1 //===-- LLParser.cpp - Parser Class ---------------------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the parser class for .ll files.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "LLParser.h"
15 #include "llvm/AutoUpgrade.h"
16 #include "llvm/CallingConv.h"
17 #include "llvm/Constants.h"
18 #include "llvm/DerivedTypes.h"
19 #include "llvm/InlineAsm.h"
20 #include "llvm/Instructions.h"
21 #include "llvm/Module.h"
22 #include "llvm/Operator.h"
23 #include "llvm/ValueSymbolTable.h"
24 #include "llvm/ADT/SmallPtrSet.h"
25 #include "llvm/Support/ErrorHandling.h"
26 #include "llvm/Support/raw_ostream.h"
27 using namespace llvm;
28
getTypeString(Type * T)29 static std::string getTypeString(Type *T) {
30 std::string Result;
31 raw_string_ostream Tmp(Result);
32 Tmp << *T;
33 return Tmp.str();
34 }
35
36 /// Run: module ::= toplevelentity*
Run()37 bool LLParser::Run() {
38 // Prime the lexer.
39 Lex.Lex();
40
41 return ParseTopLevelEntities() ||
42 ValidateEndOfModule();
43 }
44
45 /// ValidateEndOfModule - Do final validity and sanity checks at the end of the
46 /// module.
ValidateEndOfModule()47 bool LLParser::ValidateEndOfModule() {
48 // Handle any instruction metadata forward references.
49 if (!ForwardRefInstMetadata.empty()) {
50 for (DenseMap<Instruction*, std::vector<MDRef> >::iterator
51 I = ForwardRefInstMetadata.begin(), E = ForwardRefInstMetadata.end();
52 I != E; ++I) {
53 Instruction *Inst = I->first;
54 const std::vector<MDRef> &MDList = I->second;
55
56 for (unsigned i = 0, e = MDList.size(); i != e; ++i) {
57 unsigned SlotNo = MDList[i].MDSlot;
58
59 if (SlotNo >= NumberedMetadata.size() || NumberedMetadata[SlotNo] == 0)
60 return Error(MDList[i].Loc, "use of undefined metadata '!" +
61 Twine(SlotNo) + "'");
62 Inst->setMetadata(MDList[i].MDKind, NumberedMetadata[SlotNo]);
63 }
64 }
65 ForwardRefInstMetadata.clear();
66 }
67
68
69 // If there are entries in ForwardRefBlockAddresses at this point, they are
70 // references after the function was defined. Resolve those now.
71 while (!ForwardRefBlockAddresses.empty()) {
72 // Okay, we are referencing an already-parsed function, resolve them now.
73 Function *TheFn = 0;
74 const ValID &Fn = ForwardRefBlockAddresses.begin()->first;
75 if (Fn.Kind == ValID::t_GlobalName)
76 TheFn = M->getFunction(Fn.StrVal);
77 else if (Fn.UIntVal < NumberedVals.size())
78 TheFn = dyn_cast<Function>(NumberedVals[Fn.UIntVal]);
79
80 if (TheFn == 0)
81 return Error(Fn.Loc, "unknown function referenced by blockaddress");
82
83 // Resolve all these references.
84 if (ResolveForwardRefBlockAddresses(TheFn,
85 ForwardRefBlockAddresses.begin()->second,
86 0))
87 return true;
88
89 ForwardRefBlockAddresses.erase(ForwardRefBlockAddresses.begin());
90 }
91
92 for (unsigned i = 0, e = NumberedTypes.size(); i != e; ++i)
93 if (NumberedTypes[i].second.isValid())
94 return Error(NumberedTypes[i].second,
95 "use of undefined type '%" + Twine(i) + "'");
96
97 for (StringMap<std::pair<Type*, LocTy> >::iterator I =
98 NamedTypes.begin(), E = NamedTypes.end(); I != E; ++I)
99 if (I->second.second.isValid())
100 return Error(I->second.second,
101 "use of undefined type named '" + I->getKey() + "'");
102
103 if (!ForwardRefVals.empty())
104 return Error(ForwardRefVals.begin()->second.second,
105 "use of undefined value '@" + ForwardRefVals.begin()->first +
106 "'");
107
108 if (!ForwardRefValIDs.empty())
109 return Error(ForwardRefValIDs.begin()->second.second,
110 "use of undefined value '@" +
111 Twine(ForwardRefValIDs.begin()->first) + "'");
112
113 if (!ForwardRefMDNodes.empty())
114 return Error(ForwardRefMDNodes.begin()->second.second,
115 "use of undefined metadata '!" +
116 Twine(ForwardRefMDNodes.begin()->first) + "'");
117
118
119 // Look for intrinsic functions and CallInst that need to be upgraded
120 for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; )
121 UpgradeCallsToIntrinsic(FI++); // must be post-increment, as we remove
122
123 return false;
124 }
125
ResolveForwardRefBlockAddresses(Function * TheFn,std::vector<std::pair<ValID,GlobalValue * >> & Refs,PerFunctionState * PFS)126 bool LLParser::ResolveForwardRefBlockAddresses(Function *TheFn,
127 std::vector<std::pair<ValID, GlobalValue*> > &Refs,
128 PerFunctionState *PFS) {
129 // Loop over all the references, resolving them.
130 for (unsigned i = 0, e = Refs.size(); i != e; ++i) {
131 BasicBlock *Res;
132 if (PFS) {
133 if (Refs[i].first.Kind == ValID::t_LocalName)
134 Res = PFS->GetBB(Refs[i].first.StrVal, Refs[i].first.Loc);
135 else
136 Res = PFS->GetBB(Refs[i].first.UIntVal, Refs[i].first.Loc);
137 } else if (Refs[i].first.Kind == ValID::t_LocalID) {
138 return Error(Refs[i].first.Loc,
139 "cannot take address of numeric label after the function is defined");
140 } else {
141 Res = dyn_cast_or_null<BasicBlock>(
142 TheFn->getValueSymbolTable().lookup(Refs[i].first.StrVal));
143 }
144
145 if (Res == 0)
146 return Error(Refs[i].first.Loc,
147 "referenced value is not a basic block");
148
149 // Get the BlockAddress for this and update references to use it.
150 BlockAddress *BA = BlockAddress::get(TheFn, Res);
151 Refs[i].second->replaceAllUsesWith(BA);
152 Refs[i].second->eraseFromParent();
153 }
154 return false;
155 }
156
157
158 //===----------------------------------------------------------------------===//
159 // Top-Level Entities
160 //===----------------------------------------------------------------------===//
161
ParseTopLevelEntities()162 bool LLParser::ParseTopLevelEntities() {
163 while (1) {
164 switch (Lex.getKind()) {
165 default: return TokError("expected top-level entity");
166 case lltok::Eof: return false;
167 case lltok::kw_declare: if (ParseDeclare()) return true; break;
168 case lltok::kw_define: if (ParseDefine()) return true; break;
169 case lltok::kw_module: if (ParseModuleAsm()) return true; break;
170 case lltok::kw_target: if (ParseTargetDefinition()) return true; break;
171 case lltok::kw_deplibs: if (ParseDepLibs()) return true; break;
172 case lltok::LocalVarID: if (ParseUnnamedType()) return true; break;
173 case lltok::LocalVar: if (ParseNamedType()) return true; break;
174 case lltok::GlobalID: if (ParseUnnamedGlobal()) return true; break;
175 case lltok::GlobalVar: if (ParseNamedGlobal()) return true; break;
176 case lltok::exclaim: if (ParseStandaloneMetadata()) return true; break;
177 case lltok::MetadataVar: if (ParseNamedMetadata()) return true; break;
178
179 // The Global variable production with no name can have many different
180 // optional leading prefixes, the production is:
181 // GlobalVar ::= OptionalLinkage OptionalVisibility OptionalThreadLocal
182 // OptionalAddrSpace OptionalUnNammedAddr
183 // ('constant'|'global') ...
184 case lltok::kw_private: // OptionalLinkage
185 case lltok::kw_linker_private: // OptionalLinkage
186 case lltok::kw_linker_private_weak: // OptionalLinkage
187 case lltok::kw_linker_private_weak_def_auto: // FIXME: backwards compat.
188 case lltok::kw_internal: // OptionalLinkage
189 case lltok::kw_weak: // OptionalLinkage
190 case lltok::kw_weak_odr: // OptionalLinkage
191 case lltok::kw_linkonce: // OptionalLinkage
192 case lltok::kw_linkonce_odr: // OptionalLinkage
193 case lltok::kw_linkonce_odr_auto_hide: // OptionalLinkage
194 case lltok::kw_appending: // OptionalLinkage
195 case lltok::kw_dllexport: // OptionalLinkage
196 case lltok::kw_common: // OptionalLinkage
197 case lltok::kw_dllimport: // OptionalLinkage
198 case lltok::kw_extern_weak: // OptionalLinkage
199 case lltok::kw_external: { // OptionalLinkage
200 unsigned Linkage, Visibility;
201 if (ParseOptionalLinkage(Linkage) ||
202 ParseOptionalVisibility(Visibility) ||
203 ParseGlobal("", SMLoc(), Linkage, true, Visibility))
204 return true;
205 break;
206 }
207 case lltok::kw_default: // OptionalVisibility
208 case lltok::kw_hidden: // OptionalVisibility
209 case lltok::kw_protected: { // OptionalVisibility
210 unsigned Visibility;
211 if (ParseOptionalVisibility(Visibility) ||
212 ParseGlobal("", SMLoc(), 0, false, Visibility))
213 return true;
214 break;
215 }
216
217 case lltok::kw_thread_local: // OptionalThreadLocal
218 case lltok::kw_addrspace: // OptionalAddrSpace
219 case lltok::kw_constant: // GlobalType
220 case lltok::kw_global: // GlobalType
221 if (ParseGlobal("", SMLoc(), 0, false, 0)) return true;
222 break;
223 }
224 }
225 }
226
227
228 /// toplevelentity
229 /// ::= 'module' 'asm' STRINGCONSTANT
ParseModuleAsm()230 bool LLParser::ParseModuleAsm() {
231 assert(Lex.getKind() == lltok::kw_module);
232 Lex.Lex();
233
234 std::string AsmStr;
235 if (ParseToken(lltok::kw_asm, "expected 'module asm'") ||
236 ParseStringConstant(AsmStr)) return true;
237
238 M->appendModuleInlineAsm(AsmStr);
239 return false;
240 }
241
242 /// toplevelentity
243 /// ::= 'target' 'triple' '=' STRINGCONSTANT
244 /// ::= 'target' 'datalayout' '=' STRINGCONSTANT
ParseTargetDefinition()245 bool LLParser::ParseTargetDefinition() {
246 assert(Lex.getKind() == lltok::kw_target);
247 std::string Str;
248 switch (Lex.Lex()) {
249 default: return TokError("unknown target property");
250 case lltok::kw_triple:
251 Lex.Lex();
252 if (ParseToken(lltok::equal, "expected '=' after target triple") ||
253 ParseStringConstant(Str))
254 return true;
255 M->setTargetTriple(Str);
256 return false;
257 case lltok::kw_datalayout:
258 Lex.Lex();
259 if (ParseToken(lltok::equal, "expected '=' after target datalayout") ||
260 ParseStringConstant(Str))
261 return true;
262 M->setDataLayout(Str);
263 return false;
264 }
265 }
266
267 /// toplevelentity
268 /// ::= 'deplibs' '=' '[' ']'
269 /// ::= 'deplibs' '=' '[' STRINGCONSTANT (',' STRINGCONSTANT)* ']'
ParseDepLibs()270 bool LLParser::ParseDepLibs() {
271 assert(Lex.getKind() == lltok::kw_deplibs);
272 Lex.Lex();
273 if (ParseToken(lltok::equal, "expected '=' after deplibs") ||
274 ParseToken(lltok::lsquare, "expected '=' after deplibs"))
275 return true;
276
277 if (EatIfPresent(lltok::rsquare))
278 return false;
279
280 std::string Str;
281 if (ParseStringConstant(Str)) return true;
282 M->addLibrary(Str);
283
284 while (EatIfPresent(lltok::comma)) {
285 if (ParseStringConstant(Str)) return true;
286 M->addLibrary(Str);
287 }
288
289 return ParseToken(lltok::rsquare, "expected ']' at end of list");
290 }
291
292 /// ParseUnnamedType:
293 /// ::= LocalVarID '=' 'type' type
ParseUnnamedType()294 bool LLParser::ParseUnnamedType() {
295 LocTy TypeLoc = Lex.getLoc();
296 unsigned TypeID = Lex.getUIntVal();
297 Lex.Lex(); // eat LocalVarID;
298
299 if (ParseToken(lltok::equal, "expected '=' after name") ||
300 ParseToken(lltok::kw_type, "expected 'type' after '='"))
301 return true;
302
303 if (TypeID >= NumberedTypes.size())
304 NumberedTypes.resize(TypeID+1);
305
306 Type *Result = 0;
307 if (ParseStructDefinition(TypeLoc, "",
308 NumberedTypes[TypeID], Result)) return true;
309
310 if (!isa<StructType>(Result)) {
311 std::pair<Type*, LocTy> &Entry = NumberedTypes[TypeID];
312 if (Entry.first)
313 return Error(TypeLoc, "non-struct types may not be recursive");
314 Entry.first = Result;
315 Entry.second = SMLoc();
316 }
317
318 return false;
319 }
320
321
322 /// toplevelentity
323 /// ::= LocalVar '=' 'type' type
ParseNamedType()324 bool LLParser::ParseNamedType() {
325 std::string Name = Lex.getStrVal();
326 LocTy NameLoc = Lex.getLoc();
327 Lex.Lex(); // eat LocalVar.
328
329 if (ParseToken(lltok::equal, "expected '=' after name") ||
330 ParseToken(lltok::kw_type, "expected 'type' after name"))
331 return true;
332
333 Type *Result = 0;
334 if (ParseStructDefinition(NameLoc, Name,
335 NamedTypes[Name], Result)) return true;
336
337 if (!isa<StructType>(Result)) {
338 std::pair<Type*, LocTy> &Entry = NamedTypes[Name];
339 if (Entry.first)
340 return Error(NameLoc, "non-struct types may not be recursive");
341 Entry.first = Result;
342 Entry.second = SMLoc();
343 }
344
345 return false;
346 }
347
348
349 /// toplevelentity
350 /// ::= 'declare' FunctionHeader
ParseDeclare()351 bool LLParser::ParseDeclare() {
352 assert(Lex.getKind() == lltok::kw_declare);
353 Lex.Lex();
354
355 Function *F;
356 return ParseFunctionHeader(F, false);
357 }
358
359 /// toplevelentity
360 /// ::= 'define' FunctionHeader '{' ...
ParseDefine()361 bool LLParser::ParseDefine() {
362 assert(Lex.getKind() == lltok::kw_define);
363 Lex.Lex();
364
365 Function *F;
366 return ParseFunctionHeader(F, true) ||
367 ParseFunctionBody(*F);
368 }
369
370 /// ParseGlobalType
371 /// ::= 'constant'
372 /// ::= 'global'
ParseGlobalType(bool & IsConstant)373 bool LLParser::ParseGlobalType(bool &IsConstant) {
374 if (Lex.getKind() == lltok::kw_constant)
375 IsConstant = true;
376 else if (Lex.getKind() == lltok::kw_global)
377 IsConstant = false;
378 else {
379 IsConstant = false;
380 return TokError("expected 'global' or 'constant'");
381 }
382 Lex.Lex();
383 return false;
384 }
385
386 /// ParseUnnamedGlobal:
387 /// OptionalVisibility ALIAS ...
388 /// OptionalLinkage OptionalVisibility ... -> global variable
389 /// GlobalID '=' OptionalVisibility ALIAS ...
390 /// GlobalID '=' OptionalLinkage OptionalVisibility ... -> global variable
ParseUnnamedGlobal()391 bool LLParser::ParseUnnamedGlobal() {
392 unsigned VarID = NumberedVals.size();
393 std::string Name;
394 LocTy NameLoc = Lex.getLoc();
395
396 // Handle the GlobalID form.
397 if (Lex.getKind() == lltok::GlobalID) {
398 if (Lex.getUIntVal() != VarID)
399 return Error(Lex.getLoc(), "variable expected to be numbered '%" +
400 Twine(VarID) + "'");
401 Lex.Lex(); // eat GlobalID;
402
403 if (ParseToken(lltok::equal, "expected '=' after name"))
404 return true;
405 }
406
407 bool HasLinkage;
408 unsigned Linkage, Visibility;
409 if (ParseOptionalLinkage(Linkage, HasLinkage) ||
410 ParseOptionalVisibility(Visibility))
411 return true;
412
413 if (HasLinkage || Lex.getKind() != lltok::kw_alias)
414 return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility);
415 return ParseAlias(Name, NameLoc, Visibility);
416 }
417
418 /// ParseNamedGlobal:
419 /// GlobalVar '=' OptionalVisibility ALIAS ...
420 /// GlobalVar '=' OptionalLinkage OptionalVisibility ... -> global variable
ParseNamedGlobal()421 bool LLParser::ParseNamedGlobal() {
422 assert(Lex.getKind() == lltok::GlobalVar);
423 LocTy NameLoc = Lex.getLoc();
424 std::string Name = Lex.getStrVal();
425 Lex.Lex();
426
427 bool HasLinkage;
428 unsigned Linkage, Visibility;
429 if (ParseToken(lltok::equal, "expected '=' in global variable") ||
430 ParseOptionalLinkage(Linkage, HasLinkage) ||
431 ParseOptionalVisibility(Visibility))
432 return true;
433
434 if (HasLinkage || Lex.getKind() != lltok::kw_alias)
435 return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility);
436 return ParseAlias(Name, NameLoc, Visibility);
437 }
438
439 // MDString:
440 // ::= '!' STRINGCONSTANT
ParseMDString(MDString * & Result)441 bool LLParser::ParseMDString(MDString *&Result) {
442 std::string Str;
443 if (ParseStringConstant(Str)) return true;
444 Result = MDString::get(Context, Str);
445 return false;
446 }
447
448 // MDNode:
449 // ::= '!' MDNodeNumber
450 //
451 /// This version of ParseMDNodeID returns the slot number and null in the case
452 /// of a forward reference.
ParseMDNodeID(MDNode * & Result,unsigned & SlotNo)453 bool LLParser::ParseMDNodeID(MDNode *&Result, unsigned &SlotNo) {
454 // !{ ..., !42, ... }
455 if (ParseUInt32(SlotNo)) return true;
456
457 // Check existing MDNode.
458 if (SlotNo < NumberedMetadata.size() && NumberedMetadata[SlotNo] != 0)
459 Result = NumberedMetadata[SlotNo];
460 else
461 Result = 0;
462 return false;
463 }
464
ParseMDNodeID(MDNode * & Result)465 bool LLParser::ParseMDNodeID(MDNode *&Result) {
466 // !{ ..., !42, ... }
467 unsigned MID = 0;
468 if (ParseMDNodeID(Result, MID)) return true;
469
470 // If not a forward reference, just return it now.
471 if (Result) return false;
472
473 // Otherwise, create MDNode forward reference.
474 MDNode *FwdNode = MDNode::getTemporary(Context, ArrayRef<Value*>());
475 ForwardRefMDNodes[MID] = std::make_pair(FwdNode, Lex.getLoc());
476
477 if (NumberedMetadata.size() <= MID)
478 NumberedMetadata.resize(MID+1);
479 NumberedMetadata[MID] = FwdNode;
480 Result = FwdNode;
481 return false;
482 }
483
484 /// ParseNamedMetadata:
485 /// !foo = !{ !1, !2 }
ParseNamedMetadata()486 bool LLParser::ParseNamedMetadata() {
487 assert(Lex.getKind() == lltok::MetadataVar);
488 std::string Name = Lex.getStrVal();
489 Lex.Lex();
490
491 if (ParseToken(lltok::equal, "expected '=' here") ||
492 ParseToken(lltok::exclaim, "Expected '!' here") ||
493 ParseToken(lltok::lbrace, "Expected '{' here"))
494 return true;
495
496 NamedMDNode *NMD = M->getOrInsertNamedMetadata(Name);
497 if (Lex.getKind() != lltok::rbrace)
498 do {
499 if (ParseToken(lltok::exclaim, "Expected '!' here"))
500 return true;
501
502 MDNode *N = 0;
503 if (ParseMDNodeID(N)) return true;
504 NMD->addOperand(N);
505 } while (EatIfPresent(lltok::comma));
506
507 if (ParseToken(lltok::rbrace, "expected end of metadata node"))
508 return true;
509
510 return false;
511 }
512
513 /// ParseStandaloneMetadata:
514 /// !42 = !{...}
ParseStandaloneMetadata()515 bool LLParser::ParseStandaloneMetadata() {
516 assert(Lex.getKind() == lltok::exclaim);
517 Lex.Lex();
518 unsigned MetadataID = 0;
519
520 LocTy TyLoc;
521 Type *Ty = 0;
522 SmallVector<Value *, 16> Elts;
523 if (ParseUInt32(MetadataID) ||
524 ParseToken(lltok::equal, "expected '=' here") ||
525 ParseType(Ty, TyLoc) ||
526 ParseToken(lltok::exclaim, "Expected '!' here") ||
527 ParseToken(lltok::lbrace, "Expected '{' here") ||
528 ParseMDNodeVector(Elts, NULL) ||
529 ParseToken(lltok::rbrace, "expected end of metadata node"))
530 return true;
531
532 MDNode *Init = MDNode::get(Context, Elts);
533
534 // See if this was forward referenced, if so, handle it.
535 std::map<unsigned, std::pair<TrackingVH<MDNode>, LocTy> >::iterator
536 FI = ForwardRefMDNodes.find(MetadataID);
537 if (FI != ForwardRefMDNodes.end()) {
538 MDNode *Temp = FI->second.first;
539 Temp->replaceAllUsesWith(Init);
540 MDNode::deleteTemporary(Temp);
541 ForwardRefMDNodes.erase(FI);
542
543 assert(NumberedMetadata[MetadataID] == Init && "Tracking VH didn't work");
544 } else {
545 if (MetadataID >= NumberedMetadata.size())
546 NumberedMetadata.resize(MetadataID+1);
547
548 if (NumberedMetadata[MetadataID] != 0)
549 return TokError("Metadata id is already used");
550 NumberedMetadata[MetadataID] = Init;
551 }
552
553 return false;
554 }
555
556 /// ParseAlias:
557 /// ::= GlobalVar '=' OptionalVisibility 'alias' OptionalLinkage Aliasee
558 /// Aliasee
559 /// ::= TypeAndValue
560 /// ::= 'bitcast' '(' TypeAndValue 'to' Type ')'
561 /// ::= 'getelementptr' 'inbounds'? '(' ... ')'
562 ///
563 /// Everything through visibility has already been parsed.
564 ///
ParseAlias(const std::string & Name,LocTy NameLoc,unsigned Visibility)565 bool LLParser::ParseAlias(const std::string &Name, LocTy NameLoc,
566 unsigned Visibility) {
567 assert(Lex.getKind() == lltok::kw_alias);
568 Lex.Lex();
569 unsigned Linkage;
570 LocTy LinkageLoc = Lex.getLoc();
571 if (ParseOptionalLinkage(Linkage))
572 return true;
573
574 if (Linkage != GlobalValue::ExternalLinkage &&
575 Linkage != GlobalValue::WeakAnyLinkage &&
576 Linkage != GlobalValue::WeakODRLinkage &&
577 Linkage != GlobalValue::InternalLinkage &&
578 Linkage != GlobalValue::PrivateLinkage &&
579 Linkage != GlobalValue::LinkerPrivateLinkage &&
580 Linkage != GlobalValue::LinkerPrivateWeakLinkage)
581 return Error(LinkageLoc, "invalid linkage type for alias");
582
583 Constant *Aliasee;
584 LocTy AliaseeLoc = Lex.getLoc();
585 if (Lex.getKind() != lltok::kw_bitcast &&
586 Lex.getKind() != lltok::kw_getelementptr) {
587 if (ParseGlobalTypeAndValue(Aliasee)) return true;
588 } else {
589 // The bitcast dest type is not present, it is implied by the dest type.
590 ValID ID;
591 if (ParseValID(ID)) return true;
592 if (ID.Kind != ValID::t_Constant)
593 return Error(AliaseeLoc, "invalid aliasee");
594 Aliasee = ID.ConstantVal;
595 }
596
597 if (!Aliasee->getType()->isPointerTy())
598 return Error(AliaseeLoc, "alias must have pointer type");
599
600 // Okay, create the alias but do not insert it into the module yet.
601 GlobalAlias* GA = new GlobalAlias(Aliasee->getType(),
602 (GlobalValue::LinkageTypes)Linkage, Name,
603 Aliasee);
604 GA->setVisibility((GlobalValue::VisibilityTypes)Visibility);
605
606 // See if this value already exists in the symbol table. If so, it is either
607 // a redefinition or a definition of a forward reference.
608 if (GlobalValue *Val = M->getNamedValue(Name)) {
609 // See if this was a redefinition. If so, there is no entry in
610 // ForwardRefVals.
611 std::map<std::string, std::pair<GlobalValue*, LocTy> >::iterator
612 I = ForwardRefVals.find(Name);
613 if (I == ForwardRefVals.end())
614 return Error(NameLoc, "redefinition of global named '@" + Name + "'");
615
616 // Otherwise, this was a definition of forward ref. Verify that types
617 // agree.
618 if (Val->getType() != GA->getType())
619 return Error(NameLoc,
620 "forward reference and definition of alias have different types");
621
622 // If they agree, just RAUW the old value with the alias and remove the
623 // forward ref info.
624 Val->replaceAllUsesWith(GA);
625 Val->eraseFromParent();
626 ForwardRefVals.erase(I);
627 }
628
629 // Insert into the module, we know its name won't collide now.
630 M->getAliasList().push_back(GA);
631 assert(GA->getName() == Name && "Should not be a name conflict!");
632
633 return false;
634 }
635
636 /// ParseGlobal
637 /// ::= GlobalVar '=' OptionalLinkage OptionalVisibility OptionalThreadLocal
638 /// OptionalAddrSpace OptionalUnNammedAddr GlobalType Type Const
639 /// ::= OptionalLinkage OptionalVisibility OptionalThreadLocal
640 /// OptionalAddrSpace OptionalUnNammedAddr GlobalType Type Const
641 ///
642 /// Everything through visibility has been parsed already.
643 ///
ParseGlobal(const std::string & Name,LocTy NameLoc,unsigned Linkage,bool HasLinkage,unsigned Visibility)644 bool LLParser::ParseGlobal(const std::string &Name, LocTy NameLoc,
645 unsigned Linkage, bool HasLinkage,
646 unsigned Visibility) {
647 unsigned AddrSpace;
648 bool IsConstant, UnnamedAddr;
649 GlobalVariable::ThreadLocalMode TLM;
650 LocTy UnnamedAddrLoc;
651 LocTy TyLoc;
652
653 Type *Ty = 0;
654 if (ParseOptionalThreadLocal(TLM) ||
655 ParseOptionalAddrSpace(AddrSpace) ||
656 ParseOptionalToken(lltok::kw_unnamed_addr, UnnamedAddr,
657 &UnnamedAddrLoc) ||
658 ParseGlobalType(IsConstant) ||
659 ParseType(Ty, TyLoc))
660 return true;
661
662 // If the linkage is specified and is external, then no initializer is
663 // present.
664 Constant *Init = 0;
665 if (!HasLinkage || (Linkage != GlobalValue::DLLImportLinkage &&
666 Linkage != GlobalValue::ExternalWeakLinkage &&
667 Linkage != GlobalValue::ExternalLinkage)) {
668 if (ParseGlobalValue(Ty, Init))
669 return true;
670 }
671
672 if (Ty->isFunctionTy() || Ty->isLabelTy())
673 return Error(TyLoc, "invalid type for global variable");
674
675 GlobalVariable *GV = 0;
676
677 // See if the global was forward referenced, if so, use the global.
678 if (!Name.empty()) {
679 if (GlobalValue *GVal = M->getNamedValue(Name)) {
680 if (!ForwardRefVals.erase(Name) || !isa<GlobalValue>(GVal))
681 return Error(NameLoc, "redefinition of global '@" + Name + "'");
682 GV = cast<GlobalVariable>(GVal);
683 }
684 } else {
685 std::map<unsigned, std::pair<GlobalValue*, LocTy> >::iterator
686 I = ForwardRefValIDs.find(NumberedVals.size());
687 if (I != ForwardRefValIDs.end()) {
688 GV = cast<GlobalVariable>(I->second.first);
689 ForwardRefValIDs.erase(I);
690 }
691 }
692
693 if (GV == 0) {
694 GV = new GlobalVariable(*M, Ty, false, GlobalValue::ExternalLinkage, 0,
695 Name, 0, GlobalVariable::NotThreadLocal,
696 AddrSpace);
697 } else {
698 if (GV->getType()->getElementType() != Ty)
699 return Error(TyLoc,
700 "forward reference and definition of global have different types");
701
702 // Move the forward-reference to the correct spot in the module.
703 M->getGlobalList().splice(M->global_end(), M->getGlobalList(), GV);
704 }
705
706 if (Name.empty())
707 NumberedVals.push_back(GV);
708
709 // Set the parsed properties on the global.
710 if (Init)
711 GV->setInitializer(Init);
712 GV->setConstant(IsConstant);
713 GV->setLinkage((GlobalValue::LinkageTypes)Linkage);
714 GV->setVisibility((GlobalValue::VisibilityTypes)Visibility);
715 GV->setThreadLocalMode(TLM);
716 GV->setUnnamedAddr(UnnamedAddr);
717
718 // Parse attributes on the global.
719 while (Lex.getKind() == lltok::comma) {
720 Lex.Lex();
721
722 if (Lex.getKind() == lltok::kw_section) {
723 Lex.Lex();
724 GV->setSection(Lex.getStrVal());
725 if (ParseToken(lltok::StringConstant, "expected global section string"))
726 return true;
727 } else if (Lex.getKind() == lltok::kw_align) {
728 unsigned Alignment;
729 if (ParseOptionalAlignment(Alignment)) return true;
730 GV->setAlignment(Alignment);
731 } else {
732 TokError("unknown global variable property!");
733 }
734 }
735
736 return false;
737 }
738
739
740 //===----------------------------------------------------------------------===//
741 // GlobalValue Reference/Resolution Routines.
742 //===----------------------------------------------------------------------===//
743
744 /// GetGlobalVal - Get a value with the specified name or ID, creating a
745 /// forward reference record if needed. This can return null if the value
746 /// exists but does not have the right type.
GetGlobalVal(const std::string & Name,Type * Ty,LocTy Loc)747 GlobalValue *LLParser::GetGlobalVal(const std::string &Name, Type *Ty,
748 LocTy Loc) {
749 PointerType *PTy = dyn_cast<PointerType>(Ty);
750 if (PTy == 0) {
751 Error(Loc, "global variable reference must have pointer type");
752 return 0;
753 }
754
755 // Look this name up in the normal function symbol table.
756 GlobalValue *Val =
757 cast_or_null<GlobalValue>(M->getValueSymbolTable().lookup(Name));
758
759 // If this is a forward reference for the value, see if we already created a
760 // forward ref record.
761 if (Val == 0) {
762 std::map<std::string, std::pair<GlobalValue*, LocTy> >::iterator
763 I = ForwardRefVals.find(Name);
764 if (I != ForwardRefVals.end())
765 Val = I->second.first;
766 }
767
768 // If we have the value in the symbol table or fwd-ref table, return it.
769 if (Val) {
770 if (Val->getType() == Ty) return Val;
771 Error(Loc, "'@" + Name + "' defined with type '" +
772 getTypeString(Val->getType()) + "'");
773 return 0;
774 }
775
776 // Otherwise, create a new forward reference for this value and remember it.
777 GlobalValue *FwdVal;
778 if (FunctionType *FT = dyn_cast<FunctionType>(PTy->getElementType()))
779 FwdVal = Function::Create(FT, GlobalValue::ExternalWeakLinkage, Name, M);
780 else
781 FwdVal = new GlobalVariable(*M, PTy->getElementType(), false,
782 GlobalValue::ExternalWeakLinkage, 0, Name);
783
784 ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
785 return FwdVal;
786 }
787
GetGlobalVal(unsigned ID,Type * Ty,LocTy Loc)788 GlobalValue *LLParser::GetGlobalVal(unsigned ID, Type *Ty, LocTy Loc) {
789 PointerType *PTy = dyn_cast<PointerType>(Ty);
790 if (PTy == 0) {
791 Error(Loc, "global variable reference must have pointer type");
792 return 0;
793 }
794
795 GlobalValue *Val = ID < NumberedVals.size() ? NumberedVals[ID] : 0;
796
797 // If this is a forward reference for the value, see if we already created a
798 // forward ref record.
799 if (Val == 0) {
800 std::map<unsigned, std::pair<GlobalValue*, LocTy> >::iterator
801 I = ForwardRefValIDs.find(ID);
802 if (I != ForwardRefValIDs.end())
803 Val = I->second.first;
804 }
805
806 // If we have the value in the symbol table or fwd-ref table, return it.
807 if (Val) {
808 if (Val->getType() == Ty) return Val;
809 Error(Loc, "'@" + Twine(ID) + "' defined with type '" +
810 getTypeString(Val->getType()) + "'");
811 return 0;
812 }
813
814 // Otherwise, create a new forward reference for this value and remember it.
815 GlobalValue *FwdVal;
816 if (FunctionType *FT = dyn_cast<FunctionType>(PTy->getElementType()))
817 FwdVal = Function::Create(FT, GlobalValue::ExternalWeakLinkage, "", M);
818 else
819 FwdVal = new GlobalVariable(*M, PTy->getElementType(), false,
820 GlobalValue::ExternalWeakLinkage, 0, "");
821
822 ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
823 return FwdVal;
824 }
825
826
827 //===----------------------------------------------------------------------===//
828 // Helper Routines.
829 //===----------------------------------------------------------------------===//
830
831 /// ParseToken - If the current token has the specified kind, eat it and return
832 /// success. Otherwise, emit the specified error and return failure.
ParseToken(lltok::Kind T,const char * ErrMsg)833 bool LLParser::ParseToken(lltok::Kind T, const char *ErrMsg) {
834 if (Lex.getKind() != T)
835 return TokError(ErrMsg);
836 Lex.Lex();
837 return false;
838 }
839
840 /// ParseStringConstant
841 /// ::= StringConstant
ParseStringConstant(std::string & Result)842 bool LLParser::ParseStringConstant(std::string &Result) {
843 if (Lex.getKind() != lltok::StringConstant)
844 return TokError("expected string constant");
845 Result = Lex.getStrVal();
846 Lex.Lex();
847 return false;
848 }
849
850 /// ParseUInt32
851 /// ::= uint32
ParseUInt32(unsigned & Val)852 bool LLParser::ParseUInt32(unsigned &Val) {
853 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
854 return TokError("expected integer");
855 uint64_t Val64 = Lex.getAPSIntVal().getLimitedValue(0xFFFFFFFFULL+1);
856 if (Val64 != unsigned(Val64))
857 return TokError("expected 32-bit integer (too large)");
858 Val = Val64;
859 Lex.Lex();
860 return false;
861 }
862
863 /// ParseTLSModel
864 /// := 'localdynamic'
865 /// := 'initialexec'
866 /// := 'localexec'
ParseTLSModel(GlobalVariable::ThreadLocalMode & TLM)867 bool LLParser::ParseTLSModel(GlobalVariable::ThreadLocalMode &TLM) {
868 switch (Lex.getKind()) {
869 default:
870 return TokError("expected localdynamic, initialexec or localexec");
871 case lltok::kw_localdynamic:
872 TLM = GlobalVariable::LocalDynamicTLSModel;
873 break;
874 case lltok::kw_initialexec:
875 TLM = GlobalVariable::InitialExecTLSModel;
876 break;
877 case lltok::kw_localexec:
878 TLM = GlobalVariable::LocalExecTLSModel;
879 break;
880 }
881
882 Lex.Lex();
883 return false;
884 }
885
886 /// ParseOptionalThreadLocal
887 /// := /*empty*/
888 /// := 'thread_local'
889 /// := 'thread_local' '(' tlsmodel ')'
ParseOptionalThreadLocal(GlobalVariable::ThreadLocalMode & TLM)890 bool LLParser::ParseOptionalThreadLocal(GlobalVariable::ThreadLocalMode &TLM) {
891 TLM = GlobalVariable::NotThreadLocal;
892 if (!EatIfPresent(lltok::kw_thread_local))
893 return false;
894
895 TLM = GlobalVariable::GeneralDynamicTLSModel;
896 if (Lex.getKind() == lltok::lparen) {
897 Lex.Lex();
898 return ParseTLSModel(TLM) ||
899 ParseToken(lltok::rparen, "expected ')' after thread local model");
900 }
901 return false;
902 }
903
904 /// ParseOptionalAddrSpace
905 /// := /*empty*/
906 /// := 'addrspace' '(' uint32 ')'
ParseOptionalAddrSpace(unsigned & AddrSpace)907 bool LLParser::ParseOptionalAddrSpace(unsigned &AddrSpace) {
908 AddrSpace = 0;
909 if (!EatIfPresent(lltok::kw_addrspace))
910 return false;
911 return ParseToken(lltok::lparen, "expected '(' in address space") ||
912 ParseUInt32(AddrSpace) ||
913 ParseToken(lltok::rparen, "expected ')' in address space");
914 }
915
916 /// ParseOptionalAttrs - Parse a potentially empty attribute list. AttrKind
917 /// indicates what kind of attribute list this is: 0: function arg, 1: result,
918 /// 2: function attr.
ParseOptionalAttrs(Attributes & Attrs,unsigned AttrKind)919 bool LLParser::ParseOptionalAttrs(Attributes &Attrs, unsigned AttrKind) {
920 Attrs = Attribute::None;
921 LocTy AttrLoc = Lex.getLoc();
922
923 while (1) {
924 switch (Lex.getKind()) {
925 default: // End of attributes.
926 if (AttrKind != 2 && (Attrs & Attribute::FunctionOnly))
927 return Error(AttrLoc, "invalid use of function-only attribute");
928
929 // As a hack, we allow "align 2" on functions as a synonym for
930 // "alignstack 2".
931 if (AttrKind == 2 &&
932 (Attrs & ~(Attribute::FunctionOnly | Attribute::Alignment)))
933 return Error(AttrLoc, "invalid use of attribute on a function");
934
935 if (AttrKind != 0 && (Attrs & Attribute::ParameterOnly))
936 return Error(AttrLoc, "invalid use of parameter-only attribute");
937
938 return false;
939 case lltok::kw_zeroext: Attrs |= Attribute::ZExt; break;
940 case lltok::kw_signext: Attrs |= Attribute::SExt; break;
941 case lltok::kw_inreg: Attrs |= Attribute::InReg; break;
942 case lltok::kw_sret: Attrs |= Attribute::StructRet; break;
943 case lltok::kw_noalias: Attrs |= Attribute::NoAlias; break;
944 case lltok::kw_nocapture: Attrs |= Attribute::NoCapture; break;
945 case lltok::kw_byval: Attrs |= Attribute::ByVal; break;
946 case lltok::kw_nest: Attrs |= Attribute::Nest; break;
947
948 case lltok::kw_noreturn: Attrs |= Attribute::NoReturn; break;
949 case lltok::kw_nounwind: Attrs |= Attribute::NoUnwind; break;
950 case lltok::kw_uwtable: Attrs |= Attribute::UWTable; break;
951 case lltok::kw_returns_twice: Attrs |= Attribute::ReturnsTwice; break;
952 case lltok::kw_noinline: Attrs |= Attribute::NoInline; break;
953 case lltok::kw_readnone: Attrs |= Attribute::ReadNone; break;
954 case lltok::kw_readonly: Attrs |= Attribute::ReadOnly; break;
955 case lltok::kw_inlinehint: Attrs |= Attribute::InlineHint; break;
956 case lltok::kw_alwaysinline: Attrs |= Attribute::AlwaysInline; break;
957 case lltok::kw_optsize: Attrs |= Attribute::OptimizeForSize; break;
958 case lltok::kw_ssp: Attrs |= Attribute::StackProtect; break;
959 case lltok::kw_sspreq: Attrs |= Attribute::StackProtectReq; break;
960 case lltok::kw_noredzone: Attrs |= Attribute::NoRedZone; break;
961 case lltok::kw_noimplicitfloat: Attrs |= Attribute::NoImplicitFloat; break;
962 case lltok::kw_naked: Attrs |= Attribute::Naked; break;
963 case lltok::kw_nonlazybind: Attrs |= Attribute::NonLazyBind; break;
964 case lltok::kw_address_safety: Attrs |= Attribute::AddressSafety; break;
965
966 case lltok::kw_alignstack: {
967 unsigned Alignment;
968 if (ParseOptionalStackAlignment(Alignment))
969 return true;
970 Attrs |= Attribute::constructStackAlignmentFromInt(Alignment);
971 continue;
972 }
973
974 case lltok::kw_align: {
975 unsigned Alignment;
976 if (ParseOptionalAlignment(Alignment))
977 return true;
978 Attrs |= Attribute::constructAlignmentFromInt(Alignment);
979 continue;
980 }
981
982 }
983 Lex.Lex();
984 }
985 }
986
987 /// ParseOptionalLinkage
988 /// ::= /*empty*/
989 /// ::= 'private'
990 /// ::= 'linker_private'
991 /// ::= 'linker_private_weak'
992 /// ::= 'internal'
993 /// ::= 'weak'
994 /// ::= 'weak_odr'
995 /// ::= 'linkonce'
996 /// ::= 'linkonce_odr'
997 /// ::= 'linkonce_odr_auto_hide'
998 /// ::= 'available_externally'
999 /// ::= 'appending'
1000 /// ::= 'dllexport'
1001 /// ::= 'common'
1002 /// ::= 'dllimport'
1003 /// ::= 'extern_weak'
1004 /// ::= 'external'
ParseOptionalLinkage(unsigned & Res,bool & HasLinkage)1005 bool LLParser::ParseOptionalLinkage(unsigned &Res, bool &HasLinkage) {
1006 HasLinkage = false;
1007 switch (Lex.getKind()) {
1008 default: Res=GlobalValue::ExternalLinkage; return false;
1009 case lltok::kw_private: Res = GlobalValue::PrivateLinkage; break;
1010 case lltok::kw_linker_private: Res = GlobalValue::LinkerPrivateLinkage; break;
1011 case lltok::kw_linker_private_weak:
1012 Res = GlobalValue::LinkerPrivateWeakLinkage;
1013 break;
1014 case lltok::kw_internal: Res = GlobalValue::InternalLinkage; break;
1015 case lltok::kw_weak: Res = GlobalValue::WeakAnyLinkage; break;
1016 case lltok::kw_weak_odr: Res = GlobalValue::WeakODRLinkage; break;
1017 case lltok::kw_linkonce: Res = GlobalValue::LinkOnceAnyLinkage; break;
1018 case lltok::kw_linkonce_odr: Res = GlobalValue::LinkOnceODRLinkage; break;
1019 case lltok::kw_linkonce_odr_auto_hide:
1020 case lltok::kw_linker_private_weak_def_auto: // FIXME: For backwards compat.
1021 Res = GlobalValue::LinkOnceODRAutoHideLinkage;
1022 break;
1023 case lltok::kw_available_externally:
1024 Res = GlobalValue::AvailableExternallyLinkage;
1025 break;
1026 case lltok::kw_appending: Res = GlobalValue::AppendingLinkage; break;
1027 case lltok::kw_dllexport: Res = GlobalValue::DLLExportLinkage; break;
1028 case lltok::kw_common: Res = GlobalValue::CommonLinkage; break;
1029 case lltok::kw_dllimport: Res = GlobalValue::DLLImportLinkage; break;
1030 case lltok::kw_extern_weak: Res = GlobalValue::ExternalWeakLinkage; break;
1031 case lltok::kw_external: Res = GlobalValue::ExternalLinkage; break;
1032 }
1033 Lex.Lex();
1034 HasLinkage = true;
1035 return false;
1036 }
1037
1038 /// ParseOptionalVisibility
1039 /// ::= /*empty*/
1040 /// ::= 'default'
1041 /// ::= 'hidden'
1042 /// ::= 'protected'
1043 ///
ParseOptionalVisibility(unsigned & Res)1044 bool LLParser::ParseOptionalVisibility(unsigned &Res) {
1045 switch (Lex.getKind()) {
1046 default: Res = GlobalValue::DefaultVisibility; return false;
1047 case lltok::kw_default: Res = GlobalValue::DefaultVisibility; break;
1048 case lltok::kw_hidden: Res = GlobalValue::HiddenVisibility; break;
1049 case lltok::kw_protected: Res = GlobalValue::ProtectedVisibility; break;
1050 }
1051 Lex.Lex();
1052 return false;
1053 }
1054
1055 /// ParseOptionalCallingConv
1056 /// ::= /*empty*/
1057 /// ::= 'ccc'
1058 /// ::= 'fastcc'
1059 /// ::= 'coldcc'
1060 /// ::= 'x86_stdcallcc'
1061 /// ::= 'x86_fastcallcc'
1062 /// ::= 'x86_thiscallcc'
1063 /// ::= 'arm_apcscc'
1064 /// ::= 'arm_aapcscc'
1065 /// ::= 'arm_aapcs_vfpcc'
1066 /// ::= 'msp430_intrcc'
1067 /// ::= 'ptx_kernel'
1068 /// ::= 'ptx_device'
1069 /// ::= 'cc' UINT
1070 ///
ParseOptionalCallingConv(CallingConv::ID & CC)1071 bool LLParser::ParseOptionalCallingConv(CallingConv::ID &CC) {
1072 switch (Lex.getKind()) {
1073 default: CC = CallingConv::C; return false;
1074 case lltok::kw_ccc: CC = CallingConv::C; break;
1075 case lltok::kw_fastcc: CC = CallingConv::Fast; break;
1076 case lltok::kw_coldcc: CC = CallingConv::Cold; break;
1077 case lltok::kw_x86_stdcallcc: CC = CallingConv::X86_StdCall; break;
1078 case lltok::kw_x86_fastcallcc: CC = CallingConv::X86_FastCall; break;
1079 case lltok::kw_x86_thiscallcc: CC = CallingConv::X86_ThisCall; break;
1080 case lltok::kw_arm_apcscc: CC = CallingConv::ARM_APCS; break;
1081 case lltok::kw_arm_aapcscc: CC = CallingConv::ARM_AAPCS; break;
1082 case lltok::kw_arm_aapcs_vfpcc:CC = CallingConv::ARM_AAPCS_VFP; break;
1083 case lltok::kw_msp430_intrcc: CC = CallingConv::MSP430_INTR; break;
1084 case lltok::kw_ptx_kernel: CC = CallingConv::PTX_Kernel; break;
1085 case lltok::kw_ptx_device: CC = CallingConv::PTX_Device; break;
1086 case lltok::kw_cc: {
1087 unsigned ArbitraryCC;
1088 Lex.Lex();
1089 if (ParseUInt32(ArbitraryCC))
1090 return true;
1091 CC = static_cast<CallingConv::ID>(ArbitraryCC);
1092 return false;
1093 }
1094 }
1095
1096 Lex.Lex();
1097 return false;
1098 }
1099
1100 /// ParseInstructionMetadata
1101 /// ::= !dbg !42 (',' !dbg !57)*
ParseInstructionMetadata(Instruction * Inst,PerFunctionState * PFS)1102 bool LLParser::ParseInstructionMetadata(Instruction *Inst,
1103 PerFunctionState *PFS) {
1104 do {
1105 if (Lex.getKind() != lltok::MetadataVar)
1106 return TokError("expected metadata after comma");
1107
1108 std::string Name = Lex.getStrVal();
1109 unsigned MDK = M->getMDKindID(Name);
1110 Lex.Lex();
1111
1112 MDNode *Node;
1113 SMLoc Loc = Lex.getLoc();
1114
1115 if (ParseToken(lltok::exclaim, "expected '!' here"))
1116 return true;
1117
1118 // This code is similar to that of ParseMetadataValue, however it needs to
1119 // have special-case code for a forward reference; see the comments on
1120 // ForwardRefInstMetadata for details. Also, MDStrings are not supported
1121 // at the top level here.
1122 if (Lex.getKind() == lltok::lbrace) {
1123 ValID ID;
1124 if (ParseMetadataListValue(ID, PFS))
1125 return true;
1126 assert(ID.Kind == ValID::t_MDNode);
1127 Inst->setMetadata(MDK, ID.MDNodeVal);
1128 } else {
1129 unsigned NodeID = 0;
1130 if (ParseMDNodeID(Node, NodeID))
1131 return true;
1132 if (Node) {
1133 // If we got the node, add it to the instruction.
1134 Inst->setMetadata(MDK, Node);
1135 } else {
1136 MDRef R = { Loc, MDK, NodeID };
1137 // Otherwise, remember that this should be resolved later.
1138 ForwardRefInstMetadata[Inst].push_back(R);
1139 }
1140 }
1141
1142 // If this is the end of the list, we're done.
1143 } while (EatIfPresent(lltok::comma));
1144 return false;
1145 }
1146
1147 /// ParseOptionalAlignment
1148 /// ::= /* empty */
1149 /// ::= 'align' 4
ParseOptionalAlignment(unsigned & Alignment)1150 bool LLParser::ParseOptionalAlignment(unsigned &Alignment) {
1151 Alignment = 0;
1152 if (!EatIfPresent(lltok::kw_align))
1153 return false;
1154 LocTy AlignLoc = Lex.getLoc();
1155 if (ParseUInt32(Alignment)) return true;
1156 if (!isPowerOf2_32(Alignment))
1157 return Error(AlignLoc, "alignment is not a power of two");
1158 if (Alignment > Value::MaximumAlignment)
1159 return Error(AlignLoc, "huge alignments are not supported yet");
1160 return false;
1161 }
1162
1163 /// ParseOptionalCommaAlign
1164 /// ::=
1165 /// ::= ',' align 4
1166 ///
1167 /// This returns with AteExtraComma set to true if it ate an excess comma at the
1168 /// end.
ParseOptionalCommaAlign(unsigned & Alignment,bool & AteExtraComma)1169 bool LLParser::ParseOptionalCommaAlign(unsigned &Alignment,
1170 bool &AteExtraComma) {
1171 AteExtraComma = false;
1172 while (EatIfPresent(lltok::comma)) {
1173 // Metadata at the end is an early exit.
1174 if (Lex.getKind() == lltok::MetadataVar) {
1175 AteExtraComma = true;
1176 return false;
1177 }
1178
1179 if (Lex.getKind() != lltok::kw_align)
1180 return Error(Lex.getLoc(), "expected metadata or 'align'");
1181
1182 if (ParseOptionalAlignment(Alignment)) return true;
1183 }
1184
1185 return false;
1186 }
1187
1188 /// ParseScopeAndOrdering
1189 /// if isAtomic: ::= 'singlethread'? AtomicOrdering
1190 /// else: ::=
1191 ///
1192 /// This sets Scope and Ordering to the parsed values.
ParseScopeAndOrdering(bool isAtomic,SynchronizationScope & Scope,AtomicOrdering & Ordering)1193 bool LLParser::ParseScopeAndOrdering(bool isAtomic, SynchronizationScope &Scope,
1194 AtomicOrdering &Ordering) {
1195 if (!isAtomic)
1196 return false;
1197
1198 Scope = CrossThread;
1199 if (EatIfPresent(lltok::kw_singlethread))
1200 Scope = SingleThread;
1201 switch (Lex.getKind()) {
1202 default: return TokError("Expected ordering on atomic instruction");
1203 case lltok::kw_unordered: Ordering = Unordered; break;
1204 case lltok::kw_monotonic: Ordering = Monotonic; break;
1205 case lltok::kw_acquire: Ordering = Acquire; break;
1206 case lltok::kw_release: Ordering = Release; break;
1207 case lltok::kw_acq_rel: Ordering = AcquireRelease; break;
1208 case lltok::kw_seq_cst: Ordering = SequentiallyConsistent; break;
1209 }
1210 Lex.Lex();
1211 return false;
1212 }
1213
1214 /// ParseOptionalStackAlignment
1215 /// ::= /* empty */
1216 /// ::= 'alignstack' '(' 4 ')'
ParseOptionalStackAlignment(unsigned & Alignment)1217 bool LLParser::ParseOptionalStackAlignment(unsigned &Alignment) {
1218 Alignment = 0;
1219 if (!EatIfPresent(lltok::kw_alignstack))
1220 return false;
1221 LocTy ParenLoc = Lex.getLoc();
1222 if (!EatIfPresent(lltok::lparen))
1223 return Error(ParenLoc, "expected '('");
1224 LocTy AlignLoc = Lex.getLoc();
1225 if (ParseUInt32(Alignment)) return true;
1226 ParenLoc = Lex.getLoc();
1227 if (!EatIfPresent(lltok::rparen))
1228 return Error(ParenLoc, "expected ')'");
1229 if (!isPowerOf2_32(Alignment))
1230 return Error(AlignLoc, "stack alignment is not a power of two");
1231 return false;
1232 }
1233
1234 /// ParseIndexList - This parses the index list for an insert/extractvalue
1235 /// instruction. This sets AteExtraComma in the case where we eat an extra
1236 /// comma at the end of the line and find that it is followed by metadata.
1237 /// Clients that don't allow metadata can call the version of this function that
1238 /// only takes one argument.
1239 ///
1240 /// ParseIndexList
1241 /// ::= (',' uint32)+
1242 ///
ParseIndexList(SmallVectorImpl<unsigned> & Indices,bool & AteExtraComma)1243 bool LLParser::ParseIndexList(SmallVectorImpl<unsigned> &Indices,
1244 bool &AteExtraComma) {
1245 AteExtraComma = false;
1246
1247 if (Lex.getKind() != lltok::comma)
1248 return TokError("expected ',' as start of index list");
1249
1250 while (EatIfPresent(lltok::comma)) {
1251 if (Lex.getKind() == lltok::MetadataVar) {
1252 AteExtraComma = true;
1253 return false;
1254 }
1255 unsigned Idx = 0;
1256 if (ParseUInt32(Idx)) return true;
1257 Indices.push_back(Idx);
1258 }
1259
1260 return false;
1261 }
1262
1263 //===----------------------------------------------------------------------===//
1264 // Type Parsing.
1265 //===----------------------------------------------------------------------===//
1266
1267 /// ParseType - Parse a type.
ParseType(Type * & Result,bool AllowVoid)1268 bool LLParser::ParseType(Type *&Result, bool AllowVoid) {
1269 SMLoc TypeLoc = Lex.getLoc();
1270 switch (Lex.getKind()) {
1271 default:
1272 return TokError("expected type");
1273 case lltok::Type:
1274 // Type ::= 'float' | 'void' (etc)
1275 Result = Lex.getTyVal();
1276 Lex.Lex();
1277 break;
1278 case lltok::lbrace:
1279 // Type ::= StructType
1280 if (ParseAnonStructType(Result, false))
1281 return true;
1282 break;
1283 case lltok::lsquare:
1284 // Type ::= '[' ... ']'
1285 Lex.Lex(); // eat the lsquare.
1286 if (ParseArrayVectorType(Result, false))
1287 return true;
1288 break;
1289 case lltok::less: // Either vector or packed struct.
1290 // Type ::= '<' ... '>'
1291 Lex.Lex();
1292 if (Lex.getKind() == lltok::lbrace) {
1293 if (ParseAnonStructType(Result, true) ||
1294 ParseToken(lltok::greater, "expected '>' at end of packed struct"))
1295 return true;
1296 } else if (ParseArrayVectorType(Result, true))
1297 return true;
1298 break;
1299 case lltok::LocalVar: {
1300 // Type ::= %foo
1301 std::pair<Type*, LocTy> &Entry = NamedTypes[Lex.getStrVal()];
1302
1303 // If the type hasn't been defined yet, create a forward definition and
1304 // remember where that forward def'n was seen (in case it never is defined).
1305 if (Entry.first == 0) {
1306 Entry.first = StructType::create(Context, Lex.getStrVal());
1307 Entry.second = Lex.getLoc();
1308 }
1309 Result = Entry.first;
1310 Lex.Lex();
1311 break;
1312 }
1313
1314 case lltok::LocalVarID: {
1315 // Type ::= %4
1316 if (Lex.getUIntVal() >= NumberedTypes.size())
1317 NumberedTypes.resize(Lex.getUIntVal()+1);
1318 std::pair<Type*, LocTy> &Entry = NumberedTypes[Lex.getUIntVal()];
1319
1320 // If the type hasn't been defined yet, create a forward definition and
1321 // remember where that forward def'n was seen (in case it never is defined).
1322 if (Entry.first == 0) {
1323 Entry.first = StructType::create(Context);
1324 Entry.second = Lex.getLoc();
1325 }
1326 Result = Entry.first;
1327 Lex.Lex();
1328 break;
1329 }
1330 }
1331
1332 // Parse the type suffixes.
1333 while (1) {
1334 switch (Lex.getKind()) {
1335 // End of type.
1336 default:
1337 if (!AllowVoid && Result->isVoidTy())
1338 return Error(TypeLoc, "void type only allowed for function results");
1339 return false;
1340
1341 // Type ::= Type '*'
1342 case lltok::star:
1343 if (Result->isLabelTy())
1344 return TokError("basic block pointers are invalid");
1345 if (Result->isVoidTy())
1346 return TokError("pointers to void are invalid - use i8* instead");
1347 if (!PointerType::isValidElementType(Result))
1348 return TokError("pointer to this type is invalid");
1349 Result = PointerType::getUnqual(Result);
1350 Lex.Lex();
1351 break;
1352
1353 // Type ::= Type 'addrspace' '(' uint32 ')' '*'
1354 case lltok::kw_addrspace: {
1355 if (Result->isLabelTy())
1356 return TokError("basic block pointers are invalid");
1357 if (Result->isVoidTy())
1358 return TokError("pointers to void are invalid; use i8* instead");
1359 if (!PointerType::isValidElementType(Result))
1360 return TokError("pointer to this type is invalid");
1361 unsigned AddrSpace;
1362 if (ParseOptionalAddrSpace(AddrSpace) ||
1363 ParseToken(lltok::star, "expected '*' in address space"))
1364 return true;
1365
1366 Result = PointerType::get(Result, AddrSpace);
1367 break;
1368 }
1369
1370 /// Types '(' ArgTypeListI ')' OptFuncAttrs
1371 case lltok::lparen:
1372 if (ParseFunctionType(Result))
1373 return true;
1374 break;
1375 }
1376 }
1377 }
1378
1379 /// ParseParameterList
1380 /// ::= '(' ')'
1381 /// ::= '(' Arg (',' Arg)* ')'
1382 /// Arg
1383 /// ::= Type OptionalAttributes Value OptionalAttributes
ParseParameterList(SmallVectorImpl<ParamInfo> & ArgList,PerFunctionState & PFS)1384 bool LLParser::ParseParameterList(SmallVectorImpl<ParamInfo> &ArgList,
1385 PerFunctionState &PFS) {
1386 if (ParseToken(lltok::lparen, "expected '(' in call"))
1387 return true;
1388
1389 while (Lex.getKind() != lltok::rparen) {
1390 // If this isn't the first argument, we need a comma.
1391 if (!ArgList.empty() &&
1392 ParseToken(lltok::comma, "expected ',' in argument list"))
1393 return true;
1394
1395 // Parse the argument.
1396 LocTy ArgLoc;
1397 Type *ArgTy = 0;
1398 Attributes ArgAttrs1;
1399 Attributes ArgAttrs2;
1400 Value *V;
1401 if (ParseType(ArgTy, ArgLoc))
1402 return true;
1403
1404 // Otherwise, handle normal operands.
1405 if (ParseOptionalAttrs(ArgAttrs1, 0) || ParseValue(ArgTy, V, PFS))
1406 return true;
1407 ArgList.push_back(ParamInfo(ArgLoc, V, ArgAttrs1|ArgAttrs2));
1408 }
1409
1410 Lex.Lex(); // Lex the ')'.
1411 return false;
1412 }
1413
1414
1415
1416 /// ParseArgumentList - Parse the argument list for a function type or function
1417 /// prototype.
1418 /// ::= '(' ArgTypeListI ')'
1419 /// ArgTypeListI
1420 /// ::= /*empty*/
1421 /// ::= '...'
1422 /// ::= ArgTypeList ',' '...'
1423 /// ::= ArgType (',' ArgType)*
1424 ///
ParseArgumentList(SmallVectorImpl<ArgInfo> & ArgList,bool & isVarArg)1425 bool LLParser::ParseArgumentList(SmallVectorImpl<ArgInfo> &ArgList,
1426 bool &isVarArg){
1427 isVarArg = false;
1428 assert(Lex.getKind() == lltok::lparen);
1429 Lex.Lex(); // eat the (.
1430
1431 if (Lex.getKind() == lltok::rparen) {
1432 // empty
1433 } else if (Lex.getKind() == lltok::dotdotdot) {
1434 isVarArg = true;
1435 Lex.Lex();
1436 } else {
1437 LocTy TypeLoc = Lex.getLoc();
1438 Type *ArgTy = 0;
1439 Attributes Attrs;
1440 std::string Name;
1441
1442 if (ParseType(ArgTy) ||
1443 ParseOptionalAttrs(Attrs, 0)) return true;
1444
1445 if (ArgTy->isVoidTy())
1446 return Error(TypeLoc, "argument can not have void type");
1447
1448 if (Lex.getKind() == lltok::LocalVar) {
1449 Name = Lex.getStrVal();
1450 Lex.Lex();
1451 }
1452
1453 if (!FunctionType::isValidArgumentType(ArgTy))
1454 return Error(TypeLoc, "invalid type for function argument");
1455
1456 ArgList.push_back(ArgInfo(TypeLoc, ArgTy, Attrs, Name));
1457
1458 while (EatIfPresent(lltok::comma)) {
1459 // Handle ... at end of arg list.
1460 if (EatIfPresent(lltok::dotdotdot)) {
1461 isVarArg = true;
1462 break;
1463 }
1464
1465 // Otherwise must be an argument type.
1466 TypeLoc = Lex.getLoc();
1467 if (ParseType(ArgTy) || ParseOptionalAttrs(Attrs, 0)) return true;
1468
1469 if (ArgTy->isVoidTy())
1470 return Error(TypeLoc, "argument can not have void type");
1471
1472 if (Lex.getKind() == lltok::LocalVar) {
1473 Name = Lex.getStrVal();
1474 Lex.Lex();
1475 } else {
1476 Name = "";
1477 }
1478
1479 if (!ArgTy->isFirstClassType())
1480 return Error(TypeLoc, "invalid type for function argument");
1481
1482 ArgList.push_back(ArgInfo(TypeLoc, ArgTy, Attrs, Name));
1483 }
1484 }
1485
1486 return ParseToken(lltok::rparen, "expected ')' at end of argument list");
1487 }
1488
1489 /// ParseFunctionType
1490 /// ::= Type ArgumentList OptionalAttrs
ParseFunctionType(Type * & Result)1491 bool LLParser::ParseFunctionType(Type *&Result) {
1492 assert(Lex.getKind() == lltok::lparen);
1493
1494 if (!FunctionType::isValidReturnType(Result))
1495 return TokError("invalid function return type");
1496
1497 SmallVector<ArgInfo, 8> ArgList;
1498 bool isVarArg;
1499 if (ParseArgumentList(ArgList, isVarArg))
1500 return true;
1501
1502 // Reject names on the arguments lists.
1503 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
1504 if (!ArgList[i].Name.empty())
1505 return Error(ArgList[i].Loc, "argument name invalid in function type");
1506 if (ArgList[i].Attrs)
1507 return Error(ArgList[i].Loc,
1508 "argument attributes invalid in function type");
1509 }
1510
1511 SmallVector<Type*, 16> ArgListTy;
1512 for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
1513 ArgListTy.push_back(ArgList[i].Ty);
1514
1515 Result = FunctionType::get(Result, ArgListTy, isVarArg);
1516 return false;
1517 }
1518
1519 /// ParseAnonStructType - Parse an anonymous struct type, which is inlined into
1520 /// other structs.
ParseAnonStructType(Type * & Result,bool Packed)1521 bool LLParser::ParseAnonStructType(Type *&Result, bool Packed) {
1522 SmallVector<Type*, 8> Elts;
1523 if (ParseStructBody(Elts)) return true;
1524
1525 Result = StructType::get(Context, Elts, Packed);
1526 return false;
1527 }
1528
1529 /// ParseStructDefinition - Parse a struct in a 'type' definition.
ParseStructDefinition(SMLoc TypeLoc,StringRef Name,std::pair<Type *,LocTy> & Entry,Type * & ResultTy)1530 bool LLParser::ParseStructDefinition(SMLoc TypeLoc, StringRef Name,
1531 std::pair<Type*, LocTy> &Entry,
1532 Type *&ResultTy) {
1533 // If the type was already defined, diagnose the redefinition.
1534 if (Entry.first && !Entry.second.isValid())
1535 return Error(TypeLoc, "redefinition of type");
1536
1537 // If we have opaque, just return without filling in the definition for the
1538 // struct. This counts as a definition as far as the .ll file goes.
1539 if (EatIfPresent(lltok::kw_opaque)) {
1540 // This type is being defined, so clear the location to indicate this.
1541 Entry.second = SMLoc();
1542
1543 // If this type number has never been uttered, create it.
1544 if (Entry.first == 0)
1545 Entry.first = StructType::create(Context, Name);
1546 ResultTy = Entry.first;
1547 return false;
1548 }
1549
1550 // If the type starts with '<', then it is either a packed struct or a vector.
1551 bool isPacked = EatIfPresent(lltok::less);
1552
1553 // If we don't have a struct, then we have a random type alias, which we
1554 // accept for compatibility with old files. These types are not allowed to be
1555 // forward referenced and not allowed to be recursive.
1556 if (Lex.getKind() != lltok::lbrace) {
1557 if (Entry.first)
1558 return Error(TypeLoc, "forward references to non-struct type");
1559
1560 ResultTy = 0;
1561 if (isPacked)
1562 return ParseArrayVectorType(ResultTy, true);
1563 return ParseType(ResultTy);
1564 }
1565
1566 // This type is being defined, so clear the location to indicate this.
1567 Entry.second = SMLoc();
1568
1569 // If this type number has never been uttered, create it.
1570 if (Entry.first == 0)
1571 Entry.first = StructType::create(Context, Name);
1572
1573 StructType *STy = cast<StructType>(Entry.first);
1574
1575 SmallVector<Type*, 8> Body;
1576 if (ParseStructBody(Body) ||
1577 (isPacked && ParseToken(lltok::greater, "expected '>' in packed struct")))
1578 return true;
1579
1580 STy->setBody(Body, isPacked);
1581 ResultTy = STy;
1582 return false;
1583 }
1584
1585
1586 /// ParseStructType: Handles packed and unpacked types. </> parsed elsewhere.
1587 /// StructType
1588 /// ::= '{' '}'
1589 /// ::= '{' Type (',' Type)* '}'
1590 /// ::= '<' '{' '}' '>'
1591 /// ::= '<' '{' Type (',' Type)* '}' '>'
ParseStructBody(SmallVectorImpl<Type * > & Body)1592 bool LLParser::ParseStructBody(SmallVectorImpl<Type*> &Body) {
1593 assert(Lex.getKind() == lltok::lbrace);
1594 Lex.Lex(); // Consume the '{'
1595
1596 // Handle the empty struct.
1597 if (EatIfPresent(lltok::rbrace))
1598 return false;
1599
1600 LocTy EltTyLoc = Lex.getLoc();
1601 Type *Ty = 0;
1602 if (ParseType(Ty)) return true;
1603 Body.push_back(Ty);
1604
1605 if (!StructType::isValidElementType(Ty))
1606 return Error(EltTyLoc, "invalid element type for struct");
1607
1608 while (EatIfPresent(lltok::comma)) {
1609 EltTyLoc = Lex.getLoc();
1610 if (ParseType(Ty)) return true;
1611
1612 if (!StructType::isValidElementType(Ty))
1613 return Error(EltTyLoc, "invalid element type for struct");
1614
1615 Body.push_back(Ty);
1616 }
1617
1618 return ParseToken(lltok::rbrace, "expected '}' at end of struct");
1619 }
1620
1621 /// ParseArrayVectorType - Parse an array or vector type, assuming the first
1622 /// token has already been consumed.
1623 /// Type
1624 /// ::= '[' APSINTVAL 'x' Types ']'
1625 /// ::= '<' APSINTVAL 'x' Types '>'
ParseArrayVectorType(Type * & Result,bool isVector)1626 bool LLParser::ParseArrayVectorType(Type *&Result, bool isVector) {
1627 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned() ||
1628 Lex.getAPSIntVal().getBitWidth() > 64)
1629 return TokError("expected number in address space");
1630
1631 LocTy SizeLoc = Lex.getLoc();
1632 uint64_t Size = Lex.getAPSIntVal().getZExtValue();
1633 Lex.Lex();
1634
1635 if (ParseToken(lltok::kw_x, "expected 'x' after element count"))
1636 return true;
1637
1638 LocTy TypeLoc = Lex.getLoc();
1639 Type *EltTy = 0;
1640 if (ParseType(EltTy)) return true;
1641
1642 if (ParseToken(isVector ? lltok::greater : lltok::rsquare,
1643 "expected end of sequential type"))
1644 return true;
1645
1646 if (isVector) {
1647 if (Size == 0)
1648 return Error(SizeLoc, "zero element vector is illegal");
1649 if ((unsigned)Size != Size)
1650 return Error(SizeLoc, "size too large for vector");
1651 if (!VectorType::isValidElementType(EltTy))
1652 return Error(TypeLoc,
1653 "vector element type must be fp, integer or a pointer to these types");
1654 Result = VectorType::get(EltTy, unsigned(Size));
1655 } else {
1656 if (!ArrayType::isValidElementType(EltTy))
1657 return Error(TypeLoc, "invalid array element type");
1658 Result = ArrayType::get(EltTy, Size);
1659 }
1660 return false;
1661 }
1662
1663 //===----------------------------------------------------------------------===//
1664 // Function Semantic Analysis.
1665 //===----------------------------------------------------------------------===//
1666
PerFunctionState(LLParser & p,Function & f,int functionNumber)1667 LLParser::PerFunctionState::PerFunctionState(LLParser &p, Function &f,
1668 int functionNumber)
1669 : P(p), F(f), FunctionNumber(functionNumber) {
1670
1671 // Insert unnamed arguments into the NumberedVals list.
1672 for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end();
1673 AI != E; ++AI)
1674 if (!AI->hasName())
1675 NumberedVals.push_back(AI);
1676 }
1677
~PerFunctionState()1678 LLParser::PerFunctionState::~PerFunctionState() {
1679 // If there were any forward referenced non-basicblock values, delete them.
1680 for (std::map<std::string, std::pair<Value*, LocTy> >::iterator
1681 I = ForwardRefVals.begin(), E = ForwardRefVals.end(); I != E; ++I)
1682 if (!isa<BasicBlock>(I->second.first)) {
1683 I->second.first->replaceAllUsesWith(
1684 UndefValue::get(I->second.first->getType()));
1685 delete I->second.first;
1686 I->second.first = 0;
1687 }
1688
1689 for (std::map<unsigned, std::pair<Value*, LocTy> >::iterator
1690 I = ForwardRefValIDs.begin(), E = ForwardRefValIDs.end(); I != E; ++I)
1691 if (!isa<BasicBlock>(I->second.first)) {
1692 I->second.first->replaceAllUsesWith(
1693 UndefValue::get(I->second.first->getType()));
1694 delete I->second.first;
1695 I->second.first = 0;
1696 }
1697 }
1698
FinishFunction()1699 bool LLParser::PerFunctionState::FinishFunction() {
1700 // Check to see if someone took the address of labels in this block.
1701 if (!P.ForwardRefBlockAddresses.empty()) {
1702 ValID FunctionID;
1703 if (!F.getName().empty()) {
1704 FunctionID.Kind = ValID::t_GlobalName;
1705 FunctionID.StrVal = F.getName();
1706 } else {
1707 FunctionID.Kind = ValID::t_GlobalID;
1708 FunctionID.UIntVal = FunctionNumber;
1709 }
1710
1711 std::map<ValID, std::vector<std::pair<ValID, GlobalValue*> > >::iterator
1712 FRBAI = P.ForwardRefBlockAddresses.find(FunctionID);
1713 if (FRBAI != P.ForwardRefBlockAddresses.end()) {
1714 // Resolve all these references.
1715 if (P.ResolveForwardRefBlockAddresses(&F, FRBAI->second, this))
1716 return true;
1717
1718 P.ForwardRefBlockAddresses.erase(FRBAI);
1719 }
1720 }
1721
1722 if (!ForwardRefVals.empty())
1723 return P.Error(ForwardRefVals.begin()->second.second,
1724 "use of undefined value '%" + ForwardRefVals.begin()->first +
1725 "'");
1726 if (!ForwardRefValIDs.empty())
1727 return P.Error(ForwardRefValIDs.begin()->second.second,
1728 "use of undefined value '%" +
1729 Twine(ForwardRefValIDs.begin()->first) + "'");
1730 return false;
1731 }
1732
1733
1734 /// GetVal - Get a value with the specified name or ID, creating a
1735 /// forward reference record if needed. This can return null if the value
1736 /// exists but does not have the right type.
GetVal(const std::string & Name,Type * Ty,LocTy Loc)1737 Value *LLParser::PerFunctionState::GetVal(const std::string &Name,
1738 Type *Ty, LocTy Loc) {
1739 // Look this name up in the normal function symbol table.
1740 Value *Val = F.getValueSymbolTable().lookup(Name);
1741
1742 // If this is a forward reference for the value, see if we already created a
1743 // forward ref record.
1744 if (Val == 0) {
1745 std::map<std::string, std::pair<Value*, LocTy> >::iterator
1746 I = ForwardRefVals.find(Name);
1747 if (I != ForwardRefVals.end())
1748 Val = I->second.first;
1749 }
1750
1751 // If we have the value in the symbol table or fwd-ref table, return it.
1752 if (Val) {
1753 if (Val->getType() == Ty) return Val;
1754 if (Ty->isLabelTy())
1755 P.Error(Loc, "'%" + Name + "' is not a basic block");
1756 else
1757 P.Error(Loc, "'%" + Name + "' defined with type '" +
1758 getTypeString(Val->getType()) + "'");
1759 return 0;
1760 }
1761
1762 // Don't make placeholders with invalid type.
1763 if (!Ty->isFirstClassType() && !Ty->isLabelTy()) {
1764 P.Error(Loc, "invalid use of a non-first-class type");
1765 return 0;
1766 }
1767
1768 // Otherwise, create a new forward reference for this value and remember it.
1769 Value *FwdVal;
1770 if (Ty->isLabelTy())
1771 FwdVal = BasicBlock::Create(F.getContext(), Name, &F);
1772 else
1773 FwdVal = new Argument(Ty, Name);
1774
1775 ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
1776 return FwdVal;
1777 }
1778
GetVal(unsigned ID,Type * Ty,LocTy Loc)1779 Value *LLParser::PerFunctionState::GetVal(unsigned ID, Type *Ty,
1780 LocTy Loc) {
1781 // Look this name up in the normal function symbol table.
1782 Value *Val = ID < NumberedVals.size() ? NumberedVals[ID] : 0;
1783
1784 // If this is a forward reference for the value, see if we already created a
1785 // forward ref record.
1786 if (Val == 0) {
1787 std::map<unsigned, std::pair<Value*, LocTy> >::iterator
1788 I = ForwardRefValIDs.find(ID);
1789 if (I != ForwardRefValIDs.end())
1790 Val = I->second.first;
1791 }
1792
1793 // If we have the value in the symbol table or fwd-ref table, return it.
1794 if (Val) {
1795 if (Val->getType() == Ty) return Val;
1796 if (Ty->isLabelTy())
1797 P.Error(Loc, "'%" + Twine(ID) + "' is not a basic block");
1798 else
1799 P.Error(Loc, "'%" + Twine(ID) + "' defined with type '" +
1800 getTypeString(Val->getType()) + "'");
1801 return 0;
1802 }
1803
1804 if (!Ty->isFirstClassType() && !Ty->isLabelTy()) {
1805 P.Error(Loc, "invalid use of a non-first-class type");
1806 return 0;
1807 }
1808
1809 // Otherwise, create a new forward reference for this value and remember it.
1810 Value *FwdVal;
1811 if (Ty->isLabelTy())
1812 FwdVal = BasicBlock::Create(F.getContext(), "", &F);
1813 else
1814 FwdVal = new Argument(Ty);
1815
1816 ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
1817 return FwdVal;
1818 }
1819
1820 /// SetInstName - After an instruction is parsed and inserted into its
1821 /// basic block, this installs its name.
SetInstName(int NameID,const std::string & NameStr,LocTy NameLoc,Instruction * Inst)1822 bool LLParser::PerFunctionState::SetInstName(int NameID,
1823 const std::string &NameStr,
1824 LocTy NameLoc, Instruction *Inst) {
1825 // If this instruction has void type, it cannot have a name or ID specified.
1826 if (Inst->getType()->isVoidTy()) {
1827 if (NameID != -1 || !NameStr.empty())
1828 return P.Error(NameLoc, "instructions returning void cannot have a name");
1829 return false;
1830 }
1831
1832 // If this was a numbered instruction, verify that the instruction is the
1833 // expected value and resolve any forward references.
1834 if (NameStr.empty()) {
1835 // If neither a name nor an ID was specified, just use the next ID.
1836 if (NameID == -1)
1837 NameID = NumberedVals.size();
1838
1839 if (unsigned(NameID) != NumberedVals.size())
1840 return P.Error(NameLoc, "instruction expected to be numbered '%" +
1841 Twine(NumberedVals.size()) + "'");
1842
1843 std::map<unsigned, std::pair<Value*, LocTy> >::iterator FI =
1844 ForwardRefValIDs.find(NameID);
1845 if (FI != ForwardRefValIDs.end()) {
1846 if (FI->second.first->getType() != Inst->getType())
1847 return P.Error(NameLoc, "instruction forward referenced with type '" +
1848 getTypeString(FI->second.first->getType()) + "'");
1849 FI->second.first->replaceAllUsesWith(Inst);
1850 delete FI->second.first;
1851 ForwardRefValIDs.erase(FI);
1852 }
1853
1854 NumberedVals.push_back(Inst);
1855 return false;
1856 }
1857
1858 // Otherwise, the instruction had a name. Resolve forward refs and set it.
1859 std::map<std::string, std::pair<Value*, LocTy> >::iterator
1860 FI = ForwardRefVals.find(NameStr);
1861 if (FI != ForwardRefVals.end()) {
1862 if (FI->second.first->getType() != Inst->getType())
1863 return P.Error(NameLoc, "instruction forward referenced with type '" +
1864 getTypeString(FI->second.first->getType()) + "'");
1865 FI->second.first->replaceAllUsesWith(Inst);
1866 delete FI->second.first;
1867 ForwardRefVals.erase(FI);
1868 }
1869
1870 // Set the name on the instruction.
1871 Inst->setName(NameStr);
1872
1873 if (Inst->getName() != NameStr)
1874 return P.Error(NameLoc, "multiple definition of local value named '" +
1875 NameStr + "'");
1876 return false;
1877 }
1878
1879 /// GetBB - Get a basic block with the specified name or ID, creating a
1880 /// forward reference record if needed.
GetBB(const std::string & Name,LocTy Loc)1881 BasicBlock *LLParser::PerFunctionState::GetBB(const std::string &Name,
1882 LocTy Loc) {
1883 return cast_or_null<BasicBlock>(GetVal(Name,
1884 Type::getLabelTy(F.getContext()), Loc));
1885 }
1886
GetBB(unsigned ID,LocTy Loc)1887 BasicBlock *LLParser::PerFunctionState::GetBB(unsigned ID, LocTy Loc) {
1888 return cast_or_null<BasicBlock>(GetVal(ID,
1889 Type::getLabelTy(F.getContext()), Loc));
1890 }
1891
1892 /// DefineBB - Define the specified basic block, which is either named or
1893 /// unnamed. If there is an error, this returns null otherwise it returns
1894 /// the block being defined.
DefineBB(const std::string & Name,LocTy Loc)1895 BasicBlock *LLParser::PerFunctionState::DefineBB(const std::string &Name,
1896 LocTy Loc) {
1897 BasicBlock *BB;
1898 if (Name.empty())
1899 BB = GetBB(NumberedVals.size(), Loc);
1900 else
1901 BB = GetBB(Name, Loc);
1902 if (BB == 0) return 0; // Already diagnosed error.
1903
1904 // Move the block to the end of the function. Forward ref'd blocks are
1905 // inserted wherever they happen to be referenced.
1906 F.getBasicBlockList().splice(F.end(), F.getBasicBlockList(), BB);
1907
1908 // Remove the block from forward ref sets.
1909 if (Name.empty()) {
1910 ForwardRefValIDs.erase(NumberedVals.size());
1911 NumberedVals.push_back(BB);
1912 } else {
1913 // BB forward references are already in the function symbol table.
1914 ForwardRefVals.erase(Name);
1915 }
1916
1917 return BB;
1918 }
1919
1920 //===----------------------------------------------------------------------===//
1921 // Constants.
1922 //===----------------------------------------------------------------------===//
1923
1924 /// ParseValID - Parse an abstract value that doesn't necessarily have a
1925 /// type implied. For example, if we parse "4" we don't know what integer type
1926 /// it has. The value will later be combined with its type and checked for
1927 /// sanity. PFS is used to convert function-local operands of metadata (since
1928 /// metadata operands are not just parsed here but also converted to values).
1929 /// PFS can be null when we are not parsing metadata values inside a function.
ParseValID(ValID & ID,PerFunctionState * PFS)1930 bool LLParser::ParseValID(ValID &ID, PerFunctionState *PFS) {
1931 ID.Loc = Lex.getLoc();
1932 switch (Lex.getKind()) {
1933 default: return TokError("expected value token");
1934 case lltok::GlobalID: // @42
1935 ID.UIntVal = Lex.getUIntVal();
1936 ID.Kind = ValID::t_GlobalID;
1937 break;
1938 case lltok::GlobalVar: // @foo
1939 ID.StrVal = Lex.getStrVal();
1940 ID.Kind = ValID::t_GlobalName;
1941 break;
1942 case lltok::LocalVarID: // %42
1943 ID.UIntVal = Lex.getUIntVal();
1944 ID.Kind = ValID::t_LocalID;
1945 break;
1946 case lltok::LocalVar: // %foo
1947 ID.StrVal = Lex.getStrVal();
1948 ID.Kind = ValID::t_LocalName;
1949 break;
1950 case lltok::exclaim: // !42, !{...}, or !"foo"
1951 return ParseMetadataValue(ID, PFS);
1952 case lltok::APSInt:
1953 ID.APSIntVal = Lex.getAPSIntVal();
1954 ID.Kind = ValID::t_APSInt;
1955 break;
1956 case lltok::APFloat:
1957 ID.APFloatVal = Lex.getAPFloatVal();
1958 ID.Kind = ValID::t_APFloat;
1959 break;
1960 case lltok::kw_true:
1961 ID.ConstantVal = ConstantInt::getTrue(Context);
1962 ID.Kind = ValID::t_Constant;
1963 break;
1964 case lltok::kw_false:
1965 ID.ConstantVal = ConstantInt::getFalse(Context);
1966 ID.Kind = ValID::t_Constant;
1967 break;
1968 case lltok::kw_null: ID.Kind = ValID::t_Null; break;
1969 case lltok::kw_undef: ID.Kind = ValID::t_Undef; break;
1970 case lltok::kw_zeroinitializer: ID.Kind = ValID::t_Zero; break;
1971
1972 case lltok::lbrace: {
1973 // ValID ::= '{' ConstVector '}'
1974 Lex.Lex();
1975 SmallVector<Constant*, 16> Elts;
1976 if (ParseGlobalValueVector(Elts) ||
1977 ParseToken(lltok::rbrace, "expected end of struct constant"))
1978 return true;
1979
1980 ID.ConstantStructElts = new Constant*[Elts.size()];
1981 ID.UIntVal = Elts.size();
1982 memcpy(ID.ConstantStructElts, Elts.data(), Elts.size()*sizeof(Elts[0]));
1983 ID.Kind = ValID::t_ConstantStruct;
1984 return false;
1985 }
1986 case lltok::less: {
1987 // ValID ::= '<' ConstVector '>' --> Vector.
1988 // ValID ::= '<' '{' ConstVector '}' '>' --> Packed Struct.
1989 Lex.Lex();
1990 bool isPackedStruct = EatIfPresent(lltok::lbrace);
1991
1992 SmallVector<Constant*, 16> Elts;
1993 LocTy FirstEltLoc = Lex.getLoc();
1994 if (ParseGlobalValueVector(Elts) ||
1995 (isPackedStruct &&
1996 ParseToken(lltok::rbrace, "expected end of packed struct")) ||
1997 ParseToken(lltok::greater, "expected end of constant"))
1998 return true;
1999
2000 if (isPackedStruct) {
2001 ID.ConstantStructElts = new Constant*[Elts.size()];
2002 memcpy(ID.ConstantStructElts, Elts.data(), Elts.size()*sizeof(Elts[0]));
2003 ID.UIntVal = Elts.size();
2004 ID.Kind = ValID::t_PackedConstantStruct;
2005 return false;
2006 }
2007
2008 if (Elts.empty())
2009 return Error(ID.Loc, "constant vector must not be empty");
2010
2011 if (!Elts[0]->getType()->isIntegerTy() &&
2012 !Elts[0]->getType()->isFloatingPointTy() &&
2013 !Elts[0]->getType()->isPointerTy())
2014 return Error(FirstEltLoc,
2015 "vector elements must have integer, pointer or floating point type");
2016
2017 // Verify that all the vector elements have the same type.
2018 for (unsigned i = 1, e = Elts.size(); i != e; ++i)
2019 if (Elts[i]->getType() != Elts[0]->getType())
2020 return Error(FirstEltLoc,
2021 "vector element #" + Twine(i) +
2022 " is not of type '" + getTypeString(Elts[0]->getType()));
2023
2024 ID.ConstantVal = ConstantVector::get(Elts);
2025 ID.Kind = ValID::t_Constant;
2026 return false;
2027 }
2028 case lltok::lsquare: { // Array Constant
2029 Lex.Lex();
2030 SmallVector<Constant*, 16> Elts;
2031 LocTy FirstEltLoc = Lex.getLoc();
2032 if (ParseGlobalValueVector(Elts) ||
2033 ParseToken(lltok::rsquare, "expected end of array constant"))
2034 return true;
2035
2036 // Handle empty element.
2037 if (Elts.empty()) {
2038 // Use undef instead of an array because it's inconvenient to determine
2039 // the element type at this point, there being no elements to examine.
2040 ID.Kind = ValID::t_EmptyArray;
2041 return false;
2042 }
2043
2044 if (!Elts[0]->getType()->isFirstClassType())
2045 return Error(FirstEltLoc, "invalid array element type: " +
2046 getTypeString(Elts[0]->getType()));
2047
2048 ArrayType *ATy = ArrayType::get(Elts[0]->getType(), Elts.size());
2049
2050 // Verify all elements are correct type!
2051 for (unsigned i = 0, e = Elts.size(); i != e; ++i) {
2052 if (Elts[i]->getType() != Elts[0]->getType())
2053 return Error(FirstEltLoc,
2054 "array element #" + Twine(i) +
2055 " is not of type '" + getTypeString(Elts[0]->getType()));
2056 }
2057
2058 ID.ConstantVal = ConstantArray::get(ATy, Elts);
2059 ID.Kind = ValID::t_Constant;
2060 return false;
2061 }
2062 case lltok::kw_c: // c "foo"
2063 Lex.Lex();
2064 ID.ConstantVal = ConstantDataArray::getString(Context, Lex.getStrVal(),
2065 false);
2066 if (ParseToken(lltok::StringConstant, "expected string")) return true;
2067 ID.Kind = ValID::t_Constant;
2068 return false;
2069
2070 case lltok::kw_asm: {
2071 // ValID ::= 'asm' SideEffect? AlignStack? STRINGCONSTANT ',' STRINGCONSTANT
2072 bool HasSideEffect, AlignStack, AsmDialect;
2073 Lex.Lex();
2074 if (ParseOptionalToken(lltok::kw_sideeffect, HasSideEffect) ||
2075 ParseOptionalToken(lltok::kw_alignstack, AlignStack) ||
2076 ParseOptionalToken(lltok::kw_inteldialect, AsmDialect) ||
2077 ParseStringConstant(ID.StrVal) ||
2078 ParseToken(lltok::comma, "expected comma in inline asm expression") ||
2079 ParseToken(lltok::StringConstant, "expected constraint string"))
2080 return true;
2081 ID.StrVal2 = Lex.getStrVal();
2082 ID.UIntVal = unsigned(HasSideEffect) | (unsigned(AlignStack)<<1) |
2083 (unsigned(AsmDialect)<<2);
2084 ID.Kind = ValID::t_InlineAsm;
2085 return false;
2086 }
2087
2088 case lltok::kw_blockaddress: {
2089 // ValID ::= 'blockaddress' '(' @foo ',' %bar ')'
2090 Lex.Lex();
2091
2092 ValID Fn, Label;
2093 LocTy FnLoc, LabelLoc;
2094
2095 if (ParseToken(lltok::lparen, "expected '(' in block address expression") ||
2096 ParseValID(Fn) ||
2097 ParseToken(lltok::comma, "expected comma in block address expression")||
2098 ParseValID(Label) ||
2099 ParseToken(lltok::rparen, "expected ')' in block address expression"))
2100 return true;
2101
2102 if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName)
2103 return Error(Fn.Loc, "expected function name in blockaddress");
2104 if (Label.Kind != ValID::t_LocalID && Label.Kind != ValID::t_LocalName)
2105 return Error(Label.Loc, "expected basic block name in blockaddress");
2106
2107 // Make a global variable as a placeholder for this reference.
2108 GlobalVariable *FwdRef = new GlobalVariable(*M, Type::getInt8Ty(Context),
2109 false, GlobalValue::InternalLinkage,
2110 0, "");
2111 ForwardRefBlockAddresses[Fn].push_back(std::make_pair(Label, FwdRef));
2112 ID.ConstantVal = FwdRef;
2113 ID.Kind = ValID::t_Constant;
2114 return false;
2115 }
2116
2117 case lltok::kw_trunc:
2118 case lltok::kw_zext:
2119 case lltok::kw_sext:
2120 case lltok::kw_fptrunc:
2121 case lltok::kw_fpext:
2122 case lltok::kw_bitcast:
2123 case lltok::kw_uitofp:
2124 case lltok::kw_sitofp:
2125 case lltok::kw_fptoui:
2126 case lltok::kw_fptosi:
2127 case lltok::kw_inttoptr:
2128 case lltok::kw_ptrtoint: {
2129 unsigned Opc = Lex.getUIntVal();
2130 Type *DestTy = 0;
2131 Constant *SrcVal;
2132 Lex.Lex();
2133 if (ParseToken(lltok::lparen, "expected '(' after constantexpr cast") ||
2134 ParseGlobalTypeAndValue(SrcVal) ||
2135 ParseToken(lltok::kw_to, "expected 'to' in constantexpr cast") ||
2136 ParseType(DestTy) ||
2137 ParseToken(lltok::rparen, "expected ')' at end of constantexpr cast"))
2138 return true;
2139 if (!CastInst::castIsValid((Instruction::CastOps)Opc, SrcVal, DestTy))
2140 return Error(ID.Loc, "invalid cast opcode for cast from '" +
2141 getTypeString(SrcVal->getType()) + "' to '" +
2142 getTypeString(DestTy) + "'");
2143 ID.ConstantVal = ConstantExpr::getCast((Instruction::CastOps)Opc,
2144 SrcVal, DestTy);
2145 ID.Kind = ValID::t_Constant;
2146 return false;
2147 }
2148 case lltok::kw_extractvalue: {
2149 Lex.Lex();
2150 Constant *Val;
2151 SmallVector<unsigned, 4> Indices;
2152 if (ParseToken(lltok::lparen, "expected '(' in extractvalue constantexpr")||
2153 ParseGlobalTypeAndValue(Val) ||
2154 ParseIndexList(Indices) ||
2155 ParseToken(lltok::rparen, "expected ')' in extractvalue constantexpr"))
2156 return true;
2157
2158 if (!Val->getType()->isAggregateType())
2159 return Error(ID.Loc, "extractvalue operand must be aggregate type");
2160 if (!ExtractValueInst::getIndexedType(Val->getType(), Indices))
2161 return Error(ID.Loc, "invalid indices for extractvalue");
2162 ID.ConstantVal = ConstantExpr::getExtractValue(Val, Indices);
2163 ID.Kind = ValID::t_Constant;
2164 return false;
2165 }
2166 case lltok::kw_insertvalue: {
2167 Lex.Lex();
2168 Constant *Val0, *Val1;
2169 SmallVector<unsigned, 4> Indices;
2170 if (ParseToken(lltok::lparen, "expected '(' in insertvalue constantexpr")||
2171 ParseGlobalTypeAndValue(Val0) ||
2172 ParseToken(lltok::comma, "expected comma in insertvalue constantexpr")||
2173 ParseGlobalTypeAndValue(Val1) ||
2174 ParseIndexList(Indices) ||
2175 ParseToken(lltok::rparen, "expected ')' in insertvalue constantexpr"))
2176 return true;
2177 if (!Val0->getType()->isAggregateType())
2178 return Error(ID.Loc, "insertvalue operand must be aggregate type");
2179 if (!ExtractValueInst::getIndexedType(Val0->getType(), Indices))
2180 return Error(ID.Loc, "invalid indices for insertvalue");
2181 ID.ConstantVal = ConstantExpr::getInsertValue(Val0, Val1, Indices);
2182 ID.Kind = ValID::t_Constant;
2183 return false;
2184 }
2185 case lltok::kw_icmp:
2186 case lltok::kw_fcmp: {
2187 unsigned PredVal, Opc = Lex.getUIntVal();
2188 Constant *Val0, *Val1;
2189 Lex.Lex();
2190 if (ParseCmpPredicate(PredVal, Opc) ||
2191 ParseToken(lltok::lparen, "expected '(' in compare constantexpr") ||
2192 ParseGlobalTypeAndValue(Val0) ||
2193 ParseToken(lltok::comma, "expected comma in compare constantexpr") ||
2194 ParseGlobalTypeAndValue(Val1) ||
2195 ParseToken(lltok::rparen, "expected ')' in compare constantexpr"))
2196 return true;
2197
2198 if (Val0->getType() != Val1->getType())
2199 return Error(ID.Loc, "compare operands must have the same type");
2200
2201 CmpInst::Predicate Pred = (CmpInst::Predicate)PredVal;
2202
2203 if (Opc == Instruction::FCmp) {
2204 if (!Val0->getType()->isFPOrFPVectorTy())
2205 return Error(ID.Loc, "fcmp requires floating point operands");
2206 ID.ConstantVal = ConstantExpr::getFCmp(Pred, Val0, Val1);
2207 } else {
2208 assert(Opc == Instruction::ICmp && "Unexpected opcode for CmpInst!");
2209 if (!Val0->getType()->isIntOrIntVectorTy() &&
2210 !Val0->getType()->getScalarType()->isPointerTy())
2211 return Error(ID.Loc, "icmp requires pointer or integer operands");
2212 ID.ConstantVal = ConstantExpr::getICmp(Pred, Val0, Val1);
2213 }
2214 ID.Kind = ValID::t_Constant;
2215 return false;
2216 }
2217
2218 // Binary Operators.
2219 case lltok::kw_add:
2220 case lltok::kw_fadd:
2221 case lltok::kw_sub:
2222 case lltok::kw_fsub:
2223 case lltok::kw_mul:
2224 case lltok::kw_fmul:
2225 case lltok::kw_udiv:
2226 case lltok::kw_sdiv:
2227 case lltok::kw_fdiv:
2228 case lltok::kw_urem:
2229 case lltok::kw_srem:
2230 case lltok::kw_frem:
2231 case lltok::kw_shl:
2232 case lltok::kw_lshr:
2233 case lltok::kw_ashr: {
2234 bool NUW = false;
2235 bool NSW = false;
2236 bool Exact = false;
2237 unsigned Opc = Lex.getUIntVal();
2238 Constant *Val0, *Val1;
2239 Lex.Lex();
2240 LocTy ModifierLoc = Lex.getLoc();
2241 if (Opc == Instruction::Add || Opc == Instruction::Sub ||
2242 Opc == Instruction::Mul || Opc == Instruction::Shl) {
2243 if (EatIfPresent(lltok::kw_nuw))
2244 NUW = true;
2245 if (EatIfPresent(lltok::kw_nsw)) {
2246 NSW = true;
2247 if (EatIfPresent(lltok::kw_nuw))
2248 NUW = true;
2249 }
2250 } else if (Opc == Instruction::SDiv || Opc == Instruction::UDiv ||
2251 Opc == Instruction::LShr || Opc == Instruction::AShr) {
2252 if (EatIfPresent(lltok::kw_exact))
2253 Exact = true;
2254 }
2255 if (ParseToken(lltok::lparen, "expected '(' in binary constantexpr") ||
2256 ParseGlobalTypeAndValue(Val0) ||
2257 ParseToken(lltok::comma, "expected comma in binary constantexpr") ||
2258 ParseGlobalTypeAndValue(Val1) ||
2259 ParseToken(lltok::rparen, "expected ')' in binary constantexpr"))
2260 return true;
2261 if (Val0->getType() != Val1->getType())
2262 return Error(ID.Loc, "operands of constexpr must have same type");
2263 if (!Val0->getType()->isIntOrIntVectorTy()) {
2264 if (NUW)
2265 return Error(ModifierLoc, "nuw only applies to integer operations");
2266 if (NSW)
2267 return Error(ModifierLoc, "nsw only applies to integer operations");
2268 }
2269 // Check that the type is valid for the operator.
2270 switch (Opc) {
2271 case Instruction::Add:
2272 case Instruction::Sub:
2273 case Instruction::Mul:
2274 case Instruction::UDiv:
2275 case Instruction::SDiv:
2276 case Instruction::URem:
2277 case Instruction::SRem:
2278 case Instruction::Shl:
2279 case Instruction::AShr:
2280 case Instruction::LShr:
2281 if (!Val0->getType()->isIntOrIntVectorTy())
2282 return Error(ID.Loc, "constexpr requires integer operands");
2283 break;
2284 case Instruction::FAdd:
2285 case Instruction::FSub:
2286 case Instruction::FMul:
2287 case Instruction::FDiv:
2288 case Instruction::FRem:
2289 if (!Val0->getType()->isFPOrFPVectorTy())
2290 return Error(ID.Loc, "constexpr requires fp operands");
2291 break;
2292 default: llvm_unreachable("Unknown binary operator!");
2293 }
2294 unsigned Flags = 0;
2295 if (NUW) Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
2296 if (NSW) Flags |= OverflowingBinaryOperator::NoSignedWrap;
2297 if (Exact) Flags |= PossiblyExactOperator::IsExact;
2298 Constant *C = ConstantExpr::get(Opc, Val0, Val1, Flags);
2299 ID.ConstantVal = C;
2300 ID.Kind = ValID::t_Constant;
2301 return false;
2302 }
2303
2304 // Logical Operations
2305 case lltok::kw_and:
2306 case lltok::kw_or:
2307 case lltok::kw_xor: {
2308 unsigned Opc = Lex.getUIntVal();
2309 Constant *Val0, *Val1;
2310 Lex.Lex();
2311 if (ParseToken(lltok::lparen, "expected '(' in logical constantexpr") ||
2312 ParseGlobalTypeAndValue(Val0) ||
2313 ParseToken(lltok::comma, "expected comma in logical constantexpr") ||
2314 ParseGlobalTypeAndValue(Val1) ||
2315 ParseToken(lltok::rparen, "expected ')' in logical constantexpr"))
2316 return true;
2317 if (Val0->getType() != Val1->getType())
2318 return Error(ID.Loc, "operands of constexpr must have same type");
2319 if (!Val0->getType()->isIntOrIntVectorTy())
2320 return Error(ID.Loc,
2321 "constexpr requires integer or integer vector operands");
2322 ID.ConstantVal = ConstantExpr::get(Opc, Val0, Val1);
2323 ID.Kind = ValID::t_Constant;
2324 return false;
2325 }
2326
2327 case lltok::kw_getelementptr:
2328 case lltok::kw_shufflevector:
2329 case lltok::kw_insertelement:
2330 case lltok::kw_extractelement:
2331 case lltok::kw_select: {
2332 unsigned Opc = Lex.getUIntVal();
2333 SmallVector<Constant*, 16> Elts;
2334 bool InBounds = false;
2335 Lex.Lex();
2336 if (Opc == Instruction::GetElementPtr)
2337 InBounds = EatIfPresent(lltok::kw_inbounds);
2338 if (ParseToken(lltok::lparen, "expected '(' in constantexpr") ||
2339 ParseGlobalValueVector(Elts) ||
2340 ParseToken(lltok::rparen, "expected ')' in constantexpr"))
2341 return true;
2342
2343 if (Opc == Instruction::GetElementPtr) {
2344 if (Elts.size() == 0 ||
2345 !Elts[0]->getType()->getScalarType()->isPointerTy())
2346 return Error(ID.Loc, "getelementptr requires pointer operand");
2347
2348 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end());
2349 if (!GetElementPtrInst::getIndexedType(Elts[0]->getType(), Indices))
2350 return Error(ID.Loc, "invalid indices for getelementptr");
2351 ID.ConstantVal = ConstantExpr::getGetElementPtr(Elts[0], Indices,
2352 InBounds);
2353 } else if (Opc == Instruction::Select) {
2354 if (Elts.size() != 3)
2355 return Error(ID.Loc, "expected three operands to select");
2356 if (const char *Reason = SelectInst::areInvalidOperands(Elts[0], Elts[1],
2357 Elts[2]))
2358 return Error(ID.Loc, Reason);
2359 ID.ConstantVal = ConstantExpr::getSelect(Elts[0], Elts[1], Elts[2]);
2360 } else if (Opc == Instruction::ShuffleVector) {
2361 if (Elts.size() != 3)
2362 return Error(ID.Loc, "expected three operands to shufflevector");
2363 if (!ShuffleVectorInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
2364 return Error(ID.Loc, "invalid operands to shufflevector");
2365 ID.ConstantVal =
2366 ConstantExpr::getShuffleVector(Elts[0], Elts[1],Elts[2]);
2367 } else if (Opc == Instruction::ExtractElement) {
2368 if (Elts.size() != 2)
2369 return Error(ID.Loc, "expected two operands to extractelement");
2370 if (!ExtractElementInst::isValidOperands(Elts[0], Elts[1]))
2371 return Error(ID.Loc, "invalid extractelement operands");
2372 ID.ConstantVal = ConstantExpr::getExtractElement(Elts[0], Elts[1]);
2373 } else {
2374 assert(Opc == Instruction::InsertElement && "Unknown opcode");
2375 if (Elts.size() != 3)
2376 return Error(ID.Loc, "expected three operands to insertelement");
2377 if (!InsertElementInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
2378 return Error(ID.Loc, "invalid insertelement operands");
2379 ID.ConstantVal =
2380 ConstantExpr::getInsertElement(Elts[0], Elts[1],Elts[2]);
2381 }
2382
2383 ID.Kind = ValID::t_Constant;
2384 return false;
2385 }
2386 }
2387
2388 Lex.Lex();
2389 return false;
2390 }
2391
2392 /// ParseGlobalValue - Parse a global value with the specified type.
ParseGlobalValue(Type * Ty,Constant * & C)2393 bool LLParser::ParseGlobalValue(Type *Ty, Constant *&C) {
2394 C = 0;
2395 ValID ID;
2396 Value *V = NULL;
2397 bool Parsed = ParseValID(ID) ||
2398 ConvertValIDToValue(Ty, ID, V, NULL);
2399 if (V && !(C = dyn_cast<Constant>(V)))
2400 return Error(ID.Loc, "global values must be constants");
2401 return Parsed;
2402 }
2403
ParseGlobalTypeAndValue(Constant * & V)2404 bool LLParser::ParseGlobalTypeAndValue(Constant *&V) {
2405 Type *Ty = 0;
2406 return ParseType(Ty) ||
2407 ParseGlobalValue(Ty, V);
2408 }
2409
2410 /// ParseGlobalValueVector
2411 /// ::= /*empty*/
2412 /// ::= TypeAndValue (',' TypeAndValue)*
ParseGlobalValueVector(SmallVectorImpl<Constant * > & Elts)2413 bool LLParser::ParseGlobalValueVector(SmallVectorImpl<Constant*> &Elts) {
2414 // Empty list.
2415 if (Lex.getKind() == lltok::rbrace ||
2416 Lex.getKind() == lltok::rsquare ||
2417 Lex.getKind() == lltok::greater ||
2418 Lex.getKind() == lltok::rparen)
2419 return false;
2420
2421 Constant *C;
2422 if (ParseGlobalTypeAndValue(C)) return true;
2423 Elts.push_back(C);
2424
2425 while (EatIfPresent(lltok::comma)) {
2426 if (ParseGlobalTypeAndValue(C)) return true;
2427 Elts.push_back(C);
2428 }
2429
2430 return false;
2431 }
2432
ParseMetadataListValue(ValID & ID,PerFunctionState * PFS)2433 bool LLParser::ParseMetadataListValue(ValID &ID, PerFunctionState *PFS) {
2434 assert(Lex.getKind() == lltok::lbrace);
2435 Lex.Lex();
2436
2437 SmallVector<Value*, 16> Elts;
2438 if (ParseMDNodeVector(Elts, PFS) ||
2439 ParseToken(lltok::rbrace, "expected end of metadata node"))
2440 return true;
2441
2442 ID.MDNodeVal = MDNode::get(Context, Elts);
2443 ID.Kind = ValID::t_MDNode;
2444 return false;
2445 }
2446
2447 /// ParseMetadataValue
2448 /// ::= !42
2449 /// ::= !{...}
2450 /// ::= !"string"
ParseMetadataValue(ValID & ID,PerFunctionState * PFS)2451 bool LLParser::ParseMetadataValue(ValID &ID, PerFunctionState *PFS) {
2452 assert(Lex.getKind() == lltok::exclaim);
2453 Lex.Lex();
2454
2455 // MDNode:
2456 // !{ ... }
2457 if (Lex.getKind() == lltok::lbrace)
2458 return ParseMetadataListValue(ID, PFS);
2459
2460 // Standalone metadata reference
2461 // !42
2462 if (Lex.getKind() == lltok::APSInt) {
2463 if (ParseMDNodeID(ID.MDNodeVal)) return true;
2464 ID.Kind = ValID::t_MDNode;
2465 return false;
2466 }
2467
2468 // MDString:
2469 // ::= '!' STRINGCONSTANT
2470 if (ParseMDString(ID.MDStringVal)) return true;
2471 ID.Kind = ValID::t_MDString;
2472 return false;
2473 }
2474
2475
2476 //===----------------------------------------------------------------------===//
2477 // Function Parsing.
2478 //===----------------------------------------------------------------------===//
2479
ConvertValIDToValue(Type * Ty,ValID & ID,Value * & V,PerFunctionState * PFS)2480 bool LLParser::ConvertValIDToValue(Type *Ty, ValID &ID, Value *&V,
2481 PerFunctionState *PFS) {
2482 if (Ty->isFunctionTy())
2483 return Error(ID.Loc, "functions are not values, refer to them as pointers");
2484
2485 switch (ID.Kind) {
2486 case ValID::t_LocalID:
2487 if (!PFS) return Error(ID.Loc, "invalid use of function-local name");
2488 V = PFS->GetVal(ID.UIntVal, Ty, ID.Loc);
2489 return (V == 0);
2490 case ValID::t_LocalName:
2491 if (!PFS) return Error(ID.Loc, "invalid use of function-local name");
2492 V = PFS->GetVal(ID.StrVal, Ty, ID.Loc);
2493 return (V == 0);
2494 case ValID::t_InlineAsm: {
2495 PointerType *PTy = dyn_cast<PointerType>(Ty);
2496 FunctionType *FTy =
2497 PTy ? dyn_cast<FunctionType>(PTy->getElementType()) : 0;
2498 if (!FTy || !InlineAsm::Verify(FTy, ID.StrVal2))
2499 return Error(ID.Loc, "invalid type for inline asm constraint string");
2500 V = InlineAsm::get(FTy, ID.StrVal, ID.StrVal2, ID.UIntVal&1,
2501 (ID.UIntVal>>1)&1, (InlineAsm::AsmDialect(ID.UIntVal>>2)));
2502 return false;
2503 }
2504 case ValID::t_MDNode:
2505 if (!Ty->isMetadataTy())
2506 return Error(ID.Loc, "metadata value must have metadata type");
2507 V = ID.MDNodeVal;
2508 return false;
2509 case ValID::t_MDString:
2510 if (!Ty->isMetadataTy())
2511 return Error(ID.Loc, "metadata value must have metadata type");
2512 V = ID.MDStringVal;
2513 return false;
2514 case ValID::t_GlobalName:
2515 V = GetGlobalVal(ID.StrVal, Ty, ID.Loc);
2516 return V == 0;
2517 case ValID::t_GlobalID:
2518 V = GetGlobalVal(ID.UIntVal, Ty, ID.Loc);
2519 return V == 0;
2520 case ValID::t_APSInt:
2521 if (!Ty->isIntegerTy())
2522 return Error(ID.Loc, "integer constant must have integer type");
2523 ID.APSIntVal = ID.APSIntVal.extOrTrunc(Ty->getPrimitiveSizeInBits());
2524 V = ConstantInt::get(Context, ID.APSIntVal);
2525 return false;
2526 case ValID::t_APFloat:
2527 if (!Ty->isFloatingPointTy() ||
2528 !ConstantFP::isValueValidForType(Ty, ID.APFloatVal))
2529 return Error(ID.Loc, "floating point constant invalid for type");
2530
2531 // The lexer has no type info, so builds all half, float, and double FP
2532 // constants as double. Fix this here. Long double does not need this.
2533 if (&ID.APFloatVal.getSemantics() == &APFloat::IEEEdouble) {
2534 bool Ignored;
2535 if (Ty->isHalfTy())
2536 ID.APFloatVal.convert(APFloat::IEEEhalf, APFloat::rmNearestTiesToEven,
2537 &Ignored);
2538 else if (Ty->isFloatTy())
2539 ID.APFloatVal.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven,
2540 &Ignored);
2541 }
2542 V = ConstantFP::get(Context, ID.APFloatVal);
2543
2544 if (V->getType() != Ty)
2545 return Error(ID.Loc, "floating point constant does not have type '" +
2546 getTypeString(Ty) + "'");
2547
2548 return false;
2549 case ValID::t_Null:
2550 if (!Ty->isPointerTy())
2551 return Error(ID.Loc, "null must be a pointer type");
2552 V = ConstantPointerNull::get(cast<PointerType>(Ty));
2553 return false;
2554 case ValID::t_Undef:
2555 // FIXME: LabelTy should not be a first-class type.
2556 if (!Ty->isFirstClassType() || Ty->isLabelTy())
2557 return Error(ID.Loc, "invalid type for undef constant");
2558 V = UndefValue::get(Ty);
2559 return false;
2560 case ValID::t_EmptyArray:
2561 if (!Ty->isArrayTy() || cast<ArrayType>(Ty)->getNumElements() != 0)
2562 return Error(ID.Loc, "invalid empty array initializer");
2563 V = UndefValue::get(Ty);
2564 return false;
2565 case ValID::t_Zero:
2566 // FIXME: LabelTy should not be a first-class type.
2567 if (!Ty->isFirstClassType() || Ty->isLabelTy())
2568 return Error(ID.Loc, "invalid type for null constant");
2569 V = Constant::getNullValue(Ty);
2570 return false;
2571 case ValID::t_Constant:
2572 if (ID.ConstantVal->getType() != Ty)
2573 return Error(ID.Loc, "constant expression type mismatch");
2574
2575 V = ID.ConstantVal;
2576 return false;
2577 case ValID::t_ConstantStruct:
2578 case ValID::t_PackedConstantStruct:
2579 if (StructType *ST = dyn_cast<StructType>(Ty)) {
2580 if (ST->getNumElements() != ID.UIntVal)
2581 return Error(ID.Loc,
2582 "initializer with struct type has wrong # elements");
2583 if (ST->isPacked() != (ID.Kind == ValID::t_PackedConstantStruct))
2584 return Error(ID.Loc, "packed'ness of initializer and type don't match");
2585
2586 // Verify that the elements are compatible with the structtype.
2587 for (unsigned i = 0, e = ID.UIntVal; i != e; ++i)
2588 if (ID.ConstantStructElts[i]->getType() != ST->getElementType(i))
2589 return Error(ID.Loc, "element " + Twine(i) +
2590 " of struct initializer doesn't match struct element type");
2591
2592 V = ConstantStruct::get(ST, makeArrayRef(ID.ConstantStructElts,
2593 ID.UIntVal));
2594 } else
2595 return Error(ID.Loc, "constant expression type mismatch");
2596 return false;
2597 }
2598 llvm_unreachable("Invalid ValID");
2599 }
2600
ParseValue(Type * Ty,Value * & V,PerFunctionState * PFS)2601 bool LLParser::ParseValue(Type *Ty, Value *&V, PerFunctionState *PFS) {
2602 V = 0;
2603 ValID ID;
2604 return ParseValID(ID, PFS) ||
2605 ConvertValIDToValue(Ty, ID, V, PFS);
2606 }
2607
ParseTypeAndValue(Value * & V,PerFunctionState * PFS)2608 bool LLParser::ParseTypeAndValue(Value *&V, PerFunctionState *PFS) {
2609 Type *Ty = 0;
2610 return ParseType(Ty) ||
2611 ParseValue(Ty, V, PFS);
2612 }
2613
ParseTypeAndBasicBlock(BasicBlock * & BB,LocTy & Loc,PerFunctionState & PFS)2614 bool LLParser::ParseTypeAndBasicBlock(BasicBlock *&BB, LocTy &Loc,
2615 PerFunctionState &PFS) {
2616 Value *V;
2617 Loc = Lex.getLoc();
2618 if (ParseTypeAndValue(V, PFS)) return true;
2619 if (!isa<BasicBlock>(V))
2620 return Error(Loc, "expected a basic block");
2621 BB = cast<BasicBlock>(V);
2622 return false;
2623 }
2624
2625
2626 /// FunctionHeader
2627 /// ::= OptionalLinkage OptionalVisibility OptionalCallingConv OptRetAttrs
2628 /// OptUnnamedAddr Type GlobalName '(' ArgList ')' OptFuncAttrs OptSection
2629 /// OptionalAlign OptGC
ParseFunctionHeader(Function * & Fn,bool isDefine)2630 bool LLParser::ParseFunctionHeader(Function *&Fn, bool isDefine) {
2631 // Parse the linkage.
2632 LocTy LinkageLoc = Lex.getLoc();
2633 unsigned Linkage;
2634
2635 unsigned Visibility;
2636 Attributes RetAttrs;
2637 CallingConv::ID CC;
2638 Type *RetType = 0;
2639 LocTy RetTypeLoc = Lex.getLoc();
2640 if (ParseOptionalLinkage(Linkage) ||
2641 ParseOptionalVisibility(Visibility) ||
2642 ParseOptionalCallingConv(CC) ||
2643 ParseOptionalAttrs(RetAttrs, 1) ||
2644 ParseType(RetType, RetTypeLoc, true /*void allowed*/))
2645 return true;
2646
2647 // Verify that the linkage is ok.
2648 switch ((GlobalValue::LinkageTypes)Linkage) {
2649 case GlobalValue::ExternalLinkage:
2650 break; // always ok.
2651 case GlobalValue::DLLImportLinkage:
2652 case GlobalValue::ExternalWeakLinkage:
2653 if (isDefine)
2654 return Error(LinkageLoc, "invalid linkage for function definition");
2655 break;
2656 case GlobalValue::PrivateLinkage:
2657 case GlobalValue::LinkerPrivateLinkage:
2658 case GlobalValue::LinkerPrivateWeakLinkage:
2659 case GlobalValue::InternalLinkage:
2660 case GlobalValue::AvailableExternallyLinkage:
2661 case GlobalValue::LinkOnceAnyLinkage:
2662 case GlobalValue::LinkOnceODRLinkage:
2663 case GlobalValue::LinkOnceODRAutoHideLinkage:
2664 case GlobalValue::WeakAnyLinkage:
2665 case GlobalValue::WeakODRLinkage:
2666 case GlobalValue::DLLExportLinkage:
2667 if (!isDefine)
2668 return Error(LinkageLoc, "invalid linkage for function declaration");
2669 break;
2670 case GlobalValue::AppendingLinkage:
2671 case GlobalValue::CommonLinkage:
2672 return Error(LinkageLoc, "invalid function linkage type");
2673 }
2674
2675 if (!FunctionType::isValidReturnType(RetType))
2676 return Error(RetTypeLoc, "invalid function return type");
2677
2678 LocTy NameLoc = Lex.getLoc();
2679
2680 std::string FunctionName;
2681 if (Lex.getKind() == lltok::GlobalVar) {
2682 FunctionName = Lex.getStrVal();
2683 } else if (Lex.getKind() == lltok::GlobalID) { // @42 is ok.
2684 unsigned NameID = Lex.getUIntVal();
2685
2686 if (NameID != NumberedVals.size())
2687 return TokError("function expected to be numbered '%" +
2688 Twine(NumberedVals.size()) + "'");
2689 } else {
2690 return TokError("expected function name");
2691 }
2692
2693 Lex.Lex();
2694
2695 if (Lex.getKind() != lltok::lparen)
2696 return TokError("expected '(' in function argument list");
2697
2698 SmallVector<ArgInfo, 8> ArgList;
2699 bool isVarArg;
2700 Attributes FuncAttrs;
2701 std::string Section;
2702 unsigned Alignment;
2703 std::string GC;
2704 bool UnnamedAddr;
2705 LocTy UnnamedAddrLoc;
2706
2707 if (ParseArgumentList(ArgList, isVarArg) ||
2708 ParseOptionalToken(lltok::kw_unnamed_addr, UnnamedAddr,
2709 &UnnamedAddrLoc) ||
2710 ParseOptionalAttrs(FuncAttrs, 2) ||
2711 (EatIfPresent(lltok::kw_section) &&
2712 ParseStringConstant(Section)) ||
2713 ParseOptionalAlignment(Alignment) ||
2714 (EatIfPresent(lltok::kw_gc) &&
2715 ParseStringConstant(GC)))
2716 return true;
2717
2718 // If the alignment was parsed as an attribute, move to the alignment field.
2719 if (FuncAttrs & Attribute::Alignment) {
2720 Alignment = Attribute::getAlignmentFromAttrs(FuncAttrs);
2721 FuncAttrs &= ~Attribute::Alignment;
2722 }
2723
2724 // Okay, if we got here, the function is syntactically valid. Convert types
2725 // and do semantic checks.
2726 std::vector<Type*> ParamTypeList;
2727 SmallVector<AttributeWithIndex, 8> Attrs;
2728
2729 if (RetAttrs != Attribute::None)
2730 Attrs.push_back(AttributeWithIndex::get(0, RetAttrs));
2731
2732 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
2733 ParamTypeList.push_back(ArgList[i].Ty);
2734 if (ArgList[i].Attrs != Attribute::None)
2735 Attrs.push_back(AttributeWithIndex::get(i+1, ArgList[i].Attrs));
2736 }
2737
2738 if (FuncAttrs != Attribute::None)
2739 Attrs.push_back(AttributeWithIndex::get(~0, FuncAttrs));
2740
2741 AttrListPtr PAL = AttrListPtr::get(Attrs);
2742
2743 if (PAL.paramHasAttr(1, Attribute::StructRet) && !RetType->isVoidTy())
2744 return Error(RetTypeLoc, "functions with 'sret' argument must return void");
2745
2746 FunctionType *FT =
2747 FunctionType::get(RetType, ParamTypeList, isVarArg);
2748 PointerType *PFT = PointerType::getUnqual(FT);
2749
2750 Fn = 0;
2751 if (!FunctionName.empty()) {
2752 // If this was a definition of a forward reference, remove the definition
2753 // from the forward reference table and fill in the forward ref.
2754 std::map<std::string, std::pair<GlobalValue*, LocTy> >::iterator FRVI =
2755 ForwardRefVals.find(FunctionName);
2756 if (FRVI != ForwardRefVals.end()) {
2757 Fn = M->getFunction(FunctionName);
2758 if (Fn->getType() != PFT)
2759 return Error(FRVI->second.second, "invalid forward reference to "
2760 "function '" + FunctionName + "' with wrong type!");
2761
2762 ForwardRefVals.erase(FRVI);
2763 } else if ((Fn = M->getFunction(FunctionName))) {
2764 // Reject redefinitions.
2765 return Error(NameLoc, "invalid redefinition of function '" +
2766 FunctionName + "'");
2767 } else if (M->getNamedValue(FunctionName)) {
2768 return Error(NameLoc, "redefinition of function '@" + FunctionName + "'");
2769 }
2770
2771 } else {
2772 // If this is a definition of a forward referenced function, make sure the
2773 // types agree.
2774 std::map<unsigned, std::pair<GlobalValue*, LocTy> >::iterator I
2775 = ForwardRefValIDs.find(NumberedVals.size());
2776 if (I != ForwardRefValIDs.end()) {
2777 Fn = cast<Function>(I->second.first);
2778 if (Fn->getType() != PFT)
2779 return Error(NameLoc, "type of definition and forward reference of '@" +
2780 Twine(NumberedVals.size()) + "' disagree");
2781 ForwardRefValIDs.erase(I);
2782 }
2783 }
2784
2785 if (Fn == 0)
2786 Fn = Function::Create(FT, GlobalValue::ExternalLinkage, FunctionName, M);
2787 else // Move the forward-reference to the correct spot in the module.
2788 M->getFunctionList().splice(M->end(), M->getFunctionList(), Fn);
2789
2790 if (FunctionName.empty())
2791 NumberedVals.push_back(Fn);
2792
2793 Fn->setLinkage((GlobalValue::LinkageTypes)Linkage);
2794 Fn->setVisibility((GlobalValue::VisibilityTypes)Visibility);
2795 Fn->setCallingConv(CC);
2796 Fn->setAttributes(PAL);
2797 Fn->setUnnamedAddr(UnnamedAddr);
2798 Fn->setAlignment(Alignment);
2799 Fn->setSection(Section);
2800 if (!GC.empty()) Fn->setGC(GC.c_str());
2801
2802 // Add all of the arguments we parsed to the function.
2803 Function::arg_iterator ArgIt = Fn->arg_begin();
2804 for (unsigned i = 0, e = ArgList.size(); i != e; ++i, ++ArgIt) {
2805 // If the argument has a name, insert it into the argument symbol table.
2806 if (ArgList[i].Name.empty()) continue;
2807
2808 // Set the name, if it conflicted, it will be auto-renamed.
2809 ArgIt->setName(ArgList[i].Name);
2810
2811 if (ArgIt->getName() != ArgList[i].Name)
2812 return Error(ArgList[i].Loc, "redefinition of argument '%" +
2813 ArgList[i].Name + "'");
2814 }
2815
2816 return false;
2817 }
2818
2819
2820 /// ParseFunctionBody
2821 /// ::= '{' BasicBlock+ '}'
2822 ///
ParseFunctionBody(Function & Fn)2823 bool LLParser::ParseFunctionBody(Function &Fn) {
2824 if (Lex.getKind() != lltok::lbrace)
2825 return TokError("expected '{' in function body");
2826 Lex.Lex(); // eat the {.
2827
2828 int FunctionNumber = -1;
2829 if (!Fn.hasName()) FunctionNumber = NumberedVals.size()-1;
2830
2831 PerFunctionState PFS(*this, Fn, FunctionNumber);
2832
2833 // We need at least one basic block.
2834 if (Lex.getKind() == lltok::rbrace)
2835 return TokError("function body requires at least one basic block");
2836
2837 while (Lex.getKind() != lltok::rbrace)
2838 if (ParseBasicBlock(PFS)) return true;
2839
2840 // Eat the }.
2841 Lex.Lex();
2842
2843 // Verify function is ok.
2844 return PFS.FinishFunction();
2845 }
2846
2847 /// ParseBasicBlock
2848 /// ::= LabelStr? Instruction*
ParseBasicBlock(PerFunctionState & PFS)2849 bool LLParser::ParseBasicBlock(PerFunctionState &PFS) {
2850 // If this basic block starts out with a name, remember it.
2851 std::string Name;
2852 LocTy NameLoc = Lex.getLoc();
2853 if (Lex.getKind() == lltok::LabelStr) {
2854 Name = Lex.getStrVal();
2855 Lex.Lex();
2856 }
2857
2858 BasicBlock *BB = PFS.DefineBB(Name, NameLoc);
2859 if (BB == 0) return true;
2860
2861 std::string NameStr;
2862
2863 // Parse the instructions in this block until we get a terminator.
2864 Instruction *Inst;
2865 SmallVector<std::pair<unsigned, MDNode *>, 4> MetadataOnInst;
2866 do {
2867 // This instruction may have three possibilities for a name: a) none
2868 // specified, b) name specified "%foo =", c) number specified: "%4 =".
2869 LocTy NameLoc = Lex.getLoc();
2870 int NameID = -1;
2871 NameStr = "";
2872
2873 if (Lex.getKind() == lltok::LocalVarID) {
2874 NameID = Lex.getUIntVal();
2875 Lex.Lex();
2876 if (ParseToken(lltok::equal, "expected '=' after instruction id"))
2877 return true;
2878 } else if (Lex.getKind() == lltok::LocalVar) {
2879 NameStr = Lex.getStrVal();
2880 Lex.Lex();
2881 if (ParseToken(lltok::equal, "expected '=' after instruction name"))
2882 return true;
2883 }
2884
2885 switch (ParseInstruction(Inst, BB, PFS)) {
2886 default: llvm_unreachable("Unknown ParseInstruction result!");
2887 case InstError: return true;
2888 case InstNormal:
2889 BB->getInstList().push_back(Inst);
2890
2891 // With a normal result, we check to see if the instruction is followed by
2892 // a comma and metadata.
2893 if (EatIfPresent(lltok::comma))
2894 if (ParseInstructionMetadata(Inst, &PFS))
2895 return true;
2896 break;
2897 case InstExtraComma:
2898 BB->getInstList().push_back(Inst);
2899
2900 // If the instruction parser ate an extra comma at the end of it, it
2901 // *must* be followed by metadata.
2902 if (ParseInstructionMetadata(Inst, &PFS))
2903 return true;
2904 break;
2905 }
2906
2907 // Set the name on the instruction.
2908 if (PFS.SetInstName(NameID, NameStr, NameLoc, Inst)) return true;
2909 } while (!isa<TerminatorInst>(Inst));
2910
2911 return false;
2912 }
2913
2914 //===----------------------------------------------------------------------===//
2915 // Instruction Parsing.
2916 //===----------------------------------------------------------------------===//
2917
2918 /// ParseInstruction - Parse one of the many different instructions.
2919 ///
ParseInstruction(Instruction * & Inst,BasicBlock * BB,PerFunctionState & PFS)2920 int LLParser::ParseInstruction(Instruction *&Inst, BasicBlock *BB,
2921 PerFunctionState &PFS) {
2922 lltok::Kind Token = Lex.getKind();
2923 if (Token == lltok::Eof)
2924 return TokError("found end of file when expecting more instructions");
2925 LocTy Loc = Lex.getLoc();
2926 unsigned KeywordVal = Lex.getUIntVal();
2927 Lex.Lex(); // Eat the keyword.
2928
2929 switch (Token) {
2930 default: return Error(Loc, "expected instruction opcode");
2931 // Terminator Instructions.
2932 case lltok::kw_unreachable: Inst = new UnreachableInst(Context); return false;
2933 case lltok::kw_ret: return ParseRet(Inst, BB, PFS);
2934 case lltok::kw_br: return ParseBr(Inst, PFS);
2935 case lltok::kw_switch: return ParseSwitch(Inst, PFS);
2936 case lltok::kw_indirectbr: return ParseIndirectBr(Inst, PFS);
2937 case lltok::kw_invoke: return ParseInvoke(Inst, PFS);
2938 case lltok::kw_resume: return ParseResume(Inst, PFS);
2939 // Binary Operators.
2940 case lltok::kw_add:
2941 case lltok::kw_sub:
2942 case lltok::kw_mul:
2943 case lltok::kw_shl: {
2944 bool NUW = EatIfPresent(lltok::kw_nuw);
2945 bool NSW = EatIfPresent(lltok::kw_nsw);
2946 if (!NUW) NUW = EatIfPresent(lltok::kw_nuw);
2947
2948 if (ParseArithmetic(Inst, PFS, KeywordVal, 1)) return true;
2949
2950 if (NUW) cast<BinaryOperator>(Inst)->setHasNoUnsignedWrap(true);
2951 if (NSW) cast<BinaryOperator>(Inst)->setHasNoSignedWrap(true);
2952 return false;
2953 }
2954 case lltok::kw_fadd:
2955 case lltok::kw_fsub:
2956 case lltok::kw_fmul: return ParseArithmetic(Inst, PFS, KeywordVal, 2);
2957
2958 case lltok::kw_sdiv:
2959 case lltok::kw_udiv:
2960 case lltok::kw_lshr:
2961 case lltok::kw_ashr: {
2962 bool Exact = EatIfPresent(lltok::kw_exact);
2963
2964 if (ParseArithmetic(Inst, PFS, KeywordVal, 1)) return true;
2965 if (Exact) cast<BinaryOperator>(Inst)->setIsExact(true);
2966 return false;
2967 }
2968
2969 case lltok::kw_urem:
2970 case lltok::kw_srem: return ParseArithmetic(Inst, PFS, KeywordVal, 1);
2971 case lltok::kw_fdiv:
2972 case lltok::kw_frem: return ParseArithmetic(Inst, PFS, KeywordVal, 2);
2973 case lltok::kw_and:
2974 case lltok::kw_or:
2975 case lltok::kw_xor: return ParseLogical(Inst, PFS, KeywordVal);
2976 case lltok::kw_icmp:
2977 case lltok::kw_fcmp: return ParseCompare(Inst, PFS, KeywordVal);
2978 // Casts.
2979 case lltok::kw_trunc:
2980 case lltok::kw_zext:
2981 case lltok::kw_sext:
2982 case lltok::kw_fptrunc:
2983 case lltok::kw_fpext:
2984 case lltok::kw_bitcast:
2985 case lltok::kw_uitofp:
2986 case lltok::kw_sitofp:
2987 case lltok::kw_fptoui:
2988 case lltok::kw_fptosi:
2989 case lltok::kw_inttoptr:
2990 case lltok::kw_ptrtoint: return ParseCast(Inst, PFS, KeywordVal);
2991 // Other.
2992 case lltok::kw_select: return ParseSelect(Inst, PFS);
2993 case lltok::kw_va_arg: return ParseVA_Arg(Inst, PFS);
2994 case lltok::kw_extractelement: return ParseExtractElement(Inst, PFS);
2995 case lltok::kw_insertelement: return ParseInsertElement(Inst, PFS);
2996 case lltok::kw_shufflevector: return ParseShuffleVector(Inst, PFS);
2997 case lltok::kw_phi: return ParsePHI(Inst, PFS);
2998 case lltok::kw_landingpad: return ParseLandingPad(Inst, PFS);
2999 case lltok::kw_call: return ParseCall(Inst, PFS, false);
3000 case lltok::kw_tail: return ParseCall(Inst, PFS, true);
3001 // Memory.
3002 case lltok::kw_alloca: return ParseAlloc(Inst, PFS);
3003 case lltok::kw_load: return ParseLoad(Inst, PFS);
3004 case lltok::kw_store: return ParseStore(Inst, PFS);
3005 case lltok::kw_cmpxchg: return ParseCmpXchg(Inst, PFS);
3006 case lltok::kw_atomicrmw: return ParseAtomicRMW(Inst, PFS);
3007 case lltok::kw_fence: return ParseFence(Inst, PFS);
3008 case lltok::kw_getelementptr: return ParseGetElementPtr(Inst, PFS);
3009 case lltok::kw_extractvalue: return ParseExtractValue(Inst, PFS);
3010 case lltok::kw_insertvalue: return ParseInsertValue(Inst, PFS);
3011 }
3012 }
3013
3014 /// ParseCmpPredicate - Parse an integer or fp predicate, based on Kind.
ParseCmpPredicate(unsigned & P,unsigned Opc)3015 bool LLParser::ParseCmpPredicate(unsigned &P, unsigned Opc) {
3016 if (Opc == Instruction::FCmp) {
3017 switch (Lex.getKind()) {
3018 default: TokError("expected fcmp predicate (e.g. 'oeq')");
3019 case lltok::kw_oeq: P = CmpInst::FCMP_OEQ; break;
3020 case lltok::kw_one: P = CmpInst::FCMP_ONE; break;
3021 case lltok::kw_olt: P = CmpInst::FCMP_OLT; break;
3022 case lltok::kw_ogt: P = CmpInst::FCMP_OGT; break;
3023 case lltok::kw_ole: P = CmpInst::FCMP_OLE; break;
3024 case lltok::kw_oge: P = CmpInst::FCMP_OGE; break;
3025 case lltok::kw_ord: P = CmpInst::FCMP_ORD; break;
3026 case lltok::kw_uno: P = CmpInst::FCMP_UNO; break;
3027 case lltok::kw_ueq: P = CmpInst::FCMP_UEQ; break;
3028 case lltok::kw_une: P = CmpInst::FCMP_UNE; break;
3029 case lltok::kw_ult: P = CmpInst::FCMP_ULT; break;
3030 case lltok::kw_ugt: P = CmpInst::FCMP_UGT; break;
3031 case lltok::kw_ule: P = CmpInst::FCMP_ULE; break;
3032 case lltok::kw_uge: P = CmpInst::FCMP_UGE; break;
3033 case lltok::kw_true: P = CmpInst::FCMP_TRUE; break;
3034 case lltok::kw_false: P = CmpInst::FCMP_FALSE; break;
3035 }
3036 } else {
3037 switch (Lex.getKind()) {
3038 default: TokError("expected icmp predicate (e.g. 'eq')");
3039 case lltok::kw_eq: P = CmpInst::ICMP_EQ; break;
3040 case lltok::kw_ne: P = CmpInst::ICMP_NE; break;
3041 case lltok::kw_slt: P = CmpInst::ICMP_SLT; break;
3042 case lltok::kw_sgt: P = CmpInst::ICMP_SGT; break;
3043 case lltok::kw_sle: P = CmpInst::ICMP_SLE; break;
3044 case lltok::kw_sge: P = CmpInst::ICMP_SGE; break;
3045 case lltok::kw_ult: P = CmpInst::ICMP_ULT; break;
3046 case lltok::kw_ugt: P = CmpInst::ICMP_UGT; break;
3047 case lltok::kw_ule: P = CmpInst::ICMP_ULE; break;
3048 case lltok::kw_uge: P = CmpInst::ICMP_UGE; break;
3049 }
3050 }
3051 Lex.Lex();
3052 return false;
3053 }
3054
3055 //===----------------------------------------------------------------------===//
3056 // Terminator Instructions.
3057 //===----------------------------------------------------------------------===//
3058
3059 /// ParseRet - Parse a return instruction.
3060 /// ::= 'ret' void (',' !dbg, !1)*
3061 /// ::= 'ret' TypeAndValue (',' !dbg, !1)*
ParseRet(Instruction * & Inst,BasicBlock * BB,PerFunctionState & PFS)3062 bool LLParser::ParseRet(Instruction *&Inst, BasicBlock *BB,
3063 PerFunctionState &PFS) {
3064 SMLoc TypeLoc = Lex.getLoc();
3065 Type *Ty = 0;
3066 if (ParseType(Ty, true /*void allowed*/)) return true;
3067
3068 Type *ResType = PFS.getFunction().getReturnType();
3069
3070 if (Ty->isVoidTy()) {
3071 if (!ResType->isVoidTy())
3072 return Error(TypeLoc, "value doesn't match function result type '" +
3073 getTypeString(ResType) + "'");
3074
3075 Inst = ReturnInst::Create(Context);
3076 return false;
3077 }
3078
3079 Value *RV;
3080 if (ParseValue(Ty, RV, PFS)) return true;
3081
3082 if (ResType != RV->getType())
3083 return Error(TypeLoc, "value doesn't match function result type '" +
3084 getTypeString(ResType) + "'");
3085
3086 Inst = ReturnInst::Create(Context, RV);
3087 return false;
3088 }
3089
3090
3091 /// ParseBr
3092 /// ::= 'br' TypeAndValue
3093 /// ::= 'br' TypeAndValue ',' TypeAndValue ',' TypeAndValue
ParseBr(Instruction * & Inst,PerFunctionState & PFS)3094 bool LLParser::ParseBr(Instruction *&Inst, PerFunctionState &PFS) {
3095 LocTy Loc, Loc2;
3096 Value *Op0;
3097 BasicBlock *Op1, *Op2;
3098 if (ParseTypeAndValue(Op0, Loc, PFS)) return true;
3099
3100 if (BasicBlock *BB = dyn_cast<BasicBlock>(Op0)) {
3101 Inst = BranchInst::Create(BB);
3102 return false;
3103 }
3104
3105 if (Op0->getType() != Type::getInt1Ty(Context))
3106 return Error(Loc, "branch condition must have 'i1' type");
3107
3108 if (ParseToken(lltok::comma, "expected ',' after branch condition") ||
3109 ParseTypeAndBasicBlock(Op1, Loc, PFS) ||
3110 ParseToken(lltok::comma, "expected ',' after true destination") ||
3111 ParseTypeAndBasicBlock(Op2, Loc2, PFS))
3112 return true;
3113
3114 Inst = BranchInst::Create(Op1, Op2, Op0);
3115 return false;
3116 }
3117
3118 /// ParseSwitch
3119 /// Instruction
3120 /// ::= 'switch' TypeAndValue ',' TypeAndValue '[' JumpTable ']'
3121 /// JumpTable
3122 /// ::= (TypeAndValue ',' TypeAndValue)*
ParseSwitch(Instruction * & Inst,PerFunctionState & PFS)3123 bool LLParser::ParseSwitch(Instruction *&Inst, PerFunctionState &PFS) {
3124 LocTy CondLoc, BBLoc;
3125 Value *Cond;
3126 BasicBlock *DefaultBB;
3127 if (ParseTypeAndValue(Cond, CondLoc, PFS) ||
3128 ParseToken(lltok::comma, "expected ',' after switch condition") ||
3129 ParseTypeAndBasicBlock(DefaultBB, BBLoc, PFS) ||
3130 ParseToken(lltok::lsquare, "expected '[' with switch table"))
3131 return true;
3132
3133 if (!Cond->getType()->isIntegerTy())
3134 return Error(CondLoc, "switch condition must have integer type");
3135
3136 // Parse the jump table pairs.
3137 SmallPtrSet<Value*, 32> SeenCases;
3138 SmallVector<std::pair<ConstantInt*, BasicBlock*>, 32> Table;
3139 while (Lex.getKind() != lltok::rsquare) {
3140 Value *Constant;
3141 BasicBlock *DestBB;
3142
3143 if (ParseTypeAndValue(Constant, CondLoc, PFS) ||
3144 ParseToken(lltok::comma, "expected ',' after case value") ||
3145 ParseTypeAndBasicBlock(DestBB, PFS))
3146 return true;
3147
3148 if (!SeenCases.insert(Constant))
3149 return Error(CondLoc, "duplicate case value in switch");
3150 if (!isa<ConstantInt>(Constant))
3151 return Error(CondLoc, "case value is not a constant integer");
3152
3153 Table.push_back(std::make_pair(cast<ConstantInt>(Constant), DestBB));
3154 }
3155
3156 Lex.Lex(); // Eat the ']'.
3157
3158 SwitchInst *SI = SwitchInst::Create(Cond, DefaultBB, Table.size());
3159 for (unsigned i = 0, e = Table.size(); i != e; ++i)
3160 SI->addCase(Table[i].first, Table[i].second);
3161 Inst = SI;
3162 return false;
3163 }
3164
3165 /// ParseIndirectBr
3166 /// Instruction
3167 /// ::= 'indirectbr' TypeAndValue ',' '[' LabelList ']'
ParseIndirectBr(Instruction * & Inst,PerFunctionState & PFS)3168 bool LLParser::ParseIndirectBr(Instruction *&Inst, PerFunctionState &PFS) {
3169 LocTy AddrLoc;
3170 Value *Address;
3171 if (ParseTypeAndValue(Address, AddrLoc, PFS) ||
3172 ParseToken(lltok::comma, "expected ',' after indirectbr address") ||
3173 ParseToken(lltok::lsquare, "expected '[' with indirectbr"))
3174 return true;
3175
3176 if (!Address->getType()->isPointerTy())
3177 return Error(AddrLoc, "indirectbr address must have pointer type");
3178
3179 // Parse the destination list.
3180 SmallVector<BasicBlock*, 16> DestList;
3181
3182 if (Lex.getKind() != lltok::rsquare) {
3183 BasicBlock *DestBB;
3184 if (ParseTypeAndBasicBlock(DestBB, PFS))
3185 return true;
3186 DestList.push_back(DestBB);
3187
3188 while (EatIfPresent(lltok::comma)) {
3189 if (ParseTypeAndBasicBlock(DestBB, PFS))
3190 return true;
3191 DestList.push_back(DestBB);
3192 }
3193 }
3194
3195 if (ParseToken(lltok::rsquare, "expected ']' at end of block list"))
3196 return true;
3197
3198 IndirectBrInst *IBI = IndirectBrInst::Create(Address, DestList.size());
3199 for (unsigned i = 0, e = DestList.size(); i != e; ++i)
3200 IBI->addDestination(DestList[i]);
3201 Inst = IBI;
3202 return false;
3203 }
3204
3205
3206 /// ParseInvoke
3207 /// ::= 'invoke' OptionalCallingConv OptionalAttrs Type Value ParamList
3208 /// OptionalAttrs 'to' TypeAndValue 'unwind' TypeAndValue
ParseInvoke(Instruction * & Inst,PerFunctionState & PFS)3209 bool LLParser::ParseInvoke(Instruction *&Inst, PerFunctionState &PFS) {
3210 LocTy CallLoc = Lex.getLoc();
3211 Attributes RetAttrs, FnAttrs;
3212 CallingConv::ID CC;
3213 Type *RetType = 0;
3214 LocTy RetTypeLoc;
3215 ValID CalleeID;
3216 SmallVector<ParamInfo, 16> ArgList;
3217
3218 BasicBlock *NormalBB, *UnwindBB;
3219 if (ParseOptionalCallingConv(CC) ||
3220 ParseOptionalAttrs(RetAttrs, 1) ||
3221 ParseType(RetType, RetTypeLoc, true /*void allowed*/) ||
3222 ParseValID(CalleeID) ||
3223 ParseParameterList(ArgList, PFS) ||
3224 ParseOptionalAttrs(FnAttrs, 2) ||
3225 ParseToken(lltok::kw_to, "expected 'to' in invoke") ||
3226 ParseTypeAndBasicBlock(NormalBB, PFS) ||
3227 ParseToken(lltok::kw_unwind, "expected 'unwind' in invoke") ||
3228 ParseTypeAndBasicBlock(UnwindBB, PFS))
3229 return true;
3230
3231 // If RetType is a non-function pointer type, then this is the short syntax
3232 // for the call, which means that RetType is just the return type. Infer the
3233 // rest of the function argument types from the arguments that are present.
3234 PointerType *PFTy = 0;
3235 FunctionType *Ty = 0;
3236 if (!(PFTy = dyn_cast<PointerType>(RetType)) ||
3237 !(Ty = dyn_cast<FunctionType>(PFTy->getElementType()))) {
3238 // Pull out the types of all of the arguments...
3239 std::vector<Type*> ParamTypes;
3240 for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
3241 ParamTypes.push_back(ArgList[i].V->getType());
3242
3243 if (!FunctionType::isValidReturnType(RetType))
3244 return Error(RetTypeLoc, "Invalid result type for LLVM function");
3245
3246 Ty = FunctionType::get(RetType, ParamTypes, false);
3247 PFTy = PointerType::getUnqual(Ty);
3248 }
3249
3250 // Look up the callee.
3251 Value *Callee;
3252 if (ConvertValIDToValue(PFTy, CalleeID, Callee, &PFS)) return true;
3253
3254 // Set up the Attributes for the function.
3255 SmallVector<AttributeWithIndex, 8> Attrs;
3256 if (RetAttrs != Attribute::None)
3257 Attrs.push_back(AttributeWithIndex::get(0, RetAttrs));
3258
3259 SmallVector<Value*, 8> Args;
3260
3261 // Loop through FunctionType's arguments and ensure they are specified
3262 // correctly. Also, gather any parameter attributes.
3263 FunctionType::param_iterator I = Ty->param_begin();
3264 FunctionType::param_iterator E = Ty->param_end();
3265 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
3266 Type *ExpectedTy = 0;
3267 if (I != E) {
3268 ExpectedTy = *I++;
3269 } else if (!Ty->isVarArg()) {
3270 return Error(ArgList[i].Loc, "too many arguments specified");
3271 }
3272
3273 if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
3274 return Error(ArgList[i].Loc, "argument is not of expected type '" +
3275 getTypeString(ExpectedTy) + "'");
3276 Args.push_back(ArgList[i].V);
3277 if (ArgList[i].Attrs != Attribute::None)
3278 Attrs.push_back(AttributeWithIndex::get(i+1, ArgList[i].Attrs));
3279 }
3280
3281 if (I != E)
3282 return Error(CallLoc, "not enough parameters specified for call");
3283
3284 if (FnAttrs != Attribute::None)
3285 Attrs.push_back(AttributeWithIndex::get(~0, FnAttrs));
3286
3287 // Finish off the Attributes and check them
3288 AttrListPtr PAL = AttrListPtr::get(Attrs);
3289
3290 InvokeInst *II = InvokeInst::Create(Callee, NormalBB, UnwindBB, Args);
3291 II->setCallingConv(CC);
3292 II->setAttributes(PAL);
3293 Inst = II;
3294 return false;
3295 }
3296
3297 /// ParseResume
3298 /// ::= 'resume' TypeAndValue
ParseResume(Instruction * & Inst,PerFunctionState & PFS)3299 bool LLParser::ParseResume(Instruction *&Inst, PerFunctionState &PFS) {
3300 Value *Exn; LocTy ExnLoc;
3301 if (ParseTypeAndValue(Exn, ExnLoc, PFS))
3302 return true;
3303
3304 ResumeInst *RI = ResumeInst::Create(Exn);
3305 Inst = RI;
3306 return false;
3307 }
3308
3309 //===----------------------------------------------------------------------===//
3310 // Binary Operators.
3311 //===----------------------------------------------------------------------===//
3312
3313 /// ParseArithmetic
3314 /// ::= ArithmeticOps TypeAndValue ',' Value
3315 ///
3316 /// If OperandType is 0, then any FP or integer operand is allowed. If it is 1,
3317 /// then any integer operand is allowed, if it is 2, any fp operand is allowed.
ParseArithmetic(Instruction * & Inst,PerFunctionState & PFS,unsigned Opc,unsigned OperandType)3318 bool LLParser::ParseArithmetic(Instruction *&Inst, PerFunctionState &PFS,
3319 unsigned Opc, unsigned OperandType) {
3320 LocTy Loc; Value *LHS, *RHS;
3321 if (ParseTypeAndValue(LHS, Loc, PFS) ||
3322 ParseToken(lltok::comma, "expected ',' in arithmetic operation") ||
3323 ParseValue(LHS->getType(), RHS, PFS))
3324 return true;
3325
3326 bool Valid;
3327 switch (OperandType) {
3328 default: llvm_unreachable("Unknown operand type!");
3329 case 0: // int or FP.
3330 Valid = LHS->getType()->isIntOrIntVectorTy() ||
3331 LHS->getType()->isFPOrFPVectorTy();
3332 break;
3333 case 1: Valid = LHS->getType()->isIntOrIntVectorTy(); break;
3334 case 2: Valid = LHS->getType()->isFPOrFPVectorTy(); break;
3335 }
3336
3337 if (!Valid)
3338 return Error(Loc, "invalid operand type for instruction");
3339
3340 Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
3341 return false;
3342 }
3343
3344 /// ParseLogical
3345 /// ::= ArithmeticOps TypeAndValue ',' Value {
ParseLogical(Instruction * & Inst,PerFunctionState & PFS,unsigned Opc)3346 bool LLParser::ParseLogical(Instruction *&Inst, PerFunctionState &PFS,
3347 unsigned Opc) {
3348 LocTy Loc; Value *LHS, *RHS;
3349 if (ParseTypeAndValue(LHS, Loc, PFS) ||
3350 ParseToken(lltok::comma, "expected ',' in logical operation") ||
3351 ParseValue(LHS->getType(), RHS, PFS))
3352 return true;
3353
3354 if (!LHS->getType()->isIntOrIntVectorTy())
3355 return Error(Loc,"instruction requires integer or integer vector operands");
3356
3357 Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
3358 return false;
3359 }
3360
3361
3362 /// ParseCompare
3363 /// ::= 'icmp' IPredicates TypeAndValue ',' Value
3364 /// ::= 'fcmp' FPredicates TypeAndValue ',' Value
ParseCompare(Instruction * & Inst,PerFunctionState & PFS,unsigned Opc)3365 bool LLParser::ParseCompare(Instruction *&Inst, PerFunctionState &PFS,
3366 unsigned Opc) {
3367 // Parse the integer/fp comparison predicate.
3368 LocTy Loc;
3369 unsigned Pred;
3370 Value *LHS, *RHS;
3371 if (ParseCmpPredicate(Pred, Opc) ||
3372 ParseTypeAndValue(LHS, Loc, PFS) ||
3373 ParseToken(lltok::comma, "expected ',' after compare value") ||
3374 ParseValue(LHS->getType(), RHS, PFS))
3375 return true;
3376
3377 if (Opc == Instruction::FCmp) {
3378 if (!LHS->getType()->isFPOrFPVectorTy())
3379 return Error(Loc, "fcmp requires floating point operands");
3380 Inst = new FCmpInst(CmpInst::Predicate(Pred), LHS, RHS);
3381 } else {
3382 assert(Opc == Instruction::ICmp && "Unknown opcode for CmpInst!");
3383 if (!LHS->getType()->isIntOrIntVectorTy() &&
3384 !LHS->getType()->getScalarType()->isPointerTy())
3385 return Error(Loc, "icmp requires integer operands");
3386 Inst = new ICmpInst(CmpInst::Predicate(Pred), LHS, RHS);
3387 }
3388 return false;
3389 }
3390
3391 //===----------------------------------------------------------------------===//
3392 // Other Instructions.
3393 //===----------------------------------------------------------------------===//
3394
3395
3396 /// ParseCast
3397 /// ::= CastOpc TypeAndValue 'to' Type
ParseCast(Instruction * & Inst,PerFunctionState & PFS,unsigned Opc)3398 bool LLParser::ParseCast(Instruction *&Inst, PerