplatedDecl());
4345 if (!Constructor->isConvertingConstructor(/*AllowExplicit=*/true))
4346 continue;
4347
4348 // FIXME: Do we need to limit this to copy-constructor-like
4349 // candidates?
4350 DeclAccessPair FoundDecl
4351 = DeclAccessPair::make(ConstructorTmpl, ConstructorTmpl->getAccess());
4352 S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl, 0,
4353 CurInitExpr, CandidateSet, true);
4354 }
4355 }
4356
4357 /// \brief Get the location at which initialization diagnostics should appear.
getInitializationLoc(const InitializedEntity & Entity,Expr * Initializer)4358 static SourceLocation getInitializationLoc(const InitializedEntity &Entity,
4359 Expr *Initializer) {
4360 switch (Entity.getKind()) {
4361 case InitializedEntity::EK_Result:
4362 return Entity.getReturnLoc();
4363
4364 case InitializedEntity::EK_Exception:
4365 return Entity.getThrowLoc();
4366
4367 case InitializedEntity::EK_Variable:
4368 return Entity.getDecl()->getLocation();
4369
4370 case InitializedEntity::EK_LambdaCapture:
4371 return Entity.getCaptureLoc();
4372
4373 case InitializedEntity::EK_ArrayElement:
4374 case InitializedEntity::EK_Member:
4375 case InitializedEntity::EK_Parameter:
4376 case InitializedEntity::EK_Temporary:
4377 case InitializedEntity::EK_New:
4378 case InitializedEntity::EK_Base:
4379 case InitializedEntity::EK_Delegating:
4380 case InitializedEntity::EK_VectorElement:
4381 case InitializedEntity::EK_ComplexElement:
4382 case InitializedEntity::EK_BlockElement:
4383 return Initializer->getLocStart();
4384 }
4385 llvm_unreachable("missed an InitializedEntity kind?");
4386 }
4387
4388 /// \brief Make a (potentially elidable) temporary copy of the object
4389 /// provided by the given initializer by calling the appropriate copy
4390 /// constructor.
4391 ///
4392 /// \param S The Sema object used for type-checking.
4393 ///
4394 /// \param T The type of the temporary object, which must either be
4395 /// the type of the initializer expression or a superclass thereof.
4396 ///
4397 /// \param Entity The entity being initialized.
4398 ///
4399 /// \param CurInit The initializer expression.
4400 ///
4401 /// \param IsExtraneousCopy Whether this is an "extraneous" copy that
4402 /// is permitted in C++03 (but not C++0x) when binding a reference to
4403 /// an rvalue.
4404 ///
4405 /// \returns An expression that copies the initializer expression into
4406 /// a temporary object, or an error expression if a copy could not be
4407 /// created.
CopyObject(Sema & S,QualType T,const InitializedEntity & Entity,ExprResult CurInit,bool IsExtraneousCopy)4408 static ExprResult CopyObject(Sema &S,
4409 QualType T,
4410 const InitializedEntity &Entity,
4411 ExprResult CurInit,
4412 bool IsExtraneousCopy) {
4413 // Determine which class type we're copying to.
4414 Expr *CurInitExpr = (Expr *)CurInit.get();
4415 CXXRecordDecl *Class = 0;
4416 if (const RecordType *Record = T->getAs<RecordType>())
4417 Class = cast<CXXRecordDecl>(Record->getDecl());
4418 if (!Class)
4419 return CurInit;
4420
4421 // C++0x [class.copy]p32:
4422 // When certain criteria are met, an implementation is allowed to
4423 // omit the copy/move construction of a class object, even if the
4424 // copy/move constructor and/or destructor for the object have
4425 // side effects. [...]
4426 // - when a temporary class object that has not been bound to a
4427 // reference (12.2) would be copied/moved to a class object
4428 // with the same cv-unqualified type, the copy/move operation
4429 // can be omitted by constructing the temporary object
4430 // directly into the target of the omitted copy/move
4431 //
4432 // Note that the other three bullets are handled elsewhere. Copy
4433 // elision for return statements and throw expressions are handled as part
4434 // of constructor initialization, while copy elision for exception handlers
4435 // is handled by the run-time.
4436 bool Elidable = CurInitExpr->isTemporaryObject(S.Context, Class);
4437 SourceLocation Loc = getInitializationLoc(Entity, CurInit.get());
4438
4439 // Make sure that the type we are copying is complete.
4440 if (S.RequireCompleteType(Loc, T, diag::err_temp_copy_incomplete))
4441 return CurInit;
4442
4443 // Perform overload resolution using the class's copy/move constructors.
4444 // Only consider constructors and constructor templates. Per
4445 // C++0x [dcl.init]p16, second bullet to class types, this initialization
4446 // is direct-initialization.
4447 OverloadCandidateSet CandidateSet(Loc);
4448 LookupCopyAndMoveConstructors(S, CandidateSet, Class, CurInitExpr);
4449
4450 bool HadMultipleCandidates = (CandidateSet.size() > 1);
4451
4452 OverloadCandidateSet::iterator Best;
4453 switch (CandidateSet.BestViableFunction(S, Loc, Best)) {
4454 case OR_Success:
4455 break;
4456
4457 case OR_No_Viable_Function:
4458 S.Diag(Loc, IsExtraneousCopy && !S.isSFINAEContext()
4459 ? diag::ext_rvalue_to_reference_temp_copy_no_viable
4460 : diag::err_temp_copy_no_viable)
4461 << (int)Entity.getKind() << CurInitExpr->getType()
4462 << CurInitExpr->getSourceRange();
4463 CandidateSet.NoteCandidates(S, OCD_AllCandidates, CurInitExpr);
4464 if (!IsExtraneousCopy || S.isSFINAEContext())
4465 return ExprError();
4466 return CurInit;
4467
4468 case OR_Ambiguous:
4469 S.Diag(Loc, diag::err_temp_copy_ambiguous)
4470 << (int)Entity.getKind() << CurInitExpr->getType()
4471 << CurInitExpr->getSourceRange();
4472 CandidateSet.NoteCandidates(S, OCD_ViableCandidates, CurInitExpr);
4473 return ExprError();
4474
4475 case OR_Deleted:
4476 S.Diag(Loc, diag::err_temp_copy_deleted)
4477 << (int)Entity.getKind() << CurInitExpr->getType()
4478 << CurInitExpr->getSourceRange();
4479 S.NoteDeletedFunction(Best->Function);
4480 return ExprError();
4481 }
4482
4483 CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Best->Function);
4484 SmallVector<Expr*, 8> ConstructorArgs;
4485 CurInit.release(); // Ownership transferred into MultiExprArg, below.
4486
4487 S.CheckConstructorAccess(Loc, Constructor, Entity,
4488 Best->FoundDecl.getAccess(), IsExtraneousCopy);
4489
4490 if (IsExtraneousCopy) {
4491 // If this is a totally extraneous copy for C++03 reference
4492 // binding purposes, just return the original initialization
4493 // expression. We don't generate an (elided) copy operation here
4494 // because doing so would require us to pass down a flag to avoid
4495 // infinite recursion, where each step adds another extraneous,
4496 // elidable copy.
4497
4498 // Instantiate the default arguments of any extra parameters in
4499 // the selected copy constructor, as if we were going to create a
4500 // proper call to the copy constructor.
4501 for (unsigned I = 1, N = Constructor->getNumParams(); I != N; ++I) {
4502 ParmVarDecl *Parm = Constructor->getParamDecl(I);
4503 if (S.RequireCompleteType(Loc, Parm->getType(),
4504 diag::err_call_incomplete_argument))
4505 break;
4506
4507 // Build the default argument expression; we don't actually care
4508 // if this succeeds or not, because this routine will complain
4509 // if there was a problem.
4510 S.BuildCXXDefaultArgExpr(Loc, Constructor, Parm);
4511 }
4512
4513 return S.Owned(CurInitExpr);
4514 }
4515
4516 S.MarkFunctionReferenced(Loc, Constructor);
4517
4518 // Determine the arguments required to actually perform the
4519 // constructor call (we might have derived-to-base conversions, or
4520 // the copy constructor may have default arguments).
4521 if (S.CompleteConstructorCall(Constructor, MultiExprArg(&CurInitExpr, 1),
4522 Loc, ConstructorArgs))
4523 return ExprError();
4524
4525 // Actually perform the constructor call.
4526 CurInit = S.BuildCXXConstructExpr(Loc, T, Constructor, Elidable,
4527 ConstructorArgs,
4528 HadMultipleCandidates,
4529 /*ZeroInit*/ false,
4530 CXXConstructExpr::CK_Complete,
4531 SourceRange());
4532
4533 // If we're supposed to bind temporaries, do so.
4534 if (!CurInit.isInvalid() && shouldBindAsTemporary(Entity))
4535 CurInit = S.MaybeBindToTemporary(CurInit.takeAs<Expr>());
4536 return CurInit;
4537 }
4538
4539 /// \brief Check whether elidable copy construction for binding a reference to
4540 /// a temporary would have succeeded if we were building in C++98 mode, for
4541 /// -Wc++98-compat.
CheckCXX98CompatAccessibleCopy(Sema & S,const InitializedEntity & Entity,Expr * CurInitExpr)4542 static void CheckCXX98CompatAccessibleCopy(Sema &S,
4543 const InitializedEntity &Entity,
4544 Expr *CurInitExpr) {
4545 assert(S.getLangOpts().CPlusPlus0x);
4546
4547 const RecordType *Record = CurInitExpr->getType()->getAs<RecordType>();
4548 if (!Record)
4549 return;
4550
4551 SourceLocation Loc = getInitializationLoc(Entity, CurInitExpr);
4552 if (S.Diags.getDiagnosticLevel(diag::warn_cxx98_compat_temp_copy, Loc)
4553 == DiagnosticsEngine::Ignored)
4554 return;
4555
4556 // Find constructors which would have been considered.
4557 OverloadCandidateSet CandidateSet(Loc);
4558 LookupCopyAndMoveConstructors(
4559 S, CandidateSet, cast<CXXRecordDecl>(Record->getDecl()), CurInitExpr);
4560
4561 // Perform overload resolution.
