1 // Copyright 2011 Google Inc. All Rights Reserved.
2 //
3 // This code is licensed under the same terms as WebM:
4 // Software License Agreement: http://www.webmproject.org/license/software/
5 // Additional IP Rights Grant: http://www.webmproject.org/license/additional/
6 // -----------------------------------------------------------------------------
7 //
8 // SSE2 version of some decoding functions (idct, loop filtering).
9 //
10 // Author: somnath@google.com (Somnath Banerjee)
11 // cduvivier@google.com (Christian Duvivier)
12
13 #include "./dsp.h"
14
15 #if defined(WEBP_USE_SSE2)
16
17 #include <emmintrin.h>
18 #include "../dec/vp8i.h"
19
20 #if defined(__cplusplus) || defined(c_plusplus)
21 extern "C" {
22 #endif
23
24 //------------------------------------------------------------------------------
25 // Transforms (Paragraph 14.4)
26
TransformSSE2(const int16_t * in,uint8_t * dst,int do_two)27 static void TransformSSE2(const int16_t* in, uint8_t* dst, int do_two) {
28 // This implementation makes use of 16-bit fixed point versions of two
29 // multiply constants:
30 // K1 = sqrt(2) * cos (pi/8) ~= 85627 / 2^16
31 // K2 = sqrt(2) * sin (pi/8) ~= 35468 / 2^16
32 //
33 // To be able to use signed 16-bit integers, we use the following trick to
34 // have constants within range:
35 // - Associated constants are obtained by subtracting the 16-bit fixed point
36 // version of one:
37 // k = K - (1 << 16) => K = k + (1 << 16)
38 // K1 = 85267 => k1 = 20091
39 // K2 = 35468 => k2 = -30068
40 // - The multiplication of a variable by a constant become the sum of the
41 // variable and the multiplication of that variable by the associated
42 // constant:
43 // (x * K) >> 16 = (x * (k + (1 << 16))) >> 16 = ((x * k ) >> 16) + x
44 const __m128i k1 = _mm_set1_epi16(20091);
45 const __m128i k2 = _mm_set1_epi16(-30068);
46 __m128i T0, T1, T2, T3;
47
48 // Load and concatenate the transform coefficients (we'll do two transforms
49 // in parallel). In the case of only one transform, the second half of the
50 // vectors will just contain random value we'll never use nor store.
51 __m128i in0, in1, in2, in3;
52 {
53 in0 = _mm_loadl_epi64((__m128i*)&in[0]);
54 in1 = _mm_loadl_epi64((__m128i*)&in[4]);
55 in2 = _mm_loadl_epi64((__m128i*)&in[8]);
56 in3 = _mm_loadl_epi64((__m128i*)&in[12]);
57 // a00 a10 a20 a30 x x x x
58 // a01 a11 a21 a31 x x x x
59 // a02 a12 a22 a32 x x x x
60 // a03 a13 a23 a33 x x x x
61 if (do_two) {
62 const __m128i inB0 = _mm_loadl_epi64((__m128i*)&in[16]);
63 const __m128i inB1 = _mm_loadl_epi64((__m128i*)&in[20]);
64 const __m128i inB2 = _mm_loadl_epi64((__m128i*)&in[24]);
65 const __m128i inB3 = _mm_loadl_epi64((__m128i*)&in[28]);
66 in0 = _mm_unpacklo_epi64(in0, inB0);
67 in1 = _mm_unpacklo_epi64(in1, inB1);
68 in2 = _mm_unpacklo_epi64(in2, inB2);
69 in3 = _mm_unpacklo_epi64(in3, inB3);
70 // a00 a10 a20 a30 b00 b10 b20 b30
71 // a01 a11 a21 a31 b01 b11 b21 b31
72 // a02 a12 a22 a32 b02 b12 b22 b32
73 // a03 a13 a23 a33 b03 b13 b23 b33
74 }
75 }
76
77 // Vertical pass and subsequent transpose.
78 {
79 // First pass, c and d calculations are longer because of the "trick"
80 // multiplications.
81 const __m128i a = _mm_add_epi16(in0, in2);
82 const __m128i b = _mm_sub_epi16(in0, in2);
83 // c = MUL(in1, K2) - MUL(in3, K1) = MUL(in1, k2) - MUL(in3, k1) + in1 - in3
84 const __m128i c1 = _mm_mulhi_epi16(in1, k2);
85 const __m128i c2 = _mm_mulhi_epi16(in3, k1);
86 const __m128i c3 = _mm_sub_epi16(in1, in3);
87 const __m128i c4 = _mm_sub_epi16(c1, c2);
88 const __m128i c = _mm_add_epi16(c3, c4);
89 // d = MUL(in1, K1) + MUL(in3, K2) = MUL(in1, k1) + MUL(in3, k2) + in1 + in3
90 const __m128i d1 = _mm_mulhi_epi16(in1, k1);
91 const __m128i d2 = _mm_mulhi_epi16(in3, k2);
92 const __m128i d3 = _mm_add_epi16(in1, in3);
93 const __m128i d4 = _mm_add_epi16(d1, d2);
94 const __m128i d = _mm_add_epi16(d3, d4);
95
96 // Second pass.
97 const __m128i tmp0 = _mm_add_epi16(a, d);
98 const __m128i tmp1 = _mm_add_epi16(b, c);
99 const __m128i tmp2 = _mm_sub_epi16(b, c);
100 const __m128i tmp3 = _mm_sub_epi16(a, d);
101
102 // Transpose the two 4x4.
