1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Redistribution and use in source and binary forms, with or without
3 // modification, are permitted provided that the following conditions are
4 // met:
5 //
6 // * Redistributions of source code must retain the above copyright
7 // notice, this list of conditions and the following disclaimer.
8 // * Redistributions in binary form must reproduce the above
9 // copyright notice, this list of conditions and the following
10 // disclaimer in the documentation and/or other materials provided
11 // with the distribution.
12 // * Neither the name of Google Inc. nor the names of its
13 // contributors may be used to endorse or promote products derived
14 // from this software without specific prior written permission.
15 //
16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
28 #include "v8.h"
29
30 #include "accessors.h"
31 #include "api.h"
32 #include "bootstrapper.h"
33 #include "codegen.h"
34 #include "compilation-cache.h"
35 #include "debug.h"
36 #include "deoptimizer.h"
37 #include "global-handles.h"
38 #include "heap-profiler.h"
39 #include "incremental-marking.h"
40 #include "liveobjectlist-inl.h"
41 #include "mark-compact.h"
42 #include "natives.h"
43 #include "objects-visiting.h"
44 #include "objects-visiting-inl.h"
45 #include "runtime-profiler.h"
46 #include "scopeinfo.h"
47 #include "snapshot.h"
48 #include "store-buffer.h"
49 #include "v8threads.h"
50 #include "vm-state-inl.h"
51 #if V8_TARGET_ARCH_ARM && !V8_INTERPRETED_REGEXP
52 #include "regexp-macro-assembler.h"
53 #include "arm/regexp-macro-assembler-arm.h"
54 #endif
55 #if V8_TARGET_ARCH_MIPS && !V8_INTERPRETED_REGEXP
56 #include "regexp-macro-assembler.h"
57 #include "mips/regexp-macro-assembler-mips.h"
58 #endif
59
60 namespace v8 {
61 namespace internal {
62
63 static LazyMutex gc_initializer_mutex = LAZY_MUTEX_INITIALIZER;
64
65
Heap()66 Heap::Heap()
67 : isolate_(NULL),
68 // semispace_size_ should be a power of 2 and old_generation_size_ should be
69 // a multiple of Page::kPageSize.
70 #if defined(V8_TARGET_ARCH_X64)
71 #define LUMP_OF_MEMORY (2 * MB)
72 code_range_size_(512*MB),
73 #else
74 #define LUMP_OF_MEMORY MB
75 code_range_size_(0),
76 #endif
77 #if defined(ANDROID)
78 reserved_semispace_size_(4 * Max(LUMP_OF_MEMORY, Page::kPageSize)),
79 max_semispace_size_(4 * Max(LUMP_OF_MEMORY, Page::kPageSize)),
80 initial_semispace_size_(Page::kPageSize),
81 max_old_generation_size_(192*MB),
82 max_executable_size_(max_old_generation_size_),
83 #else
84 reserved_semispace_size_(8 * Max(LUMP_OF_MEMORY, Page::kPageSize)),
85 max_semispace_size_(8 * Max(LUMP_OF_MEMORY, Page::kPageSize)),
86 initial_semispace_size_(Page::kPageSize),
87 max_old_generation_size_(700ul * LUMP_OF_MEMORY),
88 max_executable_size_(256l * LUMP_OF_MEMORY),
89 #endif
90
91 // Variables set based on semispace_size_ and old_generation_size_ in
92 // ConfigureHeap (survived_since_last_expansion_, external_allocation_limit_)
93 // Will be 4 * reserved_semispace_size_ to ensure that young
94 // generation can be aligned to its size.
95 survived_since_last_expansion_(0),
96 sweep_generation_(0),
97 always_allocate_scope_depth_(0),
98 linear_allocation_scope_depth_(0),
99 contexts_disposed_(0),
100 global_ic_age_(0),
101 scan_on_scavenge_pages_(0),
102 new_space_(this),
103 old_pointer_space_(NULL),
104 old_data_space_(NULL),
105 code_space_(NULL),
106 map_space_(NULL),
107 cell_space_(NULL),
108 lo_space_(NULL),
109 gc_state_(NOT_IN_GC),
110 gc_post_processing_depth_(0),
111 ms_count_(0),
112 gc_count_(0),
113 remembered_unmapped_pages_index_(0),
114 unflattened_strings_length_(0),
115 #ifdef DEBUG
116 allocation_allowed_(true),
117 allocation_timeout_(0),
118 disallow_allocation_failure_(false),
119 debug_utils_(NULL),
120 #endif // DEBUG
121 new_space_high_promotion_mode_active_(false),
122 old_gen_promotion_limit_(kMinimumPromotionLimit),
123 old_gen_allocation_limit_(kMinimumAllocationLimit),
124 old_gen_limit_factor_(1),
125 size_of_old_gen_at_last_old_space_gc_(0),
126 external_allocation_limit_(0),
127 amount_of_external_allocated_memory_(0),
128 amount_of_external_allocated_memory_at_last_global_gc_(0),
129 old_gen_exhausted_(false),
130 store_buffer_rebuilder_(store_buffer()),
131 hidden_symbol_(NULL),
132 global_gc_prologue_callback_(NULL),
133 global_gc_epilogue_callback_(NULL),
134 gc_safe_size_of_old_object_(NULL),
135 total_regexp_code_generated_(0),
136 tracer_(NULL),
137 young_survivors_after_last_gc_(0),
138 high_survival_rate_period_length_(0),
139 survival_rate_(0),
140 previous_survival_rate_trend_(Heap::STABLE),
141 survival_rate_trend_(Heap::STABLE),
142 max_gc_pause_(0),
143 max_alive_after_gc_(0),
144 min_in_mutator_(kMaxInt),
145 alive_after_last_gc_(0),
146 last_gc_end_timestamp_(0.0),
147 store_buffer_(this),
148 marking_(this),
149 incremental_marking_(this),
150 number_idle_notifications_(0),
151 last_idle_notification_gc_count_(0),
152 last_idle_notification_gc_count_init_(false),
153 mark_sweeps_since_idle_round_started_(0),
154 ms_count_at_last_idle_notification_(0),
155 gc_count_at_last_idle_gc_(0),
156 scavenges_since_last_idle_round_(kIdleScavengeThreshold),
157 promotion_queue_(this),
158 configured_(false),
159 chunks_queued_for_free_(NULL) {
160 // Allow build-time customization of the max semispace size. Building
161 // V8 with snapshots and a non-default max semispace size is much
162 // easier if you can define it as part of the build environment.
163 #if defined(V8_MAX_SEMISPACE_SIZE)
164 max_semispace_size_ = reserved_semispace_size_ = V8_MAX_SEMISPACE_SIZE;
165 #endif
166
167 intptr_t max_virtual = OS::MaxVirtualMemory();
168
169 if (max_virtual > 0) {
170 if (code_range_size_ > 0) {
171 // Reserve no more than 1/8 of the memory for the code range.
172 code_range_size_ = Min(code_range_size_, max_virtual >> 3);
173 }
174 }
175
176 memset(roots_, 0, sizeof(roots_[0]) * kRootListLength);
177 global_contexts_list_ = NULL;
178 mark_compact_collector_.heap_ = this;
179 external_string_table_.heap_ = this;
180 }
181
182
Capacity()183 intptr_t Heap::Capacity() {
184 if (!HasBeenSetUp()) return 0;
185
186 return new_space_.Capacity() +
187 old_pointer_space_->Capacity() +
188 old_data_space_->Capacity() +
189 code_space_->Capacity() +
190 map_space_->Capacity() +
191 cell_space_->Capacity();
192 }
193
194
CommittedMemory()195 intptr_t Heap::CommittedMemory() {
196 if (!HasBeenSetUp()) return 0;
197
198 return new_space_.CommittedMemory() +
199 old_pointer_space_->CommittedMemory() +
200 old_data_space_->CommittedMemory() +
201 code_space_->CommittedMemory() +
202 map_space_->CommittedMemory() +
203 cell_space_->CommittedMemory() +
204 lo_space_->Size();
205 }
206
CommittedMemoryExecutable()207 intptr_t Heap::CommittedMemoryExecutable() {
208 if (!HasBeenSetUp()) return 0;
209
210 return isolate()->memory_allocator()->SizeExecutable();
211 }
212
213
Available()214 intptr_t Heap::Available() {
215 if (!HasBeenSetUp()) return 0;
216
217 return new_space_.Available() +
218 old_pointer_space_->Available() +
219 old_data_space_->Available() +
220 code_space_->Available() +
221 map_space_->Available() +
222 cell_space_->Available();
223 }
224
225
HasBeenSetUp()226 bool Heap::HasBeenSetUp() {
227 return old_pointer_space_ != NULL &&
228 old_data_space_ != NULL &&
229 code_space_ != NULL &&
230 map_space_ != NULL &&
231 cell_space_ != NULL &&
232 lo_space_ != NULL;
233 }
234
235
GcSafeSizeOfOldObject(HeapObject * object)236 int Heap::GcSafeSizeOfOldObject(HeapObject* object) {
237 if (IntrusiveMarking::IsMarked(object)) {
238 return IntrusiveMarking::SizeOfMarkedObject(object);
239 }
240 return object->SizeFromMap(object->map());
241 }
242
243
SelectGarbageCollector(AllocationSpace space,const char ** reason)244 GarbageCollector Heap::SelectGarbageCollector(AllocationSpace space,
245 const char** reason) {
246 // Is global GC requested?
247 if (space != NEW_SPACE || FLAG_gc_global) {
248 isolate_->counters()->gc_compactor_caused_by_request()->Increment();
249 *reason = "GC in old space requested";
250 return MARK_COMPACTOR;
251 }
252
253 // Is enough data promoted to justify a global GC?
254 if (OldGenerationPromotionLimitReached()) {
255 isolate_->counters()->gc_compactor_caused_by_promoted_data()->Increment();
256 *reason = "promotion limit reached";
257 return MARK_COMPACTOR;
258 }
259
260 // Have allocation in OLD and LO failed?
261 if (old_gen_exhausted_) {
262 isolate_->counters()->
263 gc_compactor_caused_by_oldspace_exhaustion()->Increment();
264 *reason = "old generations exhausted";
265 return MARK_COMPACTOR;
266 }
267
268 // Is there enough space left in OLD to guarantee that a scavenge can
269 // succeed?
270 //
271 // Note that MemoryAllocator->MaxAvailable() undercounts the memory available
272 // for object promotion. It counts only the bytes that the memory
273 // allocator has not yet allocated from the OS and assigned to any space,
274 // and does not count available bytes already in the old space or code
275 // space. Undercounting is safe---we may get an unrequested full GC when
276 // a scavenge would have succeeded.
277 if (isolate_->memory_allocator()->MaxAvailable() <= new_space_.Size()) {
278 isolate_->counters()->
279 gc_compactor_caused_by_oldspace_exhaustion()->Increment();
280 *reason = "scavenge might not succeed";
281 return MARK_COMPACTOR;
282 }
283
284 // Default
285 *reason = NULL;
286 return SCAVENGER;
287 }
288
289
290 // TODO(1238405): Combine the infrastructure for --heap-stats and
291 // --log-gc to avoid the complicated preprocessor and flag testing.
ReportStatisticsBeforeGC()292 void Heap::ReportStatisticsBeforeGC() {
293 // Heap::ReportHeapStatistics will also log NewSpace statistics when
294 // compiled --log-gc is set. The following logic is used to avoid
295 // double logging.
296 #ifdef DEBUG
297 if (FLAG_heap_stats || FLAG_log_gc) new_space_.CollectStatistics();
298 if (FLAG_heap_stats) {
299 ReportHeapStatistics("Before GC");
300 } else if (FLAG_log_gc) {
301 new_space_.ReportStatistics();
302 }
303 if (FLAG_heap_stats || FLAG_log_gc) new_space_.ClearHistograms();
304 #else
305 if (FLAG_log_gc) {
306 new_space_.CollectStatistics();
307 new_space_.ReportStatistics();
308 new_space_.ClearHistograms();
309 }
310 #endif // DEBUG
311 }
312
313
PrintShortHeapStatistics()314 void Heap::PrintShortHeapStatistics() {
315 if (!FLAG_trace_gc_verbose) return;
316 PrintF("Memory allocator, used: %8" V8_PTR_PREFIX "d"
317 ", available: %8" V8_PTR_PREFIX "d\n",
318 isolate_->memory_allocator()->Size(),
319 isolate_->memory_allocator()->Available());
320 PrintF("New space, used: %8" V8_PTR_PREFIX "d"
321 ", available: %8" V8_PTR_PREFIX "d\n",
322 Heap::new_space_.Size(),
323 new_space_.Available());
324 PrintF("Old pointers, used: %8" V8_PTR_PREFIX "d"
325 ", available: %8" V8_PTR_PREFIX "d"
326 ", waste: %8" V8_PTR_PREFIX "d\n",
327 old_pointer_space_->Size(),
328 old_pointer_space_->Available(),
329 old_pointer_space_->Waste());
330 PrintF("Old data space, used: %8" V8_PTR_PREFIX "d"
331 ", available: %8" V8_PTR_PREFIX "d"
332 ", waste: %8" V8_PTR_PREFIX "d\n",
333 old_data_space_->Size(),
334 old_data_space_->Available(),
335 old_data_space_->Waste());
336 PrintF("Code space, used: %8" V8_PTR_PREFIX "d"
337 ", available: %8" V8_PTR_PREFIX "d"
338 ", waste: %8" V8_PTR_PREFIX "d\n",
339 code_space_->Size(),
340 code_space_->Available(),
341 code_space_->Waste());
342 PrintF("Map space, used: %8" V8_PTR_PREFIX "d"
343 ", available: %8" V8_PTR_PREFIX "d"
344 ", waste: %8" V8_PTR_PREFIX "d\n",
345 map_space_->Size(),
346 map_space_->Available(),
347 map_space_->Waste());
348 PrintF("Cell space, used: %8" V8_PTR_PREFIX "d"
349 ", available: %8" V8_PTR_PREFIX "d"
350 ", waste: %8" V8_PTR_PREFIX "d\n",
351 cell_space_->Size(),
352 cell_space_->Available(),
353 cell_space_->Waste());
354 PrintF("Large object space, used: %8" V8_PTR_PREFIX "d"
355 ", available: %8" V8_PTR_PREFIX "d\n",
356 lo_space_->Size(),
357 lo_space_->Available());
358 }
359
360
361 // TODO(1238405): Combine the infrastructure for --heap-stats and
362 // --log-gc to avoid the complicated preprocessor and flag testing.
ReportStatisticsAfterGC()363 void Heap::ReportStatisticsAfterGC() {
364 // Similar to the before GC, we use some complicated logic to ensure that
365 // NewSpace statistics are logged exactly once when --log-gc is turned on.
366 #if defined(DEBUG)
367 if (FLAG_heap_stats) {
368 new_space_.CollectStatistics();
369 ReportHeapStatistics("After GC");
370 } else if (FLAG_log_gc) {
371 new_space_.ReportStatistics();
372 }
373 #else
374 if (FLAG_log_gc) new_space_.ReportStatistics();
375 #endif // DEBUG
376 }
377
378
GarbageCollectionPrologue()379 void Heap::GarbageCollectionPrologue() {
380 isolate_->transcendental_cache()->Clear();
381 ClearJSFunctionResultCaches();
382 gc_count_++;
383 unflattened_strings_length_ = 0;
384 #ifdef DEBUG
385 ASSERT(allocation_allowed_ && gc_state_ == NOT_IN_GC);
386 allow_allocation(false);
387
388 if (FLAG_verify_heap) {
389 Verify();
390 }
391
392 if (FLAG_gc_verbose) Print();
393 #endif // DEBUG
394
395 #if defined(DEBUG)
396 ReportStatisticsBeforeGC();
397 #endif // DEBUG
398
399 LiveObjectList::GCPrologue();
400 store_buffer()->GCPrologue();
401 }
402
SizeOfObjects()403 intptr_t Heap::SizeOfObjects() {
404 intptr_t total = 0;
405 AllSpaces spaces;
406 for (Space* space = spaces.next(); space != NULL; space = spaces.next()) {
407 total += space->SizeOfObjects();
408 }
409 return total;
410 }
411
GarbageCollectionEpilogue()412 void Heap::GarbageCollectionEpilogue() {
413 store_buffer()->GCEpilogue();
414 LiveObjectList::GCEpilogue();
415 #ifdef DEBUG
416 allow_allocation(true);
417 ZapFromSpace();
418
419 if (FLAG_verify_heap) {
420 Verify();
421 }
422
423 if (FLAG_print_global_handles) isolate_->global_handles()->Print();
424 if (FLAG_print_handles) PrintHandles();
425 if (FLAG_gc_verbose) Print();
426 if (FLAG_code_stats) ReportCodeStatistics("After GC");
427 #endif
428
429 isolate_->counters()->alive_after_last_gc()->Set(
430 static_cast<int>(SizeOfObjects()));
431
432 isolate_->counters()->symbol_table_capacity()->Set(
433 symbol_table()->Capacity());
434 isolate_->counters()->number_of_symbols()->Set(
435 symbol_table()->NumberOfElements());
436 #if defined(DEBUG)
437 ReportStatisticsAfterGC();
438 #endif // DEBUG
439 #ifdef ENABLE_DEBUGGER_SUPPORT
440 isolate_->debug()->AfterGarbageCollection();
441 #endif // ENABLE_DEBUGGER_SUPPORT
442 }
443
444
CollectAllGarbage(int flags,const char * gc_reason)445 void Heap::CollectAllGarbage(int flags, const char* gc_reason) {
446 // Since we are ignoring the return value, the exact choice of space does
447 // not matter, so long as we do not specify NEW_SPACE, which would not
448 // cause a full GC.
449 mark_compact_collector_.SetFlags(flags);
450 CollectGarbage(OLD_POINTER_SPACE, gc_reason);
451 mark_compact_collector_.SetFlags(kNoGCFlags);
452 }
453
454
CollectAllAvailableGarbage(const char * gc_reason)455 void Heap::CollectAllAvailableGarbage(const char* gc_reason) {
456 // Since we are ignoring the return value, the exact choice of space does
457 // not matter, so long as we do not specify NEW_SPACE, which would not
458 // cause a full GC.
459 // Major GC would invoke weak handle callbacks on weakly reachable
460 // handles, but won't collect weakly reachable objects until next
461 // major GC. Therefore if we collect aggressively and weak handle callback
462 // has been invoked, we rerun major GC to release objects which become
463 // garbage.
464 // Note: as weak callbacks can execute arbitrary code, we cannot
465 // hope that eventually there will be no weak callbacks invocations.
466 // Therefore stop recollecting after several attempts.
467 mark_compact_collector()->SetFlags(kMakeHeapIterableMask |
468 kReduceMemoryFootprintMask);
469 isolate_->compilation_cache()->Clear();
470 const int kMaxNumberOfAttempts = 7;
471 for (int attempt = 0; attempt < kMaxNumberOfAttempts; attempt++) {
472 if (!CollectGarbage(OLD_POINTER_SPACE, MARK_COMPACTOR, gc_reason, NULL)) {
473 break;
474 }
475 }
476 mark_compact_collector()->SetFlags(kNoGCFlags);
477 new_space_.Shrink();
478 UncommitFromSpace();
479 Shrink();
480 incremental_marking()->UncommitMarkingDeque();
481 }
482
483
CollectGarbage(AllocationSpace space,GarbageCollector collector,const char * gc_reason,const char * collector_reason)484 bool Heap::CollectGarbage(AllocationSpace space,
485 GarbageCollector collector,
486 const char* gc_reason,
487 const char* collector_reason) {
488 // The VM is in the GC state until exiting this function.
489 VMState state(isolate_, GC);
490
491 #ifdef DEBUG
492 // Reset the allocation timeout to the GC interval, but make sure to
493 // allow at least a few allocations after a collection. The reason
494 // for this is that we have a lot of allocation sequences and we
495 // assume that a garbage collection will allow the subsequent
496 // allocation attempts to go through.
497 allocation_timeout_ = Max(6, FLAG_gc_interval);
498 #endif
499
500 if (collector == SCAVENGER && !incremental_marking()->IsStopped()) {
501 if (FLAG_trace_incremental_marking) {
502 PrintF("[IncrementalMarking] Scavenge during marking.\n");
503 }
504 }
505
506 if (collector == MARK_COMPACTOR &&
507 !mark_compact_collector()->abort_incremental_marking_ &&
508 !incremental_marking()->IsStopped() &&
509 !incremental_marking()->should_hurry() &&
510 FLAG_incremental_marking_steps) {
511 // Make progress in incremental marking.
512 const intptr_t kStepSizeWhenDelayedByScavenge = 1 * MB;
513 incremental_marking()->Step(kStepSizeWhenDelayedByScavenge,
514 IncrementalMarking::NO_GC_VIA_STACK_GUARD);
515 if (!incremental_marking()->IsComplete()) {
516 if (FLAG_trace_incremental_marking) {
517 PrintF("[IncrementalMarking] Delaying MarkSweep.\n");
518 }
519 collector = SCAVENGER;
520 collector_reason = "incremental marking delaying mark-sweep";
521 }
522 }
523
524 bool next_gc_likely_to_collect_more = false;
525
526 { GCTracer tracer(this, gc_reason, collector_reason);
527 GarbageCollectionPrologue();
528 // The GC count was incremented in the prologue. Tell the tracer about
529 // it.
530 tracer.set_gc_count(gc_count_);
531
532 // Tell the tracer which collector we've selected.
533 tracer.set_collector(collector);
534
535 HistogramTimer* rate = (collector == SCAVENGER)
536 ? isolate_->counters()->gc_scavenger()
537 : isolate_->counters()->gc_compactor();
538 rate->Start();
539 next_gc_likely_to_collect_more =
540 PerformGarbageCollection(collector, &tracer);
541 rate->Stop();
542
543 GarbageCollectionEpilogue();
544 }
545
546 ASSERT(collector == SCAVENGER || incremental_marking()->IsStopped());
547 if (incremental_marking()->IsStopped()) {
548 if (incremental_marking()->WorthActivating() && NextGCIsLikelyToBeFull()) {
549 incremental_marking()->Start();
550 }
551 }
552
553 return next_gc_likely_to_collect_more;
554 }
555
556
PerformScavenge()557 void Heap::PerformScavenge() {
558 GCTracer tracer(this, NULL, NULL);
559 if (incremental_marking()->IsStopped()) {
560 PerformGarbageCollection(SCAVENGER, &tracer);
561 } else {
562 PerformGarbageCollection(MARK_COMPACTOR, &tracer);
563 }
564 }
565
566
567 #ifdef DEBUG
568 // Helper class for verifying the symbol table.
569 class SymbolTableVerifier : public ObjectVisitor {
570 public:
VisitPointers(Object ** start,Object ** end)571 void VisitPointers(Object** start, Object** end) {
572 // Visit all HeapObject pointers in [start, end).
573 for (Object** p = start; p < end; p++) {
574 if ((*p)->IsHeapObject()) {
575 // Check that the symbol is actually a symbol.
576 ASSERT((*p)->IsTheHole() || (*p)->IsUndefined() || (*p)->IsSymbol());
577 }
578 }
579 }
580 };
581 #endif // DEBUG
582
583
VerifySymbolTable()584 static void VerifySymbolTable() {
585 #ifdef DEBUG
586 SymbolTableVerifier verifier;
587 HEAP->symbol_table()->IterateElements(&verifier);
588 #endif // DEBUG
589 }
590
591
AbortIncrementalMarkingAndCollectGarbage(Heap * heap,AllocationSpace space,const char * gc_reason=NULL)592 static bool AbortIncrementalMarkingAndCollectGarbage(
593 Heap* heap,
594 AllocationSpace space,
595 const char* gc_reason = NULL) {
596 heap->mark_compact_collector()->SetFlags(Heap::kAbortIncrementalMarkingMask);
597 bool result = heap->CollectGarbage(space, gc_reason);
598 heap->mark_compact_collector()->SetFlags(Heap::kNoGCFlags);
599 return result;
600 }
601
602
ReserveSpace(int new_space_size,int pointer_space_size,int data_space_size,int code_space_size,int map_space_size,int cell_space_size,int large_object_size)603 void Heap::ReserveSpace(
604 int new_space_size,
605 int pointer_space_size,
606 int data_space_size,
607 int code_space_size,
608 int map_space_size,
609 int cell_space_size,
610 int large_object_size) {
611 NewSpace* new_space = Heap::new_space();
612 PagedSpace* old_pointer_space = Heap::old_pointer_space();
613 PagedSpace* old_data_space = Heap::old_data_space();
614 PagedSpace* code_space = Heap::code_space();
615 PagedSpace* map_space = Heap::map_space();
616 PagedSpace* cell_space = Heap::cell_space();
617 LargeObjectSpace* lo_space = Heap::lo_space();
618 bool gc_performed = true;
619 int counter = 0;
620 static const int kThreshold = 20;
621 while (gc_performed && counter++ < kThreshold) {
622 gc_performed = false;
623 if (!new_space->ReserveSpace(new_space_size)) {
624 Heap::CollectGarbage(NEW_SPACE,
625 "failed to reserve space in the new space");
626 gc_performed = true;
627 }
628 if (!old_pointer_space->ReserveSpace(pointer_space_size)) {
629 AbortIncrementalMarkingAndCollectGarbage(this, OLD_POINTER_SPACE,
630 "failed to reserve space in the old pointer space");
631 gc_performed = true;
632 }
633 if (!(old_data_space->ReserveSpace(data_space_size))) {
634 AbortIncrementalMarkingAndCollectGarbage(this, OLD_DATA_SPACE,
635 "failed to reserve space in the old data space");
636 gc_performed = true;
637 }
638 if (!(code_space->ReserveSpace(code_space_size))) {
639 AbortIncrementalMarkingAndCollectGarbage(this, CODE_SPACE,
640 "failed to reserve space in the code space");
641 gc_performed = true;
642 }
643 if (!(map_space->ReserveSpace(map_space_size))) {
644 AbortIncrementalMarkingAndCollectGarbage(this, MAP_SPACE,
645 "failed to reserve space in the map space");
646 gc_performed = true;
647 }
648 if (!(cell_space->ReserveSpace(cell_space_size))) {
649 AbortIncrementalMarkingAndCollectGarbage(this, CELL_SPACE,
650 "failed to reserve space in the cell space");
651 gc_performed = true;
652 }
653 // We add a slack-factor of 2 in order to have space for a series of
654 // large-object allocations that are only just larger than the page size.
655 large_object_size *= 2;
656 // The ReserveSpace method on the large object space checks how much
657 // we can expand the old generation. This includes expansion caused by
658 // allocation in the other spaces.
659 large_object_size += cell_space_size + map_space_size + code_space_size +
660 data_space_size + pointer_space_size;
661 if (!(lo_space->ReserveSpace(large_object_size))) {
662 AbortIncrementalMarkingAndCollectGarbage(this, LO_SPACE,
663 "failed to reserve space in the large object space");
664 gc_performed = true;
665 }
666 }
667
668 if (gc_performed) {
669 // Failed to reserve the space after several attempts.
670 V8::FatalProcessOutOfMemory("Heap::ReserveSpace");
671 }
672 }
673
674
EnsureFromSpaceIsCommitted()675 void Heap::EnsureFromSpaceIsCommitted() {
676 if (new_space_.CommitFromSpaceIfNeeded()) return;
677
678 // Committing memory to from space failed.
679 // Try shrinking and try again.
680 Shrink();
681 if (new_space_.CommitFromSpaceIfNeeded()) return;
682
683 // Committing memory to from space failed again.
684 // Memory is exhausted and we will die.
685 V8::FatalProcessOutOfMemory("Committing semi space failed.");
686 }
687
688
ClearJSFunctionResultCaches()689 void Heap::ClearJSFunctionResultCaches() {
690 if (isolate_->bootstrapper()->IsActive()) return;
691
692 Object* context = global_contexts_list_;
693 while (!context->IsUndefined()) {
694 // Get the caches for this context. GC can happen when the context
695 // is not fully initialized, so the caches can be undefined.
696 Object* caches_or_undefined =
697 Context::cast(context)->get(Context::JSFUNCTION_RESULT_CACHES_INDEX);
698 if (!caches_or_undefined->IsUndefined()) {
699 FixedArray* caches = FixedArray::cast(caches_or_undefined);
700 // Clear the caches:
701 int length = caches->length();
702 for (int i = 0; i < length; i++) {
703 JSFunctionResultCache::cast(caches->get(i))->Clear();
704 }
705 }
706 // Get the next context:
707 context = Context::cast(context)->get(Context::NEXT_CONTEXT_LINK);
708 }
709 }
710
711
712
ClearNormalizedMapCaches()713 void Heap::ClearNormalizedMapCaches() {
714 if (isolate_->bootstrapper()->IsActive() &&
715 !incremental_marking()->IsMarking()) {
716 return;
717 }
718
719 Object* context = global_contexts_list_;
720 while (!context->IsUndefined()) {
721 // GC can happen when the context is not fully initialized,
722 // so the cache can be undefined.
723 Object* cache =
724 Context::cast(context)->get(Context::NORMALIZED_MAP_CACHE_INDEX);
725 if (!cache->IsUndefined()) {
726 NormalizedMapCache::cast(cache)->Clear();
727 }
728 context = Context::cast(context)->get(Context::NEXT_CONTEXT_LINK);
729 }
730 }
731
732
UpdateSurvivalRateTrend(int start_new_space_size)733 void Heap::UpdateSurvivalRateTrend(int start_new_space_size) {
734 double survival_rate =
735 (static_cast<double>(young_survivors_after_last_gc_) * 100) /
736 start_new_space_size;
737
738 if (survival_rate > kYoungSurvivalRateHighThreshold) {
739 high_survival_rate_period_length_++;
740 } else {
741 high_survival_rate_period_length_ = 0;
742 }
743
744 if (survival_rate < kYoungSurvivalRateLowThreshold) {
745 low_survival_rate_period_length_++;
746 } else {
747 low_survival_rate_period_length_ = 0;
748 }
749
750 double survival_rate_diff = survival_rate_ - survival_rate;
751
752 if (survival_rate_diff > kYoungSurvivalRateAllowedDeviation) {
753 set_survival_rate_trend(DECREASING);
754 } else if (survival_rate_diff < -kYoungSurvivalRateAllowedDeviation) {
755 set_survival_rate_trend(INCREASING);
756 } else {
757 set_survival_rate_trend(STABLE);
758 }
759
760 survival_rate_ = survival_rate;
761 }
762
PerformGarbageCollection(GarbageCollector collector,GCTracer * tracer)763 bool Heap::PerformGarbageCollection(GarbageCollector collector,
764 GCTracer* tracer) {
765 bool next_gc_likely_to_collect_more = false;
766
767 if (collector != SCAVENGER) {
768 PROFILE(isolate_, CodeMovingGCEvent());
769 }
770
771 if (FLAG_verify_heap) {
772 VerifySymbolTable();
773 }
774 if (collector == MARK_COMPACTOR && global_gc_prologue_callback_) {
775 ASSERT(!allocation_allowed_);
776 GCTracer::Scope scope(tracer, GCTracer::Scope::EXTERNAL);
777 global_gc_prologue_callback_();
778 }
779
780 GCType gc_type =
781 collector == MARK_COMPACTOR ? kGCTypeMarkSweepCompact : kGCTypeScavenge;
782
783 for (int i = 0; i < gc_prologue_callbacks_.length(); ++i) {
784 if (gc_type & gc_prologue_callbacks_[i].gc_type) {
785 gc_prologue_callbacks_[i].callback(gc_type, kNoGCCallbackFlags);
786 }
787 }
788
789 EnsureFromSpaceIsCommitted();
790
791 int start_new_space_size = Heap::new_space()->SizeAsInt();
792
793 if (IsHighSurvivalRate()) {
794 // We speed up the incremental marker if it is running so that it
795 // does not fall behind the rate of promotion, which would cause a
796 // constantly growing old space.
797 incremental_marking()->NotifyOfHighPromotionRate();
798 }
799
800 if (collector == MARK_COMPACTOR) {
801 // Perform mark-sweep with optional compaction.
802 MarkCompact(tracer);
803 sweep_generation_++;
804 bool high_survival_rate_during_scavenges = IsHighSurvivalRate() &&
805 IsStableOrIncreasingSurvivalTrend();
806
807 UpdateSurvivalRateTrend(start_new_space_size);
808
809 size_of_old_gen_at_last_old_space_gc_ = PromotedSpaceSize();
810
811 if (high_survival_rate_during_scavenges &&
812 IsStableOrIncreasingSurvivalTrend()) {
813 // Stable high survival rates of young objects both during partial and
814 // full collection indicate that mutator is either building or modifying
815 // a structure with a long lifetime.
816 // In this case we aggressively raise old generation memory limits to
817 // postpone subsequent mark-sweep collection and thus trade memory
818 // space for the mutation speed.
819 old_gen_limit_factor_ = 2;
820 } else {
821 old_gen_limit_factor_ = 1;
822 }
823
824 old_gen_promotion_limit_ =
825 OldGenPromotionLimit(size_of_old_gen_at_last_old_space_gc_);
826 old_gen_allocation_limit_ =
827 OldGenAllocationLimit(size_of_old_gen_at_last_old_space_gc_);
828
829 old_gen_exhausted_ = false;
830 } else {
831 tracer_ = tracer;
832 Scavenge();
833 tracer_ = NULL;
834
835 UpdateSurvivalRateTrend(start_new_space_size);
836 }
837
838 if (!new_space_high_promotion_mode_active_ &&
839 new_space_.Capacity() == new_space_.MaximumCapacity() &&
840 IsStableOrIncreasingSurvivalTrend() &&
841 IsHighSurvivalRate()) {
842 // Stable high survival rates even though young generation is at
843 // maximum capacity indicates that most objects will be promoted.
844 // To decrease scavenger pauses and final mark-sweep pauses, we
845 // have to limit maximal capacity of the young generation.
846 new_space_high_promotion_mode_active_ = true;
847 if (FLAG_trace_gc) {
848 PrintF("Limited new space size due to high promotion rate: %d MB\n",
849 new_space_.InitialCapacity() / MB);
850 }
851 } else if (new_space_high_promotion_mode_active_ &&
852 IsStableOrDecreasingSurvivalTrend() &&
853 IsLowSurvivalRate()) {
854 // Decreasing low survival rates might indicate that the above high
855 // promotion mode is over and we should allow the young generation
856 // to grow again.
857 new_space_high_promotion_mode_active_ = false;
858 if (FLAG_trace_gc) {
859 PrintF("Unlimited new space size due to low promotion rate: %d MB\n",
860 new_space_.MaximumCapacity() / MB);
861 }
862 }
863
864 if (new_space_high_promotion_mode_active_ &&
865 new_space_.Capacity() > new_space_.InitialCapacity()) {
866 new_space_.Shrink();
867 }
868
869 isolate_->counters()->objs_since_last_young()->Set(0);
870
871 gc_post_processing_depth_++;
872 { DisableAssertNoAllocation allow_allocation;
873 GCTracer::Scope scope(tracer, GCTracer::Scope::EXTERNAL);
874 next_gc_likely_to_collect_more =
875 isolate_->global_handles()->PostGarbageCollectionProcessing(collector);
876 }
877 gc_post_processing_depth_--;
878
879 // Update relocatables.
880 Relocatable::PostGarbageCollectionProcessing();
881
882 if (collector == MARK_COMPACTOR) {
883 // Register the amount of external allocated memory.
884 amount_of_external_allocated_memory_at_last_global_gc_ =
885 amount_of_external_allocated_memory_;
886 }
887
888 GCCallbackFlags callback_flags = kNoGCCallbackFlags;
889 for (int i = 0; i < gc_epilogue_callbacks_.length(); ++i) {
890 if (gc_type & gc_epilogue_callbacks_[i].gc_type) {
891 gc_epilogue_callbacks_[i].callback(gc_type, callback_flags);
892 }
893 }
894
895 if (collector == MARK_COMPACTOR && global_gc_epilogue_callback_) {
896 ASSERT(!allocation_allowed_);
897 GCTracer::Scope scope(tracer, GCTracer::Scope::EXTERNAL);
898 global_gc_epilogue_callback_();
899 }
900 if (FLAG_verify_heap) {
901 VerifySymbolTable();
902 }
903
904 return next_gc_likely_to_collect_more;
905 }
906
907
MarkCompact(GCTracer * tracer)908 void Heap::MarkCompact(GCTracer* tracer) {
909 gc_state_ = MARK_COMPACT;
910 LOG(isolate_, ResourceEvent("markcompact", "begin"));
911
912 mark_compact_collector_.Prepare(tracer);
913
914 ms_count_++;
915 tracer->set_full_gc_count(ms_count_);
916
917 MarkCompactPrologue();
918
919 mark_compact_collector_.CollectGarbage();
920
921 LOG(isolate_, ResourceEvent("markcompact", "end"));
922
923 gc_state_ = NOT_IN_GC;
924
925 isolate_->counters()->objs_since_last_full()->Set(0);
926
927 contexts_disposed_ = 0;
928
929 isolate_->set_context_exit_happened(false);
930 }
931
932
MarkCompactPrologue()933 void Heap::MarkCompactPrologue() {
934 // At any old GC clear the keyed lookup cache to enable collection of unused
935 // maps.
936 isolate_->keyed_lookup_cache()->Clear();
937 isolate_->context_slot_cache()->Clear();
938 isolate_->descriptor_lookup_cache()->Clear();
939 StringSplitCache::Clear(string_split_cache());
940
941 isolate_->compilation_cache()->MarkCompactPrologue();
942
943 CompletelyClearInstanceofCache();
944
945 FlushNumberStringCache();
946 if (FLAG_cleanup_code_caches_at_gc) {
947 polymorphic_code_cache()->set_cache(undefined_value());
948 }
949
950 ClearNormalizedMapCaches();
951 }
952
953
FindCodeObject(Address a)954 Object* Heap::FindCodeObject(Address a) {
955 return isolate()->inner_pointer_to_code_cache()->
956 GcSafeFindCodeForInnerPointer(a);
957 }
958
959
960 // Helper class for copying HeapObjects
961 class ScavengeVisitor: public ObjectVisitor {
962 public:
ScavengeVisitor(Heap * heap)963 explicit ScavengeVisitor(Heap* heap) : heap_(heap) {}
964
VisitPointer(Object ** p)965 void VisitPointer(Object** p) { ScavengePointer(p); }
966
VisitPointers(Object ** start,Object ** end)967 void VisitPointers(Object** start, Object** end) {
968 // Copy all HeapObject pointers in [start, end)
969 for (Object** p = start; p < end; p++) ScavengePointer(p);
970 }
971
972 private:
ScavengePointer(Object ** p)973 void ScavengePointer(Object** p) {
974 Object* object = *p;
975 if (!heap_->InNewSpace(object)) return;
976 Heap::ScavengeObject(reinterpret_cast<HeapObject**>(p),
977 reinterpret_cast<HeapObject*>(object));
978 }
979
980 Heap* heap_;
981 };
982
983
984 #ifdef DEBUG
985 // Visitor class to verify pointers in code or data space do not point into
986 // new space.
987 class VerifyNonPointerSpacePointersVisitor: public ObjectVisitor {
988 public:
VisitPointers(Object ** start,Object ** end)989 void VisitPointers(Object** start, Object**end) {
990 for (Object** current = start; current < end; current++) {
991 if ((*current)->IsHeapObject()) {
992 ASSERT(!HEAP->InNewSpace(HeapObject::cast(*current)));
993 }
994 }
995 }
996 };
997
998
VerifyNonPointerSpacePointers()999 static void VerifyNonPointerSpacePointers() {
1000 // Verify that there are no pointers to new space in spaces where we
1001 // do not expect them.
1002 VerifyNonPointerSpacePointersVisitor v;
1003 HeapObjectIterator code_it(HEAP->code_space());
1004 for (HeapObject* object = code_it.Next();
1005 object != NULL; object = code_it.Next())
1006 object->Iterate(&v);
1007
1008 // The old data space was normally swept conservatively so that the iterator
1009 // doesn't work, so we normally skip the next bit.
1010 if (!HEAP->old_data_space()->was_swept_conservatively()) {
1011 HeapObjectIterator data_it(HEAP->old_data_space());
1012 for (HeapObject* object = data_it.Next();
1013 object != NULL; object = data_it.Next())
1014 object->Iterate(&v);
1015 }
1016 }
1017 #endif
1018
1019
CheckNewSpaceExpansionCriteria()1020 void Heap::CheckNewSpaceExpansionCriteria() {
1021 if (new_space_.Capacity() < new_space_.MaximumCapacity() &&
1022 survived_since_last_expansion_ > new_space_.Capacity() &&
1023 !new_space_high_promotion_mode_active_) {
1024 // Grow the size of new space if there is room to grow, enough data
1025 // has survived scavenge since the last expansion and we are not in
1026 // high promotion mode.
1027 new_space_.Grow();
1028 survived_since_last_expansion_ = 0;
1029 }
1030 }
1031
1032
IsUnscavengedHeapObject(Heap * heap,Object ** p)1033 static bool IsUnscavengedHeapObject(Heap* heap, Object** p) {
1034 return heap->InNewSpace(*p) &&
1035 !HeapObject::cast(*p)->map_word().IsForwardingAddress();
1036 }
1037
1038
ScavengeStoreBufferCallback(Heap * heap,MemoryChunk * page,StoreBufferEvent event)1039 void Heap::ScavengeStoreBufferCallback(
1040 Heap* heap,
1041 MemoryChunk* page,
1042 StoreBufferEvent event) {
1043 heap->store_buffer_rebuilder_.Callback(page, event);
1044 }
1045
1046
Callback(MemoryChunk * page,StoreBufferEvent event)1047 void StoreBufferRebuilder::Callback(MemoryChunk* page, StoreBufferEvent event) {
1048 if (event == kStoreBufferStartScanningPagesEvent) {
1049 start_of_current_page_ = NULL;
1050 current_page_ = NULL;
1051 } else if (event == kStoreBufferScanningPageEvent) {
1052 if (current_page_ != NULL) {
1053 // If this page already overflowed the store buffer during this iteration.
1054 if (current_page_->scan_on_scavenge()) {
1055 // Then we should wipe out the entries that have been added for it.
1056 store_buffer_->SetTop(start_of_current_page_);
1057 } else if (store_buffer_->Top() - start_of_current_page_ >=
1058 (store_buffer_->Limit() - store_buffer_->Top()) >> 2) {
1059 // Did we find too many pointers in the previous page? The heuristic is
1060 // that no page can take more then 1/5 the remaining slots in the store
1061 // buffer.
1062 current_page_->set_scan_on_scavenge(true);
1063 store_buffer_->SetTop(start_of_current_page_);
1064 } else {
1065 // In this case the page we scanned took a reasonable number of slots in
1066 // the store buffer. It has now been rehabilitated and is no longer
1067 // marked scan_on_scavenge.
1068 ASSERT(!current_page_->scan_on_scavenge());
1069 }
1070 }
1071 start_of_current_page_ = store_buffer_->Top();
1072 current_page_ = page;
1073 } else if (event == kStoreBufferFullEvent) {
1074 // The current page overflowed the store buffer again. Wipe out its entries
1075 // in the store buffer and mark it scan-on-scavenge again. This may happen
1076 // several times while scanning.
1077 if (current_page_ == NULL) {
1078 // Store Buffer overflowed while scanning promoted objects. These are not
1079 // in any particular page, though they are likely to be clustered by the
1080 // allocation routines.
1081 store_buffer_->EnsureSpace(StoreBuffer::kStoreBufferSize);
1082 } else {
1083 // Store Buffer overflowed while scanning a particular old space page for
1084 // pointers to new space.
1085 ASSERT(current_page_ == page);
1086 ASSERT(page != NULL);
1087 current_page_->set_scan_on_scavenge(true);
1088 ASSERT(start_of_current_page_ != store_buffer_->Top());
1089 store_buffer_->SetTop(start_of_current_page_);
1090 }
1091 } else {
1092 UNREACHABLE();
1093 }
1094 }
1095
1096
Initialize()1097 void PromotionQueue::Initialize() {
1098 // Assumes that a NewSpacePage exactly fits a number of promotion queue
1099 // entries (where each is a pair of intptr_t). This allows us to simplify
1100 // the test fpr when to switch pages.
1101 ASSERT((Page::kPageSize - MemoryChunk::kBodyOffset) % (2 * kPointerSize)
1102 == 0);
1103 limit_ = reinterpret_cast<intptr_t*>(heap_->new_space()->ToSpaceStart());
1104 front_ = rear_ =
1105 reinterpret_cast<intptr_t*>(heap_->new_space()->ToSpaceEnd());
1106 emergency_stack_ = NULL;
1107 guard_ = false;
1108 }
1109
1110
RelocateQueueHead()1111 void PromotionQueue::RelocateQueueHead() {
1112 ASSERT(emergency_stack_ == NULL);
1113
1114 Page* p = Page::FromAllocationTop(reinterpret_cast<Address>(rear_));
1115 intptr_t* head_start = rear_;
1116 intptr_t* head_end =
1117 Min(front_, reinterpret_cast<intptr_t*>(p->area_end()));
1118
1119 int entries_count =
1120 static_cast<int>(head_end - head_start) / kEntrySizeInWords;
1121
1122 emergency_stack_ = new List<Entry>(2 * entries_count);
1123
1124 while (head_start != head_end) {
1125 int size = static_cast<int>(*(head_start++));
1126 HeapObject* obj = reinterpret_cast<HeapObject*>(*(head_start++));
1127 emergency_stack_->Add(Entry(obj, size));
1128 }
1129 rear_ = head_end;
1130 }
1131
1132
Scavenge()1133 void Heap::Scavenge() {
1134 #ifdef DEBUG
1135 if (FLAG_verify_heap) VerifyNonPointerSpacePointers();
1136 #endif
1137
1138 gc_state_ = SCAVENGE;
1139
1140 // Implements Cheney's copying algorithm
1141 LOG(isolate_, ResourceEvent("scavenge", "begin"));
1142
1143 // Clear descriptor cache.
1144 isolate_->descriptor_lookup_cache()->Clear();
1145
1146 // Used for updating survived_since_last_expansion_ at function end.
1147 intptr_t survived_watermark = PromotedSpaceSizeOfObjects();
1148
1149 CheckNewSpaceExpansionCriteria();
1150
1151 SelectScavengingVisitorsTable();
1152
1153 incremental_marking()->PrepareForScavenge();
1154
1155 AdvanceSweepers(static_cast<int>(new_space_.Size()));
1156
1157 // Flip the semispaces. After flipping, to space is empty, from space has
1158 // live objects.
1159 new_space_.Flip();
1160 new_space_.ResetAllocationInfo();
1161
1162 // We need to sweep newly copied objects which can be either in the
1163 // to space or promoted to the old generation. For to-space
1164 // objects, we treat the bottom of the to space as a queue. Newly
1165 // copied and unswept objects lie between a 'front' mark and the
1166 // allocation pointer.
1167 //
1168 // Promoted objects can go into various old-generation spaces, and
1169 // can be allocated internally in the spaces (from the free list).
1170 // We treat the top of the to space as a queue of addresses of
1171 // promoted objects. The addresses of newly promoted and unswept
1172 // objects lie between a 'front' mark and a 'rear' mark that is
1173 // updated as a side effect of promoting an object.
1174 //
1175 // There is guaranteed to be enough room at the top of the to space
1176 // for the addresses of promoted objects: every object promoted
1177 // frees up its size in bytes from the top of the new space, and
1178 // objects are at least one pointer in size.
1179 Address new_space_front = new_space_.ToSpaceStart();
1180 promotion_queue_.Initialize();
1181
1182 #ifdef DEBUG
1183 store_buffer()->Clean();
1184 #endif
1185
1186 ScavengeVisitor scavenge_visitor(this);
1187 // Copy roots.
1188 IterateRoots(&scavenge_visitor, VISIT_ALL_IN_SCAVENGE);
1189
1190 // Copy objects reachable from the old generation.
1191 {
1192 StoreBufferRebuildScope scope(this,
1193 store_buffer(),
1194 &ScavengeStoreBufferCallback);
1195 store_buffer()->IteratePointersToNewSpace(&ScavengeObject);
1196 }
1197
1198 // Copy objects reachable from cells by scavenging cell values directly.
1199 HeapObjectIterator cell_iterator(cell_space_);
1200 for (HeapObject* cell = cell_iterator.Next();
1201 cell != NULL; cell = cell_iterator.Next()) {
1202 if (cell->IsJSGlobalPropertyCell()) {
1203 Address value_address =
1204 reinterpret_cast<Address>(cell) +
1205 (JSGlobalPropertyCell::kValueOffset - kHeapObjectTag);
1206 scavenge_visitor.VisitPointer(reinterpret_cast<Object**>(value_address));
1207 }
1208 }
1209
1210 // Scavenge object reachable from the global contexts list directly.
1211 scavenge_visitor.VisitPointer(BitCast<Object**>(&global_contexts_list_));
1212
1213 new_space_front = DoScavenge(&scavenge_visitor, new_space_front);
1214 isolate_->global_handles()->IdentifyNewSpaceWeakIndependentHandles(
1215 &IsUnscavengedHeapObject);
1216 isolate_->global_handles()->IterateNewSpaceWeakIndependentRoots(
1217 &scavenge_visitor);
1218 new_space_front = DoScavenge(&scavenge_visitor, new_space_front);
1219
1220 UpdateNewSpaceReferencesInExternalStringTable(
1221 &UpdateNewSpaceReferenceInExternalStringTableEntry);
1222
1223 promotion_queue_.Destroy();
1224
1225 LiveObjectList::UpdateReferencesForScavengeGC();
1226 if (!FLAG_watch_ic_patching) {
1227 isolate()->runtime_profiler()->UpdateSamplesAfterScavenge();
1228 }
1229 incremental_marking()->UpdateMarkingDequeAfterScavenge();
1230
1231 ASSERT(new_space_front == new_space_.top());
1232
1233 // Set age mark.
1234 new_space_.set_age_mark(new_space_.top());
1235
1236 new_space_.LowerInlineAllocationLimit(
1237 new_space_.inline_allocation_limit_step());
1238
1239 // Update how much has survived scavenge.
1240 IncrementYoungSurvivorsCounter(static_cast<int>(
1241 (PromotedSpaceSizeOfObjects() - survived_watermark) + new_space_.Size()));
1242
1243 LOG(isolate_, ResourceEvent("scavenge", "end"));
1244
1245 gc_state_ = NOT_IN_GC;
1246
1247 scavenges_since_last_idle_round_++;
1248 }
1249
1250
UpdateNewSpaceReferenceInExternalStringTableEntry(Heap * heap,Object ** p)1251 String* Heap::UpdateNewSpaceReferenceInExternalStringTableEntry(Heap* heap,
1252 Object** p) {
1253 MapWord first_word = HeapObject::cast(*p)->map_word();
1254
1255 if (!first_word.IsForwardingAddress()) {
1256 // Unreachable external string can be finalized.
1257 heap->FinalizeExternalString(String::cast(*p));
1258 return NULL;
1259 }
1260
1261 // String is still reachable.
1262 return String::cast(first_word.ToForwardingAddress());
1263 }
1264
1265
UpdateNewSpaceReferencesInExternalStringTable(ExternalStringTableUpdaterCallback updater_func)1266 void Heap::UpdateNewSpaceReferencesInExternalStringTable(
1267 ExternalStringTableUpdaterCallback updater_func) {
1268 if (FLAG_verify_heap) {
1269 external_string_table_.Verify();
1270 }
1271
1272 if (external_string_table_.new_space_strings_.is_empty()) return;
1273
1274 Object** start = &external_string_table_.new_space_strings_[0];
1275 Object** end = start + external_string_table_.new_space_strings_.length();
1276 Object** last = start;
1277
1278 for (Object** p = start; p < end; ++p) {
1279 ASSERT(InFromSpace(*p));
1280 String* target = updater_func(this, p);
1281
1282 if (target == NULL) continue;
1283
1284 ASSERT(target->IsExternalString());
1285
1286 if (InNewSpace(target)) {
1287 // String is still in new space. Update the table entry.
1288 *last = target;
1289 ++last;
1290 } else {
1291 // String got promoted. Move it to the old string list.
1292 external_string_table_.AddOldString(target);
1293 }
1294 }
1295
1296 ASSERT(last <= end);
1297 external_string_table_.ShrinkNewStrings(static_cast<int>(last - start));
1298 }
1299
1300
UpdateReferencesInExternalStringTable(ExternalStringTableUpdaterCallback updater_func)1301 void Heap::UpdateReferencesInExternalStringTable(
1302 ExternalStringTableUpdaterCallback updater_func) {
1303
1304 // Update old space string references.
1305 if (external_string_table_.old_space_strings_.length() > 0) {
1306 Object** start = &external_string_table_.old_space_strings_[0];
1307 Object** end = start + external_string_table_.old_space_strings_.length();
1308 for (Object** p = start; p < end; ++p) *p = updater_func(this, p);
1309 }
1310
1311 UpdateNewSpaceReferencesInExternalStringTable(updater_func);
1312 }
1313
1314
ProcessFunctionWeakReferences(Heap * heap,Object * function,WeakObjectRetainer * retainer)1315 static Object* ProcessFunctionWeakReferences(Heap* heap,
1316 Object* function,
1317 WeakObjectRetainer* retainer) {
1318 Object* undefined = heap->undefined_value();
1319 Object* head = undefined;
1320 JSFunction* tail = NULL;
1321 Object* candidate = function;
1322 while (candidate != undefined) {
1323 // Check whether to keep the candidate in the list.
1324 JSFunction* candidate_function = reinterpret_cast<JSFunction*>(candidate);
1325 Object* retain = retainer->RetainAs(candidate);
1326 if (retain != NULL) {
1327 if (head == undefined) {
1328 // First element in the list.
1329 head = retain;
1330 } else {
1331 // Subsequent elements in the list.
1332 ASSERT(tail != NULL);
1333 tail->set_next_function_link(retain);
1334 }
1335 // Retained function is new tail.
1336 candidate_function = reinterpret_cast<JSFunction*>(retain);
1337 tail = candidate_function;
1338
1339 ASSERT(retain->IsUndefined() || retain->IsJSFunction());
1340
1341 if (retain == undefined) break;
1342 }
1343
1344 // Move to next element in the list.
1345 candidate = candidate_function->next_function_link();
1346 }
1347
1348 // Terminate the list if there is one or more elements.
1349 if (tail != NULL) {
1350 tail->set_next_function_link(undefined);
1351 }
1352
1353 return head;
1354 }
1355
1356
ProcessWeakReferences(WeakObjectRetainer * retainer)1357 void Heap::ProcessWeakReferences(WeakObjectRetainer* retainer) {
1358 Object* undefined = undefined_value();
1359 Object* head = undefined;
1360 Context* tail = NULL;
1361 Object* candidate = global_contexts_list_;
1362 while (candidate != undefined) {
1363 // Check whether to keep the candidate in the list.
1364 Context* candidate_context = reinterpret_cast<Context*>(candidate);
1365 Object* retain = retainer->RetainAs(candidate);
1366 if (retain != NULL) {
1367 if (head == undefined) {
1368 // First element in the list.
1369 head = retain;
1370 } else {
1371 // Subsequent elements in the list.
1372 ASSERT(tail != NULL);
1373 tail->set_unchecked(this,
1374 Context::NEXT_CONTEXT_LINK,
1375 retain,
1376 UPDATE_WRITE_BARRIER);
1377 }
1378 // Retained context is new tail.
1379 candidate_context = reinterpret_cast<Context*>(retain);
1380 tail = candidate_context;
1381
1382 if (retain == undefined) break;
1383
1384 // Process the weak list of optimized functions for the context.
1385 Object* function_list_head =
1386 ProcessFunctionWeakReferences(
1387 this,
1388 candidate_context->get(Context::OPTIMIZED_FUNCTIONS_LIST),
1389 retainer);
1390 candidate_context->set_unchecked(this,
1391 Context::OPTIMIZED_FUNCTIONS_LIST,
1392 function_list_head,
1393 UPDATE_WRITE_BARRIER);
1394 }
1395
1396 // Move to next element in the list.
1397 candidate = candidate_context->get(Context::NEXT_CONTEXT_LINK);
1398 }
1399
1400 // Terminate the list if there is one or more elements.
1401 if (tail != NULL) {
1402 tail->set_unchecked(this,
1403 Context::NEXT_CONTEXT_LINK,
1404 Heap::undefined_value(),
1405 UPDATE_WRITE_BARRIER);
1406 }
1407
1408 // Update the head of the list of contexts.
1409 global_contexts_list_ = head;
1410 }
1411
1412
VisitExternalResources(v8::ExternalResourceVisitor * visitor)1413 void Heap::VisitExternalResources(v8::ExternalResourceVisitor* visitor) {
1414 AssertNoAllocation no_allocation;
1415
1416 class VisitorAdapter : public ObjectVisitor {
1417 public:
1418 explicit VisitorAdapter(v8::ExternalResourceVisitor* visitor)
1419 : visitor_(visitor) {}
1420 virtual void VisitPointers(Object** start, Object** end) {
1421 for (Object** p = start; p < end; p++) {
1422 if ((*p)->IsExternalString()) {
1423 visitor_->VisitExternalString(Utils::ToLocal(
1424 Handle<String>(String::cast(*p))));
1425 }
1426 }
1427 }
1428 private:
1429 v8::ExternalResourceVisitor* visitor_;
1430 } visitor_adapter(visitor);
1431 external_string_table_.Iterate(&visitor_adapter);
1432 }
1433
1434
1435 class NewSpaceScavenger : public StaticNewSpaceVisitor<NewSpaceScavenger> {
1436 public:
VisitPointer(Heap * heap,Object ** p)1437 static inline void VisitPointer(Heap* heap, Object** p) {
1438 Object* object = *p;
1439 if (!heap->InNewSpace(object)) return;
1440 Heap::ScavengeObject(reinterpret_cast<HeapObject**>(p),
1441 reinterpret_cast<HeapObject*>(object));
1442 }
1443 };
1444
1445
DoScavenge(ObjectVisitor * scavenge_visitor,Address new_space_front)1446 Address Heap::DoScavenge(ObjectVisitor* scavenge_visitor,
1447 Address new_space_front) {
1448 do {
1449 SemiSpace::AssertValidRange(new_space_front, new_space_.top());
1450 // The addresses new_space_front and new_space_.top() define a
1451 // queue of unprocessed copied objects. Process them until the
1452 // queue is empty.
1453 while (new_space_front != new_space_.top()) {
1454 if (!NewSpacePage::IsAtEnd(new_space_front)) {
1455 HeapObject* object = HeapObject::FromAddress(new_space_front);
1456 new_space_front +=
1457 NewSpaceScavenger::IterateBody(object->map(), object);
1458 } else {
1459 new_space_front =
1460 NewSpacePage::FromLimit(new_space_front)->next_page()->area_start();
1461 }
1462 }
1463
1464 // Promote and process all the to-be-promoted objects.
1465 {
1466 StoreBufferRebuildScope scope(this,
1467 store_buffer(),
1468 &ScavengeStoreBufferCallback);
1469 while (!promotion_queue()->is_empty()) {
1470 HeapObject* target;
1471 int size;
1472 promotion_queue()->remove(&target, &size);
1473
1474 // Promoted object might be already partially visited
1475 // during old space pointer iteration. Thus we search specificly
1476 // for pointers to from semispace instead of looking for pointers
1477 // to new space.
1478 ASSERT(!target->IsMap());
1479 IterateAndMarkPointersToFromSpace(target->address(),
1480 target->address() + size,
1481 &ScavengeObject);
1482 }
1483 }
1484
1485 // Take another spin if there are now unswept objects in new space
1486 // (there are currently no more unswept promoted objects).
1487 } while (new_space_front != new_space_.top());
1488
1489 return new_space_front;
1490 }
1491
1492
1493 enum LoggingAndProfiling {
1494 LOGGING_AND_PROFILING_ENABLED,
1495 LOGGING_AND_PROFILING_DISABLED
1496 };
1497
1498
1499 enum MarksHandling { TRANSFER_MARKS, IGNORE_MARKS };
1500
1501
1502 template<MarksHandling marks_handling,
1503 LoggingAndProfiling logging_and_profiling_mode>
1504 class ScavengingVisitor : public StaticVisitorBase {
1505 public:
Initialize()1506 static void Initialize() {
1507 table_.Register(kVisitSeqAsciiString, &EvacuateSeqAsciiString);
1508 table_.Register(kVisitSeqTwoByteString, &EvacuateSeqTwoByteString);
1509 table_.Register(kVisitShortcutCandidate, &EvacuateShortcutCandidate);
1510 table_.Register(kVisitByteArray, &EvacuateByteArray);
1511 table_.Register(kVisitFixedArray, &EvacuateFixedArray);
1512 table_.Register(kVisitFixedDoubleArray, &EvacuateFixedDoubleArray);
1513
1514 table_.Register(kVisitGlobalContext,
1515 &ObjectEvacuationStrategy<POINTER_OBJECT>::
1516 template VisitSpecialized<Context::kSize>);
1517
1518 table_.Register(kVisitConsString,
1519 &ObjectEvacuationStrategy<POINTER_OBJECT>::
1520 template VisitSpecialized<ConsString::kSize>);
1521
1522 table_.Register(kVisitSlicedString,
1523 &ObjectEvacuationStrategy<POINTER_OBJECT>::
1524 template VisitSpecialized<SlicedString::kSize>);
1525
1526 table_.Register(kVisitSharedFunctionInfo,
1527 &ObjectEvacuationStrategy<POINTER_OBJECT>::
1528 template VisitSpecialized<SharedFunctionInfo::kSize>);
1529
1530 table_.Register(kVisitJSWeakMap,
1531 &ObjectEvacuationStrategy<POINTER_OBJECT>::
1532 Visit);
1533
1534 table_.Register(kVisitJSRegExp,
1535 &ObjectEvacuationStrategy<POINTER_OBJECT>::
1536 Visit);
1537
1538 if (marks_handling == IGNORE_MARKS) {
1539 table_.Register(kVisitJSFunction,
1540 &ObjectEvacuationStrategy<POINTER_OBJECT>::
1541 template VisitSpecialized<JSFunction::kSize>);
1542 } else {
1543 table_.Register(kVisitJSFunction, &EvacuateJSFunction);
1544 }
1545
1546 table_.RegisterSpecializations<ObjectEvacuationStrategy<DATA_OBJECT>,
1547 kVisitDataObject,
1548 kVisitDataObjectGeneric>();
1549
1550 table_.RegisterSpecializations<ObjectEvacuationStrategy<POINTER_OBJECT>,
1551 kVisitJSObject,
1552 kVisitJSObjectGeneric>();
1553
1554 table_.RegisterSpecializations<ObjectEvacuationStrategy<POINTER_OBJECT>,
1555 kVisitStruct,
1556 kVisitStructGeneric>();
1557 }
1558
GetTable()1559 static VisitorDispatchTable<ScavengingCallback>* GetTable() {
1560 return &table_;
1561 }
1562
1563 private:
1564 enum ObjectContents { DATA_OBJECT, POINTER_OBJECT };
1565 enum SizeRestriction { SMALL, UNKNOWN_SIZE };
1566
RecordCopiedObject(Heap * heap,HeapObject * obj)1567 static void RecordCopiedObject(Heap* heap, HeapObject* obj) {
1568 bool should_record = false;
1569 #ifdef DEBUG
1570 should_record = FLAG_heap_stats;
1571 #endif
1572 should_record = should_record || FLAG_log_gc;
1573 if (should_record) {
1574 if (heap->new_space()->Contains(obj)) {
1575 heap->new_space()->RecordAllocation(obj);
1576 } else {
1577 heap->new_space()->RecordPromotion(obj);
1578 }
1579 }
1580 }
1581
1582 // Helper function used by CopyObject to copy a source object to an
1583 // allocated target object and update the forwarding pointer in the source
1584 // object. Returns the target object.
INLINE(static void MigrateObject (Heap * heap,HeapObject * source,HeapObject * target,int size))1585 INLINE(static void MigrateObject(Heap* heap,
1586 HeapObject* source,
1587 HeapObject* target,
1588 int size)) {
1589 // Copy the content of source to target.
1590 heap->CopyBlock(target->address(), source->address(), size);
1591
1592 // Set the forwarding address.
1593 source->set_map_word(MapWord::FromForwardingAddress(target));
1594
1595 if (logging_and_profiling_mode == LOGGING_AND_PROFILING_ENABLED) {
1596 // Update NewSpace stats if necessary.
1597 RecordCopiedObject(heap, target);
1598 HEAP_PROFILE(heap, ObjectMoveEvent(source->address(), target->address()));
1599 Isolate* isolate = heap->isolate();
1600 if (isolate->logger()->is_logging() ||
1601 CpuProfiler::is_profiling(isolate)) {
1602 if (target->IsSharedFunctionInfo()) {
1603 PROFILE(isolate, SharedFunctionInfoMoveEvent(
1604 source->address(), target->address()));
1605 }
1606 }
1607 }
1608
1609 if (marks_handling == TRANSFER_MARKS) {
1610 if (Marking::TransferColor(source, target)) {
1611 MemoryChunk::IncrementLiveBytesFromGC(target->address(), size);
1612 }
1613 }
1614 }
1615
1616 template<ObjectContents object_contents, SizeRestriction size_restriction>
EvacuateObject(Map * map,HeapObject ** slot,HeapObject * object,int object_size)1617 static inline void EvacuateObject(Map* map,
1618 HeapObject** slot,
1619 HeapObject* object,
1620 int object_size) {
1621 SLOW_ASSERT((size_restriction != SMALL) ||
1622 (object_size <= Page::kMaxNonCodeHeapObjectSize));
1623 SLOW_ASSERT(object->Size() == object_size);
1624
1625 Heap* heap = map->GetHeap();
1626 if (heap->ShouldBePromoted(object->address(), object_size)) {
1627 MaybeObject* maybe_result;
1628
1629 if ((size_restriction != SMALL) &&
1630 (object_size > Page::kMaxNonCodeHeapObjectSize)) {
1631 maybe_result = heap->lo_space()->AllocateRaw(object_size,
1632 NOT_EXECUTABLE);
1633 } else {
1634 if (object_contents == DATA_OBJECT) {
1635 maybe_result = heap->old_data_space()->AllocateRaw(object_size);
1636 } else {
1637 maybe_result = heap->old_pointer_space()->AllocateRaw(object_size);
1638 }
1639 }
1640
1641 Object* result = NULL; // Initialization to please compiler.
1642 if (maybe_result->ToObject(&result)) {
1643 HeapObject* target = HeapObject::cast(result);
1644
1645 // Order is important: slot might be inside of the target if target
1646 // was allocated over a dead object and slot comes from the store
1647 // buffer.
1648 *slot = target;
1649 MigrateObject(heap, object, target, object_size);
1650
1651 if (object_contents == POINTER_OBJECT) {
1652 heap->promotion_queue()->insert(target, object_size);
1653 }
1654
1655 heap->tracer()->increment_promoted_objects_size(object_size);
1656 return;
1657 }
1658 }
1659 MaybeObject* allocation = heap->new_space()->AllocateRaw(object_size);
1660 heap->promotion_queue()->SetNewLimit(heap->new_space()->top());
1661 Object* result = allocation->ToObjectUnchecked();
1662 HeapObject* target = HeapObject::cast(result);
1663
1664 // Order is important: slot might be inside of the target if target
1665 // was allocated over a dead object and slot comes from the store
1666 // buffer.
1667 *slot = target;
1668 MigrateObject(heap, object, target, object_size);
1669 return;
1670 }
1671
1672
EvacuateJSFunction(Map * map,HeapObject ** slot,HeapObject * object)1673 static inline void EvacuateJSFunction(Map* map,
1674 HeapObject** slot,
1675 HeapObject* object) {
1676 ObjectEvacuationStrategy<POINTER_OBJECT>::
1677 template VisitSpecialized<JSFunction::kSize>(map, slot, object);
1678
1679 HeapObject* target = *slot;
1680 MarkBit mark_bit = Marking::MarkBitFrom(target);
1681 if (Marking::IsBlack(mark_bit)) {
1682 // This object is black and it might not be rescanned by marker.
1683 // We should explicitly record code entry slot for compaction because
1684 // promotion queue processing (IterateAndMarkPointersToFromSpace) will
1685 // miss it as it is not HeapObject-tagged.
1686 Address code_entry_slot =
1687 target->address() + JSFunction::kCodeEntryOffset;
1688 Code* code = Code::cast(Code::GetObjectFromEntryAddress(code_entry_slot));
1689 map->GetHeap()->mark_compact_collector()->
1690 RecordCodeEntrySlot(code_entry_slot, code);
1691 }
1692 }
1693
1694
EvacuateFixedArray(Map * map,HeapObject ** slot,HeapObject * object)1695 static inline void EvacuateFixedArray(Map* map,
1696 HeapObject** slot,
1697 HeapObject* object) {
1698 int object_size = FixedArray::BodyDescriptor::SizeOf(map, object);
1699 EvacuateObject<POINTER_OBJECT, UNKNOWN_SIZE>(map,
1700 slot,
1701 object,
1702 object_size);
1703 }
1704
1705
EvacuateFixedDoubleArray(Map * map,HeapObject ** slot,HeapObject * object)1706 static inline void EvacuateFixedDoubleArray(Map* map,
1707 HeapObject** slot,
1708 HeapObject* object) {
1709 int length = reinterpret_cast<FixedDoubleArray*>(object)->length();
1710 int object_size = FixedDoubleArray::SizeFor(length);
1711 EvacuateObject<DATA_OBJECT, UNKNOWN_SIZE>(map,
1712 slot,
1713 object,
1714 object_size);
1715 }
1716
1717
EvacuateByteArray(Map * map,HeapObject ** slot,HeapObject * object)1718 static inline void EvacuateByteArray(Map* map,
1719 HeapObject** slot,
1720 HeapObject* object) {
1721 int object_size = reinterpret_cast<ByteArray*>(object)->ByteArraySize();
1722 EvacuateObject<DATA_OBJECT, UNKNOWN_SIZE>(map, slot, object, object_size);
1723 }
1724
1725
EvacuateSeqAsciiString(Map * map,HeapObject ** slot,HeapObject * object)1726 static inline void EvacuateSeqAsciiString(Map* map,
1727 HeapObject** slot,
1728 HeapObject* object) {
1729 int object_size = SeqAsciiString::cast(object)->
1730 SeqAsciiStringSize(map->instance_type());
1731 EvacuateObject<DATA_OBJECT, UNKNOWN_SIZE>(map, slot, object, object_size);
1732 }
1733
1734
EvacuateSeqTwoByteString(Map * map,HeapObject ** slot,HeapObject * object)1735 static inline void EvacuateSeqTwoByteString(Map* map,
1736 HeapObject** slot,
1737 HeapObject* object) {
1738 int object_size = SeqTwoByteString::cast(object)->
1739 SeqTwoByteStringSize(map->instance_type());
1740 EvacuateObject<DATA_OBJECT, UNKNOWN_SIZE>(map, slot, object, object_size);
1741 }
1742
1743
IsShortcutCandidate(int type)1744 static inline bool IsShortcutCandidate(int type) {
1745 return ((type & kShortcutTypeMask) == kShortcutTypeTag);
1746 }
1747
EvacuateShortcutCandidate(Map * map,HeapObject ** slot,HeapObject * object)1748 static inline void EvacuateShortcutCandidate(Map* map,
1749 HeapObject** slot,
1750 HeapObject* object) {
1751 ASSERT(IsShortcutCandidate(map->instance_type()));
1752
1753 Heap* heap = map->GetHeap();
1754
1755 if (marks_handling == IGNORE_MARKS &&
1756 ConsString::cast(object)->unchecked_second() ==
1757 heap->empty_string()) {
1758 HeapObject* first =
1759 HeapObject::cast(ConsString::cast(object)->unchecked_first());
1760
1761 *slot = first;
1762
1763 if (!heap->InNewSpace(first)) {
1764 object->set_map_word(MapWord::FromForwardingAddress(first));
1765 return;
1766 }
1767
1768 MapWord first_word = first->map_word();
1769 if (first_word.IsForwardingAddress()) {
1770 HeapObject* target = first_word.ToForwardingAddress();
1771
1772 *slot = target;
1773 object->set_map_word(MapWord::FromForwardingAddress(target));
1774 return;
1775 }
1776
1777 heap->DoScavengeObject(first->map(), slot, first);
1778 object->set_map_word(MapWord::FromForwardingAddress(*slot));
1779 return;
1780 }
1781
1782 int object_size = ConsString::kSize;
1783 EvacuateObject<POINTER_OBJECT, SMALL>(map, slot, object, object_size);
1784 }
1785
1786 template<ObjectContents object_contents>
1787 class ObjectEvacuationStrategy {
1788 public:
1789 template<int object_size>
VisitSpecialized(Map * map,HeapObject ** slot,HeapObject * object)1790 static inline void VisitSpecialized(Map* map,
1791 HeapObject** slot,
1792 HeapObject* object) {
1793 EvacuateObject<object_contents, SMALL>(map, slot, object, object_size);
1794 }
1795
Visit(Map * map,HeapObject ** slot,HeapObject * object)1796 static inline void Visit(Map* map,
1797 HeapObject** slot,
1798 HeapObject* object) {
1799 int object_size = map->instance_size();
1800 EvacuateObject<object_contents, SMALL>(map, slot, object, object_size);
1801 }
1802 };
1803
1804 static VisitorDispatchTable<ScavengingCallback> table_;
1805 };
1806
1807
1808 template<MarksHandling marks_handling,
1809 LoggingAndProfiling logging_and_profiling_mode>
1810 VisitorDispatchTable<ScavengingCallback>
1811 ScavengingVisitor<marks_handling, logging_and_profiling_mode>::table_;
1812
1813
InitializeScavengingVisitorsTables()1814 static void InitializeScavengingVisitorsTables() {
1815 ScavengingVisitor<TRANSFER_MARKS,
1816 LOGGING_AND_PROFILING_DISABLED>::Initialize();
1817 ScavengingVisitor<IGNORE_MARKS, LOGGING_AND_PROFILING_DISABLED>::Initialize();
1818 ScavengingVisitor<TRANSFER_MARKS,
1819 LOGGING_AND_PROFILING_ENABLED>::Initialize();
1820 ScavengingVisitor<IGNORE_MARKS, LOGGING_AND_PROFILING_ENABLED>::Initialize();
1821 }
1822
1823
SelectScavengingVisitorsTable()1824 void Heap::SelectScavengingVisitorsTable() {
1825 bool logging_and_profiling =
1826 isolate()->logger()->is_logging() ||
1827 CpuProfiler::is_profiling(isolate()) ||
1828 (isolate()->heap_profiler() != NULL &&
1829 isolate()->heap_profiler()->is_profiling());
1830
1831 if (!incremental_marking()->IsMarking()) {
1832 if (!logging_and_profiling) {
1833 scavenging_visitors_table_.CopyFrom(
1834 ScavengingVisitor<IGNORE_MARKS,
1835 LOGGING_AND_PROFILING_DISABLED>::GetTable());
1836 } else {
1837 scavenging_visitors_table_.CopyFrom(
1838 ScavengingVisitor<IGNORE_MARKS,
1839 LOGGING_AND_PROFILING_ENABLED>::GetTable());
1840 }
1841 } else {
1842 if (!logging_and_profiling) {
1843 scavenging_visitors_table_.CopyFrom(
1844 ScavengingVisitor<TRANSFER_MARKS,
1845 LOGGING_AND_PROFILING_DISABLED>::GetTable());
1846 } else {
1847 scavenging_visitors_table_.CopyFrom(
1848 ScavengingVisitor<TRANSFER_MARKS,
1849 LOGGING_AND_PROFILING_ENABLED>::GetTable());
1850 }
1851
1852 if (incremental_marking()->IsCompacting()) {
1853 // When compacting forbid short-circuiting of cons-strings.
1854 // Scavenging code relies on the fact that new space object
1855 // can't be evacuated into evacuation candidate but
1856 // short-circuiting violates this assumption.
1857 scavenging_visitors_table_.Register(
1858 StaticVisitorBase::kVisitShortcutCandidate,
1859 scavenging_visitors_table_.GetVisitorById(
1860 StaticVisitorBase::kVisitConsString));
1861 }
1862 }
1863 }
1864
1865
ScavengeObjectSlow(HeapObject ** p,HeapObject * object)1866 void Heap::ScavengeObjectSlow(HeapObject** p, HeapObject* object) {
1867 SLOW_ASSERT(HEAP->InFromSpace(object));
1868 MapWord first_word = object->map_word();
1869 SLOW_ASSERT(!first_word.IsForwardingAddress());
1870 Map* map = first_word.ToMap();
1871 map->GetHeap()->DoScavengeObject(map, p, object);
1872 }
1873
1874
AllocatePartialMap(InstanceType instance_type,int instance_size)1875 MaybeObject* Heap::AllocatePartialMap(InstanceType instance_type,
1876 int instance_size) {
1877 Object* result;
1878 { MaybeObject* maybe_result = AllocateRawMap();
1879 if (!maybe_result->ToObject(&result)) return maybe_result;
1880 }
1881
1882 // Map::cast cannot be used due to uninitialized map field.
1883 reinterpret_cast<Map*>(result)->set_map(raw_unchecked_meta_map());
1884 reinterpret_cast<Map*>(result)->set_instance_type(instance_type);
1885 reinterpret_cast<Map*>(result)->set_instance_size(instance_size);
1886 reinterpret_cast<Map*>(result)->set_visitor_id(
1887 StaticVisitorBase::GetVisitorId(instance_type, instance_size));
1888 reinterpret_cast<Map*>(result)->set_inobject_properties(0);
1889 reinterpret_cast<Map*>(result)->set_pre_allocated_property_fields(0);
1890 reinterpret_cast<Map*>(result)->set_unused_property_fields(0);
1891 reinterpret_cast<Map*>(result)->set_bit_field(0);
1892 reinterpret_cast<Map*>(result)->set_bit_field2(0);
1893 return result;
1894 }
1895
1896
AllocateMap(InstanceType instance_type,int instance_size,ElementsKind elements_kind)1897 MaybeObject* Heap::AllocateMap(InstanceType instance_type,
1898 int instance_size,
1899 ElementsKind elements_kind) {
1900 Object* result;
1901 { MaybeObject* maybe_result = AllocateRawMap();
1902 if (!maybe_result->ToObject(&result)) return maybe_result;
1903 }
1904
1905 Map* map = reinterpret_cast<Map*>(result);
1906 map->set_map_no_write_barrier(meta_map());
1907 map->set_instance_type(instance_type);
1908 map->set_visitor_id(
1909 StaticVisitorBase::GetVisitorId(instance_type, instance_size));
1910 map->set_prototype(null_value(), SKIP_WRITE_BARRIER);
1911 map->set_constructor(null_value(), SKIP_WRITE_BARRIER);
1912 map->set_instance_size(instance_size);
1913 map->set_inobject_properties(0);
1914 map->set_pre_allocated_property_fields(0);
1915 map->init_instance_descriptors();
1916 map->set_code_cache(empty_fixed_array(), SKIP_WRITE_BARRIER);
1917 map->set_prototype_transitions(empty_fixed_array(), SKIP_WRITE_BARRIER);
1918 map->set_unused_property_fields(0);
1919 map->set_bit_field(0);
1920 map->set_bit_field2(1 << Map::kIsExtensible);
1921 map->set_elements_kind(elements_kind);
1922
1923 // If the map object is aligned fill the padding area with Smi 0 objects.
1924 if (Map::kPadStart < Map::kSize) {
1925 memset(reinterpret_cast<byte*>(map) + Map::kPadStart - kHeapObjectTag,
1926 0,
1927 Map::kSize - Map::kPadStart);
1928 }
1929 return map;
1930 }
1931
1932
AllocateCodeCache()1933 MaybeObject* Heap::AllocateCodeCache() {
1934 CodeCache* code_cache;
1935 { MaybeObject* maybe_code_cache = AllocateStruct(CODE_CACHE_TYPE);
1936 if (!maybe_code_cache->To(&code_cache)) return maybe_code_cache;
1937 }
1938 code_cache->set_default_cache(empty_fixed_array(), SKIP_WRITE_BARRIER);
1939 code_cache->set_normal_type_cache(undefined_value(), SKIP_WRITE_BARRIER);
1940 return code_cache;
1941 }
1942
1943
AllocatePolymorphicCodeCache()1944 MaybeObject* Heap::AllocatePolymorphicCodeCache() {
1945 return AllocateStruct(POLYMORPHIC_CODE_CACHE_TYPE);
1946 }
1947
1948
AllocateAccessorPair()1949 MaybeObject* Heap::AllocateAccessorPair() {
1950 AccessorPair* accessors;
1951 { MaybeObject* maybe_accessors = AllocateStruct(ACCESSOR_PAIR_TYPE);
1952 if (!maybe_accessors->To(&accessors)) return maybe_accessors;
1953 }
1954 accessors->set_getter(the_hole_value(), SKIP_WRITE_BARRIER);
1955 accessors->set_setter(the_hole_value(), SKIP_WRITE_BARRIER);
1956 return accessors;
1957 }
1958
1959
AllocateTypeFeedbackInfo()1960 MaybeObject* Heap::AllocateTypeFeedbackInfo() {
1961 TypeFeedbackInfo* info;
1962 { MaybeObject* maybe_info = AllocateStruct(TYPE_FEEDBACK_INFO_TYPE);
1963 if (!maybe_info->To(&info)) return maybe_info;
1964 }
1965 info->set_ic_total_count(0);
1966 info->set_ic_with_type_info_count(0);
1967 info->set_type_feedback_cells(TypeFeedbackCells::cast(empty_fixed_array()),
1968 SKIP_WRITE_BARRIER);
1969 return info;
1970 }
1971
1972
AllocateAliasedArgumentsEntry(int aliased_context_slot)1973 MaybeObject* Heap::AllocateAliasedArgumentsEntry(int aliased_context_slot) {
1974 AliasedArgumentsEntry* entry;
1975 { MaybeObject* maybe_entry = AllocateStruct(ALIASED_ARGUMENTS_ENTRY_TYPE);
1976 if (!maybe_entry->To(&entry)) return maybe_entry;
1977 }
1978 entry->set_aliased_context_slot(aliased_context_slot);
1979 return entry;
1980 }
1981
1982
1983 const Heap::StringTypeTable Heap::string_type_table[] = {
1984 #define STRING_TYPE_ELEMENT(type, size, name, camel_name) \
1985 {type, size, k##camel_name##MapRootIndex},
1986 STRING_TYPE_LIST(STRING_TYPE_ELEMENT)
1987 #undef STRING_TYPE_ELEMENT
1988 };
1989
1990
1991 const Heap::ConstantSymbolTable Heap::constant_symbol_table[] = {
1992 #define CONSTANT_SYMBOL_ELEMENT(name, contents) \
1993 {contents, k##name##RootIndex},
1994 SYMBOL_LIST(CONSTANT_SYMBOL_ELEMENT)
1995 #undef CONSTANT_SYMBOL_ELEMENT
1996 };
1997
1998
1999 const Heap::StructTable Heap::struct_table[] = {
2000 #define STRUCT_TABLE_ELEMENT(NAME, Name, name) \
2001 { NAME##_TYPE, Name::kSize, k##Name##MapRootIndex },
2002 STRUCT_LIST(STRUCT_TABLE_ELEMENT)
2003 #undef STRUCT_TABLE_ELEMENT
2004 };
2005
2006
CreateInitialMaps()2007 bool Heap::CreateInitialMaps() {
2008 Object* obj;
2009 { MaybeObject* maybe_obj = AllocatePartialMap(MAP_TYPE, Map::kSize);
2010 if (!maybe_obj->ToObject(&obj)) return false;
2011 }
2012 // Map::cast cannot be used due to uninitialized map field.
2013 Map* new_meta_map = reinterpret_cast<Map*>(obj);
2014 set_meta_map(new_meta_map);
2015 new_meta_map->set_map(new_meta_map);
2016
2017 { MaybeObject* maybe_obj =
2018 AllocatePartialMap(FIXED_ARRAY_TYPE, kVariableSizeSentinel);
2019 if (!maybe_obj->ToObject(&obj)) return false;
2020 }
2021 set_fixed_array_map(Map::cast(obj));
2022
2023 { MaybeObject* maybe_obj = AllocatePartialMap(ODDBALL_TYPE, Oddball::kSize);
2024 if (!maybe_obj->ToObject(&obj)) return false;
2025 }
2026 set_oddball_map(Map::cast(obj));
2027
2028 // Allocate the empty array.
2029 { MaybeObject* maybe_obj = AllocateEmptyFixedArray();
2030 if (!maybe_obj->ToObject(&obj)) return false;
2031 }
2032 set_empty_fixed_array(FixedArray::cast(obj));
2033
2034 { MaybeObject* maybe_obj = Allocate(oddball_map(), OLD_POINTER_SPACE);
2035 if (!maybe_obj->ToObject(&obj)) return false;
2036 }
2037 set_null_value(Oddball::cast(obj));
2038 Oddball::cast(obj)->set_kind(Oddball::kNull);
2039
2040 { MaybeObject* maybe_obj = Allocate(oddball_map(), OLD_POINTER_SPACE);
2041 if (!maybe_obj->ToObject(&obj)) return false;
2042 }
2043 set_undefined_value(Oddball::cast(obj));
2044 Oddball::cast(obj)->set_kind(Oddball::kUndefined);
2045 ASSERT(!InNewSpace(undefined_value()));
2046
2047 // Allocate the empty descriptor array.
2048 { MaybeObject* maybe_obj = AllocateEmptyFixedArray();
2049 if (!maybe_obj->ToObject(&obj)) return false;
2050 }
2051 set_empty_descriptor_array(DescriptorArray::cast(obj));
2052
2053 // Fix the instance_descriptors for the existing maps.
2054 meta_map()->init_instance_descriptors();
2055 meta_map()->set_code_cache(empty_fixed_array());
2056 meta_map()->set_prototype_transitions(empty_fixed_array());
2057
2058 fixed_array_map()->init_instance_descriptors();
2059 fixed_array_map()->set_code_cache(empty_fixed_array());
2060 fixed_array_map()->set_prototype_transitions(empty_fixed_array());
2061
2062 oddball_map()->init_instance_descriptors();
2063 oddball_map()->set_code_cache(empty_fixed_array());
2064 oddball_map()->set_prototype_transitions(empty_fixed_array());
2065
2066 // Fix prototype object for existing maps.
2067 meta_map()->set_prototype(null_value());
2068 meta_map()->set_constructor(null_value());
2069
2070 fixed_array_map()->set_prototype(null_value());
2071 fixed_array_map()->set_constructor(null_value());
2072
2073 oddball_map()->set_prototype(null_value());
2074 oddball_map()->set_constructor(null_value());
2075
2076 { MaybeObject* maybe_obj =
2077 AllocateMap(FIXED_ARRAY_TYPE, kVariableSizeSentinel);
2078 if (!maybe_obj->ToObject(&obj)) return false;
2079 }
2080 set_fixed_cow_array_map(Map::cast(obj));
2081 ASSERT(fixed_array_map() != fixed_cow_array_map());
2082
2083 { MaybeObject* maybe_obj =
2084 AllocateMap(FIXED_ARRAY_TYPE, kVariableSizeSentinel);
2085 if (!maybe_obj->ToObject(&obj)) return false;
2086 }
2087 set_scope_info_map(Map::cast(obj));
2088
2089 { MaybeObject* maybe_obj = AllocateMap(HEAP_NUMBER_TYPE, HeapNumber::kSize);
2090 if (!maybe_obj->ToObject(&obj)) return false;
2091 }
2092 set_heap_number_map(Map::cast(obj));
2093
2094 { MaybeObject* maybe_obj = AllocateMap(FOREIGN_TYPE, Foreign::kSize);
2095 if (!maybe_obj->ToObject(&obj)) return false;
2096 }
2097 set_foreign_map(Map::cast(obj));
2098
2099 for (unsigned i = 0; i < ARRAY_SIZE(string_type_table); i++) {
2100 const StringTypeTable& entry = string_type_table[i];
2101 { MaybeObject* maybe_obj = AllocateMap(entry.type, entry.size);
2102 if (!maybe_obj->ToObject(&obj)) return false;
2103 }
2104 roots_[entry.index] = Map::cast(obj);
2105 }
2106
2107 { MaybeObject* maybe_obj = AllocateMap(STRING_TYPE, kVariableSizeSentinel);
2108 if (!maybe_obj->ToObject(&obj)) return false;
2109 }
2110 set_undetectable_string_map(Map::cast(obj));
2111 Map::cast(obj)->set_is_undetectable();
2112
2113 { MaybeObject* maybe_obj =
2114 AllocateMap(ASCII_STRING_TYPE, kVariableSizeSentinel);
2115 if (!maybe_obj->ToObject(&obj)) return false;
2116 }
2117 set_undetectable_ascii_string_map(Map::cast(obj));
2118 Map::cast(obj)->set_is_undetectable();
2119
2120 { MaybeObject* maybe_obj =
2121 AllocateMap(FIXED_DOUBLE_ARRAY_TYPE, kVariableSizeSentinel);
2122 if (!maybe_obj->ToObject(&obj)) return false;
2123 }
2124 set_fixed_double_array_map(Map::cast(obj));
2125
2126 { MaybeObject* maybe_obj =
2127 AllocateMap(BYTE_ARRAY_TYPE, kVariableSizeSentinel);
2128 if (!maybe_obj->ToObject(&obj)) return false;
2129 }
2130 set_byte_array_map(Map::cast(obj));
2131
2132 { MaybeObject* maybe_obj =
2133 AllocateMap(FREE_SPACE_TYPE, kVariableSizeSentinel);
2134 if (!maybe_obj->ToObject(&obj)) return false;
2135 }
2136 set_free_space_map(Map::cast(obj));
2137
2138 { MaybeObject* maybe_obj = AllocateByteArray(0, TENURED);
2139 if (!maybe_obj->ToObject(&obj)) return false;
2140 }
2141 set_empty_byte_array(ByteArray::cast(obj));
2142
2143 { MaybeObject* maybe_obj =
2144 AllocateMap(EXTERNAL_PIXEL_ARRAY_TYPE, ExternalArray::kAlignedSize);
2145 if (!maybe_obj->ToObject(&obj)) return false;
2146 }
2147 set_external_pixel_array_map(Map::cast(obj));
2148
2149 { MaybeObject* maybe_obj = AllocateMap(EXTERNAL_BYTE_ARRAY_TYPE,
2150 ExternalArray::kAlignedSize);
2151 if (!maybe_obj->ToObject(&obj)) return false;
2152 }
2153 set_external_byte_array_map(Map::cast(obj));
2154
2155 { MaybeObject* maybe_obj = AllocateMap(EXTERNAL_UNSIGNED_BYTE_ARRAY_TYPE,
2156 ExternalArray::kAlignedSize);
2157 if (!maybe_obj->ToObject(&obj)) return false;
2158 }
2159 set_external_unsigned_byte_array_map(Map::cast(obj));
2160
2161 { MaybeObject* maybe_obj = AllocateMap(EXTERNAL_SHORT_ARRAY_TYPE,
2162 ExternalArray::kAlignedSize);
2163 if (!maybe_obj->ToObject(&obj)) return false;
2164 }
2165 set_external_short_array_map(Map::cast(obj));
2166
2167 { MaybeObject* maybe_obj = AllocateMap(EXTERNAL_UNSIGNED_SHORT_ARRAY_TYPE,
2168 ExternalArray::kAlignedSize);
2169 if (!maybe_obj->ToObject(&obj)) return false;
2170 }
2171 set_external_unsigned_short_array_map(Map::cast(obj));
2172
2173 { MaybeObject* maybe_obj = AllocateMap(EXTERNAL_INT_ARRAY_TYPE,
2174 ExternalArray::kAlignedSize);
2175 if (!maybe_obj->ToObject(&obj)) return false;
2176 }
2177 set_external_int_array_map(Map::cast(obj));
2178
2179 { MaybeObject* maybe_obj = AllocateMap(EXTERNAL_UNSIGNED_INT_ARRAY_TYPE,
2180 ExternalArray::kAlignedSize);
2181 if (!maybe_obj->ToObject(&obj)) return false;
2182 }
2183 set_external_unsigned_int_array_map(Map::cast(obj));
2184
2185 { MaybeObject* maybe_obj = AllocateMap(EXTERNAL_FLOAT_ARRAY_TYPE,
2186 ExternalArray::kAlignedSize);
2187 if (!maybe_obj->ToObject(&obj)) return false;
2188 }
2189 set_external_float_array_map(Map::cast(obj));
2190
2191 { MaybeObject* maybe_obj =
2192 AllocateMap(FIXED_ARRAY_TYPE, kVariableSizeSentinel);
2193 if (!maybe_obj->ToObject(&obj)) return false;
2194 }
2195 set_non_strict_arguments_elements_map(Map::cast(obj));
2196
2197 { MaybeObject* maybe_obj = AllocateMap(EXTERNAL_DOUBLE_ARRAY_TYPE,
2198 ExternalArray::kAlignedSize);
2199 if (!maybe_obj->ToObject(&obj)) return false;
2200 }
2201 set_external_double_array_map(Map::cast(obj));
2202
2203 { MaybeObject* maybe_obj = AllocateMap(CODE_TYPE, kVariableSizeSentinel);
2204 if (!maybe_obj->ToObject(&obj)) return false;
2205 }
2206 set_code_map(Map::cast(obj));
2207
2208 { MaybeObject* maybe_obj = AllocateMap(JS_GLOBAL_PROPERTY_CELL_TYPE,
2209 JSGlobalPropertyCell::kSize);
2210 if (!maybe_obj->ToObject(&obj)) return false;
2211 }
2212 set_global_property_cell_map(Map::cast(obj));
2213
2214 { MaybeObject* maybe_obj = AllocateMap(FILLER_TYPE, kPointerSize);
2215 if (!maybe_obj->ToObject(&obj)) return false;
2216 }
2217 set_one_pointer_filler_map(Map::cast(obj));
2218
2219 { MaybeObject* maybe_obj = AllocateMap(FILLER_TYPE, 2 * kPointerSize);
2220 if (!maybe_obj->ToObject(&obj)) return false;
2221 }
2222 set_two_pointer_filler_map(Map::cast(obj));
2223
2224 for (unsigned i = 0; i < ARRAY_SIZE(struct_table); i++) {
2225 const StructTable& entry = struct_table[i];
2226 { MaybeObject* maybe_obj = AllocateMap(entry.type, entry.size);
2227 if (!maybe_obj->ToObject(&obj)) return false;
2228 }
2229 roots_[entry.index] = Map::cast(obj);
2230 }
2231
2232 { MaybeObject* maybe_obj =
2233 AllocateMap(FIXED_ARRAY_TYPE, kVariableSizeSentinel);
2234 if (!maybe_obj->ToObject(&obj)) return false;
2235 }
2236 set_hash_table_map(Map::cast(obj));
2237
2238 { MaybeObject* maybe_obj =
2239 AllocateMap(FIXED_ARRAY_TYPE, kVariableSizeSentinel);
2240 if (!maybe_obj->ToObject(&obj)) return false;
2241 }
2242 set_function_context_map(Map::cast(obj));
2243
2244 { MaybeObject* maybe_obj =
2245 AllocateMap(FIXED_ARRAY_TYPE, kVariableSizeSentinel);
2246 if (!maybe_obj->ToObject(&obj)) return false;
2247 }
2248 set_catch_context_map(Map::cast(obj));
2249
2250 { MaybeObject* maybe_obj =
2251 AllocateMap(FIXED_ARRAY_TYPE, kVariableSizeSentinel);
2252 if (!maybe_obj->ToObject(&obj)) return false;
2253 }
2254 set_with_context_map(Map::cast(obj));
2255
2256 { MaybeObject* maybe_obj =
2257 AllocateMap(FIXED_ARRAY_TYPE, kVariableSizeSentinel);
2258 if (!maybe_obj->ToObject(&obj)) return false;
2259 }
2260 set_block_context_map(Map::cast(obj));
2261
2262 { MaybeObject* maybe_obj =
2263 AllocateMap(FIXED_ARRAY_TYPE, kVariableSizeSentinel);
2264 if (!maybe_obj->ToObject(&obj)) return false;
2265 }
2266 set_module_context_map(Map::cast(obj));
2267
2268 { MaybeObject* maybe_obj =
2269 AllocateMap(FIXED_ARRAY_TYPE, kVariableSizeSentinel);
2270 if (!maybe_obj->ToObject(&obj)) return false;
2271 }
2272 Map* global_context_map = Map::cast(obj);
2273 global_context_map->set_visitor_id(StaticVisitorBase::kVisitGlobalContext);
2274 set_global_context_map(global_context_map);
2275
2276 { MaybeObject* maybe_obj = AllocateMap(SHARED_FUNCTION_INFO_TYPE,
2277 SharedFunctionInfo::kAlignedSize);
2278 if (!maybe_obj->ToObject(&obj)) return false;
2279 }
2280 set_shared_function_info_map(Map::cast(obj));
2281
2282 { MaybeObject* maybe_obj = AllocateMap(JS_MESSAGE_OBJECT_TYPE,
2283 JSMessageObject::kSize);
2284 if (!maybe_obj->ToObject(&obj)) return false;
2285 }
2286 set_message_object_map(Map::cast(obj));
2287
2288 ASSERT(!InNewSpace(empty_fixed_array()));
2289 return true;
2290 }
2291
2292
AllocateHeapNumber(double value,PretenureFlag pretenure)2293 MaybeObject* Heap::AllocateHeapNumber(double value, PretenureFlag pretenure) {
2294 // Statically ensure that it is safe to allocate heap numbers in paged
2295 // spaces.
2296 STATIC_ASSERT(HeapNumber::kSize <= Page::kNonCodeObjectAreaSize);
2297 AllocationSpace space = (pretenure == TENURED) ? OLD_DATA_SPACE : NEW_SPACE;
2298
2299 Object* result;
2300 { MaybeObject* maybe_result =
2301 AllocateRaw(HeapNumber::kSize, space, OLD_DATA_SPACE);
2302 if (!maybe_result->ToObject(&result)) return maybe_result;
2303 }
2304
2305 HeapObject::cast(result)->set_map_no_write_barrier(heap_number_map());
2306 HeapNumber::cast(result)->set_value(value);
2307 return result;
2308 }
2309
2310
AllocateHeapNumber(double value)2311 MaybeObject* Heap::AllocateHeapNumber(double value) {
2312 // Use general version, if we're forced to always allocate.
2313 if (always_allocate()) return AllocateHeapNumber(value, TENURED);
2314
2315 // This version of AllocateHeapNumber is optimized for
2316 // allocation in new space.
2317 STATIC_ASSERT(HeapNumber::kSize <= Page::kMaxNonCodeHeapObjectSize);
2318 ASSERT(allocation_allowed_ && gc_state_ == NOT_IN_GC);
2319 Object* result;
2320 { MaybeObject* maybe_result = new_space_.AllocateRaw(HeapNumber::kSize);
2321 if (!maybe_result->ToObject(&result)) return maybe_result;
2322 }
2323 HeapObject::cast(result)->set_map_no_write_barrier(heap_number_map());
2324 HeapNumber::cast(result)->set_value(value);
2325 return result;
2326 }
2327
2328
AllocateJSGlobalPropertyCell(Object * value)2329 MaybeObject* Heap::AllocateJSGlobalPropertyCell(Object* value) {
2330 Object* result;
2331 { MaybeObject* maybe_result = AllocateRawCell();
2332 if (!maybe_result->ToObject(&result)) return maybe_result;
2333 }
2334 HeapObject::cast(result)->set_map_no_write_barrier(
2335 global_property_cell_map());
2336 JSGlobalPropertyCell::cast(result)->set_value(value);
2337 return result;
2338 }
2339
2340
CreateOddball(const char * to_string,Object * to_number,byte kind)2341 MaybeObject* Heap::CreateOddball(const char* to_string,
2342 Object* to_number,
2343 byte kind) {
2344 Object* result;
2345 { MaybeObject* maybe_result = Allocate(oddball_map(), OLD_POINTER_SPACE);
2346 if (!maybe_result->ToObject(&result)) return maybe_result;
2347 }
2348 return Oddball::cast(result)->Initialize(to_string, to_number, kind);
2349 }
2350
2351
CreateApiObjects()2352 bool Heap::CreateApiObjects() {
2353 Object* obj;
2354
2355 { MaybeObject* maybe_obj = AllocateMap(JS_OBJECT_TYPE, JSObject::kHeaderSize);
2356 if (!maybe_obj->ToObject(&obj)) return false;
2357 }
2358 // Don't use Smi-only elements optimizations for objects with the neander
2359 // map. There are too many cases where element values are set directly with a
2360 // bottleneck to trap the Smi-only -> fast elements transition, and there
2361 // appears to be no benefit for optimize this case.
2362 Map* new_neander_map = Map::cast(obj);
2363 new_neander_map->set_elements_kind(FAST_ELEMENTS);
2364 set_neander_map(new_neander_map);
2365
2366 { MaybeObject* maybe_obj = AllocateJSObjectFromMap(neander_map());
2367 if (!maybe_obj->ToObject(&obj)) return false;
2368 }
2369 Object* elements;
2370 { MaybeObject* maybe_elements = AllocateFixedArray(2);
2371 if (!maybe_elements->ToObject(&elements)) return false;
2372 }
2373 FixedArray::cast(elements)->set(0, Smi::FromInt(0));
2374 JSObject::cast(obj)->set_elements(FixedArray::cast(elements));
2375 set_message_listeners(JSObject::cast(obj));
2376
2377 return true;
2378 }
2379
2380
CreateJSEntryStub()2381 void Heap::CreateJSEntryStub() {
2382 JSEntryStub stub;
2383 set_js_entry_code(*stub.GetCode());
2384 }
2385
2386
CreateJSConstructEntryStub()2387 void Heap::CreateJSConstructEntryStub() {
2388 JSConstructEntryStub stub;
2389 set_js_construct_entry_code(*stub.GetCode());
2390 }
2391
2392
CreateFixedStubs()2393 void Heap::CreateFixedStubs() {
2394 // Here we create roots for fixed stubs. They are needed at GC
2395 // for cooking and uncooking (check out frames.cc).
2396 // The eliminates the need for doing dictionary lookup in the
2397 // stub cache for these stubs.
2398 HandleScope scope;
2399 // gcc-4.4 has problem generating correct code of following snippet:
2400 // { JSEntryStub stub;
2401 // js_entry_code_ = *stub.GetCode();
2402 // }
2403 // { JSConstructEntryStub stub;
2404 // js_construct_entry_code_ = *stub.GetCode();
2405 // }
2406 // To workaround the problem, make separate functions without inlining.
2407 Heap::CreateJSEntryStub();
2408 Heap::CreateJSConstructEntryStub();
2409
2410 // Create stubs that should be there, so we don't unexpectedly have to
2411 // create them if we need them during the creation of another stub.
2412 // Stub creation mixes raw pointers and handles in an unsafe manner so
2413 // we cannot create stubs while we are creating stubs.
2414 CodeStub::GenerateStubsAheadOfTime();
2415 }
2416
2417
CreateInitialObjects()2418 bool Heap::CreateInitialObjects() {
2419 Object* obj;
2420
2421 // The -0 value must be set before NumberFromDouble works.
2422 { MaybeObject* maybe_obj = AllocateHeapNumber(-0.0, TENURED);
2423 if (!maybe_obj->ToObject(&obj)) return false;
2424 }
2425 set_minus_zero_value(HeapNumber::cast(obj));
2426 ASSERT(signbit(minus_zero_value()->Number()) != 0);
2427
2428 { MaybeObject* maybe_obj = AllocateHeapNumber(OS::nan_value(), TENURED);
2429 if (!maybe_obj->ToObject(&obj)) return false;
2430 }
2431 set_nan_value(HeapNumber::cast(obj));
2432
2433 { MaybeObject* maybe_obj = AllocateHeapNumber(V8_INFINITY, TENURED);
2434 if (!maybe_obj->ToObject(&obj)) return false;
2435 }
2436 set_infinity_value(HeapNumber::cast(obj));
2437
2438 // The hole has not been created yet, but we want to put something
2439 // predictable in the gaps in the symbol table, so lets make that Smi zero.
2440 set_the_hole_value(reinterpret_cast<Oddball*>(Smi::FromInt(0)));
2441
2442 // Allocate initial symbol table.
2443 { MaybeObject* maybe_obj = SymbolTable::Allocate(kInitialSymbolTableSize);
2444 if (!maybe_obj->ToObject(&obj)) return false;
2445 }
2446 // Don't use set_symbol_table() due to asserts.
2447 roots_[kSymbolTableRootIndex] = obj;
2448
2449 // Finish initializing oddballs after creating symboltable.
2450 { MaybeObject* maybe_obj =
2451 undefined_value()->Initialize("undefined",
2452 nan_value(),
2453 Oddball::kUndefined);
2454 if (!maybe_obj->ToObject(&obj)) return false;
2455 }
2456
2457 // Initialize the null_value.
2458 { MaybeObject* maybe_obj =
2459 null_value()->Initialize("null", Smi::FromInt(0), Oddball::kNull);
2460 if (!maybe_obj->ToObject(&obj)) return false;
2461 }
2462
2463 { MaybeObject* maybe_obj = CreateOddball("true",
2464 Smi::FromInt(1),
2465 Oddball::kTrue);
2466 if (!maybe_obj->ToObject(&obj)) return false;
2467 }
2468 set_true_value(Oddball::cast(obj));
2469
2470 { MaybeObject* maybe_obj = CreateOddball("false",
2471 Smi::FromInt(0),
2472 Oddball::kFalse);
2473 if (!maybe_obj->ToObject(&obj)) return false;
2474 }
2475 set_false_value(Oddball::cast(obj));
2476
2477 { MaybeObject* maybe_obj = CreateOddball("hole",
2478 Smi::FromInt(-1),
2479 Oddball::kTheHole);
2480 if (!maybe_obj->ToObject(&obj)) return false;
2481 }
2482 set_the_hole_value(Oddball::cast(obj));
2483
2484 { MaybeObject* maybe_obj = CreateOddball("arguments_marker",
2485 Smi::FromInt(-4),
2486 Oddball::kArgumentMarker);
2487 if (!maybe_obj->ToObject(&obj)) return false;
2488 }
2489 set_arguments_marker(Oddball::cast(obj));
2490
2491 { MaybeObject* maybe_obj = CreateOddball("no_interceptor_result_sentinel",
2492 Smi::FromInt(-2),
2493 Oddball::kOther);
2494 if (!maybe_obj->ToObject(&obj)) return false;
2495 }
2496 set_no_interceptor_result_sentinel(obj);
2497
2498 { MaybeObject* maybe_obj = CreateOddball("termination_exception",
2499 Smi::FromInt(-3),
2500 Oddball::kOther);
2501 if (!maybe_obj->ToObject(&obj)) return false;
2502 }
2503 set_termination_exception(obj);
2504
2505 // Allocate the empty string.
2506 { MaybeObject* maybe_obj = AllocateRawAsciiString(0, TENURED);
2507 if (!maybe_obj->ToObject(&obj)) return false;
2508 }
2509 set_empty_string(String::cast(obj));
2510
2511 for (unsigned i = 0; i < ARRAY_SIZE(constant_symbol_table); i++) {
2512 { MaybeObject* maybe_obj =
2513 LookupAsciiSymbol(constant_symbol_table[i].contents);
2514 if (!maybe_obj->ToObject(&obj)) return false;
2515 }
2516 roots_[constant_symbol_table[i].index] = String::cast(obj);
2517 }
2518
2519 // Allocate the hidden symbol which is used to identify the hidden properties
2520 // in JSObjects. The hash code has a special value so that it will not match
2521 // the empty string when searching for the property. It cannot be part of the
2522 // loop above because it needs to be allocated manually with the special
2523 // hash code in place. The hash code for the hidden_symbol is zero to ensure
2524 // that it will always be at the first entry in property descriptors.
2525 { MaybeObject* maybe_obj =
2526 AllocateSymbol(CStrVector(""), 0, String::kZeroHash);
2527 if (!maybe_obj->ToObject(&obj)) return false;
2528 }
2529 hidden_symbol_ = String::cast(obj);
2530
2531 // Allocate the foreign for __proto__.
2532 { MaybeObject* maybe_obj =
2533 AllocateForeign((Address) &Accessors::ObjectPrototype);
2534 if (!maybe_obj->ToObject(&obj)) return false;
2535 }
2536 set_prototype_accessors(Foreign::cast(obj));
2537
2538 // Allocate the code_stubs dictionary. The initial size is set to avoid
2539 // expanding the dictionary during bootstrapping.
2540 { MaybeObject* maybe_obj = UnseededNumberDictionary::Allocate(128);
2541 if (!maybe_obj->ToObject(&obj)) return false;
2542 }
2543 set_code_stubs(UnseededNumberDictionary::cast(obj));
2544
2545
2546 // Allocate the non_monomorphic_cache used in stub-cache.cc. The initial size
2547 // is set to avoid expanding the dictionary during bootstrapping.
2548 { MaybeObject* maybe_obj = UnseededNumberDictionary::Allocate(64);
2549 if (!maybe_obj->ToObject(&obj)) return false;
2550 }
2551 set_non_monomorphic_cache(UnseededNumberDictionary::cast(obj));
2552
2553 { MaybeObject* maybe_obj = AllocatePolymorphicCodeCache();
2554 if (!maybe_obj->ToObject(&obj)) return false;
2555 }
2556 set_polymorphic_code_cache(PolymorphicCodeCache::cast(obj));
2557
2558 set_instanceof_cache_function(Smi::FromInt(0));
2559 set_instanceof_cache_map(Smi::FromInt(0));
2560 set_instanceof_cache_answer(Smi::FromInt(0));
2561
2562 CreateFixedStubs();
2563
2564 // Allocate the dictionary of intrinsic function names.
2565 { MaybeObject* maybe_obj = StringDictionary::Allocate(Runtime::kNumFunctions);
2566 if (!maybe_obj->ToObject(&obj)) return false;
2567 }
2568 { MaybeObject* maybe_obj = Runtime::InitializeIntrinsicFunctionNames(this,
2569 obj);
2570 if (!maybe_obj->ToObject(&obj)) return false;
2571 }
2572 set_intrinsic_function_names(StringDictionary::cast(obj));
2573
2574 { MaybeObject* maybe_obj = AllocateInitialNumberStringCache();
2575 if (!maybe_obj->ToObject(&obj)) return false;
2576 }
2577 set_number_string_cache(FixedArray::cast(obj));
2578
2579 // Allocate cache for single character ASCII strings.
2580 { MaybeObject* maybe_obj =
2581 AllocateFixedArray(String::kMaxAsciiCharCode + 1, TENURED);
2582 if (!maybe_obj->ToObject(&obj)) return false;
2583 }
2584 set_single_character_string_cache(FixedArray::cast(obj));
2585
2586 // Allocate cache for string split.
2587 { MaybeObject* maybe_obj =
2588 AllocateFixedArray(StringSplitCache::kStringSplitCacheSize, TENURED);
2589 if (!maybe_obj->ToObject(&obj)) return false;
2590 }
2591 set_string_split_cache(FixedArray::cast(obj));
2592
2593 // Allocate cache for external strings pointing to native source code.
2594 { MaybeObject* maybe_obj = AllocateFixedArray(Natives::GetBuiltinsCount());
2595 if (!maybe_obj->ToObject(&obj)) return false;
2596 }
2597 set_natives_source_cache(FixedArray::cast(obj));
2598
2599 // Handling of script id generation is in FACTORY->NewScript.
2600 set_last_script_id(undefined_value());
2601
2602 // Initialize keyed lookup cache.
2603 isolate_->keyed_lookup_cache()->Clear();
2604
2605 // Initialize context slot cache.
2606 isolate_->context_slot_cache()->Clear();
2607
2608 // Initialize descriptor cache.
2609 isolate_->descriptor_lookup_cache()->Clear();
2610
2611 // Initialize compilation cache.
2612 isolate_->compilation_cache()->Clear();
2613
2614 return true;
2615 }
2616
2617
Lookup(FixedArray * cache,String * string,String * pattern)2618 Object* StringSplitCache::Lookup(
2619 FixedArray* cache, String* string, String* pattern) {
2620 if (!string->IsSymbol() || !pattern->IsSymbol()) return Smi::FromInt(0);
2621 uint32_t hash = string->Hash();
2622 uint32_t index = ((hash & (kStringSplitCacheSize - 1)) &
2623 ~(kArrayEntriesPerCacheEntry - 1));
2624 if (cache->get(index + kStringOffset) == string &&
2625 cache->get(index + kPatternOffset) == pattern) {
2626 return cache->get(index + kArrayOffset);
2627 }
2628 index = ((index + kArrayEntriesPerCacheEntry) & (kStringSplitCacheSize - 1));
2629 if (cache->get(index + kStringOffset) == string &&
2630 cache->get(index + kPatternOffset) == pattern) {
2631 return cache->get(index + kArrayOffset);
2632 }
2633 return Smi::FromInt(0);
2634 }
2635
2636
Enter(Heap * heap,FixedArray * cache,String * string,String * pattern,FixedArray * array)2637 void StringSplitCache::Enter(Heap* heap,
2638 FixedArray* cache,
2639 String* string,
2640 String* pattern,
2641 FixedArray* array) {
2642 if (!string->IsSymbol() || !pattern->IsSymbol()) return;
2643 uint32_t hash = string->Hash();
2644 uint32_t index = ((hash & (kStringSplitCacheSize - 1)) &
2645 ~(kArrayEntriesPerCacheEntry - 1));
2646 if (cache->get(index + kStringOffset) == Smi::FromInt(0)) {
2647 cache->set(index + kStringOffset, string);
2648 cache->set(index + kPatternOffset, pattern);
2649 cache->set(index + kArrayOffset, array);
2650 } else {
2651 uint32_t index2 =
2652 ((index + kArrayEntriesPerCacheEntry) & (kStringSplitCacheSize - 1));
2653 if (cache->get(index2 + kStringOffset) == Smi::FromInt(0)) {
2654 cache->set(index2 + kStringOffset, string);
2655 cache->set(index2 + kPatternOffset, pattern);
2656 cache->set(index2 + kArrayOffset, array);
2657 } else {
2658 cache->set(index2 + kStringOffset, Smi::FromInt(0));
2659 cache->set(index2 + kPatternOffset, Smi::FromInt(0));
2660 cache->set(index2 + kArrayOffset, Smi::FromInt(0));
2661 cache->set(index + kStringOffset, string);
2662 cache->set(index + kPatternOffset, pattern);
2663 cache->set(index + kArrayOffset, array);
2664 }
2665 }
2666 if (array->length() < 100) { // Limit how many new symbols we want to make.
2667 for (int i = 0; i < array->length(); i++) {
2668 String* str = String::cast(array->get(i));
2669 Object* symbol;
2670 MaybeObject* maybe_symbol = heap->LookupSymbol(str);
2671 if (maybe_symbol->ToObject(&symbol)) {
2672 array->set(i, symbol);
2673 }
2674 }
2675 }
2676 array->set_map_no_write_barrier(heap->fixed_cow_array_map());
2677 }
2678
2679
Clear(FixedArray * cache)2680 void StringSplitCache::Clear(FixedArray* cache) {
2681 for (int i = 0; i < kStringSplitCacheSize; i++) {
2682 cache->set(i, Smi::FromInt(0));
2683 }
2684 }
2685
2686
AllocateInitialNumberStringCache()2687 MaybeObject* Heap::AllocateInitialNumberStringCache() {
2688 MaybeObject* maybe_obj =
2689 AllocateFixedArray(kInitialNumberStringCacheSize * 2, TENURED);
2690 return maybe_obj;
2691 }
2692
2693
FullSizeNumberStringCacheLength()2694 int Heap::FullSizeNumberStringCacheLength() {
2695 // Compute the size of the number string cache based on the max newspace size.
2696 // The number string cache has a minimum size based on twice the initial cache
2697 // size to ensure that it is bigger after being made 'full size'.
2698 int number_string_cache_size = max_semispace_size_ / 512;
2699 number_string_cache_size = Max(kInitialNumberStringCacheSize * 2,
2700 Min(0x4000, number_string_cache_size));
2701 // There is a string and a number per entry so the length is twice the number
2702 // of entries.
2703 return number_string_cache_size * 2;
2704 }
2705
2706
AllocateFullSizeNumberStringCache()2707 void Heap::AllocateFullSizeNumberStringCache() {
2708 // The idea is to have a small number string cache in the snapshot to keep
2709 // boot-time memory usage down. If we expand the number string cache already
2710 // while creating the snapshot then that didn't work out.
2711 ASSERT(!Serializer::enabled());
2712 MaybeObject* maybe_obj =
2713 AllocateFixedArray(FullSizeNumberStringCacheLength(), TENURED);
2714 Object* new_cache;
2715 if (maybe_obj->ToObject(&new_cache)) {
2716 // We don't bother to repopulate the cache with entries from the old cache.
2717 // It will be repopulated soon enough with new strings.
2718 set_number_string_cache(FixedArray::cast(new_cache));
2719 }
2720 // If allocation fails then we just return without doing anything. It is only
2721 // a cache, so best effort is OK here.
2722 }
2723
2724
FlushNumberStringCache()2725 void Heap::FlushNumberStringCache() {
2726 // Flush the number to string cache.
2727 int len = number_string_cache()->length();
2728 for (int i = 0; i < len; i++) {
2729 number_string_cache()->set_undefined(this, i);
2730 }
2731 }
2732
2733
double_get_hash(double d)2734 static inline int double_get_hash(double d) {
2735 DoubleRepresentation rep(d);
2736 return static_cast<int>(rep.bits) ^ static_cast<int>(rep.bits >> 32);
2737 }
2738
2739
smi_get_hash(Smi * smi)2740 static inline int smi_get_hash(Smi* smi) {
2741 return smi->value();
2742 }
2743
2744
GetNumberStringCache(Object * number)2745 Object* Heap::GetNumberStringCache(Object* number) {
2746 int hash;
2747 int mask = (number_string_cache()->length() >> 1) - 1;
2748 if (number->IsSmi()) {
2749 hash = smi_get_hash(Smi::cast(number)) & mask;
2750 } else {
2751 hash = double_get_hash(number->Number()) & mask;
2752 }
2753 Object* key = number_string_cache()->get(hash * 2);
2754 if (key == number) {
2755 return String::cast(number_string_cache()->get(hash * 2 + 1));
2756 } else if (key->IsHeapNumber() &&
2757 number->IsHeapNumber() &&
2758 key->Number() == number->Number()) {
2759 return String::cast(number_string_cache()->get(hash * 2 + 1));
2760 }
2761 return undefined_value();
2762 }
2763
2764
SetNumberStringCache(Object * number,String * string)2765 void Heap::SetNumberStringCache(Object* number, String* string) {
2766 int hash;
2767 int mask = (number_string_cache()->length() >> 1) - 1;
2768 if (number->IsSmi()) {
2769 hash = smi_get_hash(Smi::cast(number)) & mask;
2770 } else {
2771 hash = double_get_hash(number->Number()) & mask;
2772 }
2773 if (number_string_cache()->get(hash * 2) != undefined_value() &&
2774 number_string_cache()->length() != FullSizeNumberStringCacheLength()) {
2775 // The first time we have a hash collision, we move to the full sized
2776 // number string cache.
2777 AllocateFullSizeNumberStringCache();
2778 return;
2779 }
2780 number_string_cache()->set(hash * 2, number);
2781 number_string_cache()->set(hash * 2 + 1, string);
2782 }
2783
2784
NumberToString(Object * number,bool check_number_string_cache)2785 MaybeObject* Heap::NumberToString(Object* number,
2786 bool check_number_string_cache) {
2787 isolate_->counters()->number_to_string_runtime()->Increment();
2788 if (check_number_string_cache) {
2789 Object* cached = GetNumberStringCache(number);
2790 if (cached != undefined_value()) {
2791 return cached;
2792 }
2793 }
2794
2795 char arr[100];
2796 Vector<char> buffer(arr, ARRAY_SIZE(arr));
2797 const char* str;
2798 if (number->IsSmi()) {
2799 int num = Smi::cast(number)->value();
2800 str = IntToCString(num, buffer);
2801 } else {
2802 double num = HeapNumber::cast(number)->value();
2803 str = DoubleToCString(num, buffer);
2804 }
2805
2806 Object* js_string;
2807 MaybeObject* maybe_js_string = AllocateStringFromAscii(CStrVector(str));
2808 if (maybe_js_string->ToObject(&js_string)) {
2809 SetNumberStringCache(number, String::cast(js_string));
2810 }
2811 return maybe_js_string;
2812 }
2813
2814
Uint32ToString(uint32_t value,bool check_number_string_cache)2815 MaybeObject* Heap::Uint32ToString(uint32_t value,
2816 bool check_number_string_cache) {
2817 Object* number;
2818 MaybeObject* maybe = NumberFromUint32(value);
2819 if (!maybe->To<Object>(&number)) return maybe;
2820 return NumberToString(number, check_number_string_cache);
2821 }
2822
2823
MapForExternalArrayType(ExternalArrayType array_type)2824 Map* Heap::MapForExternalArrayType(ExternalArrayType array_type) {
2825 return Map::cast(roots_[RootIndexForExternalArrayType(array_type)]);
2826 }
2827
2828
RootIndexForExternalArrayType(ExternalArrayType array_type)2829 Heap::RootListIndex Heap::RootIndexForExternalArrayType(
2830 ExternalArrayType array_type) {
2831 switch (array_type) {
2832 case kExternalByteArray:
2833 return kExternalByteArrayMapRootIndex;
2834 case kExternalUnsignedByteArray:
2835 return kExternalUnsignedByteArrayMapRootIndex;
2836 case kExternalShortArray:
2837 return kExternalShortArrayMapRootIndex;
2838 case kExternalUnsignedShortArray:
2839 return kExternalUnsignedShortArrayMapRootIndex;
2840 case kExternalIntArray:
2841 return kExternalIntArrayMapRootIndex;
2842 case kExternalUnsignedIntArray:
2843 return kExternalUnsignedIntArrayMapRootIndex;
2844 case kExternalFloatArray:
2845 return kExternalFloatArrayMapRootIndex;
2846 case kExternalDoubleArray:
2847 return kExternalDoubleArrayMapRootIndex;
2848 case kExternalPixelArray:
2849 return kExternalPixelArrayMapRootIndex;
2850 default:
2851 UNREACHABLE();
2852 return kUndefinedValueRootIndex;
2853 }
2854 }
2855
2856
NumberFromDouble(double value,PretenureFlag pretenure)2857 MaybeObject* Heap::NumberFromDouble(double value, PretenureFlag pretenure) {
2858 // We need to distinguish the minus zero value and this cannot be
2859 // done after conversion to int. Doing this by comparing bit
2860 // patterns is faster than using fpclassify() et al.
2861 static const DoubleRepresentation minus_zero(-0.0);
2862
2863 DoubleRepresentation rep(value);
2864 if (rep.bits == minus_zero.bits) {
2865 return AllocateHeapNumber(-0.0, pretenure);
2866 }
2867
2868 int int_value = FastD2I(value);
2869 if (value == int_value && Smi::IsValid(int_value)) {
2870 return Smi::FromInt(int_value);
2871 }
2872
2873 // Materialize the value in the heap.
2874 return AllocateHeapNumber(value, pretenure);
2875 }
2876
2877
AllocateForeign(Address address,PretenureFlag pretenure)2878 MaybeObject* Heap::AllocateForeign(Address address, PretenureFlag pretenure) {
2879 // Statically ensure that it is safe to allocate foreigns in paged spaces.
2880 STATIC_ASSERT(Foreign::kSize <= Page::kMaxNonCodeHeapObjectSize);
2881 AllocationSpace space = (pretenure == TENURED) ? OLD_DATA_SPACE : NEW_SPACE;
2882 Foreign* result;
2883 MaybeObject* maybe_result = Allocate(foreign_map(), space);
2884 if (!maybe_result->To(&result)) return maybe_result;
2885 result->set_foreign_address(address);
2886 return result;
2887 }
2888
2889
AllocateSharedFunctionInfo(Object * name)2890 MaybeObject* Heap::AllocateSharedFunctionInfo(Object* name) {
2891 SharedFunctionInfo* share;
2892 MaybeObject* maybe = Allocate(shared_function_info_map(), OLD_POINTER_SPACE);
2893 if (!maybe->To<SharedFunctionInfo>(&share)) return maybe;
2894
2895 // Set pointer fields.
2896 share->set_name(name);
2897 Code* illegal = isolate_->builtins()->builtin(Builtins::kIllegal);
2898 share->set_code(illegal);
2899 share->set_scope_info(ScopeInfo::Empty());
2900 Code* construct_stub =
2901 isolate_->builtins()->builtin(Builtins::kJSConstructStubGeneric);
2902 share->set_construct_stub(construct_stub);
2903 share->set_instance_class_name(Object_symbol());
2904 share->set_function_data(undefined_value(), SKIP_WRITE_BARRIER);
2905 share->set_script(undefined_value(), SKIP_WRITE_BARRIER);
2906 share->set_debug_info(undefined_value(), SKIP_WRITE_BARRIER);
2907 share->set_inferred_name(empty_string(), SKIP_WRITE_BARRIER);
2908 share->set_initial_map(undefined_value(), SKIP_WRITE_BARRIER);
2909 share->set_this_property_assignments(undefined_value(), SKIP_WRITE_BARRIER);
2910 share->set_ast_node_count(0);
2911 share->set_deopt_counter(FLAG_deopt_every_n_times);
2912 share->set_ic_age(0);
2913
2914 // Set integer fields (smi or int, depending on the architecture).
2915 share->set_length(0);
2916 share->set_formal_parameter_count(0);
2917 share->set_expected_nof_properties(0);
2918 share->set_num_literals(0);
2919 share->set_start_position_and_type(0);
2920 share->set_end_position(0);
2921 share->set_function_token_position(0);
2922 // All compiler hints default to false or 0.
2923 share->set_compiler_hints(0);
2924 share->set_this_property_assignments_count(0);
2925 share->set_opt_count(0);
2926
2927 return share;
2928 }
2929
2930
AllocateJSMessageObject(String * type,JSArray * arguments,int start_position,int end_position,Object * script,Object * stack_trace,Object * stack_frames)2931 MaybeObject* Heap::AllocateJSMessageObject(String* type,
2932 JSArray* arguments,
2933 int start_position,
2934 int end_position,
2935 Object* script,
2936 Object* stack_trace,
2937 Object* stack_frames) {
2938 Object* result;
2939 { MaybeObject* maybe_result = Allocate(message_object_map(), NEW_SPACE);
2940 if (!maybe_result->ToObject(&result)) return maybe_result;
2941 }
2942 JSMessageObject* message = JSMessageObject::cast(result);
2943 message->set_properties(Heap::empty_fixed_array(), SKIP_WRITE_BARRIER);
2944 message->set_elements(Heap::empty_fixed_array(), SKIP_WRITE_BARRIER);
2945 message->set_type(type);
2946 message->set_arguments(arguments);
2947 message->set_start_position(start_position);
2948 message->set_end_position(end_position);
2949 message->set_script(script);
2950 message->set_stack_trace(stack_trace);
2951 message->set_stack_frames(stack_frames);
2952 return result;
2953 }
2954
2955
2956
2957 // Returns true for a character in a range. Both limits are inclusive.
Between(uint32_t character,uint32_t from,uint32_t to)2958 static inline bool Between(uint32_t character, uint32_t from, uint32_t to) {
2959 // This makes uses of the the unsigned wraparound.
2960 return character - from <= to - from;
2961 }
2962
2963
MakeOrFindTwoCharacterString(Heap * heap,uint32_t c1,uint32_t c2)2964 MUST_USE_RESULT static inline MaybeObject* MakeOrFindTwoCharacterString(
2965 Heap* heap,
2966 uint32_t c1,
2967 uint32_t c2) {
2968 String* symbol;
2969 // Numeric strings have a different hash algorithm not known by
2970 // LookupTwoCharsSymbolIfExists, so we skip this step for such strings.
2971 if ((!Between(c1, '0', '9') || !Between(c2, '0', '9')) &&
2972 heap->symbol_table()->LookupTwoCharsSymbolIfExists(c1, c2, &symbol)) {
2973 return symbol;
2974 // Now we know the length is 2, we might as well make use of that fact
2975 // when building the new string.
2976 } else if ((c1 | c2) <= String::kMaxAsciiCharCodeU) { // We can do this
2977 ASSERT(IsPowerOf2(String::kMaxAsciiCharCodeU + 1)); // because of this.
2978 Object* result;
2979 { MaybeObject* maybe_result = heap->AllocateRawAsciiString(2);
2980 if (!maybe_result->ToObject(&result)) return maybe_result;
2981 }
2982 char* dest = SeqAsciiString::cast(result)->GetChars();
2983 dest[0] = c1;
2984 dest[1] = c2;
2985 return result;
2986 } else {
2987 Object* result;
2988 { MaybeObject* maybe_result = heap->AllocateRawTwoByteString(2);
2989 if (!maybe_result->ToObject(&result)) return maybe_result;
2990 }
2991 uc16* dest = SeqTwoByteString::cast(result)->GetChars();
2992 dest[0] = c1;
2993 dest[1] = c2;
2994 return result;
2995 }
2996 }
2997
2998
AllocateConsString(String * first,String * second)2999 MaybeObject* Heap::AllocateConsString(String* first, String* second) {
3000 int first_length = first->length();
3001 if (first_length == 0) {
3002 return second;
3003 }
3004
3005 int second_length = second->length();
3006 if (second_length == 0) {
3007 return first;
3008 }
3009
3010 int length = first_length + second_length;
3011
3012 // Optimization for 2-byte strings often used as keys in a decompression
3013 // dictionary. Check whether we already have the string in the symbol
3014 // table to prevent creation of many unneccesary strings.
3015 if (length == 2) {
3016 unsigned c1 = first->Get(0);
3017 unsigned c2 = second->Get(0);
3018 return MakeOrFindTwoCharacterString(this, c1, c2);
3019 }
3020
3021 bool first_is_ascii = first->IsAsciiRepresentation();
3022 bool second_is_ascii = second->IsAsciiRepresentation();
3023 bool is_ascii = first_is_ascii && second_is_ascii;
3024
3025 // Make sure that an out of memory exception is thrown if the length
3026 // of the new cons string is too large.
3027 if (length > String::kMaxLength || length < 0) {
3028 isolate()->context()->mark_out_of_memory();
3029 return Failure::OutOfMemoryException();
3030 }
3031
3032 bool is_ascii_data_in_two_byte_string = false;
3033 if (!is_ascii) {
3034 // At least one of the strings uses two-byte representation so we
3035 // can't use the fast case code for short ASCII strings below, but
3036 // we can try to save memory if all chars actually fit in ASCII.
3037 is_ascii_data_in_two_byte_string =
3038 first->HasOnlyAsciiChars() && second->HasOnlyAsciiChars();
3039 if (is_ascii_data_in_two_byte_string) {
3040 isolate_->counters()->string_add_runtime_ext_to_ascii()->Increment();
3041 }
3042 }
3043
3044 // If the resulting string is small make a flat string.
3045 if (length < ConsString::kMinLength) {
3046 // Note that neither of the two inputs can be a slice because:
3047 STATIC_ASSERT(ConsString::kMinLength <= SlicedString::kMinLength);
3048 ASSERT(first->IsFlat());
3049 ASSERT(second->IsFlat());
3050 if (is_ascii) {
3051 Object* result;
3052 { MaybeObject* maybe_result = AllocateRawAsciiString(length);
3053 if (!maybe_result->ToObject(&result)) return maybe_result;
3054 }
3055 // Copy the characters into the new object.
3056 char* dest = SeqAsciiString::cast(result)->GetChars();
3057 // Copy first part.
3058 const char* src;
3059 if (first->IsExternalString()) {
3060 src = ExternalAsciiString::cast(first)->GetChars();
3061 } else {
3062 src = SeqAsciiString::cast(first)->GetChars();
3063 }
3064 for (int i = 0; i < first_length; i++) *dest++ = src[i];
3065 // Copy second part.
3066 if (second->IsExternalString()) {
3067 src = ExternalAsciiString::cast(second)->GetChars();
3068 } else {
3069 src = SeqAsciiString::cast(second)->GetChars();
3070 }
3071 for (int i = 0; i < second_length; i++) *dest++ = src[i];
3072 return result;
3073 } else {
3074 if (is_ascii_data_in_two_byte_string) {
3075 Object* result;
3076 { MaybeObject* maybe_result = AllocateRawAsciiString(length);
3077 if (!maybe_result->ToObject(&result)) return maybe_result;
3078 }
3079 // Copy the characters into the new object.
3080 char* dest = SeqAsciiString::cast(result)->GetChars();
3081 String::WriteToFlat(first, dest, 0, first_length);
3082 String::WriteToFlat(second, dest + first_length, 0, second_length);
3083 isolate_->counters()->string_add_runtime_ext_to_ascii()->Increment();
3084 return result;
3085 }
3086
3087 Object* result;
3088 { MaybeObject* maybe_result = AllocateRawTwoByteString(length);
3089 if (!maybe_result->ToObject(&result)) return maybe_result;
3090 }
3091 // Copy the characters into the new object.
3092 uc16* dest = SeqTwoByteString::cast(result)->GetChars();
3093 String::WriteToFlat(first, dest, 0, first_length);
3094 String::WriteToFlat(second, dest + first_length, 0, second_length);
3095 return result;
3096 }
3097 }
3098
3099 Map* map = (is_ascii || is_ascii_data_in_two_byte_string) ?
3100 cons_ascii_string_map() : cons_string_map();
3101
3102 Object* result;
3103 { MaybeObject* maybe_result = Allocate(map, NEW_SPACE);
3104 if (!maybe_result->ToObject(&result)) return maybe_result;
3105 }
3106
3107 AssertNoAllocation no_gc;
3108 ConsString* cons_string = ConsString::cast(result);
3109 WriteBarrierMode mode = cons_string->GetWriteBarrierMode(no_gc);
3110 cons_string->set_length(length);
3111 cons_string->set_hash_field(String::kEmptyHashField);
3112 cons_string->set_first(first, mode);
3113 cons_string->set_second(second, mode);
3114 return result;
3115 }
3116
3117
AllocateSubString(String * buffer,int start,int end,PretenureFlag pretenure)3118 MaybeObject* Heap::AllocateSubString(String* buffer,
3119 int start,
3120 int end,
3121 PretenureFlag pretenure) {
3122 int length = end - start;
3123 if (length <= 0) {
3124 return empty_string();
3125 } else if (length == 1) {
3126 return LookupSingleCharacterStringFromCode(buffer->Get(start));
3127 } else if (length == 2) {
3128 // Optimization for 2-byte strings often used as keys in a decompression
3129 // dictionary. Check whether we already have the string in the symbol
3130 // table to prevent creation of many unneccesary strings.
3131 unsigned c1 = buffer->Get(start);
3132 unsigned c2 = buffer->Get(start + 1);
3133 return MakeOrFindTwoCharacterString(this, c1, c2);
3134 }
3135
3136 // Make an attempt to flatten the buffer to reduce access time.
3137 buffer = buffer->TryFlattenGetString();
3138
3139 if (!FLAG_string_slices ||
3140 !buffer->IsFlat() ||
3141 length < SlicedString::kMinLength ||
3142 pretenure == TENURED) {
3143 Object* result;
3144 // WriteToFlat takes care of the case when an indirect string has a
3145 // different encoding from its underlying string. These encodings may
3146 // differ because of externalization.
3147 bool is_ascii = buffer->IsAsciiRepresentation();
3148 { MaybeObject* maybe_result = is_ascii
3149 ? AllocateRawAsciiString(length, pretenure)
3150 : AllocateRawTwoByteString(length, pretenure);
3151 if (!maybe_result->ToObject(&result)) return maybe_result;
3152 }
3153 String* string_result = String::cast(result);
3154 // Copy the characters into the new object.
3155 if (is_ascii) {
3156 ASSERT(string_result->IsAsciiRepresentation());
3157 char* dest = SeqAsciiString::cast(string_result)->GetChars();
3158 String::WriteToFlat(buffer, dest, start, end);
3159 } else {
3160 ASSERT(string_result->IsTwoByteRepresentation());
3161 uc16* dest = SeqTwoByteString::cast(string_result)->GetChars();
3162 String::WriteToFlat(buffer, dest, start, end);
3163 }
3164 return result;
3165 }
3166
3167 ASSERT(buffer->IsFlat());
3168 #if DEBUG
3169 if (FLAG_verify_heap) {
3170 buffer->StringVerify();
3171 }
3172 #endif
3173
3174 Object* result;
3175 // When slicing an indirect string we use its encoding for a newly created
3176 // slice and don't check the encoding of the underlying string. This is safe
3177 // even if the encodings are different because of externalization. If an
3178 // indirect ASCII string is pointing to a two-byte string, the two-byte char
3179 // codes of the underlying string must still fit into ASCII (because
3180 // externalization must not change char codes).
3181 { Map* map = buffer->IsAsciiRepresentation()
3182 ? sliced_ascii_string_map()
3183 : sliced_string_map();
3184 MaybeObject* maybe_result = Allocate(map, NEW_SPACE);
3185 if (!maybe_result->ToObject(&result)) return maybe_result;
3186 }
3187
3188 AssertNoAllocation no_gc;
3189 SlicedString* sliced_string = SlicedString::cast(result);
3190 sliced_string->set_length(length);
3191 sliced_string->set_hash_field(String::kEmptyHashField);
3192 if (buffer->IsConsString()) {
3193 ConsString* cons = ConsString::cast(buffer);
3194 ASSERT(cons->second()->length() == 0);
3195 sliced_string->set_parent(cons->first());
3196 sliced_string->set_offset(start);
3197 } else if (buffer->IsSlicedString()) {
3198 // Prevent nesting sliced strings.
3199 SlicedString* parent_slice = SlicedString::cast(buffer);
3200 sliced_string->set_parent(parent_slice->parent());
3201 sliced_string->set_offset(start + parent_slice->offset());
3202 } else {
3203 sliced_string->set_parent(buffer);
3204 sliced_string->set_offset(start);
3205 }
3206 ASSERT(sliced_string->parent()->IsSeqString() ||
3207 sliced_string->parent()->IsExternalString());
3208 return result;
3209 }
3210
3211
AllocateExternalStringFromAscii(const ExternalAsciiString::Resource * resource)3212 MaybeObject* Heap::AllocateExternalStringFromAscii(
3213 const ExternalAsciiString::Resource* resource) {
3214 size_t length = resource->length();
3215 if (length > static_cast<size_t>(String::kMaxLength)) {
3216 isolate()->context()->mark_out_of_memory();
3217 return Failure::OutOfMemoryException();
3218 }
3219
3220 Map* map = external_ascii_string_map();
3221 Object* result;
3222 { MaybeObject* maybe_result = Allocate(map, NEW_SPACE);
3223 if (!maybe_result->ToObject(&result)) return maybe_result;
3224 }
3225
3226 ExternalAsciiString* external_string = ExternalAsciiString::cast(result);
3227 external_string->set_length(static_cast<int>(length));
3228 external_string->set_hash_field(String::kEmptyHashField);
3229 external_string->set_resource(resource);
3230
3231 return result;
3232 }
3233
3234
AllocateExternalStringFromTwoByte(const ExternalTwoByteString::Resource * resource)3235 MaybeObject* Heap::AllocateExternalStringFromTwoByte(
3236 const ExternalTwoByteString::Resource* resource) {
3237 size_t length = resource->length();
3238 if (length > static_cast<size_t>(String::kMaxLength)) {
3239 isolate()->context()->mark_out_of_memory();
3240 return Failure::OutOfMemoryException();
3241 }
3242
3243 // For small strings we check whether the resource contains only
3244 // ASCII characters. If yes, we use a different string map.
3245 static const size_t kAsciiCheckLengthLimit = 32;
3246 bool is_ascii = length <= kAsciiCheckLengthLimit &&
3247 String::IsAscii(resource->data(), static_cast<int>(length));
3248 Map* map = is_ascii ?
3249 external_string_with_ascii_data_map() : external_string_map();
3250 Object* result;
3251 { MaybeObject* maybe_result = Allocate(map, NEW_SPACE);
3252 if (!maybe_result->ToObject(&result)) return maybe_result;
3253 }
3254
3255 ExternalTwoByteString* external_string = ExternalTwoByteString::cast(result);
3256 external_string->set_length(static_cast<int>(length));
3257 external_string->set_hash_field(String::kEmptyHashField);
3258 external_string->set_resource(resource);
3259
3260 return result;
3261 }
3262
3263
LookupSingleCharacterStringFromCode(uint16_t code)3264 MaybeObject* Heap::LookupSingleCharacterStringFromCode(uint16_t code) {
3265 if (code <= String::kMaxAsciiCharCode) {
3266 Object* value = single_character_string_cache()->get(code);
3267 if (value != undefined_value()) return value;
3268
3269 char buffer[1];
3270 buffer[0] = static_cast<char>(code);
3271 Object* result;
3272 MaybeObject* maybe_result = LookupSymbol(Vector<const char>(buffer, 1));
3273
3274 if (!maybe_result->ToObject(&result)) return maybe_result;
3275 single_character_string_cache()->set(code, result);
3276 return result;
3277 }
3278
3279 Object* result;
3280 { MaybeObject* maybe_result = AllocateRawTwoByteString(1);
3281 if (!maybe_result->ToObject(&result)) return maybe_result;
3282 }
3283 String* answer = String::cast(result);
3284 answer->Set(0, code);
3285 return answer;
3286 }
3287
3288
AllocateByteArray(int length,PretenureFlag pretenure)3289 MaybeObject* Heap::AllocateByteArray(int length, PretenureFlag pretenure) {
3290 if (length < 0 || length > ByteArray::kMaxLength) {
3291 return Failure::OutOfMemoryException();
3292 }
3293 if (pretenure == NOT_TENURED) {
3294 return AllocateByteArray(length);
3295 }
3296 int size = ByteArray::SizeFor(length);
3297 Object* result;
3298 { MaybeObject* maybe_result = (size <= Page::kMaxNonCodeHeapObjectSize)
3299 ? old_data_space_->AllocateRaw(size)
3300 : lo_space_->AllocateRaw(size, NOT_EXECUTABLE);
3301 if (!maybe_result->ToObject(&result)) return maybe_result;
3302 }
3303
3304 reinterpret_cast<ByteArray*>(result)->set_map_no_write_barrier(
3305 byte_array_map());
3306 reinterpret_cast<ByteArray*>(result)->set_length(length);
3307 return result;
3308 }
3309
3310
AllocateByteArray(int length)3311 MaybeObject* Heap::AllocateByteArray(int length) {
3312 if (length < 0 || length > ByteArray::kMaxLength) {
3313 return Failure::OutOfMemoryException();
3314 }
3315 int size = ByteArray::SizeFor(length);
3316 AllocationSpace space =
3317 (size > Page::kMaxNonCodeHeapObjectSize) ? LO_SPACE : NEW_SPACE;
3318 Object* result;
3319 { MaybeObject* maybe_result = AllocateRaw(size, space, OLD_DATA_SPACE);
3320 if (!maybe_result->ToObject(&result)) return maybe_result;
3321 }
3322
3323 reinterpret_cast<ByteArray*>(result)->set_map_no_write_barrier(
3324 byte_array_map());
3325 reinterpret_cast<ByteArray*>(result)->set_length(length);
3326 return result;
3327 }
3328
3329
CreateFillerObjectAt(Address addr,int size)3330 void Heap::CreateFillerObjectAt(Address addr, int size) {
3331 if (size == 0) return;
3332 HeapObject* filler = HeapObject::FromAddress(addr);
3333 if (size == kPointerSize) {
3334 filler->set_map_no_write_barrier(one_pointer_filler_map());
3335 } else if (size == 2 * kPointerSize) {
3336 filler->set_map_no_write_barrier(two_pointer_filler_map());
3337 } else {
3338 filler->set_map_no_write_barrier(free_space_map());
3339 FreeSpace::cast(filler)->set_size(size);
3340 }
3341 }
3342
3343
AllocateExternalArray(int length,ExternalArrayType array_type,void * external_pointer,PretenureFlag pretenure)3344 MaybeObject* Heap::AllocateExternalArray(int length,
3345 ExternalArrayType array_type,
3346 void* external_pointer,
3347 PretenureFlag pretenure) {
3348 AllocationSpace space = (pretenure == TENURED) ? OLD_DATA_SPACE : NEW_SPACE;
3349 Object* result;
3350 { MaybeObject* maybe_result = AllocateRaw(ExternalArray::kAlignedSize,
3351 space,
3352 OLD_DATA_SPACE);
3353 if (!maybe_result->ToObject(&result)) return maybe_result;
3354 }
3355
3356 reinterpret_cast<ExternalArray*>(result)->set_map_no_write_barrier(
3357 MapForExternalArrayType(array_type));
3358 reinterpret_cast<ExternalArray*>(result)->set_length(length);
3359 reinterpret_cast<ExternalArray*>(result)->set_external_pointer(
3360 external_pointer);
3361
3362 return result;
3363 }
3364
3365
CreateCode(const CodeDesc & desc,Code::Flags flags,Handle<Object> self_reference,bool immovable)3366 MaybeObject* Heap::CreateCode(const CodeDesc& desc,
3367 Code::Flags flags,
3368 Handle<Object> self_reference,
3369 bool immovable) {
3370 // Allocate ByteArray before the Code object, so that we do not risk
3371 // leaving uninitialized Code object (and breaking the heap).
3372 ByteArray* reloc_info;
3373 MaybeObject* maybe_reloc_info = AllocateByteArray(desc.reloc_size, TENURED);
3374 if (!maybe_reloc_info->To(&reloc_info)) return maybe_reloc_info;
3375
3376 // Compute size.
3377 int body_size = RoundUp(desc.instr_size, kObjectAlignment);
3378 int obj_size = Code::SizeFor(body_size);
3379 ASSERT(IsAligned(static_cast<intptr_t>(obj_size), kCodeAlignment));
3380 MaybeObject* maybe_result;
3381 // Large code objects and code objects which should stay at a fixed address
3382 // are allocated in large object space.
3383 if (obj_size > code_space()->AreaSize() || immovable) {
3384 maybe_result = lo_space_->AllocateRaw(obj_size, EXECUTABLE);
3385 } else {
3386 maybe_result = code_space_->AllocateRaw(obj_size);
3387 }
3388
3389 Object* result;
3390 if (!maybe_result->ToObject(&result)) return maybe_result;
3391
3392 // Initialize the object
3393 HeapObject::cast(result)->set_map_no_write_barrier(code_map());
3394 Code* code = Code::cast(result);
3395 ASSERT(!isolate_->code_range()->exists() ||
3396 isolate_->code_range()->contains(code->address()));
3397 code->set_instruction_size(desc.instr_size);
3398 code->set_relocation_info(reloc_info);
3399 code->set_flags(flags);
3400 if (code->is_call_stub() || code->is_keyed_call_stub()) {
3401 code->set_check_type(RECEIVER_MAP_CHECK);
3402 }
3403 code->set_deoptimization_data(empty_fixed_array(), SKIP_WRITE_BARRIER);
3404 code->set_type_feedback_info(undefined_value(), SKIP_WRITE_BARRIER);
3405 code->set_handler_table(empty_fixed_array(), SKIP_WRITE_BARRIER);
3406 code->set_gc_metadata(Smi::FromInt(0));
3407 code->set_ic_age(global_ic_age_);
3408 // Allow self references to created code object by patching the handle to
3409 // point to the newly allocated Code object.
3410 if (!self_reference.is_null()) {
3411 *(self_reference.location()) = code;
3412 }
3413 // Migrate generated code.
3414 // The generated code can contain Object** values (typically from handles)
3415 // that are dereferenced during the copy to point directly to the actual heap
3416 // objects. These pointers can include references to the code object itself,
3417 // through the self_reference parameter.
3418 code->CopyFrom(desc);
3419
3420 #ifdef DEBUG
3421 if (FLAG_verify_heap) {
3422 code->Verify();
3423 }
3424 #endif
3425 return code;
3426 }
3427
3428
CopyCode(Code * code)3429 MaybeObject* Heap::CopyCode(Code* code) {
3430 // Allocate an object the same size as the code object.
3431 int obj_size = code->Size();
3432 MaybeObject* maybe_result;
3433 if (obj_size > code_space()->AreaSize()) {
3434 maybe_result = lo_space_->AllocateRaw(obj_size, EXECUTABLE);
3435 } else {
3436 maybe_result = code_space_->AllocateRaw(obj_size);
3437 }
3438
3439 Object* result;
3440 if (!maybe_result->ToObject(&result)) return maybe_result;
3441
3442 // Copy code object.
3443 Address old_addr = code->address();
3444 Address new_addr = reinterpret_cast<HeapObject*>(result)->address();
3445 CopyBlock(new_addr, old_addr, obj_size);
3446 // Relocate the copy.
3447 Code* new_code = Code::cast(result);
3448 ASSERT(!isolate_->code_range()->exists() ||
3449 isolate_->code_range()->contains(code->address()));
3450 new_code->Relocate(new_addr - old_addr);
3451 return new_code;
3452 }
3453
3454
CopyCode(Code * code,Vector<byte> reloc_info)3455 MaybeObject* Heap::CopyCode(Code* code, Vector<byte> reloc_info) {
3456 // Allocate ByteArray before the Code object, so that we do not risk
3457 // leaving uninitialized Code object (and breaking the heap).
3458 Object* reloc_info_array;
3459 { MaybeObject* maybe_reloc_info_array =
3460 AllocateByteArray(reloc_info.length(), TENURED);
3461 if (!maybe_reloc_info_array->ToObject(&reloc_info_array)) {
3462 return maybe_reloc_info_array;
3463 }
3464 }
3465
3466 int new_body_size = RoundUp(code->instruction_size(), kObjectAlignment);
3467
3468 int new_obj_size = Code::SizeFor(new_body_size);
3469
3470 Address old_addr = code->address();
3471
3472 size_t relocation_offset =
3473 static_cast<size_t>(code->instruction_end() - old_addr);
3474
3475 MaybeObject* maybe_result;
3476 if (new_obj_size > code_space()->AreaSize()) {
3477 maybe_result = lo_space_->AllocateRaw(new_obj_size, EXECUTABLE);
3478 } else {
3479 maybe_result = code_space_->AllocateRaw(new_obj_size);
3480 }
3481
3482 Object* result;
3483 if (!maybe_result->ToObject(&result)) return maybe_result;
3484
3485 // Copy code object.
3486 Address new_addr = reinterpret_cast<HeapObject*>(result)->address();
3487
3488 // Copy header and instructions.
3489 memcpy(new_addr, old_addr, relocation_offset);
3490
3491 Code* new_code = Code::cast(result);
3492 new_code->set_relocation_info(ByteArray::cast(reloc_info_array));
3493
3494 // Copy patched rinfo.
3495 memcpy(new_code->relocation_start(), reloc_info.start(), reloc_info.length());
3496
3497 // Relocate the copy.
3498 ASSERT(!isolate_->code_range()->exists() ||
3499 isolate_->code_range()->contains(code->address()));
3500 new_code->Relocate(new_addr - old_addr);
3501
3502 #ifdef DEBUG
3503 if (FLAG_verify_heap) {
3504 code->Verify();
3505 }
3506 #endif
3507 return new_code;
3508 }
3509
3510
Allocate(Map * map,AllocationSpace space)3511 MaybeObject* Heap::Allocate(Map* map, AllocationSpace space) {
3512 ASSERT(gc_state_ == NOT_IN_GC);
3513 ASSERT(map->instance_type() != MAP_TYPE);
3514 // If allocation failures are disallowed, we may allocate in a different
3515 // space when new space is full and the object is not a large object.
3516 AllocationSpace retry_space =
3517 (space != NEW_SPACE) ? space : TargetSpaceId(map->instance_type());
3518 Object* result;
3519 { MaybeObject* maybe_result =
3520 AllocateRaw(map->instance_size(), space, retry_space);
3521 if (!maybe_result->ToObject(&result)) return maybe_result;
3522 }
3523 // No need for write barrier since object is white and map is in old space.
3524 HeapObject::cast(result)->set_map_no_write_barrier(map);
3525 return result;
3526 }
3527
3528
InitializeFunction(JSFunction * function,SharedFunctionInfo * shared,Object * prototype)3529 void Heap::InitializeFunction(JSFunction* function,
3530 SharedFunctionInfo* shared,
3531 Object* prototype) {
3532 ASSERT(!prototype->IsMap());
3533 function->initialize_properties();
3534 function->initialize_elements();
3535 function->set_shared(shared);
3536 function->set_code(shared->code());
3537 function->set_prototype_or_initial_map(prototype);
3538 function->set_context(undefined_value());
3539 function->set_literals_or_bindings(empty_fixed_array());
3540 function->set_next_function_link(undefined_value());
3541 }
3542
3543
AllocateFunctionPrototype(JSFunction * function)3544 MaybeObject* Heap::AllocateFunctionPrototype(JSFunction* function) {
3545 // Allocate the prototype. Make sure to use the object function
3546 // from the function's context, since the function can be from a
3547 // different context.
3548 JSFunction* object_function =
3549 function->context()->global_context()->object_function();
3550
3551 // Each function prototype gets a copy of the object function map.
3552 // This avoid unwanted sharing of maps between prototypes of different
3553 // constructors.
3554 Map* new_map;
3555 ASSERT(object_function->has_initial_map());
3556 { MaybeObject* maybe_map =
3557 object_function->initial_map()->CopyDropTransitions();
3558 if (!maybe_map->To<Map>(&new_map)) return maybe_map;
3559 }
3560 Object* prototype;
3561 { MaybeObject* maybe_prototype = AllocateJSObjectFromMap(new_map);
3562 if (!maybe_prototype->ToObject(&prototype)) return maybe_prototype;
3563 }
3564 // When creating the prototype for the function we must set its
3565 // constructor to the function.
3566 Object* result;
3567 { MaybeObject* maybe_result =
3568 JSObject::cast(prototype)->SetLocalPropertyIgnoreAttributes(
3569 constructor_symbol(), function, DONT_ENUM);
3570 if (!maybe_result->ToObject(&result)) return maybe_result;
3571 }
3572 return prototype;
3573 }
3574
3575
AllocateFunction(Map * function_map,SharedFunctionInfo * shared,Object * prototype,PretenureFlag pretenure)3576 MaybeObject* Heap::AllocateFunction(Map* function_map,
3577 SharedFunctionInfo* shared,
3578 Object* prototype,
3579 PretenureFlag pretenure) {
3580 AllocationSpace space =
3581 (pretenure == TENURED) ? OLD_POINTER_SPACE : NEW_SPACE;
3582 Object* result;
3583 { MaybeObject* maybe_result = Allocate(function_map, space);
3584 if (!maybe_result->ToObject(&result)) return maybe_result;
3585 }
3586 InitializeFunction(JSFunction::cast(result), shared, prototype);
3587 return result;
3588 }
3589
3590
AllocateArgumentsObject(Object * callee,int length)3591 MaybeObject* Heap::AllocateArgumentsObject(Object* callee, int length) {
3592 // To get fast allocation and map sharing for arguments objects we
3593 // allocate them based on an arguments boilerplate.
3594
3595 JSObject* boilerplate;
3596 int arguments_object_size;
3597 bool strict_mode_callee = callee->IsJSFunction() &&
3598 !JSFunction::cast(callee)->shared()->is_classic_mode();
3599 if (strict_mode_callee) {
3600 boilerplate =
3601 isolate()->context()->global_context()->
3602 strict_mode_arguments_boilerplate();
3603 arguments_object_size = kArgumentsObjectSizeStrict;
3604 } else {
3605 boilerplate =
3606 isolate()->context()->global_context()->arguments_boilerplate();
3607 arguments_object_size = kArgumentsObjectSize;
3608 }
3609
3610 // This calls Copy directly rather than using Heap::AllocateRaw so we
3611 // duplicate the check here.
3612 ASSERT(allocation_allowed_ && gc_state_ == NOT_IN_GC);
3613
3614 // Check that the size of the boilerplate matches our
3615 // expectations. The ArgumentsAccessStub::GenerateNewObject relies
3616 // on the size being a known constant.
3617 ASSERT(arguments_object_size == boilerplate->map()->instance_size());
3618
3619 // Do the allocation.
3620 Object* result;
3621 { MaybeObject* maybe_result =
3622 AllocateRaw(arguments_object_size, NEW_SPACE, OLD_POINTER_SPACE);
3623 if (!maybe_result->ToObject(&result)) return maybe_result;
3624 }
3625
3626 // Copy the content. The arguments boilerplate doesn't have any
3627 // fields that point to new space so it's safe to skip the write
3628 // barrier here.
3629 CopyBlock(HeapObject::cast(result)->address(),
3630 boilerplate->address(),
3631 JSObject::kHeaderSize);
3632
3633 // Set the length property.
3634 JSObject::cast(result)->InObjectPropertyAtPut(kArgumentsLengthIndex,
3635 Smi::FromInt(length),
3636 SKIP_WRITE_BARRIER);
3637 // Set the callee property for non-strict mode arguments object only.
3638 if (!strict_mode_callee) {
3639 JSObject::cast(result)->InObjectPropertyAtPut(kArgumentsCalleeIndex,
3640 callee);
3641 }
3642
3643 // Check the state of the object
3644 ASSERT(JSObject::cast(result)->HasFastProperties());
3645 ASSERT(JSObject::cast(result)->HasFastElements());
3646
3647 return result;
3648 }
3649
3650
HasDuplicates(DescriptorArray * descriptors)3651 static bool HasDuplicates(DescriptorArray* descriptors) {
3652 int count = descriptors->number_of_descriptors();
3653 if (count > 1) {
3654 String* prev_key = descriptors->GetKey(0);
3655 for (int i = 1; i != count; i++) {
3656 String* current_key = descriptors->GetKey(i);
3657 if (prev_key == current_key) return true;
3658 prev_key = current_key;
3659 }
3660 }
3661 return false;
3662 }
3663
3664
AllocateInitialMap(JSFunction * fun)3665 MaybeObject* Heap::AllocateInitialMap(JSFunction* fun) {
3666 ASSERT(!fun->has_initial_map());
3667
3668 // First create a new map with the size and number of in-object properties
3669 // suggested by the function.
3670 int instance_size = fun->shared()->CalculateInstanceSize();
3671 int in_object_properties = fun->shared()->CalculateInObjectProperties();
3672 Object* map_obj;
3673 { MaybeObject* maybe_map_obj = AllocateMap(JS_OBJECT_TYPE, instance_size);
3674 if (!maybe_map_obj->ToObject(&map_obj)) return maybe_map_obj;
3675 }
3676
3677 // Fetch or allocate prototype.
3678 Object* prototype;
3679 if (fun->has_instance_prototype()) {
3680 prototype = fun->instance_prototype();
3681 } else {
3682 { MaybeObject* maybe_prototype = AllocateFunctionPrototype(fun);
3683 if (!maybe_prototype->ToObject(&prototype)) return maybe_prototype;
3684 }
3685 }
3686 Map* map = Map::cast(map_obj);
3687 map->set_inobject_properties(in_object_properties);
3688 map->set_unused_property_fields(in_object_properties);
3689 map->set_prototype(prototype);
3690 ASSERT(map->has_fast_elements());
3691
3692 // If the function has only simple this property assignments add
3693 // field descriptors for these to the initial map as the object
3694 // cannot be constructed without having these properties. Guard by
3695 // the inline_new flag so we only change the map if we generate a
3696 // specialized construct stub.
3697 ASSERT(in_object_properties <= Map::kMaxPreAllocatedPropertyFields);
3698 if (fun->shared()->CanGenerateInlineConstructor(prototype)) {
3699 int count = fun->shared()->this_property_assignments_count();
3700 if (count > in_object_properties) {
3701 // Inline constructor can only handle inobject properties.
3702 fun->shared()->ForbidInlineConstructor();
3703 } else {
3704 DescriptorArray* descriptors;
3705 { MaybeObject* maybe_descriptors_obj = DescriptorArray::Allocate(count);
3706 if (!maybe_descriptors_obj->To<DescriptorArray>(&descriptors)) {
3707 return maybe_descriptors_obj;
3708 }
3709 }
3710 DescriptorArray::WhitenessWitness witness(descriptors);
3711 for (int i = 0; i < count; i++) {
3712 String* name = fun->shared()->GetThisPropertyAssignmentName(i);
3713 ASSERT(name->IsSymbol());
3714 FieldDescriptor field(name, i, NONE);
3715 field.SetEnumerationIndex(i);
3716 descriptors->Set(i, &field, witness);
3717 }
3718 descriptors->SetNextEnumerationIndex(count);
3719 descriptors->SortUnchecked(witness);
3720
3721 // The descriptors may contain duplicates because the compiler does not
3722 // guarantee the uniqueness of property names (it would have required
3723 // quadratic time). Once the descriptors are sorted we can check for
3724 // duplicates in linear time.
3725 if (HasDuplicates(descriptors)) {
3726 fun->shared()->ForbidInlineConstructor();
3727 } else {
3728 map->set_instance_descriptors(descriptors);
3729 map->set_pre_allocated_property_fields(count);
3730 map->set_unused_property_fields(in_object_properties - count);
3731 }
3732 }
3733 }
3734
3735 fun->shared()->StartInobjectSlackTracking(map);
3736
3737 return map;
3738 }
3739
3740
InitializeJSObjectFromMap(JSObject * obj,FixedArray * properties,Map * map)3741 void Heap::InitializeJSObjectFromMap(JSObject* obj,
3742 FixedArray* properties,
3743 Map* map) {
3744 obj->set_properties(properties);
3745 obj->initialize_elements();
3746 // TODO(1240798): Initialize the object's body using valid initial values
3747 // according to the object's initial map. For example, if the map's
3748 // instance type is JS_ARRAY_TYPE, the length field should be initialized
3749 // to a number (e.g. Smi::FromInt(0)) and the elements initialized to a
3750 // fixed array (e.g. Heap::empty_fixed_array()). Currently, the object
3751 // verification code has to cope with (temporarily) invalid objects. See
3752 // for example, JSArray::JSArrayVerify).
3753 Object* filler;
3754 // We cannot always fill with one_pointer_filler_map because objects
3755 // created from API functions expect their internal fields to be initialized
3756 // with undefined_value.
3757 // Pre-allocated fields need to be initialized with undefined_value as well
3758 // so that object accesses before the constructor completes (e.g. in the
3759 // debugger) will not cause a crash.
3760 if (map->constructor()->IsJSFunction() &&
3761 JSFunction::cast(map->constructor())->shared()->
3762 IsInobjectSlackTrackingInProgress()) {
3763 // We might want to shrink the object later.
3764 ASSERT(obj->GetInternalFieldCount() == 0);
3765 filler = Heap::one_pointer_filler_map();
3766 } else {
3767 filler = Heap::undefined_value();
3768 }
3769 obj->InitializeBody(map, Heap::undefined_value(), filler);
3770 }
3771
3772
AllocateJSObjectFromMap(Map * map,PretenureFlag pretenure)3773 MaybeObject* Heap::AllocateJSObjectFromMap(Map* map, PretenureFlag pretenure) {
3774 // JSFunctions should be allocated using AllocateFunction to be
3775 // properly initialized.
3776 ASSERT(map->instance_type() != JS_FUNCTION_TYPE);
3777
3778 // Both types of global objects should be allocated using
3779 // AllocateGlobalObject to be properly initialized.
3780 ASSERT(map->instance_type() != JS_GLOBAL_OBJECT_TYPE);
3781 ASSERT(map->instance_type() != JS_BUILTINS_OBJECT_TYPE);
3782
3783 // Allocate the backing storage for the properties.
3784 int prop_size =
3785 map->pre_allocated_property_fields() +
3786 map->unused_property_fields() -
3787 map->inobject_properties();
3788 ASSERT(prop_size >= 0);
3789 Object* properties;
3790 { MaybeObject* maybe_properties = AllocateFixedArray(prop_size, pretenure);
3791 if (!maybe_properties->ToObject(&properties)) return maybe_properties;
3792 }
3793
3794 // Allocate the JSObject.
3795 AllocationSpace space =
3796 (pretenure == TENURED) ? OLD_POINTER_SPACE : NEW_SPACE;
3797 if (map->instance_size() > Page::kMaxNonCodeHeapObjectSize) space = LO_SPACE;
3798 Object* obj;
3799 { MaybeObject* maybe_obj = Allocate(map, space);
3800 if (!maybe_obj->ToObject(&obj)) return maybe_obj;
3801 }
3802
3803 // Initialize the JSObject.
3804 InitializeJSObjectFromMap(JSObject::cast(obj),
3805 FixedArray::cast(properties),
3806 map);
3807 ASSERT(JSObject::cast(obj)->HasFastSmiOnlyElements() ||
3808 JSObject::cast(obj)->HasFastElements());
3809 return obj;
3810 }
3811
3812
AllocateJSObject(JSFunction * constructor,PretenureFlag pretenure)3813 MaybeObject* Heap::AllocateJSObject(JSFunction* constructor,
3814 PretenureFlag pretenure) {
3815 // Allocate the initial map if absent.
3816 if (!constructor->has_initial_map()) {
3817 Object* initial_map;
3818 { MaybeObject* maybe_initial_map = AllocateInitialMap(constructor);
3819 if (!maybe_initial_map->ToObject(&initial_map)) return maybe_initial_map;
3820 }
3821 constructor->set_initial_map(Map::cast(initial_map));
3822 Map::cast(initial_map)->set_constructor(constructor);
3823 }
3824 // Allocate the object based on the constructors initial map.
3825 MaybeObject* result = AllocateJSObjectFromMap(
3826 constructor->initial_map(), pretenure);
3827 #ifdef DEBUG
3828 // Make sure result is NOT a global object if valid.
3829 Object* non_failure;
3830 ASSERT(!result->ToObject(&non_failure) || !non_failure->IsGlobalObject());
3831 #endif
3832 return result;
3833 }
3834
3835
AllocateJSArrayAndStorage(ElementsKind elements_kind,int length,int capacity,ArrayStorageAllocationMode mode,PretenureFlag pretenure)3836 MaybeObject* Heap::AllocateJSArrayAndStorage(
3837 ElementsKind elements_kind,
3838 int length,
3839 int capacity,
3840 ArrayStorageAllocationMode mode,
3841 PretenureFlag pretenure) {
3842 ASSERT(capacity >= length);
3843 MaybeObject* maybe_array = AllocateJSArray(elements_kind, pretenure);
3844 JSArray* array;
3845 if (!maybe_array->To(&array)) return maybe_array;
3846
3847 if (capacity == 0) {
3848 array->set_length(Smi::FromInt(0));
3849 array->set_elements(empty_fixed_array());
3850 return array;
3851 }
3852
3853 FixedArrayBase* elms;
3854 MaybeObject* maybe_elms = NULL;
3855 if (elements_kind == FAST_DOUBLE_ELEMENTS) {
3856 if (mode == DONT_INITIALIZE_ARRAY_ELEMENTS) {
3857 maybe_elms = AllocateUninitializedFixedDoubleArray(capacity);
3858 } else {
3859 ASSERT(mode == INITIALIZE_ARRAY_ELEMENTS_WITH_HOLE);
3860 maybe_elms = AllocateFixedDoubleArrayWithHoles(capacity);
3861 }
3862 } else {
3863 ASSERT(elements_kind == FAST_ELEMENTS ||
3864 elements_kind == FAST_SMI_ONLY_ELEMENTS);
3865 if (mode == DONT_INITIALIZE_ARRAY_ELEMENTS) {
3866 maybe_elms = AllocateUninitializedFixedArray(capacity);
3867 } else {
3868 ASSERT(mode == INITIALIZE_ARRAY_ELEMENTS_WITH_HOLE);
3869 maybe_elms = AllocateFixedArrayWithHoles(capacity);
3870 }
3871 }
3872 if (!maybe_elms->To(&elms)) return maybe_elms;
3873
3874 array->set_elements(elms);
3875 array->set_length(Smi::FromInt(length));
3876 return array;
3877 }
3878
3879
AllocateJSArrayWithElements(FixedArrayBase * elements,ElementsKind elements_kind,PretenureFlag pretenure)3880 MaybeObject* Heap::AllocateJSArrayWithElements(
3881 FixedArrayBase* elements,
3882 ElementsKind elements_kind,
3883 PretenureFlag pretenure) {
3884 MaybeObject* maybe_array = AllocateJSArray(elements_kind, pretenure);
3885 JSArray* array;
3886 if (!maybe_array->To(&array)) return maybe_array;
3887
3888 array->set_elements(elements);
3889 array->set_length(Smi::FromInt(elements->length()));
3890 return array;
3891 }
3892
3893
AllocateJSProxy(Object * handler,Object * prototype)3894 MaybeObject* Heap::AllocateJSProxy(Object* handler, Object* prototype) {
3895 // Allocate map.
3896 // TODO(rossberg): Once we optimize proxies, think about a scheme to share
3897 // maps. Will probably depend on the identity of the handler object, too.
3898 Map* map;
3899 MaybeObject* maybe_map_obj = AllocateMap(JS_PROXY_TYPE, JSProxy::kSize);
3900 if (!maybe_map_obj->To<Map>(&map)) return maybe_map_obj;
3901 map->set_prototype(prototype);
3902
3903 // Allocate the proxy object.
3904 JSProxy* result;
3905 MaybeObject* maybe_result = Allocate(map, NEW_SPACE);
3906 if (!maybe_result->To<JSProxy>(&result)) return maybe_result;
3907 result->InitializeBody(map->instance_size(), Smi::FromInt(0));
3908 result->set_handler(handler);
3909 result->set_hash(undefined_value(), SKIP_WRITE_BARRIER);
3910 return result;
3911 }
3912
3913
AllocateJSFunctionProxy(Object * handler,Object * call_trap,Object * construct_trap,Object * prototype)3914 MaybeObject* Heap::AllocateJSFunctionProxy(Object* handler,
3915 Object* call_trap,
3916 Object* construct_trap,
3917 Object* prototype) {
3918 // Allocate map.
3919 // TODO(rossberg): Once we optimize proxies, think about a scheme to share
3920 // maps. Will probably depend on the identity of the handler object, too.
3921 Map* map;
3922 MaybeObject* maybe_map_obj =
3923 AllocateMap(JS_FUNCTION_PROXY_TYPE, JSFunctionProxy::kSize);
3924 if (!maybe_map_obj->To<Map>(&map)) return maybe_map_obj;
3925 map->set_prototype(prototype);
3926
3927 // Allocate the proxy object.
3928 JSFunctionProxy* result;
3929 MaybeObject* maybe_result = Allocate(map, NEW_SPACE);
3930 if (!maybe_result->To<JSFunctionProxy>(&result)) return maybe_result;
3931 result->InitializeBody(map->instance_size(), Smi::FromInt(0));
3932 result->set_handler(handler);
3933 result->set_hash(undefined_value(), SKIP_WRITE_BARRIER);
3934 result->set_call_trap(call_trap);
3935 result->set_construct_trap(construct_trap);
3936 return result;
3937 }
3938
3939
AllocateGlobalObject(JSFunction * constructor)3940 MaybeObject* Heap::AllocateGlobalObject(JSFunction* constructor) {
3941 ASSERT(constructor->has_initial_map());
3942 Map* map = constructor->initial_map();
3943
3944 // Make sure no field properties are described in the initial map.
3945 // This guarantees us that normalizing the properties does not
3946 // require us to change property values to JSGlobalPropertyCells.
3947 ASSERT(map->NextFreePropertyIndex() == 0);
3948
3949 // Make sure we don't have a ton of pre-allocated slots in the
3950 // global objects. They will be unused once we normalize the object.
3951 ASSERT(map->unused_property_fields() == 0);
3952 ASSERT(map->inobject_properties() == 0);
3953
3954 // Initial size of the backing store to avoid resize of the storage during
3955 // bootstrapping. The size differs between the JS global object ad the
3956 // builtins object.
3957 int initial_size = map->instance_type() == JS_GLOBAL_OBJECT_TYPE ? 64 : 512;
3958
3959 // Allocate a dictionary object for backing storage.
3960 Object* obj;
3961 { MaybeObject* maybe_obj =
3962 StringDictionary::Allocate(
3963 map->NumberOfDescribedProperties() * 2 + initial_size);
3964 if (!maybe_obj->ToObject(&obj)) return maybe_obj;
3965 }
3966 StringDictionary* dictionary = StringDictionary::cast(obj);
3967
3968 // The global object might be created from an object template with accessors.
3969 // Fill these accessors into the dictionary.
3970 DescriptorArray* descs = map->instance_descriptors();
3971 for (int i = 0; i < descs->number_of_descriptors(); i++) {
3972 PropertyDetails details(descs->GetDetails(i));
3973 ASSERT(details.type() == CALLBACKS); // Only accessors are expected.
3974 PropertyDetails d =
3975 PropertyDetails(details.attributes(), CALLBACKS, details.index());
3976 Object* value = descs->GetCallbacksObject(i);
3977 { MaybeObject* maybe_value = AllocateJSGlobalPropertyCell(value);
3978 if (!maybe_value->ToObject(&value)) return maybe_value;
3979 }
3980
3981 Object* result;
3982 { MaybeObject* maybe_result = dictionary->Add(descs->GetKey(i), value, d);
3983 if (!maybe_result->ToObject(&result)) return maybe_result;
3984 }
3985 dictionary = StringDictionary::cast(result);
3986 }
3987
3988 // Allocate the global object and initialize it with the backing store.
3989 { MaybeObject* maybe_obj = Allocate(map, OLD_POINTER_SPACE);
3990 if (!maybe_obj->ToObject(&obj)) return maybe_obj;
3991 }
3992 JSObject* global = JSObject::cast(obj);
3993 InitializeJSObjectFromMap(global, dictionary, map);
3994
3995 // Create a new map for the global object.
3996 { MaybeObject* maybe_obj = map->CopyDropDescriptors();
3997 if (!maybe_obj->ToObject(&obj)) return maybe_obj;
3998 }
3999 Map* new_map = Map::cast(obj);
4000
4001 // Set up the global object as a normalized object.
4002 global->set_map(new_map);
4003 global->map()->clear_instance_descriptors();
4004 global->set_properties(dictionary);
4005
4006 // Make sure result is a global object with properties in dictionary.
4007 ASSERT(global->IsGlobalObject());
4008 ASSERT(!global->HasFastProperties());
4009 return global;
4010 }
4011
4012
CopyJSObject(JSObject * source)4013 MaybeObject* Heap::CopyJSObject(JSObject* source) {
4014 // Never used to copy functions. If functions need to be copied we
4015 // have to be careful to clear the literals array.
4016 SLOW_ASSERT(!source->IsJSFunction());
4017
4018 // Make the clone.
4019 Map* map = source->map();
4020 int object_size = map->instance_size();
4021 Object* clone;
4022
4023 WriteBarrierMode wb_mode = UPDATE_WRITE_BARRIER;
4024
4025 // If we're forced to always allocate, we use the general allocation
4026 // functions which may leave us with an object in old space.
4027 if (always_allocate()) {
4028 { MaybeObject* maybe_clone =
4029 AllocateRaw(object_size, NEW_SPACE, OLD_POINTER_SPACE);
4030 if (!maybe_clone->ToObject(&clone)) return maybe_clone;
4031 }
4032 Address clone_address = HeapObject::cast(clone)->address();
4033 CopyBlock(clone_address,
4034 source->address(),
4035 object_size);
4036 // Update write barrier for all fields that lie beyond the header.
4037 RecordWrites(clone_address,
4038 JSObject::kHeaderSize,
4039 (object_size - JSObject::kHeaderSize) / kPointerSize);
4040 } else {
4041 wb_mode = SKIP_WRITE_BARRIER;
4042 { MaybeObject* maybe_clone = new_space_.AllocateRaw(object_size);
4043 if (!maybe_clone->ToObject(&clone)) return maybe_clone;
4044 }
4045 SLOW_ASSERT(InNewSpace(clone));
4046 // Since we know the clone is allocated in new space, we can copy
4047 // the contents without worrying about updating the write barrier.
4048 CopyBlock(HeapObject::cast(clone)->address(),
4049 source->address(),
4050 object_size);
4051 }
4052
4053 SLOW_ASSERT(
4054 JSObject::cast(clone)->GetElementsKind() == source->GetElementsKind());
4055 FixedArrayBase* elements = FixedArrayBase::cast(source->elements());
4056 FixedArray* properties = FixedArray::cast(source->properties());
4057 // Update elements if necessary.
4058 if (elements->length() > 0) {
4059 Object* elem;
4060 { MaybeObject* maybe_elem;
4061 if (elements->map() == fixed_cow_array_map()) {
4062 maybe_elem = FixedArray::cast(elements);
4063 } else if (source->HasFastDoubleElements()) {
4064 maybe_elem = CopyFixedDoubleArray(FixedDoubleArray::cast(elements));
4065 } else {
4066 maybe_elem = CopyFixedArray(FixedArray::cast(elements));
4067 }
4068 if (!maybe_elem->ToObject(&elem)) return maybe_elem;
4069 }
4070 JSObject::cast(clone)->set_elements(FixedArrayBase::cast(elem), wb_mode);
4071 }
4072 // Update properties if necessary.
4073 if (properties->length() > 0) {
4074 Object* prop;
4075 { MaybeObject* maybe_prop = CopyFixedArray(properties);
4076 if (!maybe_prop->ToObject(&prop)) return maybe_prop;
4077 }
4078 JSObject::cast(clone)->set_properties(FixedArray::cast(prop), wb_mode);
4079 }
4080 // Return the new clone.
4081 return clone;
4082 }
4083
4084
ReinitializeJSReceiver(JSReceiver * object,InstanceType type,int size)4085 MaybeObject* Heap::ReinitializeJSReceiver(
4086 JSReceiver* object, InstanceType type, int size) {
4087 ASSERT(type >= FIRST_JS_OBJECT_TYPE);
4088
4089 // Allocate fresh map.
4090 // TODO(rossberg): Once we optimize proxies, cache these maps.
4091 Map* map;
4092 MaybeObject* maybe = AllocateMap(type, size);
4093 if (!maybe->To<Map>(&map)) return maybe;
4094
4095 // Check that the receiver has at least the size of the fresh object.
4096 int size_difference = object->map()->instance_size() - map->instance_size();
4097 ASSERT(size_difference >= 0);
4098
4099 map->set_prototype(object->map()->prototype());
4100
4101 // Allocate the backing storage for the properties.
4102 int prop_size = map->unused_property_fields() - map->inobject_properties();
4103 Object* properties;
4104 maybe = AllocateFixedArray(prop_size, TENURED);
4105 if (!maybe->ToObject(&properties)) return maybe;
4106
4107 // Functions require some allocation, which might fail here.
4108 SharedFunctionInfo* shared = NULL;
4109 if (type == JS_FUNCTION_TYPE) {
4110 String* name;
4111 maybe = LookupAsciiSymbol("<freezing call trap>");
4112 if (!maybe->To<String>(&name)) return maybe;
4113 maybe = AllocateSharedFunctionInfo(name);
4114 if (!maybe->To<SharedFunctionInfo>(&shared)) return maybe;
4115 }
4116
4117 // Because of possible retries of this function after failure,
4118 // we must NOT fail after this point, where we have changed the type!
4119
4120 // Reset the map for the object.
4121 object->set_map(map);
4122 JSObject* jsobj = JSObject::cast(object);
4123
4124 // Reinitialize the object from the constructor map.
4125 InitializeJSObjectFromMap(jsobj, FixedArray::cast(properties), map);
4126
4127 // Functions require some minimal initialization.
4128 if (type == JS_FUNCTION_TYPE) {
4129 map->set_function_with_prototype(true);
4130 InitializeFunction(JSFunction::cast(object), shared, the_hole_value());
4131 JSFunction::cast(object)->set_context(
4132 isolate()->context()->global_context());
4133 }
4134
4135 // Put in filler if the new object is smaller than the old.
4136 if (size_difference > 0) {
4137 CreateFillerObjectAt(
4138 object->address() + map->instance_size(), size_difference);
4139 }
4140
4141 return object;
4142 }
4143
4144
ReinitializeJSGlobalProxy(JSFunction * constructor,JSGlobalProxy * object)4145 MaybeObject* Heap::ReinitializeJSGlobalProxy(JSFunction* constructor,
4146 JSGlobalProxy* object) {
4147 ASSERT(constructor->has_initial_map());
4148 Map* map = constructor->initial_map();
4149
4150 // Check that the already allocated object has the same size and type as
4151 // objects allocated using the constructor.
4152 ASSERT(map->instance_size() == object->map()->instance_size());
4153 ASSERT(map->instance_type() == object->map()->instance_type());
4154
4155 // Allocate the backing storage for the properties.
4156 int prop_size = map->unused_property_fields() - map->inobject_properties();
4157 Object* properties;
4158 { MaybeObject* maybe_properties = AllocateFixedArray(prop_size, TENURED);
4159 if (!maybe_properties->ToObject(&properties)) return maybe_properties;
4160 }
4161
4162 // Reset the map for the object.
4163 object->set_map(constructor->initial_map());
4164
4165 // Reinitialize the object from the constructor map.
4166 InitializeJSObjectFromMap(object, FixedArray::cast(properties), map);
4167 return object;
4168 }
4169
4170
AllocateStringFromAscii(Vector<const char> string,PretenureFlag pretenure)4171 MaybeObject* Heap::AllocateStringFromAscii(Vector<const char> string,
4172 PretenureFlag pretenure) {
4173 if (string.length() == 1) {
4174 return Heap::LookupSingleCharacterStringFromCode(string[0]);
4175 }
4176 Object* result;
4177 { MaybeObject* maybe_result =
4178 AllocateRawAsciiString(string.length(), pretenure);
4179 if (!maybe_result->ToObject(&result)) return maybe_result;
4180 }
4181
4182 // Copy the characters into the new object.
4183 SeqAsciiString* string_result = SeqAsciiString::cast(result);
4184 for (int i = 0; i < string.length(); i++) {
4185 string_result->SeqAsciiStringSet(i, string[i]);
4186 }
4187 return result;
4188 }
4189
4190
AllocateStringFromUtf8Slow(Vector<const char> string,PretenureFlag pretenure)4191 MaybeObject* Heap::AllocateStringFromUtf8Slow(Vector<const char> string,
4192 PretenureFlag pretenure) {
4193 // Count the number of characters in the UTF-8 string and check if
4194 // it is an ASCII string.
4195 Access<UnicodeCache::Utf8Decoder>
4196 decoder(isolate_->unicode_cache()->utf8_decoder());
4197 decoder->Reset(string.start(), string.length());
4198 int chars = 0;
4199 while (decoder->has_more()) {
4200 uint32_t r = decoder->GetNext();
4201 if (r <= unibrow::Utf16::kMaxNonSurrogateCharCode) {
4202 chars++;
4203 } else {
4204 chars += 2;
4205 }
4206 }
4207
4208 Object* result;
4209 { MaybeObject* maybe_result = AllocateRawTwoByteString(chars, pretenure);
4210 if (!maybe_result->ToObject(&result)) return maybe_result;
4211 }
4212
4213 // Convert and copy the characters into the new object.
4214 String* string_result = String::cast(result);
4215 decoder->Reset(string.start(), string.length());
4216 int i = 0;
4217 while (i < chars) {
4218 uint32_t r = decoder->GetNext();
4219 if (r > unibrow::Utf16::kMaxNonSurrogateCharCode) {
4220 string_result->Set(i++, unibrow::Utf16::LeadSurrogate(r));
4221 string_result->Set(i++, unibrow::Utf16::TrailSurrogate(r));
4222 } else {
4223 string_result->Set(i++, r);
4224 }
4225 }
4226 return result;
4227 }
4228
4229
AllocateStringFromTwoByte(Vector<const uc16> string,PretenureFlag pretenure)4230 MaybeObject* Heap::AllocateStringFromTwoByte(Vector<const uc16> string,
4231 PretenureFlag pretenure) {
4232 // Check if the string is an ASCII string.
4233 MaybeObject* maybe_result;
4234 if (String::IsAscii(string.start(), string.length())) {
4235 maybe_result = AllocateRawAsciiString(string.length(), pretenure);
4236 } else { // It's not an ASCII string.
4237 maybe_result = AllocateRawTwoByteString(string.length(), pretenure);
4238 }
4239 Object* result;
4240 if (!maybe_result->ToObject(&result)) return maybe_result;
4241
4242 // Copy the characters into the new object, which may be either ASCII or
4243 // UTF-16.
4244 String* string_result = String::cast(result);
4245 for (int i = 0; i < string.length(); i++) {
4246 string_result->Set(i, string[i]);
4247 }
4248 return result;
4249 }
4250
4251
SymbolMapForString(String * string)4252 Map* Heap::SymbolMapForString(String* string) {
4253 // If the string is in new space it cannot be used as a symbol.
4254 if (InNewSpace(string)) return NULL;
4255
4256 // Find the corresponding symbol map for strings.
4257 switch (string->map()->instance_type()) {
4258 case STRING_TYPE: return symbol_map();
4259 case ASCII_STRING_TYPE: return ascii_symbol_map();
4260 case CONS_STRING_TYPE: return cons_symbol_map();
4261 case CONS_ASCII_STRING_TYPE: return cons_ascii_symbol_map();
4262 case EXTERNAL_STRING_TYPE: return external_symbol_map();
4263 case EXTERNAL_ASCII_STRING_TYPE: return external_ascii_symbol_map();
4264 case EXTERNAL_STRING_WITH_ASCII_DATA_TYPE:
4265 return external_symbol_with_ascii_data_map();
4266 case SHORT_EXTERNAL_STRING_TYPE: return short_external_symbol_map();
4267 case SHORT_EXTERNAL_ASCII_STRING_TYPE:
4268 return short_external_ascii_symbol_map();
4269 case SHORT_EXTERNAL_STRING_WITH_ASCII_DATA_TYPE:
4270 return short_external_symbol_with_ascii_data_map();
4271 default: return NULL; // No match found.
4272 }
4273 }
4274
4275
AllocateInternalSymbol(unibrow::CharacterStream * buffer,int chars,uint32_t hash_field)4276 MaybeObject* Heap::AllocateInternalSymbol(unibrow::CharacterStream* buffer,
4277 int chars,
4278 uint32_t hash_field) {
4279 ASSERT(chars >= 0);
4280 // Ensure the chars matches the number of characters in the buffer.
4281 ASSERT(static_cast<unsigned>(chars) == buffer->Utf16Length());
4282 // Determine whether the string is ASCII.
4283 bool is_ascii = true;
4284 while (buffer->has_more()) {
4285 if (buffer->GetNext() > unibrow::Utf8::kMaxOneByteChar) {
4286 is_ascii = false;
4287 break;
4288 }
4289 }
4290 buffer->Rewind();
4291
4292 // Compute map and object size.
4293 int size;
4294 Map* map;
4295
4296 if (is_ascii) {
4297 if (chars > SeqAsciiString::kMaxLength) {
4298 return Failure::OutOfMemoryException();
4299 }
4300 map = ascii_symbol_map();
4301 size = SeqAsciiString::SizeFor(chars);
4302 } else {
4303 if (chars > SeqTwoByteString::kMaxLength) {
4304 return Failure::OutOfMemoryException();
4305 }
4306 map = symbol_map();
4307 size = SeqTwoByteString::SizeFor(chars);
4308 }
4309
4310 // Allocate string.
4311 Object* result;
4312 { MaybeObject* maybe_result = (size > Page::kMaxNonCodeHeapObjectSize)
4313 ? lo_space_->AllocateRaw(size, NOT_EXECUTABLE)
4314 : old_data_space_->AllocateRaw(size);
4315 if (!maybe_result->ToObject(&result)) return maybe_result;
4316 }
4317
4318 reinterpret_cast<HeapObject*>(result)->set_map_no_write_barrier(map);
4319 // Set length and hash fields of the allocated string.
4320 String* answer = String::cast(result);
4321 answer->set_length(chars);
4322 answer->set_hash_field(hash_field);
4323
4324 ASSERT_EQ(size, answer->Size());
4325
4326 // Fill in the characters.
4327 int i = 0;
4328 while (i < chars) {
4329 uint32_t character = buffer->GetNext();
4330 if (character > unibrow::Utf16::kMaxNonSurrogateCharCode) {
4331 answer->Set(i++, unibrow::Utf16::LeadSurrogate(character));
4332 answer->Set(i++, unibrow::Utf16::TrailSurrogate(character));
4333 } else {
4334 answer->Set(i++, character);
4335 }
4336 }
4337 return answer;
4338 }
4339
4340
AllocateRawAsciiString(int length,PretenureFlag pretenure)4341 MaybeObject* Heap::AllocateRawAsciiString(int length, PretenureFlag pretenure) {
4342 if (length < 0 || length > SeqAsciiString::kMaxLength) {
4343 return Failure::OutOfMemoryException();
4344 }
4345
4346 int size = SeqAsciiString::SizeFor(length);
4347 ASSERT(size <= SeqAsciiString::kMaxSize);
4348
4349 AllocationSpace space = (pretenure == TENURED) ? OLD_DATA_SPACE : NEW_SPACE;
4350 AllocationSpace retry_space = OLD_DATA_SPACE;
4351
4352 if (space == NEW_SPACE) {
4353 if (size > kMaxObjectSizeInNewSpace) {
4354 // Allocate in large object space, retry space will be ignored.
4355 space = LO_SPACE;
4356 } else if (size > Page::kMaxNonCodeHeapObjectSize) {
4357 // Allocate in new space, retry in large object space.
4358 retry_space = LO_SPACE;
4359 }
4360 } else if (space == OLD_DATA_SPACE &&
4361 size > Page::kMaxNonCodeHeapObjectSize) {
4362 space = LO_SPACE;
4363 }
4364 Object* result;
4365 { MaybeObject* maybe_result = AllocateRaw(size, space, retry_space);
4366 if (!maybe_result->ToObject(&result)) return maybe_result;
4367 }
4368
4369 // Partially initialize the object.
4370 HeapObject::cast(result)->set_map_no_write_barrier(ascii_string_map());
4371 String::cast(result)->set_length(length);
4372 String::cast(result)->set_hash_field(String::kEmptyHashField);
4373 ASSERT_EQ(size, HeapObject::cast(result)->Size());
4374 return result;
4375 }
4376
4377
AllocateRawTwoByteString(int length,PretenureFlag pretenure)4378 MaybeObject* Heap::AllocateRawTwoByteString(int length,
4379 PretenureFlag pretenure) {
4380 if (length < 0 || length > SeqTwoByteString::kMaxLength) {
4381 return Failure::OutOfMemoryException();
4382 }
4383 int size = SeqTwoByteString::SizeFor(length);
4384 ASSERT(size <= SeqTwoByteString::kMaxSize);
4385 AllocationSpace space = (pretenure == TENURED) ? OLD_DATA_SPACE : NEW_SPACE;
4386 AllocationSpace retry_space = OLD_DATA_SPACE;
4387
4388 if (space == NEW_SPACE) {
4389 if (size > kMaxObjectSizeInNewSpace) {
4390 // Allocate in large object space, retry space will be ignored.
4391 space = LO_SPACE;
4392 } else if (size > Page::kMaxNonCodeHeapObjectSize) {
4393 // Allocate in new space, retry in large object space.
4394 retry_space = LO_SPACE;
4395 }
4396 } else if (space == OLD_DATA_SPACE &&
4397 size > Page::kMaxNonCodeHeapObjectSize) {
4398 space = LO_SPACE;
4399 }
4400 Object* result;
4401 { MaybeObject* maybe_result = AllocateRaw(size, space, retry_space);
4402 if (!maybe_result->ToObject(&result)) return maybe_result;
4403 }
4404
4405 // Partially initialize the object.
4406 HeapObject::cast(result)->set_map_no_write_barrier(string_map());
4407 String::cast(result)->set_length(length);
4408 String::cast(result)->set_hash_field(String::kEmptyHashField);
4409 ASSERT_EQ(size, HeapObject::cast(result)->Size());
4410 return result;
4411 }
4412
4413
AllocateJSArray(ElementsKind elements_kind,PretenureFlag pretenure)4414 MaybeObject* Heap::AllocateJSArray(
4415 ElementsKind elements_kind,
4416 PretenureFlag pretenure) {
4417 Context* global_context = isolate()->context()->global_context();
4418 JSFunction* array_function = global_context->array_function();
4419 Map* map = array_function->initial_map();
4420 if (elements_kind == FAST_DOUBLE_ELEMENTS) {
4421 map = Map::cast(global_context->double_js_array_map());
4422 } else if (elements_kind == FAST_ELEMENTS || !FLAG_smi_only_arrays) {
4423 map = Map::cast(global_context->object_js_array_map());
4424 } else {
4425 ASSERT(elements_kind == FAST_SMI_ONLY_ELEMENTS);
4426 ASSERT(map == global_context->smi_js_array_map());
4427 }
4428
4429 return AllocateJSObjectFromMap(map, pretenure);
4430 }
4431
4432
AllocateEmptyFixedArray()4433 MaybeObject* Heap::AllocateEmptyFixedArray() {
4434 int size = FixedArray::SizeFor(0);
4435 Object* result;
4436 { MaybeObject* maybe_result =
4437 AllocateRaw(size, OLD_DATA_SPACE, OLD_DATA_SPACE);
4438 if (!maybe_result->ToObject(&result)) return maybe_result;
4439 }
4440 // Initialize the object.
4441 reinterpret_cast<FixedArray*>(result)->set_map_no_write_barrier(
4442 fixed_array_map());
4443 reinterpret_cast<FixedArray*>(result)->set_length(0);
4444 return result;
4445 }
4446
4447
AllocateRawFixedArray(int length)4448 MaybeObject* Heap::AllocateRawFixedArray(int length) {
4449 if (length < 0 || length > FixedArray::kMaxLength) {
4450 return Failure::OutOfMemoryException();
4451 }
4452 ASSERT(length > 0);
4453 // Use the general function if we're forced to always allocate.
4454 if (always_allocate()) return AllocateFixedArray(length, TENURED);
4455 // Allocate the raw data for a fixed array.
4456 int size = FixedArray::SizeFor(length);
4457 return size <= kMaxObjectSizeInNewSpace
4458 ? new_space_.AllocateRaw(size)
4459 : lo_space_->AllocateRaw(size, NOT_EXECUTABLE);
4460 }
4461
4462
CopyFixedArrayWithMap(FixedArray * src,Map * map)4463 MaybeObject* Heap::CopyFixedArrayWithMap(FixedArray* src, Map* map) {
4464 int len = src->length();
4465 Object* obj;
4466 { MaybeObject* maybe_obj = AllocateRawFixedArray(len);
4467 if (!maybe_obj->ToObject(&obj)) return maybe_obj;
4468 }
4469 if (InNewSpace(obj)) {
4470 HeapObject* dst = HeapObject::cast(obj);
4471 dst->set_map_no_write_barrier(map);
4472 CopyBlock(dst->address() + kPointerSize,
4473 src->address() + kPointerSize,
4474 FixedArray::SizeFor(len) - kPointerSize);
4475 return obj;
4476 }
4477 HeapObject::cast(obj)->set_map_no_write_barrier(map);
4478 FixedArray* result = FixedArray::cast(obj);
4479 result->set_length(len);
4480
4481 // Copy the content
4482 AssertNoAllocation no_gc;
4483 WriteBarrierMode mode = result->GetWriteBarrierMode(no_gc);
4484 for (int i = 0; i < len; i++) result->set(i, src->get(i), mode);
4485 return result;
4486 }
4487
4488
CopyFixedDoubleArrayWithMap(FixedDoubleArray * src,Map * map)4489 MaybeObject* Heap::CopyFixedDoubleArrayWithMap(FixedDoubleArray* src,
4490 Map* map) {
4491 int len = src->length();
4492 Object* obj;
4493 { MaybeObject* maybe_obj = AllocateRawFixedDoubleArray(len, NOT_TENURED);
4494 if (!maybe_obj->ToObject(&obj)) return maybe_obj;
4495 }
4496 HeapObject* dst = HeapObject::cast(obj);
4497 dst->set_map_no_write_barrier(map);
4498 CopyBlock(
4499 dst->address() + FixedDoubleArray::kLengthOffset,
4500 src->address() + FixedDoubleArray::kLengthOffset,
4501 FixedDoubleArray::SizeFor(len) - FixedDoubleArray::kLengthOffset);
4502 return obj;
4503 }
4504
4505
AllocateFixedArray(int length)4506 MaybeObject* Heap::AllocateFixedArray(int length) {
4507 ASSERT(length >= 0);
4508 if (length == 0) return empty_fixed_array();
4509 Object* result;
4510 { MaybeObject* maybe_result = AllocateRawFixedArray(length);
4511 if (!maybe_result->ToObject(&result)) return maybe_result;
4512 }
4513 // Initialize header.
4514 FixedArray* array = reinterpret_cast<FixedArray*>(result);
4515 array->set_map_no_write_barrier(fixed_array_map());
4516 array->set_length(length);
4517 // Initialize body.
4518 ASSERT(!InNewSpace(undefined_value()));
4519 MemsetPointer(array->data_start(), undefined_value(), length);
4520 return result;
4521 }
4522
4523
AllocateRawFixedArray(int length,PretenureFlag pretenure)4524 MaybeObject* Heap::AllocateRawFixedArray(int length, PretenureFlag pretenure) {
4525 if (length < 0 || length > FixedArray::kMaxLength) {
4526 return Failure::OutOfMemoryException();
4527 }
4528
4529 AllocationSpace space =
4530 (pretenure == TENURED) ? OLD_POINTER_SPACE : NEW_SPACE;
4531 int size = FixedArray::SizeFor(length);
4532 if (space == NEW_SPACE && size > kMaxObjectSizeInNewSpace) {
4533 // Too big for new space.
4534 space = LO_SPACE;
4535 } else if (space == OLD_POINTER_SPACE &&
4536 size > Page::kMaxNonCodeHeapObjectSize) {
4537 // Too big for old pointer space.
4538 space = LO_SPACE;
4539 }
4540
4541 AllocationSpace retry_space =
4542 (size <= Page::kMaxNonCodeHeapObjectSize) ? OLD_POINTER_SPACE : LO_SPACE;
4543
4544 return AllocateRaw(size, space, retry_space);
4545 }
4546
4547
AllocateFixedArrayWithFiller(Heap * heap,int length,PretenureFlag pretenure,Object * filler)4548 MUST_USE_RESULT static MaybeObject* AllocateFixedArrayWithFiller(
4549 Heap* heap,
4550 int length,
4551 PretenureFlag pretenure,
4552 Object* filler) {
4553 ASSERT(length >= 0);
4554 ASSERT(heap->empty_fixed_array()->IsFixedArray());
4555 if (length == 0) return heap->empty_fixed_array();
4556
4557 ASSERT(!heap->InNewSpace(filler));
4558 Object* result;
4559 { MaybeObject* maybe_result = heap->AllocateRawFixedArray(length, pretenure);
4560 if (!maybe_result->ToObject(&result)) return maybe_result;
4561 }
4562
4563 HeapObject::cast(result)->set_map_no_write_barrier(heap->fixed_array_map());
4564 FixedArray* array = FixedArray::cast(result);
4565 array->set_length(length);
4566 MemsetPointer(array->data_start(), filler, length);
4567 return array;
4568 }
4569
4570
AllocateFixedArray(int length,PretenureFlag pretenure)4571 MaybeObject* Heap::AllocateFixedArray(int length, PretenureFlag pretenure) {
4572 return AllocateFixedArrayWithFiller(this,
4573 length,
4574 pretenure,
4575 undefined_value());
4576 }
4577
4578
AllocateFixedArrayWithHoles(int length,PretenureFlag pretenure)4579 MaybeObject* Heap::AllocateFixedArrayWithHoles(int length,
4580 PretenureFlag pretenure) {
4581 return AllocateFixedArrayWithFiller(this,
4582 length,
4583 pretenure,
4584 the_hole_value());
4585 }
4586
4587
AllocateUninitializedFixedArray(int length)4588 MaybeObject* Heap::AllocateUninitializedFixedArray(int length) {
4589 if (length == 0) return empty_fixed_array();
4590
4591 Object* obj;
4592 { MaybeObject* maybe_obj = AllocateRawFixedArray(length);
4593 if (!maybe_obj->ToObject(&obj)) return maybe_obj;
4594 }
4595
4596 reinterpret_cast<FixedArray*>(obj)->set_map_no_write_barrier(
4597 fixed_array_map());
4598 FixedArray::cast(obj)->set_length(length);
4599 return obj;
4600 }
4601
4602
AllocateEmptyFixedDoubleArray()4603 MaybeObject* Heap::AllocateEmptyFixedDoubleArray() {
4604 int size = FixedDoubleArray::SizeFor(0);
4605 Object* result;
4606 { MaybeObject* maybe_result =
4607 AllocateRaw(size, OLD_DATA_SPACE, OLD_DATA_SPACE);
4608 if (!maybe_result->ToObject(&result)) return maybe_result;
4609 }
4610 // Initialize the object.
4611 reinterpret_cast<FixedDoubleArray*>(result)->set_map_no_write_barrier(
4612 fixed_double_array_map());
4613 reinterpret_cast<FixedDoubleArray*>(result)->set_length(0);
4614 return result;
4615 }
4616
4617
AllocateUninitializedFixedDoubleArray(int length,PretenureFlag pretenure)4618 MaybeObject* Heap::AllocateUninitializedFixedDoubleArray(
4619 int length,
4620 PretenureFlag pretenure) {
4621 if (length == 0) return empty_fixed_array();
4622
4623 Object* elements_object;
4624 MaybeObject* maybe_obj = AllocateRawFixedDoubleArray(length, pretenure);
4625 if (!maybe_obj->ToObject(&elements_object)) return maybe_obj;
4626 FixedDoubleArray* elements =
4627 reinterpret_cast<FixedDoubleArray*>(elements_object);
4628
4629 elements->set_map_no_write_barrier(fixed_double_array_map());
4630 elements->set_length(length);
4631 return elements;
4632 }
4633
4634
AllocateFixedDoubleArrayWithHoles(int length,PretenureFlag pretenure)4635 MaybeObject* Heap::AllocateFixedDoubleArrayWithHoles(
4636 int length,
4637 PretenureFlag pretenure) {
4638 if (length == 0) return empty_fixed_array();
4639
4640 Object* elements_object;
4641 MaybeObject* maybe_obj = AllocateRawFixedDoubleArray(length, pretenure);
4642 if (!maybe_obj->ToObject(&elements_object)) return maybe_obj;
4643 FixedDoubleArray* elements =
4644 reinterpret_cast<FixedDoubleArray*>(elements_object);
4645
4646 for (int i = 0; i < length; ++i) {
4647 elements->set_the_hole(i);
4648 }
4649
4650 elements->set_map_no_write_barrier(fixed_double_array_map());
4651 elements->set_length(length);
4652 return elements;
4653 }
4654
4655
AllocateRawFixedDoubleArray(int length,PretenureFlag pretenure)4656 MaybeObject* Heap::AllocateRawFixedDoubleArray(int length,
4657 PretenureFlag pretenure) {
4658 if (length < 0 || length > FixedDoubleArray::kMaxLength) {
4659 return Failure::OutOfMemoryException();
4660 }
4661
4662 AllocationSpace space =
4663 (pretenure == TENURED) ? OLD_DATA_SPACE : NEW_SPACE;
4664 int size = FixedDoubleArray::SizeFor(length);
4665 if (space == NEW_SPACE && size > kMaxObjectSizeInNewSpace) {
4666 // Too big for new space.
4667 space = LO_SPACE;
4668 } else if (space == OLD_DATA_SPACE &&
4669 size > Page::kMaxNonCodeHeapObjectSize) {
4670 // Too big for old data space.
4671 space = LO_SPACE;
4672 }
4673
4674 AllocationSpace retry_space =
4675 (size <= Page::kMaxNonCodeHeapObjectSize) ? OLD_DATA_SPACE : LO_SPACE;
4676
4677 return AllocateRaw(size, space, retry_space);
4678 }
4679
4680
AllocateHashTable(int length,PretenureFlag pretenure)4681 MaybeObject* Heap::AllocateHashTable(int length, PretenureFlag pretenure) {
4682 Object* result;
4683 { MaybeObject* maybe_result = AllocateFixedArray(length, pretenure);
4684 if (!maybe_result->ToObject(&result)) return maybe_result;
4685 }
4686 reinterpret_cast<HeapObject*>(result)->set_map_no_write_barrier(
4687 hash_table_map());
4688 ASSERT(result->IsHashTable());
4689 return result;
4690 }
4691
4692
AllocateGlobalContext()4693 MaybeObject* Heap::AllocateGlobalContext() {
4694 Object* result;
4695 { MaybeObject* maybe_result =
4696 AllocateFixedArray(Context::GLOBAL_CONTEXT_SLOTS);
4697 if (!maybe_result->ToObject(&result)) return maybe_result;
4698 }
4699 Context* context = reinterpret_cast<Context*>(result);
4700 context->set_map_no_write_barrier(global_context_map());
4701 context->set_smi_js_array_map(undefined_value());
4702 context->set_double_js_array_map(undefined_value());
4703 context->set_object_js_array_map(undefined_value());
4704 ASSERT(context->IsGlobalContext());
4705 ASSERT(result->IsContext());
4706 return result;
4707 }
4708
4709
AllocateFunctionContext(int length,JSFunction * function)4710 MaybeObject* Heap::AllocateFunctionContext(int length, JSFunction* function) {
4711 ASSERT(length >= Context::MIN_CONTEXT_SLOTS);
4712 Object* result;
4713 { MaybeObject* maybe_result = AllocateFixedArray(length);
4714 if (!maybe_result->ToObject(&result)) return maybe_result;
4715 }
4716 Context* context = reinterpret_cast<Context*>(result);
4717 context->set_map_no_write_barrier(function_context_map());
4718 context->set_closure(function);
4719 context->set_previous(function->context());
4720 context->set_extension(NULL);
4721 context->set_global(function->context()->global());
4722 return context;
4723 }
4724
4725
AllocateCatchContext(JSFunction * function,Context * previous,String * name,Object * thrown_object)4726 MaybeObject* Heap::AllocateCatchContext(JSFunction* function,
4727 Context* previous,
4728 String* name,
4729 Object* thrown_object) {
4730 STATIC_ASSERT(Context::MIN_CONTEXT_SLOTS == Context::THROWN_OBJECT_INDEX);
4731 Object* result;
4732 { MaybeObject* maybe_result =
4733 AllocateFixedArray(Context::MIN_CONTEXT_SLOTS + 1);
4734 if (!maybe_result->ToObject(&result)) return maybe_result;
4735 }
4736 Context* context = reinterpret_cast<Context*>(result);
4737 context->set_map_no_write_barrier(catch_context_map());
4738 context->set_closure(function);
4739 context->set_previous(previous);
4740 context->set_extension(name);
4741 context->set_global(previous->global());
4742 context->set(Context::THROWN_OBJECT_INDEX, thrown_object);
4743 return context;
4744 }
4745
4746
AllocateWithContext(JSFunction * function,Context * previous,JSObject * extension)4747 MaybeObject* Heap::AllocateWithContext(JSFunction* function,
4748 Context* previous,
4749 JSObject* extension) {
4750 Object* result;
4751 { MaybeObject* maybe_result = AllocateFixedArray(Context::MIN_CONTEXT_SLOTS);
4752 if (!maybe_result->ToObject(&result)) return maybe_result;
4753 }
4754 Context* context = reinterpret_cast<Context*>(result);
4755 context->set_map_no_write_barrier(with_context_map());
4756 context->set_closure(function);
4757 context->set_previous(previous);
4758 context->set_extension(extension);
4759 context->set_global(previous->global());
4760 return context;
4761 }
4762
4763
AllocateBlockContext(JSFunction * function,Context * previous,ScopeInfo * scope_info)4764 MaybeObject* Heap::AllocateBlockContext(JSFunction* function,
4765 Context* previous,
4766 ScopeInfo* scope_info) {
4767 Object* result;
4768 { MaybeObject* maybe_result =
4769 AllocateFixedArrayWithHoles(scope_info->ContextLength());
4770 if (!maybe_result->ToObject(&result)) return maybe_result;
4771 }
4772 Context* context = reinterpret_cast<Context*>(result);
4773 context->set_map_no_write_barrier(block_context_map());
4774 context->set_closure(function);
4775 context->set_previous(previous);
4776 context->set_extension(scope_info);
4777 context->set_global(previous->global());
4778 return context;
4779 }
4780
4781
AllocateScopeInfo(int length)4782 MaybeObject* Heap::AllocateScopeInfo(int length) {
4783 FixedArray* scope_info;
4784 MaybeObject* maybe_scope_info = AllocateFixedArray(length, TENURED);
4785 if (!maybe_scope_info->To(&scope_info)) return maybe_scope_info;
4786 scope_info->set_map_no_write_barrier(scope_info_map());
4787 return scope_info;
4788 }
4789
4790
AllocateStruct(InstanceType type)4791 MaybeObject* Heap::AllocateStruct(InstanceType type) {
4792 Map* map;
4793 switch (type) {
4794 #define MAKE_CASE(NAME, Name, name) \
4795 case NAME##_TYPE: map = name##_map(); break;
4796 STRUCT_LIST(MAKE_CASE)
4797 #undef MAKE_CASE
4798 default:
4799 UNREACHABLE();
4800 return Failure::InternalError();
4801 }
4802 int size = map->instance_size();
4803 AllocationSpace space =
4804 (size > Page::kMaxNonCodeHeapObjectSize) ? LO_SPACE : OLD_POINTER_SPACE;
4805 Object* result;
4806 { MaybeObject* maybe_result = Allocate(map, space);
4807 if (!maybe_result->ToObject(&result)) return maybe_result;
4808 }
4809 Struct::cast(result)->InitializeBody(size);
4810 return result;
4811 }
4812
4813
IsHeapIterable()4814 bool Heap::IsHeapIterable() {
4815 return (!old_pointer_space()->was_swept_conservatively() &&
4816 !old_data_space()->was_swept_conservatively());
4817 }
4818
4819
EnsureHeapIsIterable()4820 void Heap::EnsureHeapIsIterable() {
4821 ASSERT(IsAllocationAllowed());
4822 if (!IsHeapIterable()) {
4823 CollectAllGarbage(kMakeHeapIterableMask, "Heap::EnsureHeapIsIterable");
4824 }
4825 ASSERT(IsHeapIterable());
4826 }
4827
4828
AdvanceIdleIncrementalMarking(intptr_t step_size)4829 void Heap::AdvanceIdleIncrementalMarking(intptr_t step_size) {
4830 incremental_marking()->Step(step_size,
4831 IncrementalMarking::NO_GC_VIA_STACK_GUARD);
4832
4833 if (incremental_marking()->IsComplete()) {
4834 bool uncommit = false;
4835 if (gc_count_at_last_idle_gc_ == gc_count_) {
4836 // No GC since the last full GC, the mutator is probably not active.
4837 isolate_->compilation_cache()->Clear();
4838 uncommit = true;
4839 }
4840 CollectAllGarbage(kNoGCFlags, "idle notification: finalize incremental");
4841 gc_count_at_last_idle_gc_ = gc_count_;
4842 if (uncommit) {
4843 new_space_.Shrink();
4844 UncommitFromSpace();
4845 }
4846 }
4847 }
4848
4849
IdleNotification(int hint)4850 bool Heap::IdleNotification(int hint) {
4851 const int kMaxHint = 1000;
4852 intptr_t size_factor = Min(Max(hint, 30), kMaxHint) / 10;
4853 // The size factor is in range [3..100].
4854 intptr_t step_size = size_factor * IncrementalMarking::kAllocatedThreshold;
4855
4856 if (contexts_disposed_ > 0) {
4857 if (hint >= kMaxHint) {
4858 // The embedder is requesting a lot of GC work after context disposal,
4859 // we age inline caches so that they don't keep objects from
4860 // the old context alive.
4861 AgeInlineCaches();
4862 }
4863 int mark_sweep_time = Min(TimeMarkSweepWouldTakeInMs(), 1000);
4864 if (hint >= mark_sweep_time && !FLAG_expose_gc &&
4865 incremental_marking()->IsStopped()) {
4866 HistogramTimerScope scope(isolate_->counters()->gc_context());
4867 CollectAllGarbage(kReduceMemoryFootprintMask,
4868 "idle notification: contexts disposed");
4869 } else {
4870 AdvanceIdleIncrementalMarking(step_size);
4871 contexts_disposed_ = 0;
4872 }
4873 // Make sure that we have no pending context disposals.
4874 // Take into account that we might have decided to delay full collection
4875 // because incremental marking is in progress.
4876 ASSERT((contexts_disposed_ == 0) || !incremental_marking()->IsStopped());
4877 return false;
4878 }
4879
4880 if (hint >= kMaxHint || !FLAG_incremental_marking ||
4881 FLAG_expose_gc || Serializer::enabled()) {
4882 return IdleGlobalGC();
4883 }
4884
4885 // By doing small chunks of GC work in each IdleNotification,
4886 // perform a round of incremental GCs and after that wait until
4887 // the mutator creates enough garbage to justify a new round.
4888 // An incremental GC progresses as follows:
4889 // 1. many incremental marking steps,
4890 // 2. one old space mark-sweep-compact,
4891 // 3. many lazy sweep steps.
4892 // Use mark-sweep-compact events to count incremental GCs in a round.
4893
4894
4895 if (incremental_marking()->IsStopped()) {
4896 if (!IsSweepingComplete() &&
4897 !AdvanceSweepers(static_cast<int>(step_size))) {
4898 return false;
4899 }
4900 }
4901
4902 if (mark_sweeps_since_idle_round_started_ >= kMaxMarkSweepsInIdleRound) {
4903 if (EnoughGarbageSinceLastIdleRound()) {
4904 StartIdleRound();
4905 } else {
4906 return true;
4907 }
4908 }
4909
4910 int new_mark_sweeps = ms_count_ - ms_count_at_last_idle_notification_;
4911 mark_sweeps_since_idle_round_started_ += new_mark_sweeps;
4912 ms_count_at_last_idle_notification_ = ms_count_;
4913
4914 if (mark_sweeps_since_idle_round_started_ >= kMaxMarkSweepsInIdleRound) {
4915 FinishIdleRound();
4916 return true;
4917 }
4918
4919 if (incremental_marking()->IsStopped()) {
4920 if (!WorthStartingGCWhenIdle()) {
4921 FinishIdleRound();
4922 return true;
4923 }
4924 incremental_marking()->Start();
4925 }
4926
4927 AdvanceIdleIncrementalMarking(step_size);
4928 return false;
4929 }
4930
4931
IdleGlobalGC()4932 bool Heap::IdleGlobalGC() {
4933 static const int kIdlesBeforeScavenge = 4;
4934 static const int kIdlesBeforeMarkSweep = 7;
4935 static const int kIdlesBeforeMarkCompact = 8;
4936 static const int kMaxIdleCount = kIdlesBeforeMarkCompact + 1;
4937 static const unsigned int kGCsBetweenCleanup = 4;
4938
4939 if (!last_idle_notification_gc_count_init_) {
4940 last_idle_notification_gc_count_ = gc_count_;
4941 last_idle_notification_gc_count_init_ = true;
4942 }
4943
4944 bool uncommit = true;
4945 bool finished = false;
4946
4947 // Reset the number of idle notifications received when a number of
4948 // GCs have taken place. This allows another round of cleanup based
4949 // on idle notifications if enough work has been carried out to
4950 // provoke a number of garbage collections.
4951 if (gc_count_ - last_idle_notification_gc_count_ < kGCsBetweenCleanup) {
4952 number_idle_notifications_ =
4953 Min(number_idle_notifications_ + 1, kMaxIdleCount);
4954 } else {
4955 number_idle_notifications_ = 0;
4956 last_idle_notification_gc_count_ = gc_count_;
4957 }
4958
4959 if (number_idle_notifications_ == kIdlesBeforeScavenge) {
4960 CollectGarbage(NEW_SPACE, "idle notification");
4961 new_space_.Shrink();
4962 last_idle_notification_gc_count_ = gc_count_;
4963 } else if (number_idle_notifications_ == kIdlesBeforeMarkSweep) {
4964 // Before doing the mark-sweep collections we clear the
4965 // compilation cache to avoid hanging on to source code and
4966 // generated code for cached functions.
4967 isolate_->compilation_cache()->Clear();
4968
4969 CollectAllGarbage(kReduceMemoryFootprintMask, "idle notification");
4970 new_space_.Shrink();
4971 last_idle_notification_gc_count_ = gc_count_;
4972
4973 } else if (number_idle_notifications_ == kIdlesBeforeMarkCompact) {
4974 CollectAllGarbage(kReduceMemoryFootprintMask, "idle notification");
4975 new_space_.Shrink();
4976 last_idle_notification_gc_count_ = gc_count_;
4977 number_idle_notifications_ = 0;
4978 finished = true;
4979 } else if (number_idle_notifications_ > kIdlesBeforeMarkCompact) {
4980 // If we have received more than kIdlesBeforeMarkCompact idle
4981 // notifications we do not perform any cleanup because we don't
4982 // expect to gain much by doing so.
4983 finished = true;
4984 }
4985
4986 if (uncommit) UncommitFromSpace();
4987
4988 return finished;
4989 }
4990
4991
4992 #ifdef DEBUG
4993
Print()4994 void Heap::Print() {
4995 if (!HasBeenSetUp()) return;
4996 isolate()->PrintStack();
4997 AllSpaces spaces;
4998 for (Space* space = spaces.next(); space != NULL; space = spaces.next())
4999 space->Print();
5000 }
5001
5002
ReportCodeStatistics(const char * title)5003 void Heap::ReportCodeStatistics(const char* title) {
5004 PrintF(">>>>>> Code Stats (%s) >>>>>>\n", title);
5005 PagedSpace::ResetCodeStatistics();
5006 // We do not look for code in new space, map space, or old space. If code
5007 // somehow ends up in those spaces, we would miss it here.
5008 code_space_->CollectCodeStatistics();
5009 lo_space_->CollectCodeStatistics();
5010 PagedSpace::ReportCodeStatistics();
5011 }
5012
5013
5014 // This function expects that NewSpace's allocated objects histogram is
5015 // populated (via a call to CollectStatistics or else as a side effect of a
5016 // just-completed scavenge collection).
ReportHeapStatistics(const char * title)5017 void Heap::ReportHeapStatistics(const char* title) {
5018 USE(title);
5019 PrintF(">>>>>> =============== %s (%d) =============== >>>>>>\n",
5020 title, gc_count_);
5021 PrintF("old_gen_promotion_limit_ %" V8_PTR_PREFIX "d\n",
5022 old_gen_promotion_limit_);
5023 PrintF("old_gen_allocation_limit_ %" V8_PTR_PREFIX "d\n",
5024 old_gen_allocation_limit_);
5025 PrintF("old_gen_limit_factor_ %d\n", old_gen_limit_factor_);
5026
5027 PrintF("\n");
5028 PrintF("Number of handles : %d\n", HandleScope::NumberOfHandles());
5029 isolate_->global_handles()->PrintStats();
5030 PrintF("\n");
5031
5032 PrintF("Heap statistics : ");
5033 isolate_->memory_allocator()->ReportStatistics();
5034 PrintF("To space : ");
5035 new_space_.ReportStatistics();
5036 PrintF("Old pointer space : ");
5037 old_pointer_space_->ReportStatistics();
5038 PrintF("Old data space : ");
5039 old_data_space_->ReportStatistics();
5040 PrintF("Code space : ");
5041 code_space_->ReportStatistics();
5042 PrintF("Map space : ");
5043 map_space_->ReportStatistics();
5044 PrintF("Cell space : ");
5045 cell_space_->ReportStatistics();
5046 PrintF("Large object space : ");
5047 lo_space_->ReportStatistics();
5048 PrintF(">>>>>> ========================================= >>>>>>\n");
5049 }
5050
5051 #endif // DEBUG
5052
Contains(HeapObject * value)5053 bool Heap::Contains(HeapObject* value) {
5054 return Contains(value->address());
5055 }
5056
5057
Contains(Address addr)5058 bool Heap::Contains(Address addr) {
5059 if (OS::IsOutsideAllocatedSpace(addr)) return false;
5060 return HasBeenSetUp() &&
5061 (new_space_.ToSpaceContains(addr) ||
5062 old_pointer_space_->Contains(addr) ||
5063 old_data_space_->Contains(addr) ||
5064 code_space_->Contains(addr) ||
5065 map_space_->Contains(addr) ||
5066 cell_space_->Contains(addr) ||
5067 lo_space_->SlowContains(addr));
5068 }
5069
5070
InSpace(HeapObject * value,AllocationSpace space)5071 bool Heap::InSpace(HeapObject* value, AllocationSpace space) {
5072 return InSpace(value->address(), space);
5073 }
5074
5075
InSpace(Address addr,AllocationSpace space)5076 bool Heap::InSpace(Address addr, AllocationSpace space) {
5077 if (OS::IsOutsideAllocatedSpace(addr)) return false;
5078 if (!HasBeenSetUp()) return false;
5079
5080 switch (space) {
5081 case NEW_SPACE:
5082 return new_space_.ToSpaceContains(addr);
5083 case OLD_POINTER_SPACE:
5084 return old_pointer_space_->Contains(addr);
5085 case OLD_DATA_SPACE:
5086 return old_data_space_->Contains(addr);
5087 case CODE_SPACE:
5088 return code_space_->Contains(addr);
5089 case MAP_SPACE:
5090 return map_space_->Contains(addr);
5091 case CELL_SPACE:
5092 return cell_space_->Contains(addr);
5093 case LO_SPACE:
5094 return lo_space_->SlowContains(addr);
5095 }
5096
5097 return false;
5098 }
5099
5100
5101 #ifdef DEBUG
Verify()5102 void Heap::Verify() {
5103 ASSERT(HasBeenSetUp());
5104
5105 store_buffer()->Verify();
5106
5107 VerifyPointersVisitor visitor;
5108 IterateRoots(&visitor, VISIT_ONLY_STRONG);
5109
5110 new_space_.Verify();
5111
5112 old_pointer_space_->Verify(&visitor);
5113 map_space_->Verify(&visitor);
5114
5115 VerifyPointersVisitor no_dirty_regions_visitor;
5116 old_data_space_->Verify(&no_dirty_regions_visitor);
5117 code_space_->Verify(&no_dirty_regions_visitor);
5118 cell_space_->Verify(&no_dirty_regions_visitor);
5119
5120 lo_space_->Verify();
5121
5122 VerifyNoAccessorPairSharing();
5123 }
5124
5125
VerifyNoAccessorPairSharing()5126 void Heap::VerifyNoAccessorPairSharing() {
5127 // Verification is done in 2 phases: First we mark all AccessorPairs, checking
5128 // that we mark only unmarked pairs, then we clear all marks, restoring the
5129 // initial state. We use the Smi tag of the AccessorPair's getter as the
5130 // marking bit, because we can never see a Smi as the getter.
5131 for (int phase = 0; phase < 2; phase++) {
5132 HeapObjectIterator iter(map_space());
5133 for (HeapObject* obj = iter.Next(); obj != NULL; obj = iter.Next()) {
5134 if (obj->IsMap()) {
5135 DescriptorArray* descs = Map::cast(obj)->instance_descriptors();
5136 for (int i = 0; i < descs->number_of_descriptors(); i++) {
5137 if (descs->GetType(i) == CALLBACKS &&
5138 descs->GetValue(i)->IsAccessorPair()) {
5139 AccessorPair* accessors = AccessorPair::cast(descs->GetValue(i));
5140 uintptr_t before = reinterpret_cast<intptr_t>(accessors->getter());
5141 uintptr_t after = (phase == 0) ?
5142 ((before & ~kSmiTagMask) | kSmiTag) :
5143 ((before & ~kHeapObjectTag) | kHeapObjectTag);
5144 CHECK(before != after);
5145 accessors->set_getter(reinterpret_cast<Object*>(after));
5146 }
5147 }
5148 }
5149 }
5150 }
5151 }
5152 #endif // DEBUG
5153
5154
LookupSymbol(Vector<const char> string)5155 MaybeObject* Heap::LookupSymbol(Vector<const char> string) {
5156 Object* symbol = NULL;
5157 Object* new_table;
5158 { MaybeObject* maybe_new_table =
5159 symbol_table()->LookupSymbol(string, &symbol);
5160 if (!maybe_new_table->ToObject(&new_table)) return maybe_new_table;
5161 }
5162 // Can't use set_symbol_table because SymbolTable::cast knows that
5163 // SymbolTable is a singleton and checks for identity.
5164 roots_[kSymbolTableRootIndex] = new_table;
5165 ASSERT(symbol != NULL);
5166 return symbol;
5167 }
5168
5169
LookupAsciiSymbol(Vector<const char> string)5170 MaybeObject* Heap::LookupAsciiSymbol(Vector<const char> string) {
5171 Object* symbol = NULL;
5172 Object* new_table;
5173 { MaybeObject* maybe_new_table =
5174 symbol_table()->LookupAsciiSymbol(string, &symbol);
5175 if (!maybe_new_table->ToObject(&new_table)) return maybe_new_table;
5176 }
5177 // Can't use set_symbol_table because SymbolTable::cast knows that
5178 // SymbolTable is a singleton and checks for identity.
5179 roots_[kSymbolTableRootIndex] = new_table;
5180 ASSERT(symbol != NULL);
5181 return symbol;
5182 }
5183
5184
LookupAsciiSymbol(Handle<SeqAsciiString> string,int from,int length)5185 MaybeObject* Heap::LookupAsciiSymbol(Handle<SeqAsciiString> string,
5186 int from,
5187 int length) {
5188 Object* symbol = NULL;
5189 Object* new_table;
5190 { MaybeObject* maybe_new_table =
5191 symbol_table()->LookupSubStringAsciiSymbol(string,
5192 from,
5193 length,
5194 &symbol);
5195 if (!maybe_new_table->ToObject(&new_table)) return maybe_new_table;
5196 }
5197 // Can't use set_symbol_table because SymbolTable::cast knows that
5198 // SymbolTable is a singleton and checks for identity.
5199 roots_[kSymbolTableRootIndex] = new_table;
5200 ASSERT(symbol != NULL);
5201 return symbol;
5202 }
5203
5204
LookupTwoByteSymbol(Vector<const uc16> string)5205 MaybeObject* Heap::LookupTwoByteSymbol(Vector<const uc16> string) {
5206 Object* symbol = NULL;
5207 Object* new_table;
5208 { MaybeObject* maybe_new_table =
5209 symbol_table()->LookupTwoByteSymbol(string, &symbol);
5210 if (!maybe_new_table->ToObject(&new_table)) return maybe_new_table;
5211 }
5212 // Can't use set_symbol_table because SymbolTable::cast knows that
5213 // SymbolTable is a singleton and checks for identity.
5214 roots_[kSymbolTableRootIndex] = new_table;
5215 ASSERT(symbol != NULL);
5216 return symbol;
5217 }
5218
5219
LookupSymbol(String * string)5220 MaybeObject* Heap::LookupSymbol(String* string) {
5221 if (string->IsSymbol()) return string;
5222 Object* symbol = NULL;
5223 Object* new_table;
5224 { MaybeObject* maybe_new_table =
5225 symbol_table()->LookupString(string, &symbol);
5226 if (!maybe_new_table->ToObject(&new_table)) return maybe_new_table;
5227 }
5228 // Can't use set_symbol_table because SymbolTable::cast knows that
5229 // SymbolTable is a singleton and checks for identity.
5230 roots_[kSymbolTableRootIndex] = new_table;
5231 ASSERT(symbol != NULL);
5232 return symbol;
5233 }
5234
5235
LookupSymbolIfExists(String * string,String ** symbol)5236 bool Heap::LookupSymbolIfExists(String* string, String** symbol) {
5237 if (string->IsSymbol()) {
5238 *symbol = string;
5239 return true;
5240 }
5241 return symbol_table()->LookupSymbolIfExists(string, symbol);
5242 }
5243
5244
5245 #ifdef DEBUG
ZapFromSpace()5246 void Heap::ZapFromSpace() {
5247 NewSpacePageIterator it(new_space_.FromSpaceStart(),
5248 new_space_.FromSpaceEnd());
5249 while (it.has_next()) {
5250 NewSpacePage* page = it.next();
5251 for (Address cursor = page->area_start(), limit = page->area_end();
5252 cursor < limit;
5253 cursor += kPointerSize) {
5254 Memory::Address_at(cursor) = kFromSpaceZapValue;
5255 }
5256 }
5257 }
5258 #endif // DEBUG
5259
5260
IterateAndMarkPointersToFromSpace(Address start,Address end,ObjectSlotCallback callback)5261 void Heap::IterateAndMarkPointersToFromSpace(Address start,
5262 Address end,
5263 ObjectSlotCallback callback) {
5264 Address slot_address = start;
5265
5266 // We are not collecting slots on new space objects during mutation
5267 // thus we have to scan for pointers to evacuation candidates when we
5268 // promote objects. But we should not record any slots in non-black
5269 // objects. Grey object's slots would be rescanned.
5270 // White object might not survive until the end of collection
5271 // it would be a violation of the invariant to record it's slots.
5272 bool record_slots = false;
5273 if (incremental_marking()->IsCompacting()) {
5274 MarkBit mark_bit = Marking::MarkBitFrom(HeapObject::FromAddress(start));
5275 record_slots = Marking::IsBlack(mark_bit);
5276 }
5277
5278 while (slot_address < end) {
5279 Object** slot = reinterpret_cast<Object**>(slot_address);
5280 Object* object = *slot;
5281 // If the store buffer becomes overfull we mark pages as being exempt from
5282 // the store buffer. These pages are scanned to find pointers that point
5283 // to the new space. In that case we may hit newly promoted objects and
5284 // fix the pointers before the promotion queue gets to them. Thus the 'if'.
5285 if (object->IsHeapObject()) {
5286 if (Heap::InFromSpace(object)) {
5287 callback(reinterpret_cast<HeapObject**>(slot),
5288 HeapObject::cast(object));
5289 Object* new_object = *slot;
5290 if (InNewSpace(new_object)) {
5291 SLOW_ASSERT(Heap::InToSpace(new_object));
5292 SLOW_ASSERT(new_object->IsHeapObject());
5293 store_buffer_.EnterDirectlyIntoStoreBuffer(
5294 reinterpret_cast<Address>(slot));
5295 }
5296 SLOW_ASSERT(!MarkCompactCollector::IsOnEvacuationCandidate(new_object));
5297 } else if (record_slots &&
5298 MarkCompactCollector::IsOnEvacuationCandidate(object)) {
5299 mark_compact_collector()->RecordSlot(slot, slot, object);
5300 }
5301 }
5302 slot_address += kPointerSize;
5303 }
5304 }
5305
5306
5307 #ifdef DEBUG
5308 typedef bool (*CheckStoreBufferFilter)(Object** addr);
5309
5310
IsAMapPointerAddress(Object ** addr)5311 bool IsAMapPointerAddress(Object** addr) {
5312 uintptr_t a = reinterpret_cast<uintptr_t>(addr);
5313 int mod = a % Map::kSize;
5314 return mod >= Map::kPointerFieldsBeginOffset &&
5315 mod < Map::kPointerFieldsEndOffset;
5316 }
5317
5318
EverythingsAPointer(Object ** addr)5319 bool EverythingsAPointer(Object** addr) {
5320 return true;
5321 }
5322
5323
CheckStoreBuffer(Heap * heap,Object ** current,Object ** limit,Object **** store_buffer_position,Object *** store_buffer_top,CheckStoreBufferFilter filter,Address special_garbage_start,Address special_garbage_end)5324 static void CheckStoreBuffer(Heap* heap,
5325 Object** current,
5326 Object** limit,
5327 Object**** store_buffer_position,
5328 Object*** store_buffer_top,
5329 CheckStoreBufferFilter filter,
5330 Address special_garbage_start,
5331 Address special_garbage_end) {
5332 Map* free_space_map = heap->free_space_map();
5333 for ( ; current < limit; current++) {
5334 Object* o = *current;
5335 Address current_address = reinterpret_cast<Address>(current);
5336 // Skip free space.
5337 if (o == free_space_map) {
5338 Address current_address = reinterpret_cast<Address>(current);
5339 FreeSpace* free_space =
5340 FreeSpace::cast(HeapObject::FromAddress(current_address));
5341 int skip = free_space->Size();
5342 ASSERT(current_address + skip <= reinterpret_cast<Address>(limit));
5343 ASSERT(skip > 0);
5344 current_address += skip - kPointerSize;
5345 current = reinterpret_cast<Object**>(current_address);
5346 continue;
5347 }
5348 // Skip the current linear allocation space between top and limit which is
5349 // unmarked with the free space map, but can contain junk.
5350 if (current_address == special_garbage_start &&
5351 special_garbage_end != special_garbage_start) {
5352 current_address = special_garbage_end - kPointerSize;
5353 current = reinterpret_cast<Object**>(current_address);
5354 continue;
5355 }
5356 if (!(*filter)(current)) continue;
5357 ASSERT(current_address < special_garbage_start ||
5358 current_address >= special_garbage_end);
5359 ASSERT(reinterpret_cast<uintptr_t>(o) != kFreeListZapValue);
5360 // We have to check that the pointer does not point into new space
5361 // without trying to cast it to a heap object since the hash field of
5362 // a string can contain values like 1 and 3 which are tagged null
5363 // pointers.
5364 if (!heap->InNewSpace(o)) continue;
5365 while (**store_buffer_position < current &&
5366 *store_buffer_position < store_buffer_top) {
5367 (*store_buffer_position)++;
5368 }
5369 if (**store_buffer_position != current ||
5370 *store_buffer_position == store_buffer_top) {
5371 Object** obj_start = current;
5372 while (!(*obj_start)->IsMap()) obj_start--;
5373 UNREACHABLE();
5374 }
5375 }
5376 }
5377
5378
5379 // Check that the store buffer contains all intergenerational pointers by
5380 // scanning a page and ensuring that all pointers to young space are in the
5381 // store buffer.
OldPointerSpaceCheckStoreBuffer()5382 void Heap::OldPointerSpaceCheckStoreBuffer() {
5383 OldSpace* space = old_pointer_space();
5384 PageIterator pages(space);
5385
5386 store_buffer()->SortUniq();
5387
5388 while (pages.has_next()) {
5389 Page* page = pages.next();
5390 Object** current = reinterpret_cast<Object**>(page->area_start());
5391
5392 Address end = page->area_end();
5393
5394 Object*** store_buffer_position = store_buffer()->Start();
5395 Object*** store_buffer_top = store_buffer()->Top();
5396
5397 Object** limit = reinterpret_cast<Object**>(end);
5398 CheckStoreBuffer(this,
5399 current,
5400 limit,
5401 &store_buffer_position,
5402 store_buffer_top,
5403 &EverythingsAPointer,
5404 space->top(),
5405 space->limit());
5406 }
5407 }
5408
5409
MapSpaceCheckStoreBuffer()5410 void Heap::MapSpaceCheckStoreBuffer() {
5411 MapSpace* space = map_space();
5412 PageIterator pages(space);
5413
5414 store_buffer()->SortUniq();
5415
5416 while (pages.has_next()) {
5417 Page* page = pages.next();
5418 Object** current = reinterpret_cast<Object**>(page->area_start());
5419
5420 Address end = page->area_end();
5421
5422 Object*** store_buffer_position = store_buffer()->Start();
5423 Object*** store_buffer_top = store_buffer()->Top();
5424
5425 Object** limit = reinterpret_cast<Object**>(end);
5426 CheckStoreBuffer(this,
5427 current,
5428 limit,
5429 &store_buffer_position,
5430 store_buffer_top,
5431 &IsAMapPointerAddress,
5432 space->top(),
5433 space->limit());
5434 }
5435 }
5436
5437
LargeObjectSpaceCheckStoreBuffer()5438 void Heap::LargeObjectSpaceCheckStoreBuffer() {
5439 LargeObjectIterator it(lo_space());
5440 for (HeapObject* object = it.Next(); object != NULL; object = it.Next()) {
5441 // We only have code, sequential strings, or fixed arrays in large
5442 // object space, and only fixed arrays can possibly contain pointers to
5443 // the young generation.
5444 if (object->IsFixedArray()) {
5445 Object*** store_buffer_position = store_buffer()->Start();
5446 Object*** store_buffer_top = store_buffer()->Top();
5447 Object** current = reinterpret_cast<Object**>(object->address());
5448 Object** limit =
5449 reinterpret_cast<Object**>(object->address() + object->Size());
5450 CheckStoreBuffer(this,
5451 current,
5452 limit,
5453 &store_buffer_position,
5454 store_buffer_top,
5455 &EverythingsAPointer,
5456 NULL,
5457 NULL);
5458 }
5459 }
5460 }
5461 #endif
5462
5463
IterateRoots(ObjectVisitor * v,VisitMode mode)5464 void Heap::IterateRoots(ObjectVisitor* v, VisitMode mode) {
5465 IterateStrongRoots(v, mode);
5466 IterateWeakRoots(v, mode);
5467 }
5468
5469
IterateWeakRoots(ObjectVisitor * v,VisitMode mode)5470 void Heap::IterateWeakRoots(ObjectVisitor* v, VisitMode mode) {
5471 v->VisitPointer(reinterpret_cast<Object**>(&roots_[kSymbolTableRootIndex]));
5472 v->Synchronize(VisitorSynchronization::kSymbolTable);
5473 if (mode != VISIT_ALL_IN_SCAVENGE &&
5474 mode != VISIT_ALL_IN_SWEEP_NEWSPACE) {
5475 // Scavenge collections have special processing for this.
5476 external_string_table_.Iterate(v);
5477 }
5478 v->Synchronize(VisitorSynchronization::kExternalStringsTable);
5479 }
5480
5481
IterateStrongRoots(ObjectVisitor * v,VisitMode mode)5482 void Heap::IterateStrongRoots(ObjectVisitor* v, VisitMode mode) {
5483 v->VisitPointers(&roots_[0], &roots_[kStrongRootListLength]);
5484 v->Synchronize(VisitorSynchronization::kStrongRootList);
5485
5486 v->VisitPointer(BitCast<Object**>(&hidden_symbol_));
5487 v->Synchronize(VisitorSynchronization::kSymbol);
5488
5489 isolate_->bootstrapper()->Iterate(v);
5490 v->Synchronize(VisitorSynchronization::kBootstrapper);
5491 isolate_->Iterate(v);
5492 v->Synchronize(VisitorSynchronization::kTop);
5493 Relocatable::Iterate(v);
5494 v->Synchronize(VisitorSynchronization::kRelocatable);
5495
5496 #ifdef ENABLE_DEBUGGER_SUPPORT
5497 isolate_->debug()->Iterate(v);
5498 if (isolate_->deoptimizer_data() != NULL) {
5499 isolate_->deoptimizer_data()->Iterate(v);
5500 }
5501 #endif
5502 v->Synchronize(VisitorSynchronization::kDebug);
5503 isolate_->compilation_cache()->Iterate(v);
5504 v->Synchronize(VisitorSynchronization::kCompilationCache);
5505
5506 // Iterate over local handles in handle scopes.
5507 isolate_->handle_scope_implementer()->Iterate(v);
5508 v->Synchronize(VisitorSynchronization::kHandleScope);
5509
5510 // Iterate over the builtin code objects and code stubs in the
5511 // heap. Note that it is not necessary to iterate over code objects
5512 // on scavenge collections.
5513 if (mode != VISIT_ALL_IN_SCAVENGE) {
5514 isolate_->builtins()->IterateBuiltins(v);
5515 }
5516 v->Synchronize(VisitorSynchronization::kBuiltins);
5517
5518 // Iterate over global handles.
5519 switch (mode) {
5520 case VISIT_ONLY_STRONG:
5521 isolate_->global_handles()->IterateStrongRoots(v);
5522 break;
5523 case VISIT_ALL_IN_SCAVENGE:
5524 isolate_->global_handles()->IterateNewSpaceStrongAndDependentRoots(v);
5525 break;
5526 case VISIT_ALL_IN_SWEEP_NEWSPACE:
5527 case VISIT_ALL:
5528 isolate_->global_handles()->IterateAllRoots(v);
5529 break;
5530 }
5531 v->Synchronize(VisitorSynchronization::kGlobalHandles);
5532
5533 // Iterate over pointers being held by inactive threads.
5534 isolate_->thread_manager()->Iterate(v);
5535 v->Synchronize(VisitorSynchronization::kThreadManager);
5536
5537 // Iterate over the pointers the Serialization/Deserialization code is
5538 // holding.
5539 // During garbage collection this keeps the partial snapshot cache alive.
5540 // During deserialization of the startup snapshot this creates the partial
5541 // snapshot cache and deserializes the objects it refers to. During
5542 // serialization this does nothing, since the partial snapshot cache is
5543 // empty. However the next thing we do is create the partial snapshot,
5544 // filling up the partial snapshot cache with objects it needs as we go.
5545 SerializerDeserializer::Iterate(v);
5546 // We don't do a v->Synchronize call here, because in debug mode that will
5547 // output a flag to the snapshot. However at this point the serializer and
5548 // deserializer are deliberately a little unsynchronized (see above) so the
5549 // checking of the sync flag in the snapshot would fail.
5550 }
5551
5552
5553 // TODO(1236194): Since the heap size is configurable on the command line
5554 // and through the API, we should gracefully handle the case that the heap
5555 // size is not big enough to fit all the initial objects.
ConfigureHeap(int max_semispace_size,intptr_t max_old_gen_size,intptr_t max_executable_size)5556 bool Heap::ConfigureHeap(int max_semispace_size,
5557 intptr_t max_old_gen_size,
5558 intptr_t max_executable_size) {
5559 if (HasBeenSetUp()) return false;
5560
5561 if (max_semispace_size > 0) {
5562 if (max_semispace_size < Page::kPageSize) {
5563 max_semispace_size = Page::kPageSize;
5564 if (FLAG_trace_gc) {
5565 PrintF("Max semispace size cannot be less than %dkbytes\n",
5566 Page::kPageSize >> 10);
5567 }
5568 }
5569 max_semispace_size_ = max_semispace_size;
5570 }
5571
5572 if (Snapshot::IsEnabled()) {
5573 // If we are using a snapshot we always reserve the default amount
5574 // of memory for each semispace because code in the snapshot has
5575 // write-barrier code that relies on the size and alignment of new
5576 // space. We therefore cannot use a larger max semispace size
5577 // than the default reserved semispace size.
5578 if (max_semispace_size_ > reserved_semispace_size_) {
5579 max_semispace_size_ = reserved_semispace_size_;
5580 if (FLAG_trace_gc) {
5581 PrintF("Max semispace size cannot be more than %dkbytes\n",
5582 reserved_semispace_size_ >> 10);
5583 }
5584 }
5585 } else {
5586 // If we are not using snapshots we reserve space for the actual
5587 // max semispace size.
5588 reserved_semispace_size_ = max_semispace_size_;
5589 }
5590
5591 if (max_old_gen_size > 0) max_old_generation_size_ = max_old_gen_size;
5592 if (max_executable_size > 0) {
5593 max_executable_size_ = RoundUp(max_executable_size, Page::kPageSize);
5594 }
5595
5596 // The max executable size must be less than or equal to the max old
5597 // generation size.
5598 if (max_executable_size_ > max_old_generation_size_) {
5599 max_executable_size_ = max_old_generation_size_;
5600 }
5601
5602 // The new space size must be a power of two to support single-bit testing
5603 // for containment.
5604 max_semispace_size_ = RoundUpToPowerOf2(max_semispace_size_);
5605 reserved_semispace_size_ = RoundUpToPowerOf2(reserved_semispace_size_);
5606 initial_semispace_size_ = Min(initial_semispace_size_, max_semispace_size_);
5607 external_allocation_limit_ = 10 * max_semispace_size_;
5608
5609 // The old generation is paged and needs at least one page for each space.
5610 int paged_space_count = LAST_PAGED_SPACE - FIRST_PAGED_SPACE + 1;
5611 max_old_generation_size_ = Max(static_cast<intptr_t>(paged_space_count *
5612 Page::kPageSize),
5613 RoundUp(max_old_generation_size_,
5614 Page::kPageSize));
5615
5616 configured_ = true;
5617 return true;
5618 }
5619
5620
ConfigureHeapDefault()5621 bool Heap::ConfigureHeapDefault() {
5622 return ConfigureHeap(static_cast<intptr_t>(FLAG_max_new_space_size / 2) * KB,
5623 static_cast<intptr_t>(FLAG_max_old_space_size) * MB,
5624 static_cast<intptr_t>(FLAG_max_executable_size) * MB);
5625 }
5626
5627
RecordStats(HeapStats * stats,bool take_snapshot)5628 void Heap::RecordStats(HeapStats* stats, bool take_snapshot) {
5629 *stats->start_marker = HeapStats::kStartMarker;
5630 *stats->end_marker = HeapStats::kEndMarker;
5631 *stats->new_space_size = new_space_.SizeAsInt();
5632 *stats->new_space_capacity = static_cast<int>(new_space_.Capacity());
5633 *stats->old_pointer_space_size = old_pointer_space_->SizeOfObjects();
5634 *stats->old_pointer_space_capacity = old_pointer_space_->Capacity();
5635 *stats->old_data_space_size = old_data_space_->SizeOfObjects();
5636 *stats->old_data_space_capacity = old_data_space_->Capacity();
5637 *stats->code_space_size = code_space_->SizeOfObjects();
5638 *stats->code_space_capacity = code_space_->Capacity();
5639 *stats->map_space_size = map_space_->SizeOfObjects();
5640 *stats->map_space_capacity = map_space_->Capacity();
5641 *stats->cell_space_size = cell_space_->SizeOfObjects();
5642 *stats->cell_space_capacity = cell_space_->Capacity();
5643 *stats->lo_space_size = lo_space_->Size();
5644 isolate_->global_handles()->RecordStats(stats);
5645 *stats->memory_allocator_size = isolate()->memory_allocator()->Size();
5646 *stats->memory_allocator_capacity =
5647 isolate()->memory_allocator()->Size() +
5648 isolate()->memory_allocator()->Available();
5649 *stats->os_error = OS::GetLastError();
5650 isolate()->memory_allocator()->Available();
5651 if (take_snapshot) {
5652 HeapIterator iterator;
5653 for (HeapObject* obj = iterator.next();
5654 obj != NULL;
5655 obj = iterator.next()) {
5656 InstanceType type = obj->map()->instance_type();
5657 ASSERT(0 <= type && type <= LAST_TYPE);
5658 stats->objects_per_type[type]++;
5659 stats->size_per_type[type] += obj->Size();
5660 }
5661 }
5662 }
5663
5664
PromotedSpaceSize()5665 intptr_t Heap::PromotedSpaceSize() {
5666 return old_pointer_space_->Size()
5667 + old_data_space_->Size()
5668 + code_space_->Size()
5669 + map_space_->Size()
5670 + cell_space_->Size()
5671 + lo_space_->Size();
5672 }
5673
5674
PromotedSpaceSizeOfObjects()5675 intptr_t Heap::PromotedSpaceSizeOfObjects() {
5676 return old_pointer_space_->SizeOfObjects()
5677 + old_data_space_->SizeOfObjects()
5678 + code_space_->SizeOfObjects()
5679 + map_space_->SizeOfObjects()
5680 + cell_space_->SizeOfObjects()
5681 + lo_space_->SizeOfObjects();
5682 }
5683
5684
PromotedExternalMemorySize()5685 int Heap::PromotedExternalMemorySize() {
5686 if (amount_of_external_allocated_memory_
5687 <= amount_of_external_allocated_memory_at_last_global_gc_) return 0;
5688 return amount_of_external_allocated_memory_
5689 - amount_of_external_allocated_memory_at_last_global_gc_;
5690 }
5691
5692 #ifdef DEBUG
5693
5694 // Tags 0, 1, and 3 are used. Use 2 for marking visited HeapObject.
5695 static const int kMarkTag = 2;
5696
5697
5698 class HeapDebugUtils {
5699 public:
HeapDebugUtils(Heap * heap)5700 explicit HeapDebugUtils(Heap* heap)
5701 : search_for_any_global_(false),
5702 search_target_(NULL),
5703 found_target_(false),
5704 object_stack_(20),
5705 heap_(heap) {
5706 }
5707
5708 class MarkObjectVisitor : public ObjectVisitor {
5709 public:
MarkObjectVisitor(HeapDebugUtils * utils)5710 explicit MarkObjectVisitor(HeapDebugUtils* utils) : utils_(utils) { }
5711
VisitPointers(Object ** start,Object ** end)5712 void VisitPointers(Object** start, Object** end) {
5713 // Copy all HeapObject pointers in [start, end)
5714 for (Object** p = start; p < end; p++) {
5715 if ((*p)->IsHeapObject())
5716 utils_->MarkObjectRecursively(p);
5717 }
5718 }
5719
5720 HeapDebugUtils* utils_;
5721 };
5722
MarkObjectRecursively(Object ** p)5723 void MarkObjectRecursively(Object** p) {
5724 if (!(*p)->IsHeapObject()) return;
5725
5726 HeapObject* obj = HeapObject::cast(*p);
5727
5728 Object* map = obj->map();
5729
5730 if (!map->IsHeapObject()) return; // visited before
5731
5732 if (found_target_) return; // stop if target found
5733 object_stack_.Add(obj);
5734 if ((search_for_any_global_ && obj->IsJSGlobalObject()) ||
5735 (!search_for_any_global_ && (obj == search_target_))) {
5736 found_target_ = true;
5737 return;
5738 }
5739
5740 // not visited yet
5741 Map* map_p = reinterpret_cast<Map*>(HeapObject::cast(map));
5742
5743 Address map_addr = map_p->address();
5744
5745 obj->set_map_no_write_barrier(reinterpret_cast<Map*>(map_addr + kMarkTag));
5746
5747 MarkObjectRecursively(&map);
5748
5749 MarkObjectVisitor mark_visitor(this);
5750
5751 obj->IterateBody(map_p->instance_type(), obj->SizeFromMap(map_p),
5752 &mark_visitor);
5753
5754 if (!found_target_) // don't pop if found the target
5755 object_stack_.RemoveLast();
5756 }
5757
5758
5759 class UnmarkObjectVisitor : public ObjectVisitor {
5760 public:
UnmarkObjectVisitor(HeapDebugUtils * utils)5761 explicit UnmarkObjectVisitor(HeapDebugUtils* utils) : utils_(utils) { }
5762
VisitPointers(Object ** start,Object ** end)5763 void VisitPointers(Object** start, Object** end) {
5764 // Copy all HeapObject pointers in [start, end)
5765 for (Object** p = start; p < end; p++) {
5766 if ((*p)->IsHeapObject())
5767 utils_->UnmarkObjectRecursively(p);
5768 }
5769 }
5770
5771 HeapDebugUtils* utils_;
5772 };
5773
5774
UnmarkObjectRecursively(Object ** p)5775 void UnmarkObjectRecursively(Object** p) {
5776 if (!(*p)->IsHeapObject()) return;
5777
5778 HeapObject* obj = HeapObject::cast(*p);
5779
5780 Object* map = obj->map();
5781
5782 if (map->IsHeapObject()) return; // unmarked already
5783
5784 Address map_addr = reinterpret_cast<Address>(map);
5785
5786 map_addr -= kMarkTag;
5787
5788 ASSERT_TAG_ALIGNED(map_addr);
5789
5790 HeapObject* map_p = HeapObject::FromAddress(map_addr);
5791
5792 obj->set_map_no_write_barrier(reinterpret_cast<Map*>(map_p));
5793
5794 UnmarkObjectRecursively(reinterpret_cast<Object**>(&map_p));
5795
5796 UnmarkObjectVisitor unmark_visitor(this);
5797
5798 obj->IterateBody(Map::cast(map_p)->instance_type(),
5799 obj->SizeFromMap(Map::cast(map_p)),
5800 &unmark_visitor);
5801 }
5802
5803
MarkRootObjectRecursively(Object ** root)5804 void MarkRootObjectRecursively(Object** root) {
5805 if (search_for_any_global_) {
5806 ASSERT(search_target_ == NULL);
5807 } else {
5808 ASSERT(search_target_->IsHeapObject());
5809 }
5810 found_target_ = false;
5811 object_stack_.Clear();
5812
5813 MarkObjectRecursively(root);
5814 UnmarkObjectRecursively(root);
5815
5816 if (found_target_) {
5817 PrintF("=====================================\n");
5818 PrintF("==== Path to object ====\n");
5819 PrintF("=====================================\n\n");
5820
5821 ASSERT(!object_stack_.is_empty());
5822 for (int i = 0; i < object_stack_.length(); i++) {
5823 if (i > 0) PrintF("\n |\n |\n V\n\n");
5824 Object* obj = object_stack_[i];
5825 obj->Print();
5826 }
5827 PrintF("=====================================\n");
5828 }
5829 }
5830
5831 // Helper class for visiting HeapObjects recursively.
5832 class MarkRootVisitor: public ObjectVisitor {
5833 public:
MarkRootVisitor(HeapDebugUtils * utils)5834 explicit MarkRootVisitor(HeapDebugUtils* utils) : utils_(utils) { }
5835
VisitPointers(Object ** start,Object ** end)5836 void VisitPointers(Object** start, Object** end) {
5837 // Visit all HeapObject pointers in [start, end)
5838 for (Object** p = start; p < end; p++) {
5839 if ((*p)->IsHeapObject())
5840 utils_->MarkRootObjectRecursively(p);
5841 }
5842 }
5843
5844 HeapDebugUtils* utils_;
5845 };
5846
5847 bool search_for_any_global_;
5848 Object* search_target_;
5849 bool found_target_;
5850 List<Object*> object_stack_;
5851 Heap* heap_;
5852
5853 friend class Heap;
5854 };
5855
5856 #endif
5857
SetUp(bool create_heap_objects)5858 bool Heap::SetUp(bool create_heap_objects) {
5859 #ifdef DEBUG
5860 allocation_timeout_ = FLAG_gc_interval;
5861 debug_utils_ = new HeapDebugUtils(this);
5862 #endif
5863
5864 // Initialize heap spaces and initial maps and objects. Whenever something
5865 // goes wrong, just return false. The caller should check the results and
5866 // call Heap::TearDown() to release allocated memory.
5867 //
5868 // If the heap is not yet configured (e.g. through the API), configure it.
5869 // Configuration is based on the flags new-space-size (really the semispace
5870 // size) and old-space-size if set or the initial values of semispace_size_
5871 // and old_generation_size_ otherwise.
5872 if (!configured_) {
5873 if (!ConfigureHeapDefault()) return false;
5874 }
5875
5876 gc_initializer_mutex.Pointer()->Lock();
5877 static bool initialized_gc = false;
5878 if (!initialized_gc) {
5879 initialized_gc = true;
5880 InitializeScavengingVisitorsTables();
5881 NewSpaceScavenger::Initialize();
5882 MarkCompactCollector::Initialize();
5883 }
5884 gc_initializer_mutex.Pointer()->Unlock();
5885
5886 MarkMapPointersAsEncoded(false);
5887
5888 // Set up memory allocator.
5889 if (!isolate_->memory_allocator()->SetUp(MaxReserved(), MaxExecutableSize()))
5890 return false;
5891
5892 // Set up new space.
5893 if (!new_space_.SetUp(reserved_semispace_size_, max_semispace_size_)) {
5894 return false;
5895 }
5896
5897 // Initialize old pointer space.
5898 old_pointer_space_ =
5899 new OldSpace(this,
5900 max_old_generation_size_,
5901 OLD_POINTER_SPACE,
5902 NOT_EXECUTABLE);
5903 if (old_pointer_space_ == NULL) return false;
5904 if (!old_pointer_space_->SetUp()) return false;
5905
5906 // Initialize old data space.
5907 old_data_space_ =
5908 new OldSpace(this,
5909 max_old_generation_size_,
5910 OLD_DATA_SPACE,
5911 NOT_EXECUTABLE);
5912 if (old_data_space_ == NULL) return false;
5913 if (!old_data_space_->SetUp()) return false;
5914
5915 // Initialize the code space, set its maximum capacity to the old
5916 // generation size. It needs executable memory.
5917 // On 64-bit platform(s), we put all code objects in a 2 GB range of
5918 // virtual address space, so that they can call each other with near calls.
5919 if (code_range_size_ > 0) {
5920 if (!isolate_->code_range()->SetUp(code_range_size_)) {
5921 return false;
5922 }
5923 }
5924
5925 code_space_ =
5926 new OldSpace(this, max_old_generation_size_, CODE_SPACE, EXECUTABLE);
5927 if (code_space_ == NULL) return false;
5928 if (!code_space_->SetUp()) return false;
5929
5930 // Initialize map space.
5931 map_space_ = new MapSpace(this, max_old_generation_size_, MAP_SPACE);
5932 if (map_space_ == NULL) return false;
5933 if (!map_space_->SetUp()) return false;
5934
5935 // Initialize global property cell space.
5936 cell_space_ = new CellSpace(this, max_old_generation_size_, CELL_SPACE);
5937 if (cell_space_ == NULL) return false;
5938 if (!cell_space_->SetUp()) return false;
5939
5940 // The large object code space may contain code or data. We set the memory
5941 // to be non-executable here for safety, but this means we need to enable it
5942 // explicitly when allocating large code objects.
5943 lo_space_ = new LargeObjectSpace(this, max_old_generation_size_, LO_SPACE);
5944 if (lo_space_ == NULL) return false;
5945 if (!lo_space_->SetUp()) return false;
5946
5947 // Set up the seed that is used to randomize the string hash function.
5948 ASSERT(hash_seed() == 0);
5949 if (FLAG_randomize_hashes) {
5950 if (FLAG_hash_seed == 0) {
5951 set_hash_seed(
5952 Smi::FromInt(V8::RandomPrivate(isolate()) & 0x3fffffff));
5953 } else {
5954 set_hash_seed(Smi::FromInt(FLAG_hash_seed));
5955 }
5956 }
5957
5958 if (create_heap_objects) {
5959 // Create initial maps.
5960 if (!CreateInitialMaps()) return false;
5961 if (!CreateApiObjects()) return false;
5962
5963 // Create initial objects
5964 if (!CreateInitialObjects()) return false;
5965
5966 global_contexts_list_ = undefined_value();
5967 }
5968
5969 LOG(isolate_, IntPtrTEvent("heap-capacity", Capacity()));
5970 LOG(isolate_, IntPtrTEvent("heap-available", Available()));
5971
5972 store_buffer()->SetUp();
5973
5974 return true;
5975 }
5976
5977
SetStackLimits()5978 void Heap::SetStackLimits() {
5979 ASSERT(isolate_ != NULL);
5980 ASSERT(isolate_ == isolate());
5981 // On 64 bit machines, pointers are generally out of range of Smis. We write
5982 // something that looks like an out of range Smi to the GC.
5983
5984 // Set up the special root array entries containing the stack limits.
5985 // These are actually addresses, but the tag makes the GC ignore it.
5986 roots_[kStackLimitRootIndex] =
5987 reinterpret_cast<Object*>(
5988 (isolate_->stack_guard()->jslimit() & ~kSmiTagMask) | kSmiTag);
5989 roots_[kRealStackLimitRootIndex] =
5990 reinterpret_cast<Object*>(
5991 (isolate_->stack_guard()->real_jslimit() & ~kSmiTagMask) | kSmiTag);
5992 }
5993
5994
TearDown()5995 void Heap::TearDown() {
5996 if (FLAG_print_cumulative_gc_stat) {
5997 PrintF("\n\n");
5998 PrintF("gc_count=%d ", gc_count_);
5999 PrintF("mark_sweep_count=%d ", ms_count_);
6000 PrintF("max_gc_pause=%d ", get_max_gc_pause());
6001 PrintF("min_in_mutator=%d ", get_min_in_mutator());
6002 PrintF("max_alive_after_gc=%" V8_PTR_PREFIX "d ",
6003 get_max_alive_after_gc());
6004 PrintF("\n\n");
6005 }
6006
6007 isolate_->global_handles()->TearDown();
6008
6009 external_string_table_.TearDown();
6010
6011 new_space_.TearDown();
6012
6013 if (old_pointer_space_ != NULL) {
6014 old_pointer_space_->TearDown();
6015 delete old_pointer_space_;
6016 old_pointer_space_ = NULL;
6017 }
6018
6019 if (old_data_space_ != NULL) {
6020 old_data_space_->TearDown();
6021 delete old_data_space_;
6022 old_data_space_ = NULL;
6023 }
6024
6025 if (code_space_ != NULL) {
6026 code_space_->TearDown();
6027 delete code_space_;
6028 code_space_ = NULL;
6029 }
6030
6031 if (map_space_ != NULL) {
6032 map_space_->TearDown();
6033 delete map_space_;
6034 map_space_ = NULL;
6035 }
6036
6037 if (cell_space_ != NULL) {
6038 cell_space_->TearDown();
6039 delete cell_space_;
6040 cell_space_ = NULL;
6041 }
6042
6043 if (lo_space_ != NULL) {
6044 lo_space_->TearDown();
6045 delete lo_space_;
6046 lo_space_ = NULL;
6047 }
6048
6049 store_buffer()->TearDown();
6050 incremental_marking()->TearDown();
6051
6052 isolate_->memory_allocator()->TearDown();
6053
6054 #ifdef DEBUG
6055 delete debug_utils_;
6056 debug_utils_ = NULL;
6057 #endif
6058 }
6059
6060
Shrink()6061 void Heap::Shrink() {
6062 // Try to shrink all paged spaces.
6063 PagedSpaces spaces;
6064 for (PagedSpace* space = spaces.next();
6065 space != NULL;
6066 space = spaces.next()) {
6067 space->ReleaseAllUnusedPages();
6068 }
6069 }
6070
6071
AddGCPrologueCallback(GCPrologueCallback callback,GCType gc_type)6072 void Heap::AddGCPrologueCallback(GCPrologueCallback callback, GCType gc_type) {
6073 ASSERT(callback != NULL);
6074 GCPrologueCallbackPair pair(callback, gc_type);
6075 ASSERT(!gc_prologue_callbacks_.Contains(pair));
6076 return gc_prologue_callbacks_.Add(pair);
6077 }
6078
6079
RemoveGCPrologueCallback(GCPrologueCallback callback)6080 void Heap::RemoveGCPrologueCallback(GCPrologueCallback callback) {
6081 ASSERT(callback != NULL);
6082 for (int i = 0; i < gc_prologue_callbacks_.length(); ++i) {
6083 if (gc_prologue_callbacks_[i].callback == callback) {
6084 gc_prologue_callbacks_.Remove(i);
6085 return;
6086 }
6087 }
6088 UNREACHABLE();
6089 }
6090
6091
AddGCEpilogueCallback(GCEpilogueCallback callback,GCType gc_type)6092 void Heap::AddGCEpilogueCallback(GCEpilogueCallback callback, GCType gc_type) {
6093 ASSERT(callback != NULL);
6094 GCEpilogueCallbackPair pair(callback, gc_type);
6095 ASSERT(!gc_epilogue_callbacks_.Contains(pair));
6096 return gc_epilogue_callbacks_.Add(pair);
6097 }
6098
6099
RemoveGCEpilogueCallback(GCEpilogueCallback callback)6100 void Heap::RemoveGCEpilogueCallback(GCEpilogueCallback callback) {
6101 ASSERT(callback != NULL);
6102 for (int i = 0; i < gc_epilogue_callbacks_.length(); ++i) {
6103 if (gc_epilogue_callbacks_[i].callback == callback) {
6104 gc_epilogue_callbacks_.Remove(i);
6105 return;
6106 }
6107 }
6108 UNREACHABLE();
6109 }
6110
6111
6112 #ifdef DEBUG
6113
6114 class PrintHandleVisitor: public ObjectVisitor {
6115 public:
VisitPointers(Object ** start,Object ** end)6116 void VisitPointers(Object** start, Object** end) {
6117 for (Object** p = start; p < end; p++)
6118 PrintF(" handle %p to %p\n",
6119 reinterpret_cast<void*>(p),
6120 reinterpret_cast<void*>(*p));
6121 }
6122 };
6123
PrintHandles()6124 void Heap::PrintHandles() {
6125 PrintF("Handles:\n");
6126 PrintHandleVisitor v;
6127 isolate_->handle_scope_implementer()->Iterate(&v);
6128 }
6129
6130 #endif
6131
6132
next()6133 Space* AllSpaces::next() {
6134 switch (counter_++) {
6135 case NEW_SPACE:
6136 return HEAP->new_space();
6137 case OLD_POINTER_SPACE:
6138 return HEAP->old_pointer_space();
6139 case OLD_DATA_SPACE:
6140 return HEAP->old_data_space();
6141 case CODE_SPACE:
6142 return HEAP->code_space();
6143 case MAP_SPACE:
6144 return HEAP->map_space();
6145 case CELL_SPACE:
6146 return HEAP->cell_space();
6147 case LO_SPACE:
6148 return HEAP->lo_space();
6149 default:
6150 return NULL;
6151 }
6152 }
6153
6154
next()6155 PagedSpace* PagedSpaces::next() {
6156 switch (counter_++) {
6157 case OLD_POINTER_SPACE:
6158 return HEAP->old_pointer_space();
6159 case OLD_DATA_SPACE:
6160 return HEAP->old_data_space();
6161 case CODE_SPACE:
6162 return HEAP->code_space();
6163 case MAP_SPACE:
6164 return HEAP->map_space();
6165 case CELL_SPACE:
6166 return HEAP->cell_space();
6167 default:
6168 return NULL;
6169 }
6170 }
6171
6172
6173
next()6174 OldSpace* OldSpaces::next() {
6175 switch (counter_++) {
6176 case OLD_POINTER_SPACE:
6177 return HEAP->old_pointer_space();
6178 case OLD_DATA_SPACE:
6179 return HEAP->old_data_space();
6180 case CODE_SPACE:
6181 return HEAP->code_space();
6182 default:
6183 return NULL;
6184 }
6185 }
6186
6187
SpaceIterator()6188 SpaceIterator::SpaceIterator()
6189 : current_space_(FIRST_SPACE),
6190 iterator_(NULL),
6191 size_func_(NULL) {
6192 }
6193
6194
SpaceIterator(HeapObjectCallback size_func)6195 SpaceIterator::SpaceIterator(HeapObjectCallback size_func)
6196 : current_space_(FIRST_SPACE),
6197 iterator_(NULL),
6198 size_func_(size_func) {
6199 }
6200
6201
~SpaceIterator()6202 SpaceIterator::~SpaceIterator() {
6203 // Delete active iterator if any.
6204 delete iterator_;
6205 }
6206
6207
has_next()6208 bool SpaceIterator::has_next() {
6209 // Iterate until no more spaces.
6210 return current_space_ != LAST_SPACE;
6211 }
6212
6213
next()6214 ObjectIterator* SpaceIterator::next() {
6215 if (iterator_ != NULL) {
6216 delete iterator_;
6217 iterator_ = NULL;
6218 // Move to the next space
6219 current_space_++;
6220 if (current_space_ > LAST_SPACE) {
6221 return NULL;
6222 }
6223 }
6224
6225 // Return iterator for the new current space.
6226 return CreateIterator();
6227 }
6228
6229
6230 // Create an iterator for the space to iterate.
CreateIterator()6231 ObjectIterator* SpaceIterator::CreateIterator() {
6232 ASSERT(iterator_ == NULL);
6233
6234 switch (current_space_) {
6235 case NEW_SPACE:
6236 iterator_ = new SemiSpaceIterator(HEAP->new_space(), size_func_);
6237 break;
6238 case OLD_POINTER_SPACE:
6239 iterator_ = new HeapObjectIterator(HEAP->old_pointer_space(), size_func_);
6240 break;
6241 case OLD_DATA_SPACE:
6242 iterator_ = new HeapObjectIterator(HEAP->old_data_space(), size_func_);
6243 break;
6244 case CODE_SPACE:
6245 iterator_ = new HeapObjectIterator(HEAP->code_space(), size_func_);
6246 break;
6247 case MAP_SPACE:
6248 iterator_ = new HeapObjectIterator(HEAP->map_space(), size_func_);
6249 break;
6250 case CELL_SPACE:
6251 iterator_ = new HeapObjectIterator(HEAP->cell_space(), size_func_);
6252 break;
6253 case LO_SPACE:
6254 iterator_ = new LargeObjectIterator(HEAP->lo_space(), size_func_);
6255 break;
6256 }
6257
6258 // Return the newly allocated iterator;
6259 ASSERT(iterator_ != NULL);
6260 return iterator_;
6261 }
6262
6263
6264 class HeapObjectsFilter {
6265 public:
~HeapObjectsFilter()6266 virtual ~HeapObjectsFilter() {}
6267 virtual bool SkipObject(HeapObject* object) = 0;
6268 };
6269
6270
6271 class UnreachableObjectsFilter : public HeapObjectsFilter {
6272 public:
UnreachableObjectsFilter()6273 UnreachableObjectsFilter() {
6274 MarkReachableObjects();
6275 }
6276
~UnreachableObjectsFilter()6277 ~UnreachableObjectsFilter() {
6278 Isolate::Current()->heap()->mark_compact_collector()->ClearMarkbits();
6279 }
6280
SkipObject(HeapObject * object)6281 bool SkipObject(HeapObject* object) {
6282 MarkBit mark_bit = Marking::MarkBitFrom(object);
6283 return !mark_bit.Get();
6284 }
6285
6286 private:
6287 class MarkingVisitor : public ObjectVisitor {
6288 public:
MarkingVisitor()6289 MarkingVisitor() : marking_stack_(10) {}
6290
VisitPointers(Object ** start,Object ** end)6291 void VisitPointers(Object** start, Object** end) {
6292 for (Object** p = start; p < end; p++) {
6293 if (!(*p)->IsHeapObject()) continue;
6294 HeapObject* obj = HeapObject::cast(*p);
6295 MarkBit mark_bit = Marking::MarkBitFrom(obj);
6296 if (!mark_bit.Get()) {
6297 mark_bit.Set();
6298 marking_stack_.Add(obj);
6299 }
6300 }
6301 }
6302
TransitiveClosure()6303 void TransitiveClosure() {
6304 while (!marking_stack_.is_empty()) {
6305 HeapObject* obj = marking_stack_.RemoveLast();
6306 obj->Iterate(this);
6307 }
6308 }
6309
6310 private:
6311 List<HeapObject*> marking_stack_;
6312 };
6313
MarkReachableObjects()6314 void MarkReachableObjects() {
6315 Heap* heap = Isolate::Current()->heap();
6316 MarkingVisitor visitor;
6317 heap->IterateRoots(&visitor, VISIT_ALL);
6318 visitor.TransitiveClosure();
6319 }
6320
6321 AssertNoAllocation no_alloc;
6322 };
6323
6324
HeapIterator()6325 HeapIterator::HeapIterator()
6326 : filtering_(HeapIterator::kNoFiltering),
6327 filter_(NULL) {
6328 Init();
6329 }
6330
6331
HeapIterator(HeapIterator::HeapObjectsFiltering filtering)6332 HeapIterator::HeapIterator(HeapIterator::HeapObjectsFiltering filtering)
6333 : filtering_(filtering),
6334 filter_(NULL) {
6335 Init();
6336 }
6337
6338
~HeapIterator()6339 HeapIterator::~HeapIterator() {
6340 Shutdown();
6341 }
6342
6343
Init()6344 void HeapIterator::Init() {
6345 // Start the iteration.
6346 space_iterator_ = new SpaceIterator;
6347 switch (filtering_) {
6348 case kFilterUnreachable:
6349 filter_ = new UnreachableObjectsFilter;
6350 break;
6351 default:
6352 break;
6353 }
6354 object_iterator_ = space_iterator_->next();
6355 }
6356
6357
Shutdown()6358 void HeapIterator::Shutdown() {
6359 #ifdef DEBUG
6360 // Assert that in filtering mode we have iterated through all
6361 // objects. Otherwise, heap will be left in an inconsistent state.
6362 if (filtering_ != kNoFiltering) {
6363 ASSERT(object_iterator_ == NULL);
6364 }
6365 #endif
6366 // Make sure the last iterator is deallocated.
6367 delete space_iterator_;
6368 space_iterator_ = NULL;
6369 object_iterator_ = NULL;
6370 delete filter_;
6371 filter_ = NULL;
6372 }
6373
6374
next()6375 HeapObject* HeapIterator::next() {
6376 if (filter_ == NULL) return NextObject();
6377
6378 HeapObject* obj = NextObject();
6379 while (obj != NULL && filter_->SkipObject(obj)) obj = NextObject();
6380 return obj;
6381 }
6382
6383
NextObject()6384 HeapObject* HeapIterator::NextObject() {
6385 // No iterator means we are done.
6386 if (object_iterator_ == NULL) return NULL;
6387
6388 if (HeapObject* obj = object_iterator_->next_object()) {
6389 // If the current iterator has more objects we are fine.
6390 return obj;
6391 } else {
6392 // Go though the spaces looking for one that has objects.
6393 while (space_iterator_->has_next()) {
6394 object_iterator_ = space_iterator_->next();
6395 if (HeapObject* obj = object_iterator_->next_object()) {
6396 return obj;
6397 }
6398 }
6399 }
6400 // Done with the last space.
6401 object_iterator_ = NULL;
6402 return NULL;
6403 }
6404
6405
reset()6406 void HeapIterator::reset() {
6407 // Restart the iterator.
6408 Shutdown();
6409 Init();
6410 }
6411
6412
6413 #if defined(DEBUG) || defined(LIVE_OBJECT_LIST)
6414
6415 Object* const PathTracer::kAnyGlobalObject = reinterpret_cast<Object*>(NULL);
6416
6417 class PathTracer::MarkVisitor: public ObjectVisitor {
6418 public:
MarkVisitor(PathTracer * tracer)6419 explicit MarkVisitor(PathTracer* tracer) : tracer_(tracer) {}
VisitPointers(Object ** start,Object ** end)6420 void VisitPointers(Object** start, Object** end) {
6421 // Scan all HeapObject pointers in [start, end)
6422 for (Object** p = start; !tracer_->found() && (p < end); p++) {
6423 if ((*p)->IsHeapObject())
6424 tracer_->MarkRecursively(p, this);
6425 }
6426 }
6427
6428 private:
6429 PathTracer* tracer_;
6430 };
6431
6432
6433 class PathTracer::UnmarkVisitor: public ObjectVisitor {
6434 public:
UnmarkVisitor(PathTracer * tracer)6435 explicit UnmarkVisitor(PathTracer* tracer) : tracer_(tracer) {}
VisitPointers(Object ** start,Object ** end)6436 void VisitPointers(Object** start, Object** end) {
6437 // Scan all HeapObject pointers in [start, end)
6438 for (Object** p = start; p < end; p++) {
6439 if ((*p)->IsHeapObject())
6440 tracer_->UnmarkRecursively(p, this);
6441 }
6442 }
6443
6444 private:
6445 PathTracer* tracer_;
6446 };
6447
6448
VisitPointers(Object ** start,Object ** end)6449 void PathTracer::VisitPointers(Object** start, Object** end) {
6450 bool done = ((what_to_find_ == FIND_FIRST) && found_target_);
6451 // Visit all HeapObject pointers in [start, end)
6452 for (Object** p = start; !done && (p < end); p++) {
6453 if ((*p)->IsHeapObject()) {
6454 TracePathFrom(p);
6455 done = ((what_to_find_ == FIND_FIRST) && found_target_);
6456 }
6457 }
6458 }
6459
6460
Reset()6461 void PathTracer::Reset() {
6462 found_target_ = false;
6463 object_stack_.Clear();
6464 }
6465
6466
TracePathFrom(Object ** root)6467 void PathTracer::TracePathFrom(Object** root) {
6468 ASSERT((search_target_ == kAnyGlobalObject) ||
6469 search_target_->IsHeapObject());
6470 found_target_in_trace_ = false;
6471 object_stack_.Clear();
6472
6473 MarkVisitor mark_visitor(this);
6474 MarkRecursively(root, &mark_visitor);
6475
6476 UnmarkVisitor unmark_visitor(this);
6477 UnmarkRecursively(root, &unmark_visitor);
6478
6479 ProcessResults();
6480 }
6481
6482
SafeIsGlobalContext(HeapObject * obj)6483 static bool SafeIsGlobalContext(HeapObject* obj) {
6484 return obj->map() == obj->GetHeap()->raw_unchecked_global_context_map();
6485 }
6486
6487
MarkRecursively(Object ** p,MarkVisitor * mark_visitor)6488 void PathTracer::MarkRecursively(Object** p, MarkVisitor* mark_visitor) {
6489 if (!(*p)->IsHeapObject()) return;
6490
6491 HeapObject* obj = HeapObject::cast(*p);
6492
6493 Object* map = obj->map();
6494
6495 if (!map->IsHeapObject()) return; // visited before
6496
6497 if (found_target_in_trace_) return; // stop if target found
6498 object_stack_.Add(obj);
6499 if (((search_target_ == kAnyGlobalObject) && obj->IsJSGlobalObject()) ||
6500 (obj == search_target_)) {
6501 found_target_in_trace_ = true;
6502 found_target_ = true;
6503 return;
6504 }
6505
6506 bool is_global_context = SafeIsGlobalContext(obj);
6507
6508 // not visited yet
6509 Map* map_p = reinterpret_cast<Map*>(HeapObject::cast(map));
6510
6511 Address map_addr = map_p->address();
6512
6513 obj->set_map_no_write_barrier(reinterpret_cast<Map*>(map_addr + kMarkTag));
6514
6515 // Scan the object body.
6516 if (is_global_context && (visit_mode_ == VISIT_ONLY_STRONG)) {
6517 // This is specialized to scan Context's properly.
6518 Object** start = reinterpret_cast<Object**>(obj->address() +
6519 Context::kHeaderSize);
6520 Object** end = reinterpret_cast<Object**>(obj->address() +
6521 Context::kHeaderSize + Context::FIRST_WEAK_SLOT * kPointerSize);
6522 mark_visitor->VisitPointers(start, end);
6523 } else {
6524 obj->IterateBody(map_p->instance_type(),
6525 obj->SizeFromMap(map_p),
6526 mark_visitor);
6527 }
6528
6529 // Scan the map after the body because the body is a lot more interesting
6530 // when doing leak detection.
6531 MarkRecursively(&map, mark_visitor);
6532
6533 if (!found_target_in_trace_) // don't pop if found the target
6534 object_stack_.RemoveLast();
6535 }
6536
6537
UnmarkRecursively(Object ** p,UnmarkVisitor * unmark_visitor)6538 void PathTracer::UnmarkRecursively(Object** p, UnmarkVisitor* unmark_visitor) {
6539 if (!(*p)->IsHeapObject()) return;
6540
6541 HeapObject* obj = HeapObject::cast(*p);
6542
6543 Object* map = obj->map();
6544
6545 if (map->IsHeapObject()) return; // unmarked already
6546
6547 Address map_addr = reinterpret_cast<Address>(map);
6548
6549 map_addr -= kMarkTag;
6550
6551 ASSERT_TAG_ALIGNED(map_addr);
6552
6553 HeapObject* map_p = HeapObject::FromAddress(map_addr);
6554
6555 obj->set_map_no_write_barrier(reinterpret_cast<Map*>(map_p));
6556
6557 UnmarkRecursively(reinterpret_cast<Object**>(&map_p), unmark_visitor);
6558
6559 obj->IterateBody(Map::cast(map_p)->instance_type(),
6560 obj->SizeFromMap(Map::cast(map_p)),
6561 unmark_visitor);
6562 }
6563
6564
ProcessResults()6565 void PathTracer::ProcessResults() {
6566 if (found_target_) {
6567 PrintF("=====================================\n");
6568 PrintF("==== Path to object ====\n");
6569 PrintF("=====================================\n\n");
6570
6571 ASSERT(!object_stack_.is_empty());
6572 for (int i = 0; i < object_stack_.length(); i++) {
6573 if (i > 0) PrintF("\n |\n |\n V\n\n");
6574 Object* obj = object_stack_[i];
6575 #ifdef OBJECT_PRINT
6576 obj->Print();
6577 #else
6578 obj->ShortPrint();
6579 #endif
6580 }
6581 PrintF("=====================================\n");
6582 }
6583 }
6584 #endif // DEBUG || LIVE_OBJECT_LIST
6585
6586
6587 #ifdef DEBUG
6588 // Triggers a depth-first traversal of reachable objects from roots
6589 // and finds a path to a specific heap object and prints it.
TracePathToObject(Object * target)6590 void Heap::TracePathToObject(Object* target) {
6591 PathTracer tracer(target, PathTracer::FIND_ALL, VISIT_ALL);
6592 IterateRoots(&tracer, VISIT_ONLY_STRONG);
6593 }
6594
6595
6596 // Triggers a depth-first traversal of reachable objects from roots
6597 // and finds a path to any global object and prints it. Useful for
6598 // determining the source for leaks of global objects.
TracePathToGlobal()6599 void Heap::TracePathToGlobal() {
6600 PathTracer tracer(PathTracer::kAnyGlobalObject,
6601 PathTracer::FIND_ALL,
6602 VISIT_ALL);
6603 IterateRoots(&tracer, VISIT_ONLY_STRONG);
6604 }
6605 #endif
6606
6607
CountTotalHolesSize()6608 static intptr_t CountTotalHolesSize() {
6609 intptr_t holes_size = 0;
6610 OldSpaces spaces;
6611 for (OldSpace* space = spaces.next();
6612 space != NULL;
6613 space = spaces.next()) {
6614 holes_size += space->Waste() + space->Available();
6615 }
6616 return holes_size;
6617 }
6618
6619
GCTracer(Heap * heap,const char * gc_reason,const char * collector_reason)6620 GCTracer::GCTracer(Heap* heap,
6621 const char* gc_reason,
6622 const char* collector_reason)
6623 : start_time_(0.0),
6624 start_object_size_(0),
6625 start_memory_size_(0),
6626 gc_count_(0),
6627 full_gc_count_(0),
6628 allocated_since_last_gc_(0),
6629 spent_in_mutator_(0),
6630 promoted_objects_size_(0),
6631 heap_(heap),
6632 gc_reason_(gc_reason),
6633 collector_reason_(collector_reason) {
6634 if (!FLAG_trace_gc && !FLAG_print_cumulative_gc_stat) return;
6635 start_time_ = OS::TimeCurrentMillis();
6636 start_object_size_ = heap_->SizeOfObjects();
6637 start_memory_size_ = heap_->isolate()->memory_allocator()->Size();
6638
6639 for (int i = 0; i < Scope::kNumberOfScopes; i++) {
6640 scopes_[i] = 0;
6641 }
6642
6643 in_free_list_or_wasted_before_gc_ = CountTotalHolesSize();
6644
6645 allocated_since_last_gc_ =
6646 heap_->SizeOfObjects() - heap_->alive_after_last_gc_;
6647
6648 if (heap_->last_gc_end_timestamp_ > 0) {
6649 spent_in_mutator_ = Max(start_time_ - heap_->last_gc_end_timestamp_, 0.0);
6650 }
6651
6652 steps_count_ = heap_->incremental_marking()->steps_count();
6653 steps_took_ = heap_->incremental_marking()->steps_took();
6654 longest_step_ = heap_->incremental_marking()->longest_step();
6655 steps_count_since_last_gc_ =
6656 heap_->incremental_marking()->steps_count_since_last_gc();
6657 steps_took_since_last_gc_ =
6658 heap_->incremental_marking()->steps_took_since_last_gc();
6659 }
6660
6661
~GCTracer()6662 GCTracer::~GCTracer() {
6663 // Printf ONE line iff flag is set.
6664 if (!FLAG_trace_gc && !FLAG_print_cumulative_gc_stat) return;
6665
6666 bool first_gc = (heap_->last_gc_end_timestamp_ == 0);
6667
6668 heap_->alive_after_last_gc_ = heap_->SizeOfObjects();
6669 heap_->last_gc_end_timestamp_ = OS::TimeCurrentMillis();
6670
6671 int time = static_cast<int>(heap_->last_gc_end_timestamp_ - start_time_);
6672
6673 // Update cumulative GC statistics if required.
6674 if (FLAG_print_cumulative_gc_stat) {
6675 heap_->max_gc_pause_ = Max(heap_->max_gc_pause_, time);
6676 heap_->max_alive_after_gc_ = Max(heap_->max_alive_after_gc_,
6677 heap_->alive_after_last_gc_);
6678 if (!first_gc) {
6679 heap_->min_in_mutator_ = Min(heap_->min_in_mutator_,
6680 static_cast<int>(spent_in_mutator_));
6681 }
6682 }
6683
6684 PrintF("%8.0f ms: ", heap_->isolate()->time_millis_since_init());
6685
6686 if (!FLAG_trace_gc_nvp) {
6687 int external_time = static_cast<int>(scopes_[Scope::EXTERNAL]);
6688
6689 double end_memory_size_mb =
6690 static_cast<double>(heap_->isolate()->memory_allocator()->Size()) / MB;
6691
6692 PrintF("%s %.1f (%.1f) -> %.1f (%.1f) MB, ",
6693 CollectorString(),
6694 static_cast<double>(start_object_size_) / MB,
6695 static_cast<double>(start_memory_size_) / MB,
6696 SizeOfHeapObjects(),
6697 end_memory_size_mb);
6698
6699 if (external_time > 0) PrintF("%d / ", external_time);
6700 PrintF("%d ms", time);
6701 if (steps_count_ > 0) {
6702 if (collector_ == SCAVENGER) {
6703 PrintF(" (+ %d ms in %d steps since last GC)",
6704 static_cast<int>(steps_took_since_last_gc_),
6705 steps_count_since_last_gc_);
6706 } else {
6707 PrintF(" (+ %d ms in %d steps since start of marking, "
6708 "biggest step %f ms)",
6709 static_cast<int>(steps_took_),
6710 steps_count_,
6711 longest_step_);
6712 }
6713 }
6714
6715 if (gc_reason_ != NULL) {
6716 PrintF(" [%s]", gc_reason_);
6717 }
6718
6719 if (collector_reason_ != NULL) {
6720 PrintF(" [%s]", collector_reason_);
6721 }
6722
6723 PrintF(".\n");
6724 } else {
6725 PrintF("pause=%d ", time);
6726 PrintF("mutator=%d ",
6727 static_cast<int>(spent_in_mutator_));
6728
6729 PrintF("gc=");
6730 switch (collector_) {
6731 case SCAVENGER:
6732 PrintF("s");
6733 break;
6734 case MARK_COMPACTOR:
6735 PrintF("ms");
6736 break;
6737 default:
6738 UNREACHABLE();
6739 }
6740 PrintF(" ");
6741
6742 PrintF("external=%d ", static_cast<int>(scopes_[Scope::EXTERNAL]));
6743 PrintF("mark=%d ", static_cast<int>(scopes_[Scope::MC_MARK]));
6744 PrintF("sweep=%d ", static_cast<int>(scopes_[Scope::MC_SWEEP]));
6745 PrintF("sweepns=%d ", static_cast<int>(scopes_[Scope::MC_SWEEP_NEWSPACE]));
6746 PrintF("evacuate=%d ", static_cast<int>(scopes_[Scope::MC_EVACUATE_PAGES]));
6747 PrintF("new_new=%d ",
6748 static_cast<int>(scopes_[Scope::MC_UPDATE_NEW_TO_NEW_POINTERS]));
6749 PrintF("root_new=%d ",
6750 static_cast<int>(scopes_[Scope::MC_UPDATE_ROOT_TO_NEW_POINTERS]));
6751 PrintF("old_new=%d ",
6752 static_cast<int>(scopes_[Scope::MC_UPDATE_OLD_TO_NEW_POINTERS]));
6753 PrintF("compaction_ptrs=%d ",
6754 static_cast<int>(scopes_[Scope::MC_UPDATE_POINTERS_TO_EVACUATED]));
6755 PrintF("intracompaction_ptrs=%d ", static_cast<int>(scopes_[
6756 Scope::MC_UPDATE_POINTERS_BETWEEN_EVACUATED]));
6757 PrintF("misc_compaction=%d ",
6758 static_cast<int>(scopes_[Scope::MC_UPDATE_MISC_POINTERS]));
6759
6760 PrintF("total_size_before=%" V8_PTR_PREFIX "d ", start_object_size_);
6761 PrintF("total_size_after=%" V8_PTR_PREFIX "d ", heap_->SizeOfObjects());
6762 PrintF("holes_size_before=%" V8_PTR_PREFIX "d ",
6763 in_free_list_or_wasted_before_gc_);
6764 PrintF("holes_size_after=%" V8_PTR_PREFIX "d ", CountTotalHolesSize());
6765
6766 PrintF("allocated=%" V8_PTR_PREFIX "d ", allocated_since_last_gc_);
6767 PrintF("promoted=%" V8_PTR_PREFIX "d ", promoted_objects_size_);
6768
6769 if (collector_ == SCAVENGER) {
6770 PrintF("stepscount=%d ", steps_count_since_last_gc_);
6771 PrintF("stepstook=%d ", static_cast<int>(steps_took_since_last_gc_));
6772 } else {
6773 PrintF("stepscount=%d ", steps_count_);
6774 PrintF("stepstook=%d ", static_cast<int>(steps_took_));
6775 }
6776
6777 PrintF("\n");
6778 }
6779
6780 heap_->PrintShortHeapStatistics();
6781 }
6782
6783
CollectorString()6784 const char* GCTracer::CollectorString() {
6785 switch (collector_) {
6786 case SCAVENGER:
6787 return "Scavenge";
6788 case MARK_COMPACTOR:
6789 return "Mark-sweep";
6790 }
6791 return "Unknown GC";
6792 }
6793
6794
Hash(Map * map,String * name)6795 int KeyedLookupCache::Hash(Map* map, String* name) {
6796 // Uses only lower 32 bits if pointers are larger.
6797 uintptr_t addr_hash =
6798 static_cast<uint32_t>(reinterpret_cast<uintptr_t>(map)) >> kMapHashShift;
6799 return static_cast<uint32_t>((addr_hash ^ name->Hash()) & kCapacityMask);
6800 }
6801
6802
Lookup(Map * map,String * name)6803 int KeyedLookupCache::Lookup(Map* map, String* name) {
6804 int index = (Hash(map, name) & kHashMask);
6805 for (int i = 0; i < kEntriesPerBucket; i++) {
6806 Key& key = keys_[index + i];
6807 if ((key.map == map) && key.name->Equals(name)) {
6808 return field_offsets_[index + i];
6809 }
6810 }
6811 return kNotFound;
6812 }
6813
6814
Update(Map * map,String * name,int field_offset)6815 void KeyedLookupCache::Update(Map* map, String* name, int field_offset) {
6816 String* symbol;
6817 if (HEAP->LookupSymbolIfExists(name, &symbol)) {
6818 int index = (Hash(map, symbol) & kHashMask);
6819 // After a GC there will be free slots, so we use them in order (this may
6820 // help to get the most frequently used one in position 0).
6821 for (int i = 0; i< kEntriesPerBucket; i++) {
6822 Key& key = keys_[index];
6823 Object* free_entry_indicator = NULL;
6824 if (key.map == free_entry_indicator) {
6825 key.map = map;
6826 key.name = symbol;
6827 field_offsets_[index + i] = field_offset;
6828 return;
6829 }
6830 }
6831 // No free entry found in this bucket, so we move them all down one and
6832 // put the new entry at position zero.
6833 for (int i = kEntriesPerBucket - 1; i > 0; i--) {
6834 Key& key = keys_[index + i];
6835 Key& key2 = keys_[index + i - 1];
6836 key = key2;
6837 field_offsets_[index + i] = field_offsets_[index + i - 1];
6838 }
6839
6840 // Write the new first entry.
6841 Key& key = keys_[index];
6842 key.map = map;
6843 key.name = symbol;
6844 field_offsets_[index] = field_offset;
6845 }
6846 }
6847
6848
Clear()6849 void KeyedLookupCache::Clear() {
6850 for (int index = 0; index < kLength; index++) keys_[index].map = NULL;
6851 }
6852
6853
Clear()6854 void DescriptorLookupCache::Clear() {
6855 for (int index = 0; index < kLength; index++) keys_[index].array = NULL;
6856 }
6857
6858
6859 #ifdef DEBUG
GarbageCollectionGreedyCheck()6860 void Heap::GarbageCollectionGreedyCheck() {
6861 ASSERT(FLAG_gc_greedy);
6862 if (isolate_->bootstrapper()->IsActive()) return;
6863 if (disallow_allocation_failure()) return;
6864 CollectGarbage(NEW_SPACE);
6865 }
6866 #endif
6867
6868
SubCache(Type t)6869 TranscendentalCache::SubCache::SubCache(Type t)
6870 : type_(t),
6871 isolate_(Isolate::Current()) {
6872 uint32_t in0 = 0xffffffffu; // Bit-pattern for a NaN that isn't
6873 uint32_t in1 = 0xffffffffu; // generated by the FPU.
6874 for (int i = 0; i < kCacheSize; i++) {
6875 elements_[i].in[0] = in0;
6876 elements_[i].in[1] = in1;
6877 elements_[i].output = NULL;
6878 }
6879 }
6880
6881
Clear()6882 void TranscendentalCache::Clear() {
6883 for (int i = 0; i < kNumberOfCaches; i++) {
6884 if (caches_[i] != NULL) {
6885 delete caches_[i];
6886 caches_[i] = NULL;
6887 }
6888 }
6889 }
6890
6891
CleanUp()6892 void ExternalStringTable::CleanUp() {
6893 int last = 0;
6894 for (int i = 0; i < new_space_strings_.length(); ++i) {
6895 if (new_space_strings_[i] == heap_->raw_unchecked_the_hole_value()) {
6896 continue;
6897 }
6898 if (heap_->InNewSpace(new_space_strings_[i])) {
6899 new_space_strings_[last++] = new_space_strings_[i];
6900 } else {
6901 old_space_strings_.Add(new_space_strings_[i]);
6902 }
6903 }
6904 new_space_strings_.Rewind(last);
6905 last = 0;
6906 for (int i = 0; i < old_space_strings_.length(); ++i) {
6907 if (old_space_strings_[i] == heap_->raw_unchecked_the_hole_value()) {
6908 continue;
6909 }
6910 ASSERT(!heap_->InNewSpace(old_space_strings_[i]));
6911 old_space_strings_[last++] = old_space_strings_[i];
6912 }
6913 old_space_strings_.Rewind(last);
6914 if (FLAG_verify_heap) {
6915 Verify();
6916 }
6917 }
6918
6919
TearDown()6920 void ExternalStringTable::TearDown() {
6921 new_space_strings_.Free();
6922 old_space_strings_.Free();
6923 }
6924
6925
QueueMemoryChunkForFree(MemoryChunk * chunk)6926 void Heap::QueueMemoryChunkForFree(MemoryChunk* chunk) {
6927 chunk->set_next_chunk(chunks_queued_for_free_);
6928 chunks_queued_for_free_ = chunk;
6929 }
6930
6931
FreeQueuedChunks()6932 void Heap::FreeQueuedChunks() {
6933 if (chunks_queued_for_free_ == NULL) return;
6934 MemoryChunk* next;
6935 MemoryChunk* chunk;
6936 for (chunk = chunks_queued_for_free_; chunk != NULL; chunk = next) {
6937 next = chunk->next_chunk();
6938 chunk->SetFlag(MemoryChunk::ABOUT_TO_BE_FREED);
6939
6940 if (chunk->owner()->identity() == LO_SPACE) {
6941 // StoreBuffer::Filter relies on MemoryChunk::FromAnyPointerAddress.
6942 // If FromAnyPointerAddress encounters a slot that belongs to a large
6943 // chunk queued for deletion it will fail to find the chunk because
6944 // it try to perform a search in the list of pages owned by of the large
6945 // object space and queued chunks were detached from that list.
6946 // To work around this we split large chunk into normal kPageSize aligned
6947 // pieces and initialize size, owner and flags field of every piece.
6948 // If FromAnyPointerAddress encounters a slot that belongs to one of
6949 // these smaller pieces it will treat it as a slot on a normal Page.
6950 Address chunk_end = chunk->address() + chunk->size();
6951 MemoryChunk* inner = MemoryChunk::FromAddress(
6952 chunk->address() + Page::kPageSize);
6953 MemoryChunk* inner_last = MemoryChunk::FromAddress(chunk_end - 1);
6954 while (inner <= inner_last) {
6955 // Size of a large chunk is always a multiple of
6956 // OS::AllocateAlignment() so there is always
6957 // enough space for a fake MemoryChunk header.
6958 Address area_end = Min(inner->address() + Page::kPageSize, chunk_end);
6959 // Guard against overflow.
6960 if (area_end < inner->address()) area_end = chunk_end;
6961 inner->SetArea(inner->address(), area_end);
6962 inner->set_size(Page::kPageSize);
6963 inner->set_owner(lo_space());
6964 inner->SetFlag(MemoryChunk::ABOUT_TO_BE_FREED);
6965 inner = MemoryChunk::FromAddress(
6966 inner->address() + Page::kPageSize);
6967 }
6968 }
6969 }
6970 isolate_->heap()->store_buffer()->Compact();
6971 isolate_->heap()->store_buffer()->Filter(MemoryChunk::ABOUT_TO_BE_FREED);
6972 for (chunk = chunks_queued_for_free_; chunk != NULL; chunk = next) {
6973 next = chunk->next_chunk();
6974 isolate_->memory_allocator()->Free(chunk);
6975 }
6976 chunks_queued_for_free_ = NULL;
6977 }
6978
6979
RememberUnmappedPage(Address page,bool compacted)6980 void Heap::RememberUnmappedPage(Address page, bool compacted) {
6981 uintptr_t p = reinterpret_cast<uintptr_t>(page);
6982 // Tag the page pointer to make it findable in the dump file.
6983 if (compacted) {
6984 p ^= 0xc1ead & (Page::kPageSize - 1); // Cleared.
6985 } else {
6986 p ^= 0x1d1ed & (Page::kPageSize - 1); // I died.
6987 }
6988 remembered_unmapped_pages_[remembered_unmapped_pages_index_] =
6989 reinterpret_cast<Address>(p);
6990 remembered_unmapped_pages_index_++;
6991 remembered_unmapped_pages_index_ %= kRememberedUnmappedPages;
6992 }
6993
6994 } } // namespace v8::internal
6995