4562 OverloadCandidateSet::iterator Best;
4563 OverloadingResult OR = CandidateSet.BestViableFunction(S, Loc, Best);
4564
4565 PartialDiagnostic Diag = S.PDiag(diag::warn_cxx98_compat_temp_copy)
4566 << OR << (int)Entity.getKind() << CurInitExpr->getType()
4567 << CurInitExpr->getSourceRange();
4568
4569 switch (OR) {
4570 case OR_Success:
4571 S.CheckConstructorAccess(Loc, cast<CXXConstructorDecl>(Best->Function),
4572 Entity, Best->FoundDecl.getAccess(), Diag);
4573 // FIXME: Check default arguments as far as that's possible.
4574 break;
4575
4576 case OR_No_Viable_Function:
4577 S.Diag(Loc, Diag);
4578 CandidateSet.NoteCandidates(S, OCD_AllCandidates, CurInitExpr);
4579 break;
4580
4581 case OR_Ambiguous:
4582 S.Diag(Loc, Diag);
4583 CandidateSet.NoteCandidates(S, OCD_ViableCandidates, CurInitExpr);
4584 break;
4585
4586 case OR_Deleted:
4587 S.Diag(Loc, Diag);
4588 S.NoteDeletedFunction(Best->Function);
4589 break;
4590 }
4591 }
4592
PrintInitLocationNote(Sema & S,const InitializedEntity & Entity)4593 void InitializationSequence::PrintInitLocationNote(Sema &S,
4594 const InitializedEntity &Entity) {
4595 if (Entity.getKind() == InitializedEntity::EK_Parameter && Entity.getDecl()) {
4596 if (Entity.getDecl()->getLocation().isInvalid())
4597 return;
4598
4599 if (Entity.getDecl()->getDeclName())
4600 S.Diag(Entity.getDecl()->getLocation(), diag::note_parameter_named_here)
4601 << Entity.getDecl()->getDeclName();
4602 else
4603 S.Diag(Entity.getDecl()->getLocation(), diag::note_parameter_here);
4604 }
4605 }
4606
isReferenceBinding(const InitializationSequence::Step & s)4607 static bool isReferenceBinding(const InitializationSequence::Step &s) {
4608 return s.Kind == InitializationSequence::SK_BindReference ||
4609 s.Kind == InitializationSequence::SK_BindReferenceToTemporary;
4610 }
4611
4612 static ExprResult
PerformConstructorInitialization(Sema & S,const InitializedEntity & Entity,const InitializationKind & Kind,MultiExprArg Args,const InitializationSequence::Step & Step,bool & ConstructorInitRequiresZeroInit)4613 PerformConstructorInitialization(Sema &S,
4614 const InitializedEntity &Entity,
4615 const InitializationKind &Kind,
4616 MultiExprArg Args,
4617 const InitializationSequence::Step& Step,
4618 bool &ConstructorInitRequiresZeroInit) {
4619 unsigned NumArgs = Args.size();
4620 CXXConstructorDecl *Constructor
4621 = cast<CXXConstructorDecl>(Step.Function.Function);
4622 bool HadMultipleCandidates = Step.Function.HadMultipleCandidates;
4623
4624 // Build a call to the selected constructor.
4625 SmallVector<Expr*, 8> ConstructorArgs;
4626 SourceLocation Loc = (Kind.isCopyInit() && Kind.getEqualLoc().isValid())
4627 ? Kind.getEqualLoc()
4628 : Kind.getLocation();
4629
4630 if (Kind.getKind() == InitializationKind::IK_Default) {
4631 // Force even a trivial, implicit default constructor to be
4632 // semantically checked. We do this explicitly because we don't build
4633 // the definition for completely trivial constructors.
4634 assert(Constructor->getParent() && "No parent class for constructor.");
4635 if (Constructor->isDefaulted() && Constructor->isDefaultConstructor() &&
4636 Constructor->isTrivial() && !Constructor->isUsed(false))
4637 S.DefineImplicitDefaultConstructor(Loc, Constructor);
4638 }
4639
4640 ExprResult CurInit = S.Owned((Expr *)0);
4641
4642 // C++ [over.match.copy]p1:
4643 // - When initializing a temporary to be bound to the first parameter
4644 // of a constructor that takes a reference to possibly cv-qualified
4645 // T as its first argument, called with a single argument in the
4646 // context of direct-initialization, explicit conversion functions
4647 // are also considered.
4648 bool AllowExplicitConv = Kind.AllowExplicit() && !Kind.isCopyInit() &&
4649 Args.size() == 1 &&
4650 Constructor->isCopyOrMoveConstructor();
4651
4652 // Determine the arguments required to actually perform the constructor
4653 // call.
4654 if (S.CompleteConstructorCall(Constructor, Args,
4655 Loc, ConstructorArgs,
4656 AllowExplicitConv))
4657 return ExprError();
4658
4659
4660 if (Entity.getKind() == InitializedEntity::EK_Temporary &&
4661 (Kind.getKind() == InitializationKind::IK_DirectList ||
4662 (NumArgs != 1 && // FIXME: Hack to work around cast weirdness
4663 (Kind.getKind() == InitializationKind::IK_Direct ||
4664 Kind.getKind() == InitializationKind::IK_Value)))) {
4665 // An explicitly-constructed temporary, e.g., X(1, 2).
4666 S.MarkFunctionReferenced(Loc, Constructor);
4667 S.DiagnoseUseOfDecl(Constructor, Loc);
4668
4669 TypeSourceInfo *TSInfo = Entity.getTypeSourceInfo();
4670 if (!TSInfo)
4671 TSInfo = S.Context.getTrivialTypeSourceInfo(Entity.getType(), Loc);
4672 SourceRange ParenRange;
4673 if (Kind.getKind() != InitializationKind::IK_DirectList)
4674 ParenRange = Kind.getParenRange();
4675
4676 CurInit = S.Owned(new (S.Context) CXXTemporaryObjectExpr(S.Context,
4677 Constructor,
4678 TSInfo,
4679 ConstructorArgs,
4680 ParenRange,
4681 HadMultipleCandidates,
4682 ConstructorInitRequiresZeroInit));
4683 } else {
4684 CXXConstructExpr::ConstructionKind ConstructKind =
4685 CXXConstructExpr::CK_Complete;
4686
4687 if (Entity.getKind() == InitializedEntity::EK_Base) {
4688 ConstructKind = Entity.getBaseSpecifier()->isVirtual() ?
4689 CXXConstructExpr::CK_VirtualBase :
4690 CXXConstructExpr::CK_NonVirtualBase;
4691 } else if (Entity.getKind() == InitializedEntity::EK_Delegating) {
4692 ConstructKind = CXXConstructExpr::CK_Delegating;
4693 }
4694
4695 // Only get the parenthesis range if it is a direct construction.
4696 SourceRange parenRange =
4697 Kind.getKind() == InitializationKind::IK_Direct ?
4698 Kind.getParenRange() : SourceRange();
4699
4700 // If the entity allows NRVO, mark the construction as elidable
4701 // unconditionally.
4702 if (Entity.allowsNRVO())
4703 CurInit = S.BuildCXXConstructExpr(Loc, Entity.getType(),
4704 Constructor, /*Elidable=*/true,
4705 ConstructorArgs,
4706 HadMultipleCandidates,
4707 ConstructorInitRequiresZeroInit,
4708 ConstructKind,
4709 parenRange);
4710 else
4711 CurInit = S.BuildCXXConstructExpr(Loc, Entity.getType(),
4712 Constructor,
4713 ConstructorArgs,
4714 HadMultipleCandidates,
4715 ConstructorInitRequiresZeroInit,
4716 ConstructKind,
4717 parenRange);
4718 }
4719 if (CurInit.isInvalid())
4720 return ExprError();
4721
4722 // Only check access if all of that succeeded.
4723 S.CheckConstructorAccess(Loc, Constructor, Entity,
4724 Step.Function.FoundDecl.getAccess());
4725 S.DiagnoseUseOfDecl(Step.Function.FoundDecl, Loc);
4726
4727 if (shouldBindAsTemporary(Entity))
4728 CurInit = S.MaybeBindToTemporary(CurInit.takeAs<Expr>());
4729
4730 return CurInit;
4731 }
4732
4733 /// Determine whether the specified InitializedEntity definitely has a lifetime
4734 /// longer than the current full-expression. Conservatively returns false if
4735 /// it's unclear.
4736 static bool
InitializedEntityOutlivesFullExpression(const InitializedEntity & Entity)4737 InitializedEntityOutlivesFullExpression(const InitializedEntity &Entity) {
4738 const InitializedEntity *Top = &Entity;
4739 while (Top->getParent())
4740 Top = Top->getParent();
4741
4742 switch (Top->getKind()) {
4743 case InitializedEntity::EK_Variable:
4744 case InitializedEntity::EK_Result:
4745 case InitializedEntity::EK_Exception:
4746 case InitializedEntity::EK_Member:
4747 case InitializedEntity::EK_New:
4748 case InitializedEntity::EK_Base:
4749 case InitializedEntity::EK_Delegating:
4750 return true;
4751
4752 case InitializedEntity::EK_ArrayElement:
4753 case InitializedEntity::EK_VectorElement:
4754 case InitializedEntity::EK_BlockElement:
4755 case InitializedEntity::EK_ComplexElement:
4756 // Could not determine what the full initialization is. Assume it might not
4757 // outlive the full-expression.
4758 return false;
4759
4760 case InitializedEntity::EK_Parameter:
4761 case InitializedEntity::EK_Temporary:
4762 case InitializedEntity::EK_LambdaCapture:
4763 // The entity being initialized might not outlive the full-expression.
4764 return false;
4765 }
4766
4767 llvm_unreachable("unknown entity kind");
4768 }
4769
4770 ExprResult
Perform(Sema & S,const InitializedEntity & Entity,const InitializationKind & Kind,MultiExprArg Args,QualType * ResultType)4771 InitializationSequence::Perform(Sema &S,
4772 const InitializedEntity &Entity,
4773 const InitializationKind &Kind,
4774 MultiExprArg Args,
4775 QualType *ResultType) {
4776 if (Failed()) {
4777 unsigned NumArgs = Args.size();
4778 Diagnose(S, Entity, Kind, Args.data(), NumArgs);
4779 return ExprError();
4780 }
4781
4782 if (getKind() == DependentSequence) {
4783 // If the declaration is a non-dependent, incomplete array type
4784 // that has an initializer, then its type will be completed once
4785 // the initializer is instantiated.
4786 if (ResultType && !Entity.getType()->isDependentType() &&
4787 Args.size() == 1) {
4788 QualType DeclType = Entity.getType();
4789 if (const IncompleteArrayType *ArrayT
4790 = S.Context.getAsIncompleteArrayType(DeclType)) {
4791 // FIXME: We don't currently have the ability to accurately
4792 // compute the length of an initializer list without
4793 // performing full type-checking of the initializer list
4794 // (since we have to determine where braces are implicitly
4795 // introduced and such). So, we fall back to making the array
4796 // type a dependently-sized array type with no specified
4797 // bound.
4798 if (isa<InitListExpr>((Expr *)Args[0])) {
4799 SourceRange Brackets;
4800
4801 // Scavange the location of the brackets from the entity, if we can.
4802 if (DeclaratorDecl *DD = Entity.getDecl()) {
4803 if (TypeSourceInfo *TInfo = DD->getTypeSourceInfo()) {
4804 TypeLoc TL = TInfo->getTypeLoc();
4805 if (IncompleteArrayTypeLoc *ArrayLoc
4806 = dyn_cast<IncompleteArrayTypeLoc>(&TL))
4807 Brackets = ArrayLoc->getBracketsRange();
4808 }
4809 }
4810
4811 *ResultType
4812 = S.Context.getDependentSizedArrayType(ArrayT->getElementType(),
4813 /*NumElts=*/0,
4814 ArrayT->getSizeModifier(),
4815 ArrayT->getIndexTypeCVRQualifiers(),
4816 Brackets);
4817 }
4818
4819 }
4820 }
4821 if (Kind.getKind() == InitializationKind::IK_Direct &&
4822 !Kind.isExplicitCast()) {
4823 // Rebuild the ParenListExpr.
4824 SourceRange ParenRange = Kind.getParenRange();
4825 return S.ActOnParenListExpr(ParenRange.getBegin(), ParenRange.getEnd(),
4826 Args);
4827 }
4828 assert(Kind.getKind() == InitializationKind::IK_Copy ||
4829 Kind.isExplicitCast() ||
4830 Kind.getKind() == InitializationKind::IK_DirectList);
4831 return ExprResult(Args[0]);
4832 }
4833
4834 // No steps means no initialization.
4835 if (Steps.empty())
4836 return S.Owned((Expr *)0);
4837
4838 if (S.getLangOpts().CPlusPlus0x && Entity.getType()->isReferenceType() &&
4839 Args.size() == 1 && isa<InitListExpr>(Args[0]) &&
4840 Entity.getKind() != InitializedEntity::EK_Parameter) {
4841 // Produce a C++98 compatibility warning if we are initializing a reference
4842 // from an initializer list. For parameters, we produce a better warning
4843 // elsewhere.
4844 Expr *Init = Args[0];
4845 S.Diag(Init->getLocStart(), diag::warn_cxx98_compat_reference_list_init)
4846 << Init->getSourceRange();
4847 }
4848
4849 // Diagnose cases where we initialize a pointer to an array temporary, and the
4850 // pointer obviously outlives the temporary.
4851 if (Args.size() == 1 && Args[0]->getType()->isArrayType() &&
4852 Entity.getType()->isPointerType() &&
4853 InitializedEntityOutlivesFullExpression(Entity)) {
4854 Expr *Init = Args[0];
4855 Expr::LValueClassification Kind = Init->ClassifyLValue(S.Context);
4856 if (Kind == Expr::LV_ClassTemporary || Kind == Expr::LV_ArrayTemporary)
4857 S.Diag(Init->getLocStart(), diag::warn_temporary_array_to_pointer_decay)
4858 << Init->getSourceRange();
4859 }
4860
4861 QualType DestType = Entity.getType().getNonReferenceType();
4862 // FIXME: Ugly hack around the fact that Entity.getType() is not
4863 // the same as Entity.getDecl()->getType() in cases involving type merging,
4864 // and we want latter when it makes sense.
4865 if (ResultType)
4866 *ResultType = Entity.getDecl() ? Entity.getDecl()->getType() :
4867 Entity.getType();
4868
4869 ExprResult CurInit = S.Owned((Expr *)0);
4870
4871 // For initialization steps that start with a single initializer,
4872 // grab the only argument out the Args and place it into the "current"
4873 // initializer.
4874 switch (Steps.front().Kind) {
4875 case SK_ResolveAddressOfOverloadedFunction:
4876 case SK_CastDerivedToBaseRValue:
4877 case SK_CastDerivedToBaseXValue:
4878 case SK_CastDerivedToBaseLValue:
4879 case SK_BindReference:
4880 case SK_BindReferenceToTemporary:
4881 case SK_ExtraneousCopyToTemporary:
4882 case SK_UserConversion:
4883 case SK_QualificationConversionLValue:
4884 case SK_QualificationConversionXValue:
4885 case SK_QualificationConversionRValue:
4886 case SK_ConversionSequence:
4887 case SK_ListInitialization:
4888 case SK_UnwrapInitList:
4889 case SK_RewrapInitList:
4890 case SK_CAssignment:
4891 case SK_StringInit:
4892 case SK_ObjCObjectConversion:
4893 case SK_ArrayInit:
4894 case SK_ParenthesizedArrayInit:
4895 case SK_PassByIndirectCopyRestore:
4896 case SK_PassByIndirectRestore:
4897 case SK_ProduceObjCObject:
4898 case SK_StdInitializerList: {
4899 assert(Args.size() == 1);
4900 CurInit = Args[0];
4901 if (!CurInit.get()) return ExprError();
4902 break;
4903 }
4904
4905 case SK_ConstructorInitialization:
4906 case SK_ListConstructorCall:
4907 case SK_ZeroInitialization:
4908 break;
4909 }
4910
4911 // Walk through the computed steps for the initialization sequence,
4912 // performing the specified conversions along the way.
4913 bool ConstructorInitRequiresZeroInit = false;
4914 for (step_iterator Step = step_begin(), StepEnd = step_end();
4915 Step != StepEnd; ++Step) {
4916 if (CurInit.isInvalid())
4917 return ExprError();
4918
4919 QualType SourceType = CurInit.get() ? CurInit.get()->getType() : QualType();
4920
4921 switch (Step->Kind) {
4922 case SK_ResolveAddressOfOverloadedFunction:
4923 // Overload resolution determined which function invoke; update the
4924 // initializer to reflect that choice.
4925 S.CheckAddressOfMemberAccess(CurInit.get(), Step->Function.FoundDecl);
4926 S.DiagnoseUseOfDecl(Step->Function.FoundDecl, Kind.getLocation());
4927 CurInit = S.FixOverloadedFunctionReference(CurInit,
4928 Step->Function.FoundDecl,
4929 Step->Function.Function);
4930 break;
4931
4932 case SK_CastDerivedToBaseRValue:
4933 case SK_CastDerivedToBaseXValue:
4934 case SK_CastDerivedToBaseLValue: {
4935 // We have a derived-to-base cast that produces either an rvalue or an
4936 // lvalue. Perform that cast.
4937
4938 CXXCastPath BasePath;
4939
4940 // Casts to inaccessible base classes are allowed with C-style casts.
4941 bool IgnoreBaseAccess = Kind.isCStyleOrFunctionalCast();
4942 if (S.CheckDerivedToBaseConversion(SourceType, Step->Type,
4943 CurInit.get()->getLocStart(),
4944 CurInit.get()->getSourceRange(),
4945 &BasePath, IgnoreBaseAccess))
4946 return ExprError();
4947
4948 if (S.BasePathInvolvesVirtualBase(BasePath)) {
4949 QualType T = SourceType;
4950 if (const PointerType *Pointer = T->getAs<PointerType>())
4951 T = Pointer->getPointeeType();
4952 if (const RecordType *RecordTy = T->getAs<RecordType>())
4953 S.MarkVTableUsed(CurInit.get()->getLocStart(),
4954 cast<CXXRecordDecl>(RecordTy->getDecl()));
4955 }
4956
4957 ExprValueKind VK =
4958 Step->Kind == SK_CastDerivedToBaseLValue ?
4959 VK_LValue :
4960 (Step->Kind == SK_CastDerivedToBaseXValue ?
4961 VK_XValue :
4962 VK_RValue);
4963 CurInit = S.Owned(ImplicitCastExpr::Create(S.Context,
4964 Step->Type,
4965 CK_DerivedToBase,
4966 CurInit.get(),
4967 &BasePath, VK));
4968 break;
4969 }
4970
4971 case SK_BindReference:
4972 if (FieldDecl *BitField = CurInit.get()->getBitField()) {
4973 // References cannot bind to bit fields (C++ [dcl.init.ref]p5).
4974 S.Diag(Kind.getLocation(), diag::err_reference_bind_to_bitfield)
4975 << Entity.getType().isVolatileQualified()
4976 << BitField->getDeclName()
4977 << CurInit.get()->getSourceRange();
4978 S.Diag(BitField->getLocation(), diag::note_bitfield_decl);
4979 return ExprError();
4980 }
4981
4982 if (CurInit.get()->refersToVectorElement()) {
4983 // References cannot bind to vector elements.
4984 S.Diag(Kind.getLocation(), diag::err_reference_bind_to_vector_element)
4985 << Entity.getType().isVolatileQualified()
4986 << CurInit.get()->getSourceRange();
4987 PrintInitLocationNote(S, Entity);
4988 return ExprError();
4989 }
4990
4991 // Reference binding does not have any corresponding ASTs.
4992
4993 // Check exception specifications
4994 if (S.CheckExceptionSpecCompatibility(CurInit.get(), DestType))
4995 return ExprError();
4996
4997 break;
4998
4999 case SK_BindReferenceToTemporary:
5000 // Check exception specifications
5001 if (S.CheckExceptionSpecCompatibility(CurInit.get(), DestType))
5002 return ExprError();
5003
5004 // Materialize the temporary into memory.
5005 CurInit = new (S.Context) MaterializeTemporaryExpr(
5006 Entity.getType().getNonReferenceType(),
5007 CurInit.get(),
5008 Entity.getType()->isLValueReferenceType());
5009
5010 // If we're binding to an Objective-C object that has lifetime, we
5011 // need cleanups.