103 // a00 a01 a02 a03 b00 b01 b02 b03
104 // a10 a11 a12 a13 b10 b11 b12 b13
105 // a20 a21 a22 a23 b20 b21 b22 b23
106 // a30 a31 a32 a33 b30 b31 b32 b33
107 const __m128i transpose0_0 = _mm_unpacklo_epi16(tmp0, tmp1);
108 const __m128i transpose0_1 = _mm_unpacklo_epi16(tmp2, tmp3);
109 const __m128i transpose0_2 = _mm_unpackhi_epi16(tmp0, tmp1);
110 const __m128i transpose0_3 = _mm_unpackhi_epi16(tmp2, tmp3);
111 // a00 a10 a01 a11 a02 a12 a03 a13
112 // a20 a30 a21 a31 a22 a32 a23 a33
113 // b00 b10 b01 b11 b02 b12 b03 b13
114 // b20 b30 b21 b31 b22 b32 b23 b33
115 const __m128i transpose1_0 = _mm_unpacklo_epi32(transpose0_0, transpose0_1);
116 const __m128i transpose1_1 = _mm_unpacklo_epi32(transpose0_2, transpose0_3);
117 const __m128i transpose1_2 = _mm_unpackhi_epi32(transpose0_0, transpose0_1);
118 const __m128i transpose1_3 = _mm_unpackhi_epi32(transpose0_2, transpose0_3);
119 // a00 a10 a20 a30 a01 a11 a21 a31
120 // b00 b10 b20 b30 b01 b11 b21 b31
121 // a02 a12 a22 a32 a03 a13 a23 a33
122 // b02 b12 a22 b32 b03 b13 b23 b33
123 T0 = _mm_unpacklo_epi64(transpose1_0, transpose1_1);
124 T1 = _mm_unpackhi_epi64(transpose1_0, transpose1_1);
125 T2 = _mm_unpacklo_epi64(transpose1_2, transpose1_3);
126 T3 = _mm_unpackhi_epi64(transpose1_2, transpose1_3);
127 // a00 a10 a20 a30 b00 b10 b20 b30
128 // a01 a11 a21 a31 b01 b11 b21 b31
129 // a02 a12 a22 a32 b02 b12 b22 b32
130 // a03 a13 a23 a33 b03 b13 b23 b33
131 }
132
133 // Horizontal pass and subsequent transpose.
134 {
135 // First pass, c and d calculations are longer because of the "trick"
136 // multiplications.
137 const __m128i four = _mm_set1_epi16(4);
138 const __m128i dc = _mm_add_epi16(T0, four);
139 const __m128i a = _mm_add_epi16(dc, T2);
140 const __m128i b = _mm_sub_epi16(dc, T2);
141 // c = MUL(T1, K2) - MUL(T3, K1) = MUL(T1, k2) - MUL(T3, k1) + T1 - T3
142 const __m128i c1 = _mm_mulhi_epi16(T1, k2);
143 const __m128i c2 = _mm_mulhi_epi16(T3, k1);
144 const __m128i c3 = _mm_sub_epi16(T1, T3);
145 const __m128i c4 = _mm_sub_epi16(c1, c2);
146 const __m128i c = _mm_add_epi16(c3, c4);
147 // d = MUL(T1, K1) + MUL(T3, K2) = MUL(T1, k1) + MUL(T3, k2) + T1 + T3
148 const __m128i d1 = _mm_mulhi_epi16(T1, k1);
149 const __m128i d2 = _mm_mulhi_epi16(T3, k2);
150 const __m128i d3 = _mm_add_epi16(T1, T3);
151 const __m128i d4 = _mm_add_epi16(d1, d2);
152 const __m128i d = _mm_add_epi16(d3, d4);
153
154 // Second pass.
155 const __m128i tmp0 = _mm_add_epi16(a, d);
156 const __m128i tmp1 = _mm_add_epi16(b, c);
157 const __m128i tmp2 = _mm_sub_epi16(b, c);
158 const __m128i tmp3 = _mm_sub_epi16(a, d);
159 const __m128i shifted0 = _mm_srai_epi16(tmp0, 3);
160 const __m128i shifted1 = _mm_srai_epi16(tmp1, 3);
161 const __m128i shifted2 = _mm_srai_epi16(tmp2, 3);
162 const __m128i shifted3 = _mm_srai_epi16(tmp3, 3);
163
164 // Transpose the two 4x4.
165 // a00 a01 a02 a03 b00 b01 b02 b03
166 // a10 a11 a12 a13 b10 b11 b12 b13
167 // a20 a21 a22 a23 b20 b21 b22 b23
168 // a30 a31 a32 a33 b30 b31 b32 b33
169 const __m128i transpose0_0 = _mm_unpacklo_epi16(shifted0, shifted1);
170 const __m128i transpose0_1 = _mm_unpacklo_epi16(shifted2, shifted3);
171 const __m128i transpose0_2 = _mm_unpackhi_epi16(shifted0, shifted1);
172 const __m128i transpose0_3 = _mm_unpackhi_epi16(shifted2, shifted3);
173 // a00 a10 a01 a11 a02 a12 a03 a13
174 // a20 a30 a21 a31 a22 a32 a23 a33
175 // b00 b10 b01 b11 b02 b12 b03 b13
176 // b20 b30 b21 b31 b22 b32 b23 b33
177 const __m128i transpose1_0 = _mm_unpacklo_epi32(transpose0_0, transpose0_1);
178 const __m128i transpose1_1 = _mm_unpacklo_epi32(transpose0_2, transpose0_3);
179 const __m128i transpose1_2 = _mm_unpackhi_epi32(transpose0_0, transpose0_1);
180 const __m128i transpose1_3 = _mm_unpackhi_epi32(transpose0_2, transpose0_3);
181 // a00 a10 a20 a30 a01 a11 a21 a31
182 // b00 b10 b20 b30 b01 b11 b21 b31
183 // a02 a12 a22 a32 a03 a13 a23 a33
184 // b02 b12 a22 b32 b03 b13 b23 b33
185 T0 = _mm_unpacklo_epi64(transpose1_0, transpose1_1);
186 T1 = _mm_unpackhi_epi64(transpose1_0, transpose1_1);
187 T2 = _mm_unpacklo_epi64(transpose1_2, transpose1_3);
188 T3 = _mm_unpackhi_epi64(transpose1_2, transpose1_3);
189 // a00 a10 a20 a30 b00 b10 b20 b30
190 // a01 a11 a21 a31 b01 b11 b21 b31
191 // a02 a12 a22 a32 b02 b12 b22 b32
192 // a03 a13 a23 a33 b03 b13 b23 b33
193 }
194
195 // Add inverse transform to 'dst' and store.
196 {
197 const __m128i zero = _mm_set1_epi16(0);
198 // Load the reference(s).
199 __m128i dst0, dst1, dst2, dst3;
200 if (do_two) {
201 // Load eight bytes/pixels per line.
202 dst0 = _mm_loadl_epi64((__m128i*)&dst[0 * BPS]);
203 dst1 = _mm_loadl_epi64((__m128i*)&dst[1 * BPS]);
204 dst2 = _mm_loadl_epi64((__m128i*)&dst[2 * BPS]);
205 dst3 = _mm_loadl_epi64((__m128i*)&dst[3 * BPS]);
206 } else {
207 // Load four bytes/pixels per line.
208 dst0 = _mm_cvtsi32_si128(*(int*)&dst[0 * BPS]);
209 dst1 = _mm_cvtsi32_si128(*(int*)&dst[1 * BPS]);
210 dst2 = _mm_cvtsi32_si128(*(int*)&dst[2 * BPS]);
211 dst3 = _mm_cvtsi32_si128(*(int*)&dst[3 * BPS]);
212 }
213 // Convert to 16b.
214 dst0 = _mm_unpacklo_epi8(dst0, zero);
215 dst1 = _mm_unpacklo_epi8(dst1, zero);
216 dst2 = _mm_unpacklo_epi8(dst2, zero);
217 dst3 = _mm_unpacklo_epi8(dst3, zero);
218 // Add the inverse transform(s).
219 dst0 = _mm_add_epi16(dst0, T0);
220 dst1 = _mm_add_epi16(dst1, T1);
221 dst2 = _mm_add_epi16(dst2, T2);
222 dst3 = _mm_add_epi16(dst3, T3);
223 // Unsigned saturate to 8b.
224 dst0 = _mm_packus_epi16(dst0, dst0);
225 dst1 = _mm_packus_epi16(dst1, dst1);
226 dst2 = _mm_packus_epi16(dst2, dst2);
227 dst3 = _mm_packus_epi16(dst3, dst3);
228 // Store the results.
229 if (do_two) {
230 // Store eight bytes/pixels per line.
231 _mm_storel_epi64((__m128i*)&dst[0 * BPS], dst0);
232 _mm_storel_epi64((__m128i*)&dst[1 * BPS], dst1);
233 _mm_storel_epi64((__m128i*)&dst[2 * BPS], dst2);
234 _mm_storel_epi64((__m128i*)&dst[3 * BPS], dst3);
235 } else {
236 // Store four bytes/pixels per line.
237 *((int32_t *)&dst[0 * BPS]) = _mm_cvtsi128_si32(dst0);
238 *((int32_t *)&dst[1 * BPS]) = _mm_cvtsi128_si32(dst1);
239 *((int32_t *)&dst[2 * BPS]) = _mm_cvtsi128_si32(dst2);
240 *((int32_t *)&dst[3 * BPS]) = _mm_cvtsi128_si32(dst3);
241 }
242 }
243 }
244
245 //------------------------------------------------------------------------------
246 // Loop Filter (Paragraph 15)
247
248 // Compute abs(p - q) = subs(p - q) OR subs(q - p)
249 #define MM_ABS(p, q) _mm_or_si128( \
250 _mm_subs_epu8((q), (p)), \
251 _mm_subs_epu8((p), (q)))
252
253 // Shift each byte of "a" by N bits while preserving by the sign bit.
254 //
255 // It first shifts the lower bytes of the words and then the upper bytes and
256 // then merges the results together.
257 #define SIGNED_SHIFT_N(a, N) { \
258 __m128i t = a; \
259 t = _mm_slli_epi16(t, 8); \
260 t = _mm_srai_epi16(t, N); \
261 t = _mm_srli_epi16(t, 8); \
262 \
263 a = _mm_srai_epi16(a, N + 8); \
264 a = _mm_slli_epi16(a, 8); \
265 \
266 a = _mm_or_si128(t, a); \
267 }
268
269 #define FLIP_SIGN_BIT2(a, b) { \
270 a = _mm_xor_si128(a, sign_bit); \
271 b = _mm_xor_si128(b, sign_bit); \
272 }
273
274 #define FLIP_SIGN_BIT4(a, b, c, d) { \
275 FLIP_SIGN_BIT2(a, b); \
276 FLIP_SIGN_BIT2(c, d); \
277 }
278
279 #define GET_NOTHEV(p1, p0, q0, q1, hev_thresh, not_hev) { \
280 const __m128i zero = _mm_setzero_si128(); \
281 const __m128i t1 = MM_ABS(p1, p0); \
282 const __m128i t2 = MM_ABS(q1, q0); \
283 \
284 const __m128i h = _mm_set1_epi8(hev_thresh); \
285 const __m128i t3 = _mm_subs_epu8(t1, h); /* abs(p1 - p0) - hev_tresh */ \
286 const __m128i t4 = _mm_subs_epu8(t2, h); /* abs(q1 - q0) - hev_tresh */ \
287 \
288 not_hev = _mm_or_si128(t3, t4); \
289 not_hev = _mm_cmpeq_epi8(not_hev, zero); /* not_hev <= t1 && not_hev <= t2 */\
290 }
291
292 #define GET_BASE_DELTA(p1, p0, q0, q1, o) { \
293 const __m128i qp0 = _mm_subs_epi8(q0, p0); /* q0 - p0 */ \
294 o = _mm_subs_epi8(p1, q1); /* p1 - q1 */ \
295 o = _mm_adds_epi8(o, qp0); /* p1 - q1 + 1 * (q0 - p0) */ \
296 o = _mm_adds_epi8(o, qp0); /* p1 - q1 + 2 * (q0 - p0) */ \
297 o = _mm_adds_epi8(o, qp0); /* p1 - q1 + 3 * (q0 - p0) */ \
298 }
299
300 #define DO_SIMPLE_FILTER(p0, q0, fl) { \
301 const __m128i three = _mm_set1_epi8(3); \
302 const __m128i four = _mm_set1_epi8(4); \
303 __m128i v3 = _mm_adds_epi8(fl, three); \
304 __m128i v4 = _mm_adds_epi8(fl, four); \
305 \
306 /* Do +4 side */ \
307 SIGNED_SHIFT_N(v4, 3); /* v4 >> 3 */ \
308 q0 = _mm_subs_epi8(q0, v4); /* q0 -= v4 */ \
309 \
310 /* Now do +3 side */ \
311 SIGNED_SHIFT_N(v3, 3); /* v3 >> 3 */ \
312 p0 = _mm_adds_epi8(p0, v3); /* p0 += v3 */ \
313 }
314
315 // Updates values of 2 pixels at MB edge during complex filtering.
316 // Update operations:
317 // q = q - a and p = p + a; where a = [(a_hi >> 7), (a_lo >> 7)]
318 #define UPDATE_2PIXELS(pi, qi, a_lo, a_hi) { \
319 const __m128i a_lo7 = _mm_srai_epi16(a_lo, 7); \
320 const __m128i a_hi7 = _mm_srai_epi16(a_hi, 7); \
321 const __m128i a = _mm_packs_epi16(a_lo7, a_hi7); \
322 pi = _mm_adds_epi8(pi, a); \
323 qi = _mm_subs_epi8(qi, a); \
324 }
325
NeedsFilter(const __m128i * p1,const __m128i * p0,const __m128i * q0,const __m128i * q1,int thresh,__m128i * mask)326 static void NeedsFilter(const __m128i* p1, const __m128i* p0, const __m128i* q0,
327 const __m128i* q1, int thresh, __m128i *mask) {
328 __m128i t1 = MM_ABS(*p1, *q1); // abs(p1 - q1)
329 *mask = _mm_set1_epi8(0xFE);
330 t1 = _mm_and_si128(t1, *mask); // set lsb of each byte to zero
331 t1 = _mm_srli_epi16(t1, 1); // abs(p1 - q1) / 2
332
333 *mask = MM_ABS(*p0, *q0); // abs(p0 - q0)
334 *mask = _mm_adds_epu8(*mask, *mask); // abs(p0 - q0) * 2
335 *mask = _mm_adds_epu8(*mask, t1); // abs(p0 - q0) * 2 + abs(p1 - q1) / 2
336
337 t1 = _mm_set1_epi8(thresh);
338 *mask = _mm_subs_epu8(*mask, t1); // mask <= thresh
339 *mask = _mm_cmpeq_epi8(*mask, _mm_setzero_si128());
340 }
341
342 //------------------------------------------------------------------------------
343 // Edge filtering functions
344
345 // Applies filter on 2 pixels (p0 and q0)
DoFilter2(const __m128i * p1,__m128i * p0,__m128i * q0,const __m128i * q1,int thresh)346 static WEBP_INLINE void DoFilter2(const __m128i* p1, __m128i* p0, __m128i* q0,
347 const __m128i* q1, int thresh) {
348 __m128i a, mask;
349 const __m128i sign_bit = _mm_set1_epi8(0x80);
350 const __m128i p1s = _mm_xor_si128(*p1, sign_bit);
351 const __m128i q1s = _mm_xor_si128(*q1, sign_bit);
352
353 NeedsFilter(p1, p0, q0, q1, thresh, &mask);
354
355 // convert to signed values
356 FLIP_SIGN_BIT2(*p0, *q0);
357
358 GET_BASE_DELTA(p1s, *p0, *q0, q1s, a);
359 a = _mm_and_si128(a, mask); // mask filter values we don't care about
360 DO_SIMPLE_FILTER(*p0, *q0, a);
361
362 // unoffset
363 FLIP_SIGN_BIT2(*p0, *q0);
364 }
365
366 // Applies filter on 4 pixels (p1, p0, q0 and q1)
DoFilter4(__m128i * p1,__m128i * p0,__m128i * q0,__m128i * q1,const __m128i * mask,int hev_thresh)367 static WEBP_INLINE void DoFilter4(__m128i* p1, __m128i *p0,
368 __m128i* q0, __m128i* q1,
369 const __m128i* mask, int hev_thresh) {
370 __m128i not_hev;
371 __m128i t1, t2, t3;
372 const __m128i sign_bit = _mm_set1_epi8(0x80);
373
374 // compute hev mask
375 GET_NOTHEV(*p1, *p0, *q0, *q1, hev_thresh, not_hev);
376
377 // convert to signed values
378 FLIP_SIGN_BIT4(*p1, *p0, *q0, *q1);
379
380 t1 = _mm_subs_epi8(*p1, *q1); // p1 - q1
381 t1 = _mm_andnot_si128(not_hev, t1); // hev(p1 - q1)
382 t2 = _mm_subs_epi8(*q0, *p0); // q0 - p0
383 t1 = _mm_adds_epi8(t1, t2); // hev(p1 - q1) + 1 * (q0 - p0)
384 t1 = _mm_adds_epi8(t1, t2); // hev(p1 - q1) + 2 * (q0 - p0)
385 t1 = _mm_adds_epi8(t1, t2); // hev(p1 - q1) + 3 * (q0 - p0)
386 t1 = _mm_and_si128(t1, *mask); // mask filter values we don't care about
387
388 // Do +4 side
389 t2 = _mm_set1_epi8(4);
390 t2 = _mm_adds_epi8(t1, t2); // 3 * (q0 - p0) + (p1 - q1) + 4
391 SIGNED_SHIFT_N(t2, 3); // (3 * (q0 - p0) + hev(p1 - q1) + 4) >> 3
392 t3 = t2; // save t2
393 *q0 = _mm_subs_epi8(*q0, t2); // q0 -= t2
394
395 // Now do +3 side
396 t2 = _mm_set1_epi8(3);
397 t2 = _mm_adds_epi8(t1, t2); // +3 instead of +4
398 SIGNED_SHIFT_N(t2, 3); // (3 * (q0 - p0) + hev(p1 - q1) + 3) >> 3
399 *p0 = _mm_adds_epi8(*p0, t2); // p0 += t2
400
401 t2 = _mm_set1_epi8(1);
402 t3 = _mm_adds_epi8(t3, t2);
403 SIGNED_SHIFT_N(t3, 1); // (3 * (q0 - p0) + hev(p1 - q1) + 4) >> 4
404
405 t3 = _mm_and_si128(not_hev, t3); // if !hev
406 *q1 = _mm_subs_epi8(*q1, t3); // q1 -= t3
407 *p1 = _mm_adds_epi8(*p1, t3); // p1 += t3
408
409 // unoffset
410 FLIP_SIGN_BIT4(*p1, *p0, *q0, *q1);
411 }
412
413 // Applies filter on 6 pixels (p2, p1, p0, q0, q1 and q2)
DoFilter6(__m128i * p2,__m128i * p1,__m128i * p0,__m128i * q0,__m128i * q1,__m128i * q2,const __m128i * mask,int hev_thresh)414 static WEBP_INLINE void DoFilter6(__m128i *p2, __m128i* p1, __m128i *p0,
415 __m128i* q0, __m128i* q1, __m128i *q2,
416 const __m128i* mask, int hev_thresh) {
417 __m128i a, not_hev;
418 const __m128i sign_bit = _mm_set1_epi8(0x80);
419
420 // compute hev mask
421 GET_NOTHEV(*p1, *p0, *q0, *q1, hev_thresh, not_hev);
422
423 // convert to signed values
424 FLIP_SIGN_BIT4(*p1, *p0, *q0, *q1);
425 FLIP_SIGN_BIT2(*p2, *q2);
426
427 GET_BASE_DELTA(*p1, *p0, *q0, *q1, a);
428
429 { // do simple filter on pixels with hev
430 const __m128i m = _mm_andnot_si128(not_hev, *mask);
431 const __m128i f = _mm_and_si128(a, m);
432 DO_SIMPLE_FILTER(*p0, *q0, f);
433 }
434 { // do strong filter on pixels with not hev
435 const __m128i zero = _mm_setzero_si128();
436 const __m128i nine = _mm_set1_epi16(0x0900);
437 const __m128i sixty_three = _mm_set1_epi16(63);
438
439 const __m128i m = _mm_and_si128(not_hev, *mask);
440 const __m128i f = _mm_and_si128(a, m);
441 const __m128i f_lo = _mm_unpacklo_epi8(zero, f);
442 const __m128i f_hi = _mm_unpackhi_epi8(zero, f);
443
444 const __m128i f9_lo = _mm_mulhi_epi16(f_lo, nine); // Filter (lo) * 9
445 const __m128i f9_hi = _mm_mulhi_epi16(f_hi, nine); // Filter (hi) * 9
446 const __m128i f18_lo = _mm_add_epi16(f9_lo, f9_lo); // Filter (lo) * 18
447 const __m128i f18_hi = _mm_add_epi16(f9_hi, f9_hi); // Filter (hi) * 18
448
449 const __m128i a2_lo = _mm_add_epi16(f9_lo, sixty_three); // Filter * 9 + 63
450 const __m128i a2_hi = _mm_add_epi16(f9_hi, sixty_three); // Filter * 9 + 63
451
452 const __m128i a1_lo = _mm_add_epi16(f18_lo, sixty_three); // F... * 18 + 63
453 const __m128i a1_hi = _mm_add_epi16(f18_hi, sixty_three); // F... * 18 + 63
454
455 const __m128i a0_lo = _mm_add_epi16(f18_lo, a2_lo); // Filter * 27 + 63
456 const __m128i a0_hi = _mm_add_epi16(f18_hi, a2_hi); // Filter * 27 + 63
457
458 UPDATE_2PIXELS(*p2, *q2, a2_lo, a2_hi);
459 UPDATE_2PIXELS(*p1, *q1, a1_lo, a1_hi);
460 UPDATE_2PIXELS(*p0, *q0, a0_lo, a0_hi);
461 }
462
463 // unoffset
464 FLIP_SIGN_BIT4(*p1, *p0, *q0, *q1);
465 FLIP_SIGN_BIT2(*p2, *q2);
466 }
467
468 // reads 8 rows across a vertical edge.
469 //
470 // TODO(somnath): Investigate _mm_shuffle* also see if it can be broken into
471 // two Load4x4() to avoid code duplication.
Load8x4(const uint8_t * b,int stride,__m128i * p,__m128i * q)472 static WEBP_INLINE void Load8x4(const uint8_t* b, int stride,
473 __m128i* p, __m128i* q) {
474 __m128i t1, t2;
475
476 // Load 0th, 1st, 4th and 5th rows
477 __m128i r0 = _mm_cvtsi32_si128(*((int*)&b[0 * stride])); // 03 02 01 00
478 __m128i r1 = _mm_cvtsi32_si128(*((int*)&b[1 * stride])); // 13 12 11 10
479 __m128i r4 = _mm_cvtsi32_si128(*((int*)&b[4 * stride])); // 43 42 41 40
480 __m128i r5 = _mm_cvtsi32_si128(*((int*)&b[5 * stride])); // 53 52 51 50
481
482 r0 = _mm_unpacklo_epi32(r0, r4); // 43 42 41 40 03 02 01 00
483 r1 = _mm_unpacklo_epi32(r1, r5); // 53 52 51 50 13 12 11 10
484
485 // t1 = 53 43 52 42 51 41 50 40 13 03 12 02 11 01 10 00
486 t1 = _mm_unpacklo_epi8(r0, r1);
487
488 // Load 2nd, 3rd, 6th and 7th rows
489 r0 = _mm_cvtsi32_si128(*((int*)&b[2 * stride])); // 23 22 21 22
490 r1 = _mm_cvtsi32_si128(*((int*)&b[3 * stride])); // 33 32 31 30
491 r4 = _mm_cvtsi32_si128(*((int*)&b[6 * stride])); // 63 62 61 60
492 r5 = _mm_cvtsi32_si128(*((int*)&b[7 * stride])); // 73 72 71 70
493
494 r0 = _mm_unpacklo_epi32(r0, r4); // 63 62 61 60 23 22 21 20
495 r1 = _mm_unpacklo_epi32(r1, r5); // 73 72 71 70 33 32 31 30
496
497 // t2 = 73 63 72 62 71 61 70 60 33 23 32 22 31 21 30 20
498 t2 = _mm_unpacklo_epi8(r0, r1);
499
500 // t1 = 33 23 13 03 32 22 12 02 31 21 11 01 30 20 10 00
501 // t2 = 73 63 53 43 72 62 52 42 71 61 51 41 70 60 50 40
502 r0 = t1;
503 t1 = _mm_unpacklo_epi16(t1, t2);
504 t2 = _mm_unpackhi_epi16(r0, t2);
505
506 // *p = 71 61 51 41 31 21 11 01 70 60 50 40 30 20 10 00
507 // *q = 73 63 53 43 33 23 13 03 72 62 52 42 32 22 12 02
508 *p = _mm_unpacklo_epi32(t1, t2);
509 *q = _mm_unpackhi_epi32(t1, t2);
510 }
511
Load16x4(const uint8_t * r0,const uint8_t * r8,int stride,__m128i * p1,__m128i * p0,__m128i * q0,__m128i * q1)512 static WEBP_INLINE void Load16x4(const uint8_t* r0, const uint8_t* r8,
513 int stride,
514 __m128i* p1, __m128i* p0,
515 __m128i* q0, __m128i* q1) {
516 __m128i t1, t2;
517 // Assume the pixels around the edge (|) are numbered as follows
518 // 00 01 | 02 03
519 // 10 11 | 12 13
520 // ... | ...
521 // e0 e1 | e2 e3
522 // f0 f1 | f2 f3
523 //
524 // r0 is pointing to the 0th row (00)
525 // r8 is pointing to the 8th row (80)
526
527 // Load
528 // p1 = 71 61 51 41 31 21 11 01 70 60 50 40 30 20 10 00
529 // q0 = 73 63 53 43 33 23 13 03 72 62 52 42 32 22 12 02
530 // p0 = f1 e1 d1 c1 b1 a1 91 81 f0 e0 d0 c0 b0 a0 90 80
531 // q1 = f3 e3 d3 c3 b3 a3 93 83 f2 e2 d2 c2 b2 a2 92 82
532 Load8x4(r0, stride, p1, q0);
533 Load8x4(r8, stride, p0, q1);
534
535 t1 = *p1;
536 t2 = *q0;
537 // p1 = f0 e0 d0 c0 b0 a0 90 80 70 60 50 40 30 20 10 00
538 // p0 = f1 e1 d1 c1 b1 a1 91 81 71 61 51 41 31 21 11 01
539 // q0 = f2 e2 d2 c2 b2 a2 92 82 72 62 52 42 32 22 12 02
540 // q1 = f3 e3 d3 c3 b3 a3 93 83 73 63 53 43 33 23 13 03
541 *p1 = _mm_unpacklo_epi64(t1, *p0);
542 *p0 = _mm_unpackhi_epi64(t1, *p0);
543 *q0 = _mm_unpacklo_epi64(t2, *q1);
544 *q1 = _mm_unpackhi_epi64(t2, *q1);
545 }
546
Store4x4(__m128i * x,uint8_t * dst,int stride)547 static WEBP_INLINE void Store4x4(__m128i* x, uint8_t* dst, int stride) {
548 int i;
549 for (i = 0; i < 4; ++i, dst += stride) {
550 *((int32_t*)dst) = _mm_cvtsi128_si32(*x);
551 *x = _mm_srli_si128(*x, 4);
552 }
553 }
554
555 // Transpose back and store
Store16x4(uint8_t * r0,uint8_t * r8,int stride,__m128i * p1,__m128i * p0,__m128i * q0,__m128i * q1)556 static WEBP_INLINE void Store16x4(uint8_t* r0, uint8_t* r8, int stride,
557 __m128i* p1, __m128i* p0,
558 __m128i* q0, __m128i* q1) {
559 __m128i t1;
560
561 // p0 = 71 70 61 60 51 50 41 40 31 30 21 20 11 10 01 00
562 // p1 = f1 f0 e1 e0 d1 d0 c1 c0 b1 b0 a1 a0 91 90 81 80
563 t1 = *p0;
564 *p0 = _mm_unpacklo_epi8(*p1, t1);
565 *p1 = _mm_unpackhi_epi8(*p1, t1);
566
567 // q0 = 73 72 63 62 53 52 43 42 33 32 23 22 13 12 03 02
568 // q1 = f3 f2 e3 e2 d3 d2 c3 c2 b3 b2 a3 a2 93 92 83 82
569 t1 = *q0;
570 *q0 = _mm_unpacklo_epi8(t1, *q1);
571 *q1 = _mm_unpackhi_epi8(t1, *q1);
572
573 // p0 = 33 32 31 30 23 22 21 20 13 12 11 10 03 02 01 00
574 // q0 = 73 72 71 70 63 62 61 60 53 52 51 50 43 42 41 40
575 t1 = *p0;
576 *p0 = _mm_unpacklo_epi16(t1, *q0);
577 *q0 = _mm_unpackhi_epi16(t1, *q0);
578
579 // p1 = b3 b2 b1 b0 a3 a2 a1 a0 93 92 91 90 83 82 81 80
580 // q1 = f3 f2 f1 f0 e3 e2 e1 e0 d3 d2 d1 d0 c3 c2 c1 c0
581 t1 = *p1;
582 *p1 = _mm_unpacklo_epi16(t1, *q1);
583 *q1 = _mm_unpackhi_epi16(t1, *q1);
584
585 Store4x4(p0, r0, stride);
586 r0 += 4 * stride;
587 Store4x4(q0, r0, stride);
588
589 Store4x4(p1, r8, stride);
590 r8 += 4 * stride;
591 Store4x4(q1, r8, stride);
592 }
593
594 //------------------------------------------------------------------------------
595 // Simple In-loop filtering (Paragraph 15.2)
596
SimpleVFilter16SSE2(uint8_t * p,int stride,int thresh)597 static void SimpleVFilter16SSE2(uint8_t* p, int stride, int thresh) {
598 // Load
599 __m128i p1 = _mm_loadu_si128((__m128i*)&p[-2 * stride]);
600 __m128i p0 = _mm_loadu_si128((__m128i*)&p[-stride]);
601 __m128i q0 = _mm_loadu_si128((__m128i*)&p[0]);
602 __m128i q1 = _mm_loadu_si128((__m128i*)&p[stride]);
603
604 DoFilter2(&p1, &p0, &q0, &q1, thresh);
605
606 // Store
607 _mm_storeu_si128((__m128i*)&p[-stride], p0);
608 _mm_storeu_si128((__m128i*)p, q0);
609 }
610
SimpleHFilter16SSE2(uint8_t * p,int stride,int thresh)611 static void SimpleHFilter16SSE2(uint8_t* p, int stride, int thresh) {
612 __m128i p1, p0, q0, q1;
613
614 p -= 2; // beginning of p1
615
616 Load16x4(p, p + 8 * stride, stride, &p1, &p0, &q0, &q1);
617 DoFilter2(&p1, &p0, &q0, &q1, thresh);
618 Store16x4(p, p + 8 * stride, stride, &p1, &p0, &q0, &q1);
619 }
620
SimpleVFilter16iSSE2(uint8_t * p,int stride,int thresh)621 static void SimpleVFilter16iSSE2(uint8_t* p, int stride, int thresh) {
622 int k;
623 for (k = 3; k > 0; --k) {
624 p += 4 * stride;
625 SimpleVFilter16SSE2(p, stride, thresh);
626 }
627 }
628
SimpleHFilter16iSSE2(uint8_t * p,int stride,int thresh)629 static void SimpleHFilter16iSSE2(uint8_t* p, int stride, int thresh) {
630 int k;
631 for (k = 3; k > 0; --k) {
632 p += 4;
633 SimpleHFilter16SSE2(p, stride, thresh);
634 }
635 }
636
637 //------------------------------------------------------------------------------
638 // Complex In-loop filtering (Paragraph 15.3)
639
640 #define MAX_DIFF1(p3, p2, p1, p0, m) { \
641 m = MM_ABS(p3, p2); \
642 m = _mm_max_epu8(m, MM_ABS(p2, p1)); \
643 m = _mm_max_epu8(m, MM_ABS(p1, p0)); \
644 }
645
646 #define MAX_DIFF2(p3, p2, p1, p0, m) { \
647 m = _mm_max_epu8(m, MM_ABS(p3, p2)); \
648 m = _mm_max_epu8(m, MM_ABS(p2, p1)); \
649 m = _mm_max_epu8(m, MM_ABS(p1, p0)); \
650 }
651
652 #define LOAD_H_EDGES4(p, stride, e1, e2, e3, e4) { \
653 e1 = _mm_loadu_si128((__m128i*)&(p)[0 * stride]); \
654 e2 = _mm_loadu_si128((__m128i*)&(p)[1 * stride]); \
655 e3 = _mm_loadu_si128((__m128i*)&(p)[2 * stride]); \
656 e4 = _mm_loadu_si128((__m128i*)&(p)[3 * stride]); \
657 }
658
659 #define LOADUV_H_EDGE(p, u, v, stride) { \
660 p = _mm_loadl_epi64((__m128i*)&(u)[(stride)]); \
661 p = _mm_unpacklo_epi64(p, _mm_loadl_epi64((__m128i*)&(v)[(stride)])); \
662 }
663
664 #define LOADUV_H_EDGES4(u, v, stride, e1, e2, e3, e4) { \
665 LOADUV_H_EDGE(e1, u, v, 0 * stride); \
666 LOADUV_H_EDGE(e2, u, v, 1 * stride); \
667 LOADUV_H_EDGE(e3, u, v, 2 * stride); \
668 LOADUV_H_EDGE(e4, u, v, 3 * stride); \
669 }
670
671 #define STOREUV(p, u, v, stride) { \
672 _mm_storel_epi64((__m128i*)&u[(stride)], p); \
673 p = _mm_srli_si128(p, 8); \
674 _mm_storel_epi64((__m128i*)&v[(stride)], p); \
675 }
676
677 #define COMPLEX_FL_MASK(p1, p0, q0, q1, thresh, ithresh, mask) { \
678 __m128i fl_yes; \
679 const __m128i it = _mm_set1_epi8(ithresh); \
680 mask = _mm_subs_epu8(mask, it); \
681 mask = _mm_cmpeq_epi8(mask, _mm_setzero_si128()); \
682 NeedsFilter(&p1, &p0, &q0, &q1, thresh, &fl_yes); \
683 mask = _mm_and_si128(mask, fl_yes); \
684 }
685
686 // on macroblock edges
VFilter16SSE2(uint8_t * p,int stride,int thresh,int ithresh,int hev_thresh)687 static void VFilter16SSE2(uint8_t* p, int stride,
688 int thresh, int ithresh, int hev_thresh) {
689 __m128i t1;
690 __m128i mask;
691 __m128i p2, p1, p0, q0, q1, q2;
692
693 // Load p3, p2, p1, p0
694 LOAD_H_EDGES4(p - 4 * stride, stride, t1, p2, p1, p0);
695 MAX_DIFF1(t1, p2, p1, p0, mask);
696
697 // Load q0, q1, q2, q3
698 LOAD_H_EDGES4(p, stride, q0, q1, q2, t1);
699 MAX_DIFF2(t1, q2, q1, q0, mask);
700
701 COMPLEX_FL_MASK(p1, p0, q0, q1, thresh, ithresh, mask);
702 DoFilter6(&p2, &p1, &p0, &q0, &q1, &q2, &mask, hev_thresh);
703
704 // Store
705 _mm_storeu_si128((__m128i*)&p[-3 * stride], p2);
706 _mm_storeu_si128((__m128i*)&p[-2 * stride], p1);
707 _mm_storeu_si128((__m128i*)&p[-1 * stride], p0);
708 _mm_storeu_si128((__m128i*)&p[0 * stride], q0);
709 _mm_storeu_si128((__m128i*)&p[1 * stride], q1);
710 _mm_storeu_si128((__m128i*)&p[2 * stride], q2);
711 }
712
HFilter16SSE2(uint8_t * p,int stride,int thresh,int ithresh,int hev_thresh)713 static void HFilter16SSE2(uint8_t* p, int stride,
714 int thresh, int ithresh, int hev_thresh) {
715 __m128i mask;
716 __m128i p3, p2, p1, p0, q0, q1, q2, q3;
717
718 uint8_t* const b = p - 4;
719 Load16x4(b, b + 8 * stride, stride, &p3, &p2, &p1, &p0); // p3, p2, p1, p0
720 MAX_DIFF1(p3, p2, p1, p0, mask);
721
722 Load16x4(p, p + 8 * stride, stride, &q0, &q1, &q2, &q3); // q0, q1, q2, q3
723 MAX_DIFF2(q3, q2, q1, q0, mask);
724
725 COMPLEX_FL_MASK(p1, p0, q0, q1, thresh, ithresh, mask);
726 DoFilter6(&p2, &p1, &p0, &q0, &q1, &q2, &mask, hev_thresh);
727
728 Store16x4(b, b + 8 * stride, stride, &p3, &p2, &p1, &p0);
729 Store16x4(p, p + 8 * stride, stride, &q0, &q1, &q2, &q3);
730 }
731
732 // on three inner edges
VFilter16iSSE2(uint8_t * p,int stride,int thresh,int ithresh,int hev_thresh)733 static void VFilter16iSSE2(uint8_t* p, int stride,
734 int thresh, int ithresh, int hev_thresh) {
735 int k;
736 __m128i mask;
737 __m128i t1, t2, p1, p0, q0, q1;
738
739 for (k = 3; k > 0; --k) {
740 // Load p3, p2, p1, p0
741 LOAD_H_EDGES4(p, stride, t2, t1, p1, p0);
742 MAX_DIFF1(t2, t1, p1, p0, mask);
743
744 p += 4 * stride;
745
746 // Load q0, q1, q2, q3
747 LOAD_H_EDGES4(p, stride, q0, q1, t1, t2);
748 MAX_DIFF2(t2, t1, q1, q0, mask);
749
750 COMPLEX_FL_MASK(p1, p0, q0, q1, thresh, ithresh, mask);
751 DoFilter4(&p1, &p0, &q0, &q1, &mask, hev_thresh);
752
753 // Store
754 _mm_storeu_si128((__m128i*)&p[-2 * stride], p1);
755 _mm_storeu_si128((__m128i*)&p[-1 * stride], p0);
756 _mm_storeu_si128((__m128i*)&p[0 * stride], q0);
757 _mm_storeu_si128((__m128i*)&p[1 * stride], q1);
758 }
759 }
760
HFilter16iSSE2(uint8_t * p,int stride,int thresh,int ithresh,int hev_thresh)761 static void HFilter16iSSE2(uint8_t* p, int stride,
762 int thresh, int ithresh, int hev_thresh) {
763 int k;
764 uint8_t* b;
765 __m128i mask;
766 __m128i t1, t2, p1, p0, q0, q1;
767
768 for (k = 3; k > 0; --k) {
769 b = p;
770 Load16x4(b, b + 8 * stride, stride, &t2, &t1, &p1, &p0); // p3, p2, p1, p0
771 MAX_DIFF1(t2, t1, p1, p0, mask);
772
773 b += 4; // beginning of q0
774 Load16x4(b, b + 8 * stride, stride, &q0, &q1, &t1, &t2); // q0, q1, q2, q3
775 MAX_DIFF2(t2, t1, q1, q0, mask);
776
777 COMPLEX_FL_MASK(p1, p0, q0, q1, thresh, ithresh, mask);
778 DoFilter4(&p1, &p0, &q0, &q1, &mask, hev_thresh);
779
780 b -= 2; // beginning of p1
781 Store16x4(b, b + 8 * stride, stride, &p1, &p0, &q0, &q1);
782
783 p += 4;
784 }
785 }
786
787 // 8-pixels wide variant, for chroma filtering
VFilter8SSE2(uint8_t * u,uint8_t * v,int stride,int thresh,int ithresh,int hev_thresh)788 static void VFilter8SSE2(uint8_t* u, uint8_t* v, int stride,
789 int thresh, int ithresh, int hev_thresh) {
790 __m128i mask;
791 __m128i t1, p2, p1, p0, q0, q1, q2;
792
793 // Load p3, p2, p1, p0
794 LOADUV_H_EDGES4(u - 4 * stride, v - 4 * stride, stride, t1, p2, p1, p0);
795 MAX_DIFF1(t1, p2, p1, p0, mask);
796
797 // Load q0, q1, q2, q3
798 LOADUV_H_EDGES4(u, v, stride, q0, q1, q2, t1);
799 MAX_DIFF2(t1, q2, q1, q0, mask);
800
801 COMPLEX_FL_MASK(p1, p0, q0, q1, thresh, ithresh, mask);
802 DoFilter6(&p2, &p1, &p0, &q0, &q1, &q2, &mask, hev_thresh);
803
804 // Store
805 STOREUV(p2, u, v, -3 * stride);
806 STOREUV(p1, u, v, -2 * stride);
807 STOREUV(p0, u, v, -1 * stride);
808 STOREUV(q0, u, v, 0 * stride);
809 STOREUV(q1, u, v, 1 * stride);
810 STOREUV(q2, u, v, 2 * stride);
811 }
812
HFilter8SSE2(uint8_t * u,uint8_t * v,int stride,int thresh,int ithresh,int hev_thresh)813 static void HFilter8SSE2(uint8_t* u, uint8_t* v, int stride,
814 int thresh, int ithresh, int hev_thresh) {
815 __m128i mask;
816 __m128i p3, p2, p1, p0, q0, q1, q2, q3;
817
818 uint8_t* const tu = u - 4;
819 uint8_t* const tv = v - 4;
820 Load16x4(tu, tv, stride, &p3, &p2, &p1, &p0); // p3, p2, p1, p0
821 MAX_DIFF1(p3, p2, p1, p0, mask);
822
823 Load16x4(u, v, stride, &q0, &q1, &q2, &q3); // q0, q1, q2, q3
824 MAX_DIFF2(q3, q2, q1, q0, mask);
825
826 COMPLEX_FL_MASK(p1, p0, q0, q1, thresh, ithresh, mask);
827 DoFilter6(&p2, &p1, &p0, &q0, &q1, &q2, &mask, hev_thresh);
828
829 Store16x4(tu, tv, stride, &p3, &p2, &p1, &p0);
830 Store16x4(u, v, stride, &q0, &q1, &q2, &q3);
831 }
832
VFilter8iSSE2(uint8_t * u,uint8_t * v,int stride,int thresh,int ithresh,int hev_thresh)833 static void VFilter8iSSE2(uint8_t* u, uint8_t* v, int stride,
834 int thresh, int ithresh, int hev_thresh) {
835 __m128i mask;
836 __m128i t1, t2, p1, p0, q0, q1;
837
838 // Load p3, p2, p1, p0
839 LOADUV_H_EDGES4(u, v, stride, t2, t1, p1, p0);
840 MAX_DIFF1(t2, t1, p1, p0, mask);
841
842 u += 4 * stride;
843 v += 4 * stride;
844
845 // Load q0, q1, q2, q3
846 LOADUV_H_EDGES4(u, v, stride, q0, q1, t1, t2);
847 MAX_DIFF2(t2, t1, q1, q0, mask);
848
849 COMPLEX_FL_MASK(p1, p0, q0, q1, thresh, ithresh, mask);
850 DoFilter4(&p1, &p0, &q0, &q1, &mask, hev_thresh);
851
852 // Store
853 STOREUV(p1, u, v, -2 * stride);
854 STOREUV(p0, u, v, -1 * stride);
855 STOREUV(q0, u, v, 0 * stride);
856 STOREUV(q1, u, v, 1 * stride);
857 }
858
HFilter8iSSE2(uint8_t * u,uint8_t * v,int stride,int thresh,int ithresh,int hev_thresh)859 static void HFilter8iSSE2(uint8_t* u, uint8_t* v, int stride,
860 int thresh, int ithresh, int hev_thresh) {
861 __m128i mask;
862 __m128i t1, t2, p1, p0, q0, q1;
863 Load16x4(u, v, stride, &t2, &t1, &p1, &p0); // p3, p2, p1, p0
864 MAX_DIFF1(t2, t1, p1, p0, mask);
865
866 u += 4; // beginning of q0
867 v += 4;
868 Load16x4(u, v, stride, &q0, &q1, &t1, &t2); // q0, q1, q2, q3
869 MAX_DIFF2(t2, t1, q1, q0, mask);
870
871 COMPLEX_FL_MASK(p1, p0, q0, q1, thresh, ithresh, mask);
872 DoFilter4(&p1, &p0, &q0, &q1, &mask, hev_thresh);
873
874 u -= 2; // beginning of p1
875 v -= 2;
876 Store16x4(u, v, stride, &p1, &p0, &q0, &q1);
877 }
878
879 extern void VP8DspInitSSE2(void);
880
VP8DspInitSSE2(void)881 void VP8DspInitSSE2(void) {
882 VP8Transform = TransformSSE2;
883
884 VP8VFilter16 = VFilter16SSE2;
885 VP8HFilter16 = HFilter16SSE2;
886 VP8VFilter8 = VFilter8SSE2;
887 VP8HFilter8 = HFilter8SSE2;
888 VP8VFilter16i = VFilter16iSSE2;
889 VP8HFilter16i = HFilter16iSSE2;
890 VP8VFilter8i = VFilter8iSSE2;
891 VP8HFilter8i = HFilter8iSSE2;
892
893 VP8SimpleVFilter16 = SimpleVFilter16SSE2;
894 VP8SimpleHFilter16 = SimpleHFilter16SSE2;
895 VP8SimpleVFilter16i = SimpleVFilter16iSSE2;
896 VP8SimpleHFilter16i = SimpleHFilter16iSSE2;
897 }
898
899 #if defined(__cplusplus) || defined(c_plusplus)
900 } // extern "C"
901 #endif
902
903 #endif // WEBP_USE_SSE2
904