• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2011 Google Inc. All Rights Reserved.
2 //
3 // This code is licensed under the same terms as WebM:
4 //  Software License Agreement:  http://www.webmproject.org/license/software/
5 //  Additional IP Rights Grant:  http://www.webmproject.org/license/additional/
6 // -----------------------------------------------------------------------------
7 //
8 // SSE2 version of some decoding functions (idct, loop filtering).
9 //
10 // Author: somnath@google.com (Somnath Banerjee)
11 //         cduvivier@google.com (Christian Duvivier)
12 
13 #include "./dsp.h"
14 
15 #if defined(WEBP_USE_SSE2)
16 
17 #include <emmintrin.h>
18 #include "../dec/vp8i.h"
19 
20 #if defined(__cplusplus) || defined(c_plusplus)
21 extern "C" {
22 #endif
23 
24 //------------------------------------------------------------------------------
25 // Transforms (Paragraph 14.4)
26 
TransformSSE2(const int16_t * in,uint8_t * dst,int do_two)27 static void TransformSSE2(const int16_t* in, uint8_t* dst, int do_two) {
28   // This implementation makes use of 16-bit fixed point versions of two
29   // multiply constants:
30   //    K1 = sqrt(2) * cos (pi/8) ~= 85627 / 2^16
31   //    K2 = sqrt(2) * sin (pi/8) ~= 35468 / 2^16
32   //
33   // To be able to use signed 16-bit integers, we use the following trick to
34   // have constants within range:
35   // - Associated constants are obtained by subtracting the 16-bit fixed point
36   //   version of one:
37   //      k = K - (1 << 16)  =>  K = k + (1 << 16)
38   //      K1 = 85267  =>  k1 =  20091
39   //      K2 = 35468  =>  k2 = -30068
40   // - The multiplication of a variable by a constant become the sum of the
41   //   variable and the multiplication of that variable by the associated
42   //   constant:
43   //      (x * K) >> 16 = (x * (k + (1 << 16))) >> 16 = ((x * k ) >> 16) + x
44   const __m128i k1 = _mm_set1_epi16(20091);
45   const __m128i k2 = _mm_set1_epi16(-30068);
46   __m128i T0, T1, T2, T3;
47 
48   // Load and concatenate the transform coefficients (we'll do two transforms
49   // in parallel). In the case of only one transform, the second half of the
50   // vectors will just contain random value we'll never use nor store.
51   __m128i in0, in1, in2, in3;
52   {
53     in0 = _mm_loadl_epi64((__m128i*)&in[0]);
54     in1 = _mm_loadl_epi64((__m128i*)&in[4]);
55     in2 = _mm_loadl_epi64((__m128i*)&in[8]);
56     in3 = _mm_loadl_epi64((__m128i*)&in[12]);
57     // a00 a10 a20 a30   x x x x
58     // a01 a11 a21 a31   x x x x
59     // a02 a12 a22 a32   x x x x
60     // a03 a13 a23 a33   x x x x
61     if (do_two) {
62       const __m128i inB0 = _mm_loadl_epi64((__m128i*)&in[16]);
63       const __m128i inB1 = _mm_loadl_epi64((__m128i*)&in[20]);
64       const __m128i inB2 = _mm_loadl_epi64((__m128i*)&in[24]);
65       const __m128i inB3 = _mm_loadl_epi64((__m128i*)&in[28]);
66       in0 = _mm_unpacklo_epi64(in0, inB0);
67       in1 = _mm_unpacklo_epi64(in1, inB1);
68       in2 = _mm_unpacklo_epi64(in2, inB2);
69       in3 = _mm_unpacklo_epi64(in3, inB3);
70       // a00 a10 a20 a30   b00 b10 b20 b30
71       // a01 a11 a21 a31   b01 b11 b21 b31
72       // a02 a12 a22 a32   b02 b12 b22 b32
73       // a03 a13 a23 a33   b03 b13 b23 b33
74     }
75   }
76 
77   // Vertical pass and subsequent transpose.
78   {
79     // First pass, c and d calculations are longer because of the "trick"
80     // multiplications.
81     const __m128i a = _mm_add_epi16(in0, in2);
82     const __m128i b = _mm_sub_epi16(in0, in2);
83     // c = MUL(in1, K2) - MUL(in3, K1) = MUL(in1, k2) - MUL(in3, k1) + in1 - in3
84     const __m128i c1 = _mm_mulhi_epi16(in1, k2);
85     const __m128i c2 = _mm_mulhi_epi16(in3, k1);
86     const __m128i c3 = _mm_sub_epi16(in1, in3);
87     const __m128i c4 = _mm_sub_epi16(c1, c2);
88     const __m128i c = _mm_add_epi16(c3, c4);
89     // d = MUL(in1, K1) + MUL(in3, K2) = MUL(in1, k1) + MUL(in3, k2) + in1 + in3
90     const __m128i d1 = _mm_mulhi_epi16(in1, k1);
91     const __m128i d2 = _mm_mulhi_epi16(in3, k2);
92     const __m128i d3 = _mm_add_epi16(in1, in3);
93     const __m128i d4 = _mm_add_epi16(d1, d2);
94     const __m128i d = _mm_add_epi16(d3, d4);
95 
96     // Second pass.
97     const __m128i tmp0 = _mm_add_epi16(a, d);
98     const __m128i tmp1 = _mm_add_epi16(b, c);
99     const __m128i tmp2 = _mm_sub_epi16(b, c);
100     const __m128i tmp3 = _mm_sub_epi16(a, d);
101 
102     // Transpose the two 4x4.
103     // a00 a01 a02 a03   b00 b01 b02 b03
104     // a10 a11 a12 a13   b10 b11 b12 b13
105     // a20 a21 a22 a23   b20 b21 b22 b23
106     // a30 a31 a32 a33   b30 b31 b32 b33
107     const __m128i transpose0_0 = _mm_unpacklo_epi16(tmp0, tmp1);
108     const __m128i transpose0_1 = _mm_unpacklo_epi16(tmp2, tmp3);
109     const __m128i transpose0_2 = _mm_unpackhi_epi16(tmp0, tmp1);
110     const __m128i transpose0_3 = _mm_unpackhi_epi16(tmp2, tmp3);
111     // a00 a10 a01 a11   a02 a12 a03 a13
112     // a20 a30 a21 a31   a22 a32 a23 a33
113     // b00 b10 b01 b11   b02 b12 b03 b13
114     // b20 b30 b21 b31   b22 b32 b23 b33
115     const __m128i transpose1_0 = _mm_unpacklo_epi32(transpose0_0, transpose0_1);
116     const __m128i transpose1_1 = _mm_unpacklo_epi32(transpose0_2, transpose0_3);
117     const __m128i transpose1_2 = _mm_unpackhi_epi32(transpose0_0, transpose0_1);
118     const __m128i transpose1_3 = _mm_unpackhi_epi32(transpose0_2, transpose0_3);
119     // a00 a10 a20 a30 a01 a11 a21 a31
120     // b00 b10 b20 b30 b01 b11 b21 b31
121     // a02 a12 a22 a32 a03 a13 a23 a33
122     // b02 b12 a22 b32 b03 b13 b23 b33
123     T0 = _mm_unpacklo_epi64(transpose1_0, transpose1_1);
124     T1 = _mm_unpackhi_epi64(transpose1_0, transpose1_1);
125     T2 = _mm_unpacklo_epi64(transpose1_2, transpose1_3);
126     T3 = _mm_unpackhi_epi64(transpose1_2, transpose1_3);
127     // a00 a10 a20 a30   b00 b10 b20 b30
128     // a01 a11 a21 a31   b01 b11 b21 b31
129     // a02 a12 a22 a32   b02 b12 b22 b32
130     // a03 a13 a23 a33   b03 b13 b23 b33
131   }
132 
133   // Horizontal pass and subsequent transpose.
134   {
135     // First pass, c and d calculations are longer because of the "trick"
136     // multiplications.
137     const __m128i four = _mm_set1_epi16(4);
138     const __m128i dc = _mm_add_epi16(T0, four);
139     const __m128i a =  _mm_add_epi16(dc, T2);
140     const __m128i b =  _mm_sub_epi16(dc, T2);
141     // c = MUL(T1, K2) - MUL(T3, K1) = MUL(T1, k2) - MUL(T3, k1) + T1 - T3
142     const __m128i c1 = _mm_mulhi_epi16(T1, k2);
143     const __m128i c2 = _mm_mulhi_epi16(T3, k1);
144     const __m128i c3 = _mm_sub_epi16(T1, T3);
145     const __m128i c4 = _mm_sub_epi16(c1, c2);
146     const __m128i c = _mm_add_epi16(c3, c4);
147     // d = MUL(T1, K1) + MUL(T3, K2) = MUL(T1, k1) + MUL(T3, k2) + T1 + T3
148     const __m128i d1 = _mm_mulhi_epi16(T1, k1);
149     const __m128i d2 = _mm_mulhi_epi16(T3, k2);
150     const __m128i d3 = _mm_add_epi16(T1, T3);
151     const __m128i d4 = _mm_add_epi16(d1, d2);
152     const __m128i d = _mm_add_epi16(d3, d4);
153 
154     // Second pass.
155     const __m128i tmp0 = _mm_add_epi16(a, d);
156     const __m128i tmp1 = _mm_add_epi16(b, c);
157     const __m128i tmp2 = _mm_sub_epi16(b, c);
158     const __m128i tmp3 = _mm_sub_epi16(a, d);
159     const __m128i shifted0 = _mm_srai_epi16(tmp0, 3);
160     const __m128i shifted1 = _mm_srai_epi16(tmp1, 3);
161     const __m128i shifted2 = _mm_srai_epi16(tmp2, 3);
162     const __m128i shifted3 = _mm_srai_epi16(tmp3, 3);
163 
164     // Transpose the two 4x4.
165     // a00 a01 a02 a03   b00 b01 b02 b03
166     // a10 a11 a12 a13   b10 b11 b12 b13
167     // a20 a21 a22 a23   b20 b21 b22 b23
168     // a30 a31 a32 a33   b30 b31 b32 b33
169     const __m128i transpose0_0 = _mm_unpacklo_epi16(shifted0, shifted1);
170     const __m128i transpose0_1 = _mm_unpacklo_epi16(shifted2, shifted3);
171     const __m128i transpose0_2 = _mm_unpackhi_epi16(shifted0, shifted1);
172     const __m128i transpose0_3 = _mm_unpackhi_epi16(shifted2, shifted3);
173     // a00 a10 a01 a11   a02 a12 a03 a13
174     // a20 a30 a21 a31   a22 a32 a23 a33
175     // b00 b10 b01 b11   b02 b12 b03 b13
176     // b20 b30 b21 b31   b22 b32 b23 b33
177     const __m128i transpose1_0 = _mm_unpacklo_epi32(transpose0_0, transpose0_1);
178     const __m128i transpose1_1 = _mm_unpacklo_epi32(transpose0_2, transpose0_3);
179     const __m128i transpose1_2 = _mm_unpackhi_epi32(transpose0_0, transpose0_1);
180     const __m128i transpose1_3 = _mm_unpackhi_epi32(transpose0_2, transpose0_3);
181     // a00 a10 a20 a30 a01 a11 a21 a31
182     // b00 b10 b20 b30 b01 b11 b21 b31
183     // a02 a12 a22 a32 a03 a13 a23 a33
184     // b02 b12 a22 b32 b03 b13 b23 b33
185     T0 = _mm_unpacklo_epi64(transpose1_0, transpose1_1);
186     T1 = _mm_unpackhi_epi64(transpose1_0, transpose1_1);
187     T2 = _mm_unpacklo_epi64(transpose1_2, transpose1_3);
188     T3 = _mm_unpackhi_epi64(transpose1_2, transpose1_3);
189     // a00 a10 a20 a30   b00 b10 b20 b30
190     // a01 a11 a21 a31   b01 b11 b21 b31
191     // a02 a12 a22 a32   b02 b12 b22 b32
192     // a03 a13 a23 a33   b03 b13 b23 b33
193   }
194 
195   // Add inverse transform to 'dst' and store.
196   {
197     const __m128i zero = _mm_set1_epi16(0);
198     // Load the reference(s).
199     __m128i dst0, dst1, dst2, dst3;
200     if (do_two) {
201       // Load eight bytes/pixels per line.
202       dst0 = _mm_loadl_epi64((__m128i*)&dst[0 * BPS]);
203       dst1 = _mm_loadl_epi64((__m128i*)&dst[1 * BPS]);
204       dst2 = _mm_loadl_epi64((__m128i*)&dst[2 * BPS]);
205       dst3 = _mm_loadl_epi64((__m128i*)&dst[3 * BPS]);
206     } else {
207       // Load four bytes/pixels per line.
208       dst0 = _mm_cvtsi32_si128(*(int*)&dst[0 * BPS]);
209       dst1 = _mm_cvtsi32_si128(*(int*)&dst[1 * BPS]);
210       dst2 = _mm_cvtsi32_si128(*(int*)&dst[2 * BPS]);
211       dst3 = _mm_cvtsi32_si128(*(int*)&dst[3 * BPS]);
212     }
213     // Convert to 16b.
214     dst0 = _mm_unpacklo_epi8(dst0, zero);
215     dst1 = _mm_unpacklo_epi8(dst1, zero);
216     dst2 = _mm_unpacklo_epi8(dst2, zero);
217     dst3 = _mm_unpacklo_epi8(dst3, zero);
218     // Add the inverse transform(s).
219     dst0 = _mm_add_epi16(dst0, T0);
220     dst1 = _mm_add_epi16(dst1, T1);
221     dst2 = _mm_add_epi16(dst2, T2);
222     dst3 = _mm_add_epi16(dst3, T3);
223     // Unsigned saturate to 8b.
224     dst0 = _mm_packus_epi16(dst0, dst0);
225     dst1 = _mm_packus_epi16(dst1, dst1);
226     dst2 = _mm_packus_epi16(dst2, dst2);
227     dst3 = _mm_packus_epi16(dst3, dst3);
228     // Store the results.
229     if (do_two) {
230       // Store eight bytes/pixels per line.
231       _mm_storel_epi64((__m128i*)&dst[0 * BPS], dst0);
232       _mm_storel_epi64((__m128i*)&dst[1 * BPS], dst1);
233       _mm_storel_epi64((__m128i*)&dst[2 * BPS], dst2);
234       _mm_storel_epi64((__m128i*)&dst[3 * BPS], dst3);
235     } else {
236       // Store four bytes/pixels per line.
237       *((int32_t *)&dst[0 * BPS]) = _mm_cvtsi128_si32(dst0);
238       *((int32_t *)&dst[1 * BPS]) = _mm_cvtsi128_si32(dst1);
239       *((int32_t *)&dst[2 * BPS]) = _mm_cvtsi128_si32(dst2);
240       *((int32_t *)&dst[3 * BPS]) = _mm_cvtsi128_si32(dst3);
241     }
242   }
243 }
244 
245 //------------------------------------------------------------------------------
246 // Loop Filter (Paragraph 15)
247 
248 // Compute abs(p - q) = subs(p - q) OR subs(q - p)
249 #define MM_ABS(p, q)  _mm_or_si128(                                            \
250     _mm_subs_epu8((q), (p)),                                                   \
251     _mm_subs_epu8((p), (q)))
252 
253 // Shift each byte of "a" by N bits while preserving by the sign bit.
254 //
255 // It first shifts the lower bytes of the words and then the upper bytes and
256 // then merges the results together.
257 #define SIGNED_SHIFT_N(a, N) {                                                 \
258   __m128i t = a;                                                               \
259   t = _mm_slli_epi16(t, 8);                                                    \
260   t = _mm_srai_epi16(t, N);                                                    \
261   t = _mm_srli_epi16(t, 8);                                                    \
262                                                                                \
263   a = _mm_srai_epi16(a, N + 8);                                                \
264   a = _mm_slli_epi16(a, 8);                                                    \
265                                                                                \
266   a = _mm_or_si128(t, a);                                                      \
267 }
268 
269 #define FLIP_SIGN_BIT2(a, b) {                                                 \
270   a = _mm_xor_si128(a, sign_bit);                                              \
271   b = _mm_xor_si128(b, sign_bit);                                              \
272 }
273 
274 #define FLIP_SIGN_BIT4(a, b, c, d) {                                           \
275   FLIP_SIGN_BIT2(a, b);                                                        \
276   FLIP_SIGN_BIT2(c, d);                                                        \
277 }
278 
279 #define GET_NOTHEV(p1, p0, q0, q1, hev_thresh, not_hev) {                      \
280   const __m128i zero = _mm_setzero_si128();                                    \
281   const __m128i t1 = MM_ABS(p1, p0);                                           \
282   const __m128i t2 = MM_ABS(q1, q0);                                           \
283                                                                                \
284   const __m128i h = _mm_set1_epi8(hev_thresh);                                 \
285   const __m128i t3 = _mm_subs_epu8(t1, h);  /* abs(p1 - p0) - hev_tresh */     \
286   const __m128i t4 = _mm_subs_epu8(t2, h);  /* abs(q1 - q0) - hev_tresh */     \
287                                                                                \
288   not_hev = _mm_or_si128(t3, t4);                                              \
289   not_hev = _mm_cmpeq_epi8(not_hev, zero); /* not_hev <= t1 && not_hev <= t2 */\
290 }
291 
292 #define GET_BASE_DELTA(p1, p0, q0, q1, o) {                                    \
293   const __m128i qp0 = _mm_subs_epi8(q0, p0);  /* q0 - p0 */                    \
294   o = _mm_subs_epi8(p1, q1);            /* p1 - q1 */                          \
295   o = _mm_adds_epi8(o, qp0);            /* p1 - q1 + 1 * (q0 - p0) */          \
296   o = _mm_adds_epi8(o, qp0);            /* p1 - q1 + 2 * (q0 - p0) */          \
297   o = _mm_adds_epi8(o, qp0);            /* p1 - q1 + 3 * (q0 - p0) */          \
298 }
299 
300 #define DO_SIMPLE_FILTER(p0, q0, fl) {                                         \
301   const __m128i three = _mm_set1_epi8(3);                                      \
302   const __m128i four = _mm_set1_epi8(4);                                       \
303   __m128i v3 = _mm_adds_epi8(fl, three);                                       \
304   __m128i v4 = _mm_adds_epi8(fl, four);                                        \
305                                                                                \
306   /* Do +4 side */                                                             \
307   SIGNED_SHIFT_N(v4, 3);                /* v4 >> 3  */                         \
308   q0 = _mm_subs_epi8(q0, v4);           /* q0 -= v4 */                         \
309                                                                                \
310   /* Now do +3 side */                                                         \
311   SIGNED_SHIFT_N(v3, 3);                /* v3 >> 3  */                         \
312   p0 = _mm_adds_epi8(p0, v3);           /* p0 += v3 */                         \
313 }
314 
315 // Updates values of 2 pixels at MB edge during complex filtering.