5012 if (S.getLangOpts().ObjCAutoRefCount &&
5013 CurInit.get()->getType()->isObjCLifetimeType())
5014 S.ExprNeedsCleanups = true;
5015
5016 break;
5017
5018 case SK_ExtraneousCopyToTemporary:
5019 CurInit = CopyObject(S, Step->Type, Entity, CurInit,
5020 /*IsExtraneousCopy=*/true);
5021 break;
5022
5023 case SK_UserConversion: {
5024 // We have a user-defined conversion that invokes either a constructor
5025 // or a conversion function.
5026 CastKind CastKind;
5027 bool IsCopy = false;
5028 FunctionDecl *Fn = Step->Function.Function;
5029 DeclAccessPair FoundFn = Step->Function.FoundDecl;
5030 bool HadMultipleCandidates = Step->Function.HadMultipleCandidates;
5031 bool CreatedObject = false;
5032 if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Fn)) {
5033 // Build a call to the selected constructor.
5034 SmallVector<Expr*, 8> ConstructorArgs;
5035 SourceLocation Loc = CurInit.get()->getLocStart();
5036 CurInit.release(); // Ownership transferred into MultiExprArg, below.
5037
5038 // Determine the arguments required to actually perform the constructor
5039 // call.
5040 Expr *Arg = CurInit.get();
5041 if (S.CompleteConstructorCall(Constructor,
5042 MultiExprArg(&Arg, 1),
5043 Loc, ConstructorArgs))
5044 return ExprError();
5045
5046 // Build an expression that constructs a temporary.
5047 CurInit = S.BuildCXXConstructExpr(Loc, Step->Type, Constructor,
5048 ConstructorArgs,
5049 HadMultipleCandidates,
5050 /*ZeroInit*/ false,
5051 CXXConstructExpr::CK_Complete,
5052 SourceRange());
5053 if (CurInit.isInvalid())
5054 return ExprError();
5055
5056 S.CheckConstructorAccess(Kind.getLocation(), Constructor, Entity,
5057 FoundFn.getAccess());
5058 S.DiagnoseUseOfDecl(FoundFn, Kind.getLocation());
5059
5060 CastKind = CK_ConstructorConversion;
5061 QualType Class = S.Context.getTypeDeclType(Constructor->getParent());
5062 if (S.Context.hasSameUnqualifiedType(SourceType, Class) ||
5063 S.IsDerivedFrom(SourceType, Class))
5064 IsCopy = true;
5065
5066 CreatedObject = true;
5067 } else {
5068 // Build a call to the conversion function.
5069 CXXConversionDecl *Conversion = cast<CXXConversionDecl>(Fn);
5070 S.CheckMemberOperatorAccess(Kind.getLocation(), CurInit.get(), 0,
5071 FoundFn);
5072 S.DiagnoseUseOfDecl(FoundFn, Kind.getLocation());
5073
5074 // FIXME: Should we move this initialization into a separate
5075 // derived-to-base conversion? I believe the answer is "no", because
5076 // we don't want to turn off access control here for c-style casts.
5077 ExprResult CurInitExprRes =
5078 S.PerformObjectArgumentInitialization(CurInit.take(), /*Qualifier=*/0,
5079 FoundFn, Conversion);
5080 if(CurInitExprRes.isInvalid())
5081 return ExprError();
5082 CurInit = CurInitExprRes;
5083
5084 // Build the actual call to the conversion function.
5085 CurInit = S.BuildCXXMemberCallExpr(CurInit.get(), FoundFn, Conversion,
5086 HadMultipleCandidates);
5087 if (CurInit.isInvalid() || !CurInit.get())
5088 return ExprError();
5089
5090 CastKind = CK_UserDefinedConversion;
5091
5092 CreatedObject = Conversion->getResultType()->isRecordType();
5093 }
5094
5095 bool RequiresCopy = !IsCopy && !isReferenceBinding(Steps.back());
5096 bool MaybeBindToTemp = RequiresCopy || shouldBindAsTemporary(Entity);
5097
5098 if (!MaybeBindToTemp && CreatedObject && shouldDestroyTemporary(Entity)) {
5099 QualType T = CurInit.get()->getType();
5100 if (const RecordType *Record = T->getAs<RecordType>()) {
5101 CXXDestructorDecl *Destructor
5102 = S.LookupDestructor(cast<CXXRecordDecl>(Record->getDecl()));
5103 S.CheckDestructorAccess(CurInit.get()->getLocStart(), Destructor,
5104 S.PDiag(diag::err_access_dtor_temp) << T);
5105 S.MarkFunctionReferenced(CurInit.get()->getLocStart(), Destructor);
5106 S.DiagnoseUseOfDecl(Destructor, CurInit.get()->getLocStart());
5107 }
5108 }
5109
5110 CurInit = S.Owned(ImplicitCastExpr::Create(S.Context,
5111 CurInit.get()->getType(),
5112 CastKind, CurInit.get(), 0,
5113 CurInit.get()->getValueKind()));
5114 if (MaybeBindToTemp)
5115 CurInit = S.MaybeBindToTemporary(CurInit.takeAs<Expr>());
5116 if (RequiresCopy)
5117 CurInit = CopyObject(S, Entity.getType().getNonReferenceType(), Entity,
5118 CurInit, /*IsExtraneousCopy=*/false);
5119 break;
5120 }
5121
5122 case SK_QualificationConversionLValue:
5123 case SK_QualificationConversionXValue:
5124 case SK_QualificationConversionRValue: {
5125 // Perform a qualification conversion; these can never go wrong.
5126 ExprValueKind VK =
5127 Step->Kind == SK_QualificationConversionLValue ?
5128 VK_LValue :
5129 (Step->Kind == SK_QualificationConversionXValue ?
5130 VK_XValue :
5131 VK_RValue);
5132 CurInit = S.ImpCastExprToType(CurInit.take(), Step->Type, CK_NoOp, VK);
5133 break;
5134 }
5135
5136 case SK_ConversionSequence: {
5137 Sema::CheckedConversionKind CCK
5138 = Kind.isCStyleCast()? Sema::CCK_CStyleCast
5139 : Kind.isFunctionalCast()? Sema::CCK_FunctionalCast
5140 : Kind.isExplicitCast()? Sema::CCK_OtherCast
5141 : Sema::CCK_ImplicitConversion;
5142 ExprResult CurInitExprRes =
5143 S.PerformImplicitConversion(CurInit.get(), Step->Type, *Step->ICS,
5144 getAssignmentAction(Entity), CCK);
5145 if (CurInitExprRes.isInvalid())
5146 return ExprError();
5147 CurInit = CurInitExprRes;
5148 break;
5149 }
5150
5151 case SK_ListInitialization: {
5152 InitListExpr *InitList = cast<InitListExpr>(CurInit.get());
5153 // Hack: We must pass *ResultType if available in order to set the type
5154 // of arrays, e.g. in 'int ar[] = {1, 2, 3};'.
5155 // But in 'const X &x = {1, 2, 3};' we're supposed to initialize a
5156 // temporary, not a reference, so we should pass Ty.
5157 // Worst case: 'const int (&arref)[] = {1, 2, 3};'.
5158 // Since this step is never used for a reference directly, we explicitly
5159 // unwrap references here and rewrap them afterwards.
5160 // We also need to create a InitializeTemporary entity for this.
5161 QualType Ty = ResultType ? ResultType->getNonReferenceType() : Step->Type;
5162 bool IsTemporary = Entity.getType()->isReferenceType();
5163 InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(Ty);
5164 InitListChecker PerformInitList(S, IsTemporary ? TempEntity : Entity,
5165 InitList, Ty, /*VerifyOnly=*/false,
5166 Kind.getKind() != InitializationKind::IK_DirectList ||
5167 !S.getLangOpts().CPlusPlus0x);
5168 if (PerformInitList.HadError())
5169 return ExprError();
5170
5171 if (ResultType) {
5172 if ((*ResultType)->isRValueReferenceType())
5173 Ty = S.Context.getRValueReferenceType(Ty);
5174 else if ((*ResultType)->isLValueReferenceType())
5175 Ty = S.Context.getLValueReferenceType(Ty,
5176 (*ResultType)->getAs<LValueReferenceType>()->isSpelledAsLValue());
5177 *ResultType = Ty;
5178 }
5179
5180 InitListExpr *StructuredInitList =
5181 PerformInitList.getFullyStructuredList();
5182 CurInit.release();
5183 CurInit = S.Owned(StructuredInitList);
5184 break;
5185 }
5186
5187 case SK_ListConstructorCall: {
5188 // When an initializer list is passed for a parameter of type "reference
5189 // to object", we don't get an EK_Temporary entity, but instead an
5190 // EK_Parameter entity with reference type.
5191 // FIXME: This is a hack. What we really should do is create a user
5192 // conversion step for this case, but this makes it considerably more
5193 // complicated. For now, this will do.
5194 InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(
5195 Entity.getType().getNonReferenceType());
5196 bool UseTemporary = Entity.getType()->isReferenceType();
5197 assert(Args.size() == 1 && "expected a single argument for list init");
5198 InitListExpr *InitList = cast<InitListExpr>(Args[0]);
5199 S.Diag(InitList->getExprLoc(), diag::warn_cxx98_compat_ctor_list_init)
5200 << InitList->getSourceRange();
5201 MultiExprArg Arg(InitList->getInits(), InitList->getNumInits());
5202 CurInit = PerformConstructorInitialization(S, UseTemporary ? TempEntity :
5203 Entity,
5204 Kind, Arg, *Step,
5205 ConstructorInitRequiresZeroInit);
5206 break;
5207 }
5208
5209 case SK_UnwrapInitList:
5210 CurInit = S.Owned(cast<InitListExpr>(CurInit.take())->getInit(0));
5211 break;
5212
5213 case SK_RewrapInitList: {
5214 Expr *E = CurInit.take();
5215 InitListExpr *Syntactic = Step->WrappingSyntacticList;
5216 InitListExpr *ILE = new (S.Context) InitListExpr(S.Context,
5217 Syntactic->getLBraceLoc(), E, Syntactic->getRBraceLoc());
5218 ILE->setSyntacticForm(Syntactic);
5219 ILE->setType(E->getType());
5220 ILE->setValueKind(E->getValueKind());
5221 CurInit = S.Owned(ILE);
5222 break;
5223 }
5224
5225 case SK_ConstructorInitialization: {
5226 // When an initializer list is passed for a parameter of type "reference
5227 // to object", we don't get an EK_Temporary entity, but instead an
5228 // EK_Parameter entity with reference type.
5229 // FIXME: This is a hack. What we really should do is create a user
5230 // conversion step for this case, but this makes it considerably more
5231 // complicated. For now, this will do.
5232 InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(
5233 Entity.getType().getNonReferenceType());
5234 bool UseTemporary = Entity.getType()->isReferenceType();
5235 CurInit = PerformConstructorInitialization(S, UseTemporary ? TempEntity
5236 : Entity,
5237 Kind, Args, *Step,
5238 ConstructorInitRequiresZeroInit);
5239 break;
5240 }
5241
5242 case SK_ZeroInitialization: {
5243 step_iterator NextStep = Step;
5244 ++NextStep;
5245 if (NextStep != StepEnd &&
5246 (NextStep->Kind == SK_ConstructorInitialization ||
5247 NextStep->Kind == SK_ListConstructorCall)) {
5248 // The need for zero-initialization is recorded directly into
5249 // the call to the object's constructor within the next step.
5250 ConstructorInitRequiresZeroInit = true;
5251 } else if (Kind.getKind() == InitializationKind::IK_Value &&
5252 S.getLangOpts().CPlusPlus &&
5253 !Kind.isImplicitValueInit()) {
5254 TypeSourceInfo *TSInfo = Entity.getTypeSourceInfo();
5255 if (!TSInfo)
5256 TSInfo = S.Context.getTrivialTypeSourceInfo(Step->Type,
5257 Kind.getRange().getBegin());
5258
5259 CurInit = S.Owned(new (S.Context) CXXScalarValueInitExpr(
5260 TSInfo->getType().getNonLValueExprType(S.Context),
5261 TSInfo,
5262 Kind.getRange().getEnd()));
5263 } else {
5264 CurInit = S.Owned(new (S.Context) ImplicitValueInitExpr(Step->Type));
5265 }
5266 break;
5267 }
5268
5269 case SK_CAssignment: {
5270 QualType SourceType = CurInit.get()->getType();
5271 ExprResult Result = CurInit;
5272 Sema::AssignConvertType ConvTy =
5273 S.CheckSingleAssignmentConstraints(Step->Type, Result);
5274 if (Result.isInvalid())
5275 return ExprError();
5276 CurInit = Result;
5277
5278 // If this is a call, allow conversion to a transparent union.
5279 ExprResult CurInitExprRes = CurInit;
5280 if (ConvTy != Sema::Compatible &&
5281 Entity.getKind() == InitializedEntity::EK_Parameter &&
5282 S.CheckTransparentUnionArgumentConstraints(Step->Type, CurInitExprRes)
5283 == Sema::Compatible)
5284 ConvTy = Sema::Compatible;
5285 if (CurInitExprRes.isInvalid())
5286 return ExprError();
5287 CurInit = CurInitExprRes;
5288
5289 bool Complained;
5290 if (S.DiagnoseAssignmentResult(ConvTy, Kind.getLocation(),
5291 Step->Type, SourceType,
5292 CurInit.get(),
5293 getAssignmentAction(Entity),
5294 &Complained)) {
5295 PrintInitLocationNote(S, Entity);
5296 return ExprError();
5297 } else if (Complained)
5298 PrintInitLocationNote(S, Entity);
5299 break;
5300 }
5301
5302 case SK_StringInit: {
5303 QualType Ty = Step->Type;
5304 CheckStringInit(CurInit.get(), ResultType ? *ResultType : Ty,
5305 S.Context.getAsArrayType(Ty), S);
5306 break;
5307 }
5308
5309 case SK_ObjCObjectConversion:
5310 CurInit = S.ImpCastExprToType(CurInit.take(), Step->Type,
5311 CK_ObjCObjectLValueCast,
5312 CurInit.get()->getValueKind());
5313 break;
5314
5315 case SK_ArrayInit:
5316 // Okay: we checked everything before creating this step. Note that
5317 // this is a GNU extension.
5318 S.Diag(Kind.getLocation(), diag::ext_array_init_copy)
5319 << Step->Type << CurInit.get()->getType()
5320 << CurInit.get()->getSourceRange();
5321
5322 // If the destination type is an incomplete array type, update the
5323 // type accordingly.
5324 if (ResultType) {
5325 if (const IncompleteArrayType *IncompleteDest
5326 = S.Context.getAsIncompleteArrayType(Step->Type)) {
5327 if (const ConstantArrayType *ConstantSource
5328 = S.Context.getAsConstantArrayType(CurInit.get()->getType())) {
5329 *ResultType = S.Context.getConstantArrayType(
5330 IncompleteDest->getElementType(),
5331 ConstantSource->getSize(),
5332 ArrayType::Normal, 0);
5333 }
5334 }
5335 }
5336 break;
5337
5338 case SK_ParenthesizedArrayInit:
5339 // Okay: we checked everything before creating this step. Note that
5340 // this is a GNU extension.
5341 S.Diag(Kind.getLocation(), diag::ext_array_init_parens)
5342 << CurInit.get()->getSourceRange();
5343 break;
5344
5345 case SK_PassByIndirectCopyRestore:
5346 case SK_PassByIndirectRestore:
5347 checkIndirectCopyRestoreSource(S, CurInit.get());
5348 CurInit = S.Owned(new (S.Context)
5349 ObjCIndirectCopyRestoreExpr(CurInit.take(), Step->Type,
5350 Step->Kind == SK_PassByIndirectCopyRestore));
5351 break;
5352
5353 case SK_ProduceObjCObject:
5354 CurInit = S.Owned(ImplicitCastExpr::Create(S.Context, Step->Type,
5355 CK_ARCProduceObject,
5356 CurInit.take(), 0, VK_RValue));
5357 break;
5358
5359 case SK_StdInitializerList: {
5360 QualType Dest = Step->Type;
5361 QualType E;
5362 bool Success = S.isStdInitializerList(Dest, &E);
5363 (void)Success;
5364 assert(Success && "Destination type changed?");
5365
5366 // If the element type has a destructor, check it.
5367 if (CXXRecordDecl *RD = E->getAsCXXRecordDecl()) {
5368 if (!RD->hasIrrelevantDestructor()) {
5369 if (CXXDestructorDecl *Destructor = S.LookupDestructor(RD)) {
5370 S.MarkFunctionReferenced(Kind.getLocation(), Destructor);
5371 S.CheckDestructorAccess(Kind.getLocation(), Destructor,
5372 S.PDiag(diag::err_access_dtor_temp) << E);
5373 S.DiagnoseUseOfDecl(Destructor, Kind.getLocation());
5374 }
5375 }
5376 }
5377
5378 InitListExpr *ILE = cast<InitListExpr>(CurInit.take());
5379 S.Diag(ILE->getExprLoc(), diag::warn_cxx98_compat_initializer_list_init)
5380 << ILE->getSourceRange();
5381 unsigned NumInits = ILE->getNumInits();
5382 SmallVector<Expr*, 16> Converted(NumInits);
5383 InitializedEntity HiddenArray = InitializedEntity::InitializeTemporary(
5384 S.Context.getConstantArrayType(E,
5385 llvm::APInt(S.Context.getTypeSize(S.Context.getSizeType()),
5386 NumInits),
5387 ArrayType::Normal, 0));
5388 InitializedEntity Element =InitializedEntity::InitializeElement(S.Context,
5389 0, HiddenArray);
5390 for (unsigned i = 0; i < NumInits; ++i) {
5391 Element.setElementIndex(i);
5392 ExprResult Init = S.Owned(ILE->getInit(i));
5393 ExprResult Res = S.PerformCopyInitialization(Element,
5394 Init.get()->getExprLoc(),
5395 Init);
5396 assert(!Res.isInvalid() && "Result changed since try phase.");
5397 Converted[i] = Res.take();
5398 }
5399 InitListExpr *Semantic = new (S.Context)
5400 InitListExpr(S.Context, ILE->getLBraceLoc(),
5401 Converted, ILE->getRBraceLoc());
5402 Semantic->setSyntacticForm(ILE);
5403 Semantic->setType(Dest);
5404 Semantic->setInitializesStdInitializerList();
5405 CurInit = S.Owned(Semantic);
5406 break;
5407 }
5408 }
5409 }
5410
5411 // Diagnose non-fatal problems with the completed initialization.
5412 if (Entity.getKind() == InitializedEntity::EK_Member &&
5413 cast<FieldDecl>(Entity.getDecl())->isBitField())
5414 S.CheckBitFieldInitialization(Kind.getLocation(),
5415 cast<FieldDecl>(Entity.getDecl()),
5416 CurInit.get());
5417
5418 return CurInit;
5419 }
5420
5421 //===----------------------------------------------------------------------===//
5422 // Diagnose initialization failures
5423 //===----------------------------------------------------------------------===//
Diagnose(Sema & S,const InitializedEntity & Entity,const InitializationKind & Kind,Expr ** Args,unsigned NumArgs)5424 bool InitializationSequence::Diagnose(Sema &S,
5425 const InitializedEntity &Entity,
5426 const InitializationKind &Kind,
5427 Expr **Args, unsigned NumArgs) {
5428 if (!Failed())
5429 return false;
5430
5431 QualType DestType = Entity.getType();
5432 switch (Failure) {
5433 case FK_TooManyInitsForReference:
5434 // FIXME: Customize for the initialized entity?
5435 if (NumArgs == 0)
5436 S.Diag(Kind.getLocation(), diag::err_reference_without_init)
5437 << DestType.getNonReferenceType();
5438 else // FIXME: diagnostic below could be better!
5439 S.Diag(Kind.getLocation(), diag::err_reference_has_multiple_inits)
5440 << SourceRange(Args[0]->getLocStart(), Args[NumArgs - 1]->getLocEnd());
5441 break;
5442
5443 case FK_ArrayNeedsInitList:
5444 case FK_ArrayNeedsInitListOrStringLiteral:
5445 S.Diag(Kind.getLocation(), diag::err_array_init_not_init_list)
5446 << (Failure == FK_ArrayNeedsInitListOrStringLiteral);
5447 break;
5448
5449 case FK_ArrayTypeMismatch:
5450 case FK_NonConstantArrayInit:
5451 S.Diag(Kind.getLocation(),
5452 (Failure == FK_ArrayTypeMismatch
5453 ? diag::err_array_init_different_type
5454 : diag::err_array_init_non_constant_array))
5455 << DestType.getNonReferenceType()
5456 << Args[0]->getType()
5457 << Args[0]->getSourceRange();
5458 break;
5459
5460 case FK_VariableLengthArrayHasInitializer:
5461 S.Diag(Kind.getLocation(), diag::err_variable_object_no_init)
5462 << Args[0]->getSourceRange();
5463 break;
5464
5465 case FK_AddressOfOverloadFailed: {
5466 DeclAccessPair Found;
5467 S.ResolveAddressOfOverloadedFunction(Args[0],
5468 DestType.getNonReferenceType(),
5469 true,
5470 Found);
5471 break;
5472 }
5473
5474 case FK_ReferenceInitOverloadFailed:
5475 case FK_UserConversionOverloadFailed:
5476 switch (FailedOverloadResult) {
5477 case OR_Ambiguous:
5478 if (Failure == FK_UserConversionOverloadFailed)
5479 S.Diag(Kind.getLocation(), diag::err_typecheck_ambiguous_condition)
5480 << Args[0]->getType() << DestType
5481 << Args[0]->getSourceRange();
5482 else
5483 S.Diag(Kind.getLocation(), diag::err_ref_init_ambiguous)
5484 << DestType << Args[0]->getType()
5485 << Args[0]->getSourceRange();
5486
5487 FailedCandidateSet.NoteCandidates(S, OCD_ViableCandidates,
5488 llvm::makeArrayRef(Args, NumArgs));
5489 break;
5490
5491 case OR_No_Viable_Function:
5492 S.Diag(Kind.getLocation(), diag::err_typecheck_nonviable_condition)
5493 << Args[0]->getType() << DestType.getNonReferenceType()
5494 << Args[0]->getSourceRange();
5495 FailedCandidateSet.NoteCandidates(S, OCD_AllCandidates,
5496 llvm::makeArrayRef(Args, NumArgs));
5497 break;
5498
5499 case OR_Deleted: {
5500 S.Diag(Kind.getLocation(), diag::err_typecheck_deleted_function)
5501 << Args[0]->getType() << DestType.getNonReferenceType()
5502 << Args[0]->getSourceRange();
5503 OverloadCandidateSet::iterator Best;
5504 OverloadingResult Ovl
5505 = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best,
5506 true);
5507 if (Ovl == OR_Deleted) {
5508 S.NoteDeletedFunction(Best->Function);
5509 } else {
5510 llvm_unreachable("Inconsistent overload resolution?");
5511 }
5512 break;
5513 }
5514
5515 case OR_Success:
5516 llvm_unreachable("Conversion did not fail!");
5517 }
5518 break;
5519
5520 case FK_NonConstLValueReferenceBindingToTemporary:
5521 if (isa<InitListExpr>(Args[0])) {
5522 S.Diag(Kind.getLocation(),
5523 diag::err_lvalue_reference_bind_to_initlist)
5524 << DestType.getNonReferenceType().isVolatileQualified()
5525 << DestType.getNonReferenceType()
5526 << Args[0]->getSourceRange();
5527 break;
5528 }
5529 // Intentional fallthrough
5530
5531 case FK_NonConstLValueReferenceBindingToUnrelated:
5532 S.Diag(Kind.getLocation(),
5533 Failure == FK_NonConstLValueReferenceBindingToTemporary
5534 ? diag::err_lvalue_reference_bind_to_temporary
5535 : diag::err_lvalue_reference_bind_to_unrelated)
5536 << DestType.getNonReferenceType().isVolatileQualified()
5537 << DestType.getNonReferenceType()
5538 << Args[0]->getType()
5539 << Args[0]->getSourceRange();
5540 break;
5541
5542 case FK_RValueReferenceBindingToLValue:
5543 S.Diag(Kind.getLocation(), diag::err_lvalue_to_rvalue_ref)
5544 << DestType.getNonReferenceType() << Args[0]->getType()
5545 << Args[0]->getSourceRange();
5546 break;
5547
5548 case FK_ReferenceInitDropsQualifiers:
5549 S.Diag(Kind.getLocation(), diag::err_reference_bind_drops_quals)
5550 << DestType.getNonReferenceType()
5551 << Args[0]->getType()
5552 << Args[0]->getSourceRange();
5553 break;
5554
5555 case FK_ReferenceInitFailed:
5556 S.Diag(Kind.getLocation(), diag::err_reference_bind_failed)
5557 << DestType.getNonReferenceType()
5558 << Args[0]->isLValue()
5559 << Args[0]->getType()
5560 << Args[0]->getSourceRange();
5561 if (DestType.getNonReferenceType()->isObjCObjectPointerType() &&
5562 Args[0]->getType()->isObjCObjectPointerType())
5563 S.EmitRelatedResultTypeNote(Args[0]);
5564 break;
5565
5566 case FK_ConversionFailed: {
5567 QualType FromType = Args[0]->getType();
5568 PartialDiagnostic PDiag = S.PDiag(diag::err_init_conversion_failed)
5569 << (int)Entity.getKind()
5570 << DestType
5571 << Args[0]->isLValue()
5572 << FromType
5573 << Args[0]->getSourceRange();
5574 S.HandleFunctionTypeMismatch(PDiag, FromType, DestType);
5575 S.Diag(Kind.getLocation(), PDiag);
5576 if (DestType.getNonReferenceType()->isObjCObjectPointerType() &&
5577 Args[0]->getType()->isObjCObjectPointerType())
5578 S.EmitRelatedResultTypeNote(Args[0]);
5579 break;
5580 }
5581
5582 case FK_ConversionFromPropertyFailed:
5583 // No-op. This error has already been reported.
5584 break;
5585
5586 case FK_TooManyInitsForScalar: {
5587 SourceRange R;
5588
5589 if (InitListExpr *InitList = dyn_cast<InitListExpr>(Args[0]))
5590 R = SourceRange(InitList->getInit(0)->getLocEnd(),
5591 InitList->getLocEnd());
5592 else
5593 R = SourceRange(Args[0]->getLocEnd(), Args[NumArgs - 1]->getLocEnd());
5594
5595 R.setBegin(S.PP.getLocForEndOfToken(R.getBegin()));
5596 if (Kind.isCStyleOrFunctionalCast())
5597 S.Diag(Kind.getLocation(), diag::err_builtin_func_cast_more_than_one_arg)
5598 << R;
5599 else
5600 S.Diag(Kind.getLocation(), diag::err_excess_initializers)
5601 << /*scalar=*/2 << R;
5602 break;
5603 }
5604
5605 case FK_ReferenceBindingToInitList:
5606 S.Diag(Kind.getLocation(), diag::err_reference_bind_init_list)
5607 << DestType.getNonReferenceType() << Args[0]->getSourceRange();
5608 break;
5609
5610 case FK_InitListBadDestinationType:
5611 S.Diag(Kind.getLocation(), diag::err_init_list_bad_dest_type)
5612 << (DestType->isRecordType()) << DestType << Args[0]->getSourceRange();
5613 break;
5614
5615 case FK_ListConstructorOverloadFailed:
5616 case FK_ConstructorOverloadFailed: {
5617 SourceRange ArgsRange;
5618 if (NumArgs)
5619 ArgsRange = SourceRange(Args[0]->getLocStart(),
5620 Args[NumArgs - 1]->getLocEnd());
5621
5622 if (Failure == FK_ListConstructorOverloadFailed) {
5623 assert(NumArgs == 1 && "List construction from other than 1 argument.");
5624 InitListExpr *InitList = cast<InitListExpr>(Args[0]);
5625 Args = InitList->getInits();
5626 NumArgs = InitList->getNumInits();
5627 }
5628
5629 // FIXME: Using "DestType" for the entity we're printing is probably
5630 // bad.
5631 switch (FailedOverloadResult) {
5632 case OR_Ambiguous:
5633 S.Diag(Kind.getLocation(), diag::err_ovl_ambiguous_init)
5634 << DestType << ArgsRange;
5635 FailedCandidateSet.NoteCandidates(S, OCD_ViableCandidates,
5636 llvm::makeArrayRef(Args, NumArgs));
5637 break;
5638
5639 case OR_No_Viable_Function:
5640 if (Kind.getKind() == InitializationKind::IK_Default &&
5641 (Entity.getKind() == InitializedEntity::EK_Base ||
5642 Entity.getKind() == InitializedEntity::EK_Member) &&
5643 isa<CXXConstructorDecl>(S.CurContext)) {
5644 // This is implicit default initialization of a member or
5645 // base within a constructor. If no viable function was
5646 // found, notify the user that she needs to explicitly
5647 // initialize this base/member.
5648 CXXConstructorDecl *Constructor
5649 = cast<CXXConstructorDecl>(S.CurContext);
5650 if (Entity.getKind() == InitializedEntity::EK_Base) {
5651 S.Diag(Kind.getLocation(), diag::err_missing_default_ctor)
5652 << Constructor->isImplicit()
5653 << S.Context.getTypeDeclType(Constructor->getParent())
5654 << /*base=*/0
5655 << Entity.getType();
5656
5657 RecordDecl *BaseDecl
5658 = Entity.getBaseSpecifier()->getType()->getAs<RecordType>()
5659 ->getDecl();
5660 S.Diag(BaseDecl->getLocation(), diag::note_previous_decl)
5661 << S.Context.getTagDeclType(BaseDecl);
5662 } else {
5663 S.Diag(Kind.getLocation(), diag::err_missing_default_ctor)
5664 << Constructor->isImplicit()
5665 << S.Context.getTypeDeclType(Constructor->getParent())
5666 << /*member=*/1
5667 << Entity.getName();
5668 S.Diag(Entity.getDecl()->getLocation(), diag::note_field_decl);
5669
5670 if (const RecordType *Record
5671 = Entity.getType()->getAs<RecordType>())
5672 S.Diag(Record->getDecl()->getLocation(),
5673 diag::note_previous_decl)
5674 << S.Context.getTagDeclType(Record->getDecl());
5675 }
5676 break;
5677 }
5678
5679 S.Diag(Kind.getLocation(), diag::err_ovl_no_viable_function_in_init)
5680 << DestType << ArgsRange;
5681 FailedCandidateSet.NoteCandidates(S, OCD_AllCandidates,
5682 llvm::makeArrayRef(Args, NumArgs));
5683 break;
5684
5685 case OR_Deleted: {
5686 OverloadCandidateSet::iterator Best;
5687 OverloadingResult Ovl
5688 = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best);
5689 if (Ovl != OR_Deleted) {
5690 S.Diag(Kind.getLocation(), diag::err_ovl_deleted_init)
5691 << true << DestType << ArgsRange;
5692 llvm_unreachable("Inconsistent overload resolution?");
5693 break;
5694 }
5695
5696 // If this is a defaulted or implicitly-declared function, then
5697 // it was implicitly deleted. Make it clear that the deletion was
5698 // implicit.
5699 if (S.isImplicitlyDeleted(Best->Function))
5700 S.Diag(Kind.getLocation(), diag::err_ovl_deleted_special_init)
5701 << S.getSpecialMember(cast<CXXMethodDecl>(Best->Function))
5702 << DestType << ArgsRange;
5703 else
5704 S.Diag(Kind.getLocation(), diag::err_ovl_deleted_init)
5705 << true << DestType << ArgsRange;
5706
5707 S.NoteDeletedFunction(Best->Function);
5708 break;
5709 }
5710
5711 case OR_Success:
5712 llvm_unreachable("Conversion did not fail!");
5713 }
5714 }
5715 break;
5716
5717 case FK_DefaultInitOfConst:
5718 if (Entity.getKind() == InitializedEntity::EK_Member &&
5719 isa<CXXConstructorDecl>(S.CurContext)) {
5720 // This is implicit default-initialization of a const member in
5721 // a constructor. Complain that it needs to be explicitly
5722 // initialized.
5723 CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(S.CurContext);
5724 S.Diag(Kind.getLocation(), diag::err_uninitialized_member_in_ctor)
5725 << Constructor->isImplicit()
5726 << S.Context.getTypeDeclType(Constructor->getParent())
5727 << /*const=*/1
5728 << Entity.getName();
5729 S.Diag(Entity.getDecl()->getLocation(), diag::note_previous_decl)
5730 << Entity.getName();
5731 } else {
5732 S.Diag(Kind.getLocation(), diag::err_default_init_const)
5733 << DestType << (bool)DestType->getAs<RecordType>();
5734 }
5735 break;
5736
5737 case FK_Incomplete:
5738 S.RequireCompleteType(Kind.getLocation(), FailedIncompleteType,
5739 diag::err_init_incomplete_type);
5740 break;
5741
5742 case FK_ListInitializationFailed: {
5743 // Run the init list checker again to emit diagnostics.
5744 InitListExpr* InitList = cast<InitListExpr>(Args[0]);
5745 QualType DestType = Entity.getType();
5746 InitListChecker DiagnoseInitList(S, Entity, InitList,
5747 DestType, /*VerifyOnly=*/false,
5748 Kind.getKind() != InitializationKind::IK_DirectList ||
5749 !S.getLangOpts().CPlusPlus0x);
5750 assert(DiagnoseInitList.HadError() &&
5751 "Inconsistent init list check result.");
5752 break;
5753 }
5754
5755 case FK_PlaceholderType: {
5756 // FIXME: Already diagnosed!
5757 break;
5758 }
5759
5760 case FK_InitListElementCopyFailure: {
5761 // Try to perform all copies again.
5762 InitListExpr* InitList = cast<InitListExpr>(Args[0]);
5763 unsigned NumInits = InitList->getNumInits();
5764 QualType DestType = Entity.getType();
5765 QualType E;
5766 bool Success = S.isStdInitializerList(DestType, &E);
5767 (void)Success;
5768 assert(Success && "Where did the std::initializer_list go?");
5769 InitializedEntity HiddenArray = InitializedEntity::InitializeTemporary(
5770 S.Context.getConstantArrayType(E,
5771 llvm::APInt(S.Context.getTypeSize(S.Context.getSizeType()),
5772 NumInits),
5773 ArrayType::Normal, 0));
5774 InitializedEntity Element = InitializedEntity::InitializeElement(S.Context,
5775 0, HiddenArray);
5776 // Show at most 3 errors. Otherwise, you'd get a lot of errors for errors
5777 // where the init list type is wrong, e.g.
5778 // std::initializer_list<void*> list = { 1, 2, 3, 4, 5, 6, 7, 8 };
5779 // FIXME: Emit a note if we hit the limit?
5780 int ErrorCount = 0;
5781 for (unsigned i = 0; i < NumInits && ErrorCount < 3; ++i) {
5782 Element.setElementIndex(i);
5783 ExprResult Init = S.Owned(InitList->getInit(i));
5784 if (S.PerformCopyInitialization(Element, Init.get()->getExprLoc(), Init)
5785 .isInvalid())
5786 ++ErrorCount;
5787 }
5788 break;
5789 }
5790
5791 case FK_ExplicitConstructor: {
5792 S.Diag(Kind.getLocation(), diag::err_selected_explicit_constructor)
5793 << Args[0]->getSourceRange();
5794 OverloadCandidateSet::iterator Best;
5795 OverloadingResult Ovl
5796 = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best);
5797 (void)Ovl;
5798 assert(Ovl == OR_Success && "Inconsistent overload resolution");
5799 CXXConstructorDecl *CtorDecl = cast<CXXConstructorDecl>(Best->Function);
5800 S.Diag(CtorDecl->getLocation(), diag::note_constructor_declared_here);
5801 break;
5802 }
5803 }
5804
5805 PrintInitLocationNote(S, Entity);
5806 return true;
5807 }
5808
dump(raw_ostream & OS) const5809 void InitializationSequence::dump(raw_ostream &OS) const {
5810 switch (SequenceKind) {
5811 case FailedSequence: {
5812 OS << "Failed sequence: ";
5813 switch (Failure) {
5814 case FK_TooManyInitsForReference:
5815 OS << "too many initializers for reference";
5816 break;
5817
5818 case FK_ArrayNeedsInitList:
5819 OS << "array requires initializer list";
5820 break;
5821
5822 case FK_ArrayNeedsInitListOrStringLiteral:
5823 OS << "array requires initializer list or string literal";
5824 break;
5825
5826 case FK_ArrayTypeMismatch:
5827 OS << "array type mismatch";
5828 break;
5829
5830 case FK_NonConstantArrayInit:
5831 OS << "non-constant array initializer";
5832 break;
5833
5834 case FK_AddressOfOverloadFailed:
5835 OS << "address of overloaded function failed";
5836 break;
5837
5838 case FK_ReferenceInitOverloadFailed:
5839 OS << "overload resolution for reference initialization failed";
5840 break;
5841
5842 case FK_NonConstLValueReferenceBindingToTemporary:
5843 OS << "non-const lvalue reference bound to temporary";
5844 break;
5845
5846 case FK_NonConstLValueReferenceBindingToUnrelated:
5847 OS << "non-const lvalue reference bound to unrelated type";
5848 break;
5849
5850 case FK_RValueReferenceBindingToLValue:
5851 OS << "rvalue reference bound to an lvalue";
5852 break;
5853
5854 case FK_ReferenceInitDropsQualifiers:
5855 OS << "reference initialization drops qualifiers";
5856 break;
5857
5858 case FK_ReferenceInitFailed:
5859 OS << "reference initialization failed";
5860 break;
5861
5862 case FK_ConversionFailed:
5863 OS << "conversion failed";
5864 break;
5865
5866 case FK_ConversionFromPropertyFailed:
5867 OS << "conversion from property failed";
5868 break;
5869
5870 case FK_TooManyInitsForScalar:
5871 OS << "too many initializers for scalar";
5872 break;
5873
5874 case FK_ReferenceBindingToInitList:
5875 OS << "referencing binding to initializer list";
5876 break;
5877
5878 case FK_InitListBadDestinationType:
5879 OS << "initializer list for non-aggregate, non-scalar type";
5880 break;
5881
5882 case FK_UserConversionOverloadFailed:
5883 OS << "overloading failed for user-defined conversion";
5884 break;
5885
5886 case FK_ConstructorOverloadFailed:
5887 OS << "constructor overloading failed";
5888 break;
5889
5890 case FK_DefaultInitOfConst:
5891 OS << "default initialization of a const variable";
5892 break;
5893
5894 case FK_Incomplete:
5895 OS << "initialization of incomplete type";
5896 break;
5897
5898 case FK_ListInitializationFailed:
5899 OS << "list initialization checker failure";
5900 break;
5901
5902 case FK_VariableLengthArrayHasInitializer:
5903 OS << "variable length array has an initializer";
5904 break;
5905
5906 case FK_PlaceholderType:
5907 OS << "initializer expression isn't contextually valid";
5908 break;
5909
5910 case FK_ListConstructorOverloadFailed:
5911 OS << "list constructor overloading failed";
5912 break;
5913
5914 case FK_InitListElementCopyFailure:
5915 OS << "copy construction of initializer list element failed";
5916 break;
5917
5918 case FK_ExplicitConstructor:
5919 OS << "list copy initialization chose explicit constructor";
5920 break;
5921 }
5922 OS << '\n';
5923 return;
5924 }
5925
5926 case DependentSequence:
5927 OS << "Dependent sequence\n";
5928 return;
5929
5930 case NormalSequence:
5931 OS << "Normal sequence: ";
5932 break;
5933 }
5934
5935 for (step_iterator S = step_begin(), SEnd = step_end(); S != SEnd; ++S) {
5936 if (S != step_begin()) {
5937 OS << " -> ";
5938 }
5939
5940 switch (S->Kind) {
5941 case SK_ResolveAddressOfOverloadedFunction:
5942 OS << "resolve address of overloaded function";
5943 break;
5944
5945 case SK_CastDerivedToBaseRValue:
5946 OS << "derived-to-base case (rvalue" << S->Type.getAsString() << ")";
5947 break;
5948
5949 case SK_CastDerivedToBaseXValue:
5950 OS << "derived-to-base case (xvalue" << S->Type.getAsString() << ")";
5951 break;
5952
5953 case SK_CastDerivedToBaseLValue:
5954 OS << "derived-to-base case (lvalue" << S->Type.getAsString() << ")";
5955 break;
5956
5957 case SK_BindReference:
5958 OS << "bind reference to lvalue";
5959 break;
5960
5961 case SK_BindReferenceToTemporary:
5962 OS << "bind reference to a temporary";
5963 break;
5964
5965 case SK_ExtraneousCopyToTemporary:
5966 OS << "extraneous C++03 copy to temporary";
5967 break;
5968
5969 case SK_UserConversion:
5970 OS << "user-defined conversion via " << *S->Function.Function;
5971 break;
5972
5973 case SK_QualificationConversionRValue:
5974 OS << "qualification conversion (rvalue)";
5975 break;
5976
5977 case SK_QualificationConversionXValue:
5978 OS << "qualification conversion (xvalue)";
5979 break;
5980
5981 case SK_QualificationConversionLValue:
5982 OS << "qualification conversion (lvalue)";
5983 break;
5984
5985 case SK_ConversionSequence:
5986 OS << "implicit conversion sequence (";
5987 S->ICS->DebugPrint(); // FIXME: use OS
5988 OS << ")";
5989 break;
5990
5991 case SK_ListInitialization:
5992 OS << "list aggregate initialization";
5993 break;
5994
5995 case SK_ListConstructorCall:
5996 OS << "list initialization via constructor";
5997 break;
5998
5999 case SK_UnwrapInitList:
6000 OS << "unwrap reference initializer list";
6001 break;
6002
6003 case SK_RewrapInitList:
6004 OS << "rewrap reference initializer list";
6005 break;
6006
6007 case SK_ConstructorInitialization:
6008 OS << "constructor initialization";
6009 break;
6010
6011 case SK_ZeroInitialization:
6012 OS << "zero initialization";
6013 break;
6014
6015 case SK_CAssignment:
6016 OS << "C assignment";
6017 break;
6018
6019 case SK_StringInit:
6020 OS << "string initialization";
6021 break;
6022
6023 case SK_ObjCObjectConversion:
6024 OS << "Objective-C object conversion";
6025 break;
6026
6027 case SK_ArrayInit:
6028 OS << "array initialization";
6029 break;
6030
6031 case SK_ParenthesizedArrayInit:
6032 OS << "parenthesized array initialization";
6033 break;
6034
6035 case SK_PassByIndirectCopyRestore:
6036 OS << "pass by indirect copy and restore";
6037 break;
6038
6039 case SK_PassByIndirectRestore:
6040 OS << "pass by indirect restore";
6041 break;
6042
6043 case SK_ProduceObjCObject:
6044 OS << "Objective-C object retension";
6045 break;
6046
6047 case SK_StdInitializerList:
6048 OS << "std::initializer_list from initializer list";
6049 break;
6050 }
6051 }
6052 }
6053
dump() const6054 void InitializationSequence::dump() const {
6055 dump(llvm::errs());
6056 }
6057
DiagnoseNarrowingInInitList(Sema & S,InitializationSequence & Seq,QualType EntityType,const Expr * PreInit,const Expr * PostInit)6058 static void DiagnoseNarrowingInInitList(Sema &S, InitializationSequence &Seq,
6059 QualType EntityType,
6060 const Expr *PreInit,
6061 const Expr *PostInit) {
6062 if (Seq.step_begin() == Seq.step_end() || PreInit->isValueDependent())
6063 return;
6064
6065 // A narrowing conversion can only appear as the final implicit conversion in
6066 // an initialization sequence.
6067 const InitializationSequence::Step &LastStep = Seq.step_end()[-1];
6068 if (LastStep.Kind != InitializationSequence::SK_ConversionSequence)
6069 return;
6070
6071 const ImplicitConversionSequence &ICS = *LastStep.ICS;
6072 const StandardConversionSequence *SCS = 0;
6073 switch (ICS.getKind()) {
6074 case ImplicitConversionSequence::StandardConversion:
6075 SCS = &ICS.Standard;
6076 break;
6077 case ImplicitConversionSequence::UserDefinedConversion:
6078 SCS = &ICS.UserDefined.After;
6079 break;
6080 case ImplicitConversionSequence::AmbiguousConversion:
6081 case ImplicitConversionSequence::EllipsisConversion:
6082 case ImplicitConversionSequence::BadConversion:
6083 return;
6084 }
6085
6086 // Determine the type prior to the narrowing conversion. If a conversion
6087 // operator was used, this may be different from both the type of the entity
6088 // and of the pre-initialization expression.
6089 QualType PreNarrowingType = PreInit->getType();
6090 if (Seq.step_begin() + 1 != Seq.step_end())
6091 PreNarrowingType = Seq.step_end()[-2].Type;
6092
6093 // C++11 [dcl.init.list]p7: Check whether this is a narrowing conversion.
6094 APValue ConstantValue;
6095 QualType ConstantType;
6096 switch (SCS->getNarrowingKind(S.Context, PostInit, ConstantValue,
6097 ConstantType)) {
6098 case NK_Not_Narrowing:
6099 // No narrowing occurred.
6100 return;
6101
6102 case NK_Type_Narrowing:
6103 // This was a floating-to-integer conversion, which is always considered a
6104 // narrowing conversion even if the value is a constant and can be
6105 // represented exactly as an integer.
6106 S.Diag(PostInit->getLocStart(),
6107 S.getLangOpts().MicrosoftExt || !S.getLangOpts().CPlusPlus0x?
6108 diag::warn_init_list_type_narrowing
6109 : S.isSFINAEContext()?
6110 diag::err_init_list_type_narrowing_sfinae
6111 : diag::err_init_list_type_narrowing)
6112 << PostInit->getSourceRange()
6113 << PreNarrowingType.getLocalUnqualifiedType()
6114 << EntityType.getLocalUnqualifiedType();
6115 break;
6116
6117 case NK_Constant_Narrowing:
6118 // A constant value was narrowed.
6119 S.Diag(PostInit->getLocStart(),
6120 S.getLangOpts().MicrosoftExt || !S.getLangOpts().CPlusPlus0x?
6121 diag::warn_init_list_constant_narrowing
6122 : S.isSFINAEContext()?
6123 diag::err_init_list_constant_narrowing_sfinae
6124 : diag::err_init_list_constant_narrowing)
6125 << PostInit->getSourceRange()
6126 << ConstantValue.getAsString(S.getASTContext(), ConstantType)
6127 << EntityType.getLocalUnqualifiedType();
6128 break;
6129
6130 case NK_Variable_Narrowing:
6131 // A variable's value may have been narrowed.
6132 S.Diag(PostInit->getLocStart(),
6133 S.getLangOpts().MicrosoftExt || !S.getLangOpts().CPlusPlus0x?
6134 diag::warn_init_list_variable_narrowing
6135 : S.isSFINAEContext()?
6136 diag::err_init_list_variable_narrowing_sfinae
6137 : diag::err_init_list_variable_narrowing)
6138 << PostInit->getSourceRange()
6139 << PreNarrowingType.getLocalUnqualifiedType()
6140 << EntityType.getLocalUnqualifiedType();
6141 break;
6142 }
6143
6144 SmallString<128> StaticCast;
6145 llvm::raw_svector_ostream OS(StaticCast);
6146 OS << "static_cast<";
6147 if (const TypedefType *TT = EntityType->getAs<TypedefType>()) {
6148 // It's important to use the typedef's name if there is one so that the
6149 // fixit doesn't break code using types like int64_t.
6150 //
6151 // FIXME: This will break if the typedef requires qualification. But
6152 // getQualifiedNameAsString() includes non-machine-parsable components.
6153 OS << *TT->getDecl();
6154 } else if (const BuiltinType *BT = EntityType->getAs<BuiltinType>())
6155 OS << BT->getName(S.getLangOpts());
6156 else {
6157 // Oops, we didn't find the actual type of the variable. Don't emit a fixit
6158 // with a broken cast.
6159 return;
6160 }
6161 OS << ">(";
6162 S.Diag(PostInit->getLocStart(), diag::note_init_list_narrowing_override)
6163 << PostInit->getSourceRange()
6164 << FixItHint::CreateInsertion(PostInit->getLocStart(), OS.str())
6165 << FixItHint::CreateInsertion(
6166 S.getPreprocessor().getLocForEndOfToken(PostInit->getLocEnd()), ")");
6167 }
6168
6169 //===----------------------------------------------------------------------===//
6170 // Initialization helper functions
6171 //===----------------------------------------------------------------------===//
6172 bool
CanPerformCopyInitialization(const InitializedEntity & Entity,ExprResult Init)6173 Sema::CanPerformCopyInitialization(const InitializedEntity &Entity,
6174 ExprResult Init) {
6175 if (Init.isInvalid())
6176 return false;
6177
6178 Expr *InitE = Init.get();
6179 assert(InitE && "No initialization expression");
6180
6181 InitializationKind Kind
6182 = InitializationKind::CreateCopy(InitE->getLocStart(), SourceLocation());
6183 InitializationSequence Seq(*this, Entity, Kind, &InitE, 1);
6184 return !Seq.Failed();
6185 }
6186
6187 ExprResult
PerformCopyInitialization(const InitializedEntity & Entity,SourceLocation EqualLoc,ExprResult Init,bool TopLevelOfInitList,bool AllowExplicit)6188 Sema::PerformCopyInitialization(const InitializedEntity &Entity,
6189 SourceLocation EqualLoc,
6190 ExprResult Init,
6191 bool TopLevelOfInitList,
6192 bool AllowExplicit) {
6193 if (Init.isInvalid())
6194 return ExprError();
6195
6196 Expr *InitE = Init.get();
6197 assert(InitE && "No initialization expression?");
6198
6199 if (EqualLoc.isInvalid())
6200 EqualLoc = InitE->getLocStart();
6201
6202 InitializationKind Kind = InitializationKind::CreateCopy(InitE->getLocStart(),
6203 EqualLoc,
6204 AllowExplicit);
6205 InitializationSequence Seq(*this, Entity, Kind, &InitE, 1);
6206 Init.release();
6207
6208 ExprResult Result = Seq.Perform(*this, Entity, Kind, MultiExprArg(&InitE, 1));
6209
6210 if (!Result.isInvalid() && TopLevelOfInitList)
6211 DiagnoseNarrowingInInitList(*this, Seq, Entity.getType(),
6212 InitE, Result.get());
6213
6214 return Result;
6215 }
6216