316 // Update operations:
317 // q = q - a and p = p + a; where a = [(a_hi >> 7), (a_lo >> 7)]
318 #define UPDATE_2PIXELS(pi, qi, a_lo, a_hi) {                                   \
319   const __m128i a_lo7 = _mm_srai_epi16(a_lo, 7);                               \
320   const __m128i a_hi7 = _mm_srai_epi16(a_hi, 7);                               \
321   const __m128i a = _mm_packs_epi16(a_lo7, a_hi7);                             \
322   pi = _mm_adds_epi8(pi, a);                                                   \
323   qi = _mm_subs_epi8(qi, a);                                                   \
324 }
325 
NeedsFilter(const __m128i * p1,const __m128i * p0,const __m128i * q0,const __m128i * q1,int thresh,__m128i * mask)326 static void NeedsFilter(const __m128i* p1, const __m128i* p0, const __m128i* q0,
327                         const __m128i* q1, int thresh, __m128i *mask) {
328   __m128i t1 = MM_ABS(*p1, *q1);        // abs(p1 - q1)
329   *mask = _mm_set1_epi8(0xFE);
330   t1 = _mm_and_si128(t1, *mask);        // set lsb of each byte to zero
331   t1 = _mm_srli_epi16(t1, 1);           // abs(p1 - q1) / 2
332 
333   *mask = MM_ABS(*p0, *q0);             // abs(p0 - q0)
334   *mask = _mm_adds_epu8(*mask, *mask);  // abs(p0 - q0) * 2
335   *mask = _mm_adds_epu8(*mask, t1);     // abs(p0 - q0) * 2 + abs(p1 - q1) / 2
336 
337   t1 = _mm_set1_epi8(thresh);
338   *mask = _mm_subs_epu8(*mask, t1);     // mask <= thresh
339   *mask = _mm_cmpeq_epi8(*mask, _mm_setzero_si128());
340 }
341 
342 //------------------------------------------------------------------------------
343 // Edge filtering functions
344 
345 // Applies filter on 2 pixels (p0 and q0)
DoFilter2(const __m128i * p1,__m128i * p0,__m128i * q0,const __m128i * q1,int thresh)346 static WEBP_INLINE void DoFilter2(const __m128i* p1, __m128i* p0, __m128i* q0,
347                                   const __m128i* q1, int thresh) {
348   __m128i a, mask;
349   const __m128i sign_bit = _mm_set1_epi8(0x80);
350   const __m128i p1s = _mm_xor_si128(*p1, sign_bit);
351   const __m128i q1s = _mm_xor_si128(*q1, sign_bit);
352 
353   NeedsFilter(p1, p0, q0, q1, thresh, &mask);
354 
355   // convert to signed values
356   FLIP_SIGN_BIT2(*p0, *q0);
357 
358   GET_BASE_DELTA(p1s, *p0, *q0, q1s, a);
359   a = _mm_and_si128(a, mask);     // mask filter values we don't care about
360   DO_SIMPLE_FILTER(*p0, *q0, a);
361 
362   // unoffset
363   FLIP_SIGN_BIT2(*p0, *q0);
364 }
365 
366 // Applies filter on 4 pixels (p1, p0, q0 and q1)
DoFilter4(__m128i * p1,__m128i * p0,__m128i * q0,__m128i * q1,const __m128i * mask,int hev_thresh)367 static WEBP_INLINE void DoFilter4(__m128i* p1, __m128i *p0,
368                                   __m128i* q0, __m128i* q1,
369                                   const __m128i* mask, int hev_thresh) {
370   __m128i not_hev;
371   __m128i t1, t2, t3;
372   const __m128i sign_bit = _mm_set1_epi8(0x80);
373 
374   // compute hev mask
375   GET_NOTHEV(*p1, *p0, *q0, *q1, hev_thresh, not_hev);
376 
377   // convert to signed values
378   FLIP_SIGN_BIT4(*p1, *p0, *q0, *q1);
379 
380   t1 = _mm_subs_epi8(*p1, *q1);        // p1 - q1
381   t1 = _mm_andnot_si128(not_hev, t1);  // hev(p1 - q1)
382   t2 = _mm_subs_epi8(*q0, *p0);        // q0 - p0
383   t1 = _mm_adds_epi8(t1, t2);          // hev(p1 - q1) + 1 * (q0 - p0)
384   t1 = _mm_adds_epi8(t1, t2);          // hev(p1 - q1) + 2 * (q0 - p0)
385   t1 = _mm_adds_epi8(t1, t2);          // hev(p1 - q1) + 3 * (q0 - p0)
386   t1 = _mm_and_si128(t1, *mask);       // mask filter values we don't care about
387 
388   // Do +4 side
389   t2 = _mm_set1_epi8(4);
390   t2 = _mm_adds_epi8(t1, t2);        // 3 * (q0 - p0) + (p1 - q1) + 4
391   SIGNED_SHIFT_N(t2, 3);             // (3 * (q0 - p0) + hev(p1 - q1) + 4) >> 3
392   t3 = t2;                           // save t2
393   *q0 = _mm_subs_epi8(*q0, t2);      // q0 -= t2
394 
395   // Now do +3 side
396   t2 = _mm_set1_epi8(3);
397   t2 = _mm_adds_epi8(t1, t2);        // +3 instead of +4
398   SIGNED_SHIFT_N(t2, 3);             // (3 * (q0 - p0) + hev(p1 - q1) + 3) >> 3
399   *p0 = _mm_adds_epi8(*p0, t2);      // p0 += t2
400 
401   t2 = _mm_set1_epi8(1);
402   t3 = _mm_adds_epi8(t3, t2);
403   SIGNED_SHIFT_N(t3, 1);             // (3 * (q0 - p0) + hev(p1 - q1) + 4) >> 4
404 
405   t3 = _mm_and_si128(not_hev, t3);   // if !hev
406   *q1 = _mm_subs_epi8(*q1, t3);      // q1 -= t3
407   *p1 = _mm_adds_epi8(*p1, t3);      // p1 += t3
408 
409   // unoffset
410   FLIP_SIGN_BIT4(*p1, *p0, *q0, *q1);
411 }
412 
413 // Applies filter on 6 pixels (p2, p1, p0, q0, q1 and q2)
DoFilter6(__m128i * p2,__m128i * p1,__m128i * p0,__m128i * q0,__m128i * q1,__m128i * q2,const __m128i * mask,int hev_thresh)414 static WEBP_INLINE void DoFilter6(__m128i *p2, __m128i* p1, __m128i *p0,
415                                   __m128i* q0, __m128i* q1, __m128i *q2,
416                                   const __m128i* mask, int hev_thresh) {
417   __m128i a, not_hev;
418   const __m128i sign_bit = _mm_set1_epi8(0x80);
419 
420   // compute hev mask
421   GET_NOTHEV(*p1, *p0, *q0, *q1, hev_thresh, not_hev);
422 
423   // convert to signed values
424   FLIP_SIGN_BIT4(*p1, *p0, *q0, *q1);
425   FLIP_SIGN_BIT2(*p2, *q2);
426 
427   GET_BASE_DELTA(*p1, *p0, *q0, *q1, a);
428 
429   { // do simple filter on pixels with hev
430     const __m128i m = _mm_andnot_si128(not_hev, *mask);
431     const __m128i f = _mm_and_si128(a, m);
432     DO_SIMPLE_FILTER(*p0, *q0, f);
433   }
434   { // do strong filter on pixels with not hev
435     const __m128i zero = _mm_setzero_si128();
436     const __m128i nine = _mm_set1_epi16(0x0900);
437     const __m128i sixty_three = _mm_set1_epi16(63);
438 
439     const __m128i m = _mm_and_si128(not_hev, *mask);
440     const __m128i f = _mm_and_si128(a, m);
441     const __m128i f_lo = _mm_unpacklo_epi8(zero, f);
442     const __m128i f_hi = _mm_unpackhi_epi8(zero, f);
443 
444     const __m128i f9_lo = _mm_mulhi_epi16(f_lo, nine);   // Filter (lo) * 9
445     const __m128i f9_hi = _mm_mulhi_epi16(f_hi, nine);   // Filter (hi) * 9
446     const __m128i f18_lo = _mm_add_epi16(f9_lo, f9_lo);  // Filter (lo) * 18
447     const __m128i f18_hi = _mm_add_epi16(f9_hi, f9_hi);  // Filter (hi) * 18
448 
449     const __m128i a2_lo = _mm_add_epi16(f9_lo, sixty_three);  // Filter * 9 + 63
450     const __m128i a2_hi = _mm_add_epi16(f9_hi, sixty_three);  // Filter * 9 + 63
451 
452     const __m128i a1_lo = _mm_add_epi16(f18_lo, sixty_three);  // F... * 18 + 63
453     const __m128i a1_hi = _mm_add_epi16(f18_hi, sixty_three);  // F... * 18 + 63
454 
455     const __m128i a0_lo = _mm_add_epi16(f18_lo, a2_lo);  // Filter * 27 + 63
456     const __m128i a0_hi = _mm_add_epi16(f18_hi, a2_hi);  // Filter * 27 + 63
457 
458     UPDATE_2PIXELS(*p2, *q2, a2_lo, a2_hi);
459     UPDATE_2PIXELS(*p1, *q1, a1_lo, a1_hi);
460     UPDATE_2PIXELS(*p0, *q0, a0_lo, a0_hi);
461   }
462 
463   // unoffset
464   FLIP_SIGN_BIT4(*p1, *p0, *q0, *q1);
465   FLIP_SIGN_BIT2(*p2, *q2);
466 }
467 
468 // reads 8 rows across a vertical edge.
469 //
470 // TODO(somnath): Investigate _mm_shuffle* also see if it can be broken into
471 // two Load4x4() to avoid code duplication.
Load8x4(const uint8_t * b,int stride,__m128i * p,__m128i * q)472 static WEBP_INLINE void Load8x4(const uint8_t* b, int stride,
473                                 __m128i* p, __m128i* q) {
474   __m128i t1, t2;
475 
476   // Load 0th, 1st, 4th and 5th rows
477   __m128i r0 =  _mm_cvtsi32_si128(*((int*)&b[0 * stride]));  // 03 02 01 00
478   __m128i r1 =  _mm_cvtsi32_si128(*((int*)&b[1 * stride]));  // 13 12 11 10
479   __m128i r4 =  _mm_cvtsi32_si128(*((int*)&b[4 * stride]));  // 43 42 41 40
480   __m128i r5 =  _mm_cvtsi32_si128(*((int*)&b[5 * stride]));  // 53 52 51 50
481 
482   r0 = _mm_unpacklo_epi32(r0, r4);               // 43 42 41 40 03 02 01 00
483   r1 = _mm_unpacklo_epi32(r1, r5);               // 53 52 51 50 13 12 11 10
484 
485   // t1 = 53 43 52 42 51 41 50 40 13 03 12 02 11 01 10 00
486   t1 = _mm_unpacklo_epi8(r0, r1);
487 
488   // Load 2nd, 3rd, 6th and 7th rows
489   r0 =  _mm_cvtsi32_si128(*((int*)&b[2 * stride]));          // 23 22 21 22
490   r1 =  _mm_cvtsi32_si128(*((int*)&b[3 * stride]));          // 33 32 31 30
491   r4 =  _mm_cvtsi32_si128(*((int*)&b[6 * stride]));          // 63 62 61 60
492   r5 =  _mm_cvtsi32_si128(*((int*)&b[7 * stride]));          // 73 72 71 70
493 
494   r0 = _mm_unpacklo_epi32(r0, r4);               // 63 62 61 60 23 22 21 20
495   r1 = _mm_unpacklo_epi32(r1, r5);               // 73 72 71 70 33 32 31 30
496 
497   // t2 = 73 63 72 62 71 61 70 60 33 23 32 22 31 21 30 20
498   t2 = _mm_unpacklo_epi8(r0, r1);
499 
500   // t1 = 33 23 13 03 32 22 12 02 31 21 11 01 30 20 10 00
501   // t2 = 73 63 53 43 72 62 52 42 71 61 51 41 70 60 50 40
502   r0 = t1;
503   t1 = _mm_unpacklo_epi16(t1, t2);
504   t2 = _mm_unpackhi_epi16(r0, t2);
505 
506   // *p = 71 61 51 41 31 21 11 01 70 60 50 40 30 20 10 00
507   // *q = 73 63 53 43 33 23 13 03 72 62 52 42 32 22 12 02
508   *p = _mm_unpacklo_epi32(t1, t2);
509   *q = _mm_unpackhi_epi32(t1, t2);
510 }
511 
Load16x4(const uint8_t * r0,const uint8_t * r8,int stride,__m128i * p1,__m128i * p0,__m128i * q0,__m128i * q1)512 static WEBP_INLINE void Load16x4(const uint8_t* r0, const uint8_t* r8,
513                                  int stride,
514                                  __m128i* p1, __m128i* p0,
515                                  __m128i* q0, __m128i* q1) {
516   __m128i t1, t2;
517   // Assume the pixels around the edge (|) are numbered as follows
518   //                00 01 | 02 03
519   //                10 11 | 12 13
520   //                 ...  |  ...
521   //                e0 e1 | e2 e3
522   //                f0 f1 | f2 f3
523   //
524   // r0 is pointing to the 0th row (00)
525   // r8 is pointing to the 8th row (80)
526 
527   // Load
528   // p1 = 71 61 51 41 31 21 11 01 70 60 50 40 30 20 10 00
529   // q0 = 73 63 53 43 33 23 13 03 72 62 52 42 32 22 12 02
530   // p0 = f1 e1 d1 c1 b1 a1 91 81 f0 e0 d0 c0 b0 a0 90 80
531   // q1 = f3 e3 d3 c3 b3 a3 93 83 f2 e2 d2 c2 b2 a2 92 82
532   Load8x4(r0, stride, p1, q0);
533   Load8x4(r8, stride, p0, q1);
534 
535   t1 = *p1;
536   t2 = *q0;
537   // p1 = f0 e0 d0 c0 b0 a0 90 80 70 60 50 40 30 20 10 00
538   // p0 = f1 e1 d1 c1 b1 a1 91 81 71 61 51 41 31 21 11 01
539   // q0 = f2 e2 d2 c2 b2 a2 92 82 72 62 52 42 32 22 12 02
540   // q1 = f3 e3 d3 c3 b3 a3 93 83 73 63 53 43 33 23 13 03
541   *p1 = _mm_unpacklo_epi64(t1, *p0);
542   *p0 = _mm_unpackhi_epi64(t1, *p0);
543   *q0 = _mm_unpacklo_epi64(t2, *q1);
544   *q1 = _mm_unpackhi_epi64(t2, *q1);
545 }
546 
Store4x4(__m128i * x,uint8_t * dst,int stride)547 static WEBP_INLINE void Store4x4(__m128i* x, uint8_t* dst, int stride) {
548   int i;
549   for (i = 0; i < 4; ++i, dst += stride) {
550     *((int32_t*)dst) = _mm_cvtsi128_si32(*x);
551     *x = _mm_srli_si128(*x, 4);
552   }
553 }
554 
555 // Transpose back and store
Store16x4(uint8_t * r0,uint8_t * r8,int stride,__m128i * p1,__m128i * p0,__m128i * q0,__m128i * q1)556 static WEBP_INLINE void Store16x4(uint8_t* r0, uint8_t* r8, int stride,
557                                   __m128i* p1, __m128i* p0,
558                                   __m128i* q0, __m128i* q1) {
559   __m128i t1;
560 
561   // p0 = 71 70 61 60 51 50 41 40 31 30 21 20 11 10 01 00
562   // p1 = f1 f0 e1 e0 d1 d0 c1 c0 b1 b0 a1 a0 91 90 81 80
563   t1 = *p0;
564   *p0 = _mm_unpacklo_epi8(*p1, t1);
565   *p1 = _mm_unpackhi_epi8(*p1, t1);
566 
567   // q0 = 73 72 63 62 53 52 43 42 33 32 23 22 13 12 03 02
568   // q1 = f3 f2 e3 e2 d3 d2 c3 c2 b3 b2 a3 a2 93 92 83 82
569   t1 = *q0;
570   *q0 = _mm_unpacklo_epi8(t1, *q1);
571   *q1 = _mm_unpackhi_epi8(t1, *q1);
572 
573   // p0 = 33 32 31 30 23 22 21 20 13 12 11 10 03 02 01 00
574   // q0 = 73 72 71 70 63 62 61 60 53 52 51 50 43 42 41 40
575   t1 = *p0;
576   *p0 = _mm_unpacklo_epi16(t1, *q0);
577   *q0 = _mm_unpackhi_epi16(t1, *q0);
578 
579   // p1 = b3 b2 b1 b0 a3 a2 a1 a0 93 92 91 90 83 82 81 80
580   // q1 = f3 f2 f1 f0 e3 e2 e1 e0 d3 d2 d1 d0 c3 c2 c1 c0
581   t1 = *p1;
582   *p1 = _mm_unpacklo_epi16(t1, *q1);
583   *q1 = _mm_unpackhi_epi16(t1, *q1);
584 
585   Store4x4(p0, r0, stride);
586   r0 += 4 * stride;
587   Store4x4(q0, r0, stride);
588 
589   Store4x4(p1, r8, stride);
590   r8 += 4 * stride;
591   Store4x4(q1, r8, stride);
592 }
593 
594 //------------------------------------------------------------------------------
595 // Simple In-loop filtering (Paragraph 15.2)
596 
SimpleVFilter16SSE2(uint8_t * p,int stride,int thresh)597 static void SimpleVFilter16SSE2(uint8_t* p, int stride, int thresh) {
598   // Load
599   __m128i p1 = _mm_loadu_si128((__m128i*)&p[-2 * stride]);
600   __m128i p0 = _mm_loadu_si128((__m128i*)&p[-stride]);
601   __m128i q0 = _mm_loadu_si128((__m128i*)&p[0]);
602   __m128i q1 = _mm_loadu_si128((__m128i*)&p[stride]);
603 
604   DoFilter2(&p1, &p0, &q0, &q1, thresh);
605 
606   // Store
607   _mm_storeu_si128((__m128i*)&p[-stride], p0);
608   _mm_storeu_si128((__m128i*)p, q0);
609 }
610 
SimpleHFilter16SSE2(uint8_t * p,int stride,int thresh)611 static void SimpleHFilter16SSE2(uint8_t* p, int stride, int thresh) {
612   __m128i p1, p0, q0, q1;
613 
614   p -= 2;  // beginning of p1
615 
616   Load16x4(p, p + 8 * stride,  stride, &p1, &p0, &q0, &q1);
617   DoFilter2(&p1, &p0, &q0, &q1, thresh);
618   Store16x4(p, p + 8 * stride, stride, &p1, &p0, &q0, &q1);
619 }
620 
SimpleVFilter16iSSE2(uint8_t * p,int stride,int thresh)621 static void SimpleVFilter16iSSE2(uint8_t* p, int stride, int thresh) {
622   int k;
623   for (k = 3; k > 0; --k) {
624     p += 4 * stride;
625     SimpleVFilter16SSE2(p, stride, thresh);
626   }
627 }
628 
SimpleHFilter16iSSE2(uint8_t * p,int stride,int thresh)629 static void SimpleHFilter16iSSE2(uint8_t* p, int stride, int thresh) {
630   int k;
631   for (k = 3; k > 0; --k) {
632     p += 4;
633     SimpleHFilter16SSE2(p, stride, thresh);
634   }
635 }
636 
637 //------------------------------------------------------------------------------
638 // Complex In-loop filtering (Paragraph 15.3)
639 
640 #define MAX_DIFF1(p3, p2, p1, p0, m) {                                         \
641   m = MM_ABS(p3, p2);                                                          \
642   m = _mm_max_epu8(m, MM_ABS(p2, p1));                                         \
643   m = _mm_max_epu8(m, MM_ABS(p1, p0));                                         \
644 }
645 
646 #define MAX_DIFF2(p3, p2, p1, p0, m) {                                         \
647   m = _mm_max_epu8(m, MM_ABS(p3, p2));                                         \
648   m = _mm_max_epu8(m, MM_ABS(p2, p1));                                         \
649   m = _mm_max_epu8(m, MM_ABS(p1, p0));                                         \
650 }
651 
652 #define LOAD_H_EDGES4(p, stride, e1, e2, e3, e4) {                             \
653   e1 = _mm_loadu_si128((__m128i*)&(p)[0 * stride]);                            \
654   e2 = _mm_loadu_si128((__m128i*)&(p)[1 * stride]);                            \
655   e3 = _mm_loadu_si128((__m128i*)&(p)[2 * stride]);                            \
656   e4 = _mm_loadu_si128((__m128i*)&(p)[3 * stride]);                            \
657 }
658 
659 #define LOADUV_H_EDGE(p, u, v, stride) {                                       \
660   p = _mm_loadl_epi64((__m128i*)&(u)[(stride)]);                               \
661   p = _mm_unpacklo_epi64(p, _mm_loadl_epi64((__m128i*)&(v)[(stride)]));        \
662 }
663 
664 #define LOADUV_H_EDGES4(u, v, stride, e1, e2, e3, e4) {                        \
665   LOADUV_H_EDGE(e1, u, v, 0 * stride);                                         \
666   LOADUV_H_EDGE(e2, u, v, 1 * stride);                                         \
667   LOADUV_H_EDGE(e3, u, v, 2 * stride);                                         \
668   LOADUV_H_EDGE(e4, u, v, 3 * stride);                                         \
669 }
670 
671 #define STOREUV(p, u, v, stride) {                                             \
672   _mm_storel_epi64((__m128i*)&u[(stride)], p);                                 \
673   p = _mm_srli_si128(p, 8);                                                    \
674   _mm_storel_epi64((__m128i*)&v[(stride)], p);                                 \
675 }
676 
677 #define COMPLEX_FL_MASK(p1, p0, q0, q1, thresh, ithresh, mask) {               \
678   __m128i fl_yes;                                                              \
679   const __m128i it = _mm_set1_epi8(ithresh);                                   \
680   mask = _mm_subs_epu8(mask, it);                                              \
681   mask = _mm_cmpeq_epi8(mask, _mm_setzero_si128());                            \
682   NeedsFilter(&p1, &p0, &q0, &q1, thresh, &fl_yes);                            \
683   mask = _mm_and_si128(mask, fl_yes);                                          \
684 }
685 
686 // on macroblock edges
VFilter16SSE2(uint8_t * p,int stride,int thresh,int ithresh,int hev_thresh)687 static void VFilter16SSE2(uint8_t* p, int stride,
688                           int thresh, int ithresh, int hev_thresh) {
689   __m128i t1;
690   __m128i mask;
691   __m128i p2, p1, p0, q0, q1, q2;
692 
693   // Load p3, p2, p1, p0
694   LOAD_H_EDGES4(p - 4 * stride, stride, t1, p2, p1, p0);
695   MAX_DIFF1(t1, p2, p1, p0, mask);
696 
697   // Load q0, q1, q2, q3
698   LOAD_H_EDGES4(p, stride, q0, q1, q2, t1);
699   MAX_DIFF2(t1, q2, q1, q0, mask);
700 
701   COMPLEX_FL_MASK(p1, p0, q0, q1, thresh, ithresh, mask);
702   DoFilter6(&p2, &p1, &p0, &q0, &q1, &q2, &mask, hev_thresh);
703 
704   // Store
705   _mm_storeu_si128((__m128i*)&p[-3 * stride], p2);
706   _mm_storeu_si128((__m128i*)&p[-2 * stride], p1);
707   _mm_storeu_si128((__m128i*)&p[-1 * stride], p0);
708   _mm_storeu_si128((__m128i*)&p[0 * stride], q0);
709   _mm_storeu_si128((__m128i*)&p[1 * stride], q1);
710   _mm_storeu_si128((__m128i*)&p[2 * stride], q2);
711 }
712 
HFilter16SSE2(uint8_t * p,int stride,int thresh,int ithresh,int hev_thresh)713 static void HFilter16SSE2(uint8_t* p, int stride,
714                           int thresh, int ithresh, int hev_thresh) {
715   __m128i mask;
716   __m128i p3, p2, p1, p0, q0, q1, q2, q3;
717 
718   uint8_t* const b = p - 4;
719   Load16x4(b, b + 8 * stride, stride, &p3, &p2, &p1, &p0);  // p3, p2, p1, p0
720   MAX_DIFF1(p3, p2, p1, p0, mask);
721 
722   Load16x4(p, p + 8 * stride, stride, &q0, &q1, &q2, &q3);  // q0, q1, q2, q3
723   MAX_DIFF2(q3, q2, q1, q0, mask);
724 
725   COMPLEX_FL_MASK(p1, p0, q0, q1, thresh, ithresh, mask);
726   DoFilter6(&p2, &p1, &p0, &q0, &q1, &q2, &mask, hev_thresh);
727 
728   Store16x4(b, b + 8 * stride, stride, &p3, &p2, &p1, &p0);
729   Store16x4(p, p + 8 * stride, stride, &q0, &q1, &q2, &q3);
730 }
731 
732 // on three inner edges
VFilter16iSSE2(uint8_t * p,int stride,int thresh,int ithresh,int hev_thresh)733 static void VFilter16iSSE2(uint8_t* p, int stride,
734                            int thresh, int ithresh, int hev_thresh) {
735   int k;
736   __m128i mask;
737   __m128i t1, t2, p1, p0, q0, q1;
738 
739   for (k = 3; k > 0; --k) {
740     // Load p3, p2, p1, p0
741     LOAD_H_EDGES4(p, stride, t2, t1, p1, p0);
742     MAX_DIFF1(t2, t1, p1, p0, mask);
743 
744     p += 4 * stride;
745 
746     // Load q0, q1, q2, q3
747     LOAD_H_EDGES4(p, stride, q0, q1, t1, t2);
748     MAX_DIFF2(t2, t1, q1, q0, mask);
749 
750     COMPLEX_FL_MASK(p1, p0, q0, q1, thresh, ithresh, mask);
751     DoFilter4(&p1, &p0, &q0, &q1, &mask, hev_thresh);
752 
753     // Store
754     _mm_storeu_si128((__m128i*)&p[-2 * stride], p1);
755     _mm_storeu_si128((__m128i*)&p[-1 * stride], p0);
756     _mm_storeu_si128((__m128i*)&p[0 * stride], q0);
757     _mm_storeu_si128((__m128i*)&p[1 * stride], q1);
758   }
759 }
760 
HFilter16iSSE2(uint8_t * p,int stride,int thresh,int ithresh,int hev_thresh)761 static void HFilter16iSSE2(uint8_t* p, int stride,
762                            int thresh, int ithresh, int hev_thresh) {
763   int k;
764   uint8_t* b;
765   __m128i mask;
766   __m128i t1, t2, p1, p0, q0, q1;
767 
768   for (k = 3; k > 0; --k) {
769     b = p;
770     Load16x4(b, b + 8 * stride, stride, &t2, &t1, &p1, &p0);  // p3, p2, p1, p0
771     MAX_DIFF1(t2, t1, p1, p0, mask);
772 
773     b += 4;  // beginning of q0
774     Load16x4(b, b + 8 * stride, stride, &q0, &q1, &t1, &t2);  // q0, q1, q2, q3
775     MAX_DIFF2(t2, t1, q1, q0, mask);
776 
777     COMPLEX_FL_MASK(p1, p0, q0, q1, thresh, ithresh, mask);
778     DoFilter4(&p1, &p0, &q0, &q1, &mask, hev_thresh);
779 
780     b -= 2;  // beginning of p1
781     Store16x4(b, b + 8 * stride, stride, &p1, &p0, &q0, &q1);
782 
783     p += 4;
784   }
785 }
786 
787 // 8-pixels wide variant, for chroma filtering
VFilter8SSE2(uint8_t * u,uint8_t * v,int stride,int thresh,int ithresh,int hev_thresh)788 static void VFilter8SSE2(uint8_t* u, uint8_t* v, int stride,
789                          int thresh, int ithresh, int hev_thresh) {
790   __m128i mask;
791   __m128i t1, p2, p1, p0, q0, q1, q2;
792 
793   // Load p3, p2, p1, p0
794   LOADUV_H_EDGES4(u - 4 * stride, v - 4 * stride, stride, t1, p2, p1, p0);
795   MAX_DIFF1(t1, p2, p1, p0, mask);
796 
797   // Load q0, q1, q2, q3
798   LOADUV_H_EDGES4(u, v, stride, q0, q1, q2, t1);
799   MAX_DIFF2(t1, q2, q1, q0, mask);
800 
801   COMPLEX_FL_MASK(p1, p0, q0, q1, thresh, ithresh, mask);
802   DoFilter6(&p2, &p1, &p0, &q0, &q1, &q2, &mask, hev_thresh);
803 
804   // Store
805   STOREUV(p2, u, v, -3 * stride);
806   STOREUV(p1, u, v, -2 * stride);
807   STOREUV(p0, u, v, -1 * stride);
808   STOREUV(q0, u, v, 0 * stride);
809   STOREUV(q1, u, v, 1 * stride);
810   STOREUV(q2, u, v, 2 * stride);
811 }
812 
HFilter8SSE2(uint8_t * u,uint8_t * v,int stride,int thresh,int ithresh,int hev_thresh)813 static void HFilter8SSE2(uint8_t* u, uint8_t* v, int stride,
814                          int thresh, int ithresh, int hev_thresh) {
815   __m128i mask;
816   __m128i p3, p2, p1, p0, q0, q1, q2, q3;
817 
818   uint8_t* const tu = u - 4;
819   uint8_t* const tv = v - 4;
820   Load16x4(tu, tv, stride, &p3, &p2, &p1, &p0);  // p3, p2, p1, p0
821   MAX_DIFF1(p3, p2, p1, p0, mask);
822 
823   Load16x4(u, v, stride, &q0, &q1, &q2, &q3);    // q0, q1, q2, q3
824   MAX_DIFF2(q3, q2, q1, q0, mask);
825 
826   COMPLEX_FL_MASK(p1, p0, q0, q1, thresh, ithresh, mask);
827   DoFilter6(&p2, &p1, &p0, &q0, &q1, &q2, &mask, hev_thresh);
828 
829   Store16x4(tu, tv, stride, &p3, &p2, &p1, &p0);
830   Store16x4(u, v, stride, &q0, &q1, &q2, &q3);
831 }
832 
VFilter8iSSE2(uint8_t * u,uint8_t * v,int stride,int thresh,int ithresh,int hev_thresh)833 static void VFilter8iSSE2(uint8_t* u, uint8_t* v, int stride,
834                           int thresh, int ithresh, int hev_thresh) {
835   __m128i mask;
836   __m128i t1, t2, p1, p0, q0, q1;
837 
838   // Load p3, p2, p1, p0
839   LOADUV_H_EDGES4(u, v, stride, t2, t1, p1, p0);
840   MAX_DIFF1(t2, t1, p1, p0, mask);
841 
842   u += 4 * stride;
843   v += 4 * stride;
844 
845   // Load q0, q1, q2, q3
846   LOADUV_H_EDGES4(u, v, stride, q0, q1, t1, t2);
847   MAX_DIFF2(t2, t1, q1, q0, mask);
848 
849   COMPLEX_FL_MASK(p1, p0, q0, q1, thresh, ithresh, mask);
850   DoFilter4(&p1, &p0, &q0, &q1, &mask, hev_thresh);
851 
852   // Store
853   STOREUV(p1, u, v, -2 * stride);
854   STOREUV(p0, u, v, -1 * stride);
855   STOREUV(q0, u, v, 0 * stride);
856   STOREUV(q1, u, v, 1 * stride);
857 }
858 
HFilter8iSSE2(uint8_t * u,uint8_t * v,int stride,int thresh,int ithresh,int hev_thresh)859 static void HFilter8iSSE2(uint8_t* u, uint8_t* v, int stride,
860                           int thresh, int ithresh, int hev_thresh) {
861   __m128i mask;
862   __m128i t1, t2, p1, p0, q0, q1;
863   Load16x4(u, v, stride, &t2, &t1, &p1, &p0);   // p3, p2, p1, p0
864   MAX_DIFF1(t2, t1, p1, p0, mask);
865 
866   u += 4;  // beginning of q0
867   v += 4;
868   Load16x4(u, v, stride, &q0, &q1, &t1, &t2);  // q0, q1, q2, q3
869   MAX_DIFF2(t2, t1, q1, q0, mask);
870 
871   COMPLEX_FL_MASK(p1, p0, q0, q1, thresh, ithresh, mask);
872   DoFilter4(&p1, &p0, &q0, &q1, &mask, hev_thresh);
873 
874   u -= 2;  // beginning of p1
875   v -= 2;
876   Store16x4(u, v, stride, &p1, &p0, &q0, &q1);
877 }
878 
879 extern void VP8DspInitSSE2(void);
880 
VP8DspInitSSE2(void)881 void VP8DspInitSSE2(void) {
882   VP8Transform = TransformSSE2;
883 
884   VP8VFilter16 = VFilter16SSE2;
885   VP8HFilter16 = HFilter16SSE2;
886   VP8VFilter8 = VFilter8SSE2;
887   VP8HFilter8 = HFilter8SSE2;
888   VP8VFilter16i = VFilter16iSSE2;
889   VP8HFilter16i = HFilter16iSSE2;
890   VP8VFilter8i = VFilter8iSSE2;
891   VP8HFilter8i = HFilter8iSSE2;
892 
893   VP8SimpleVFilter16 = SimpleVFilter16SSE2;
894   VP8SimpleHFilter16 = SimpleHFilter16SSE2;
895   VP8SimpleVFilter16i = SimpleVFilter16iSSE2;
896   VP8SimpleHFilter16i = SimpleHFilter16iSSE2;
897 }
898 
899 #if defined(__cplusplus) || defined(c_plusplus)
900 }    // extern "C"
901 #endif
902 
903 #endif   // WEBP_USE_SSE2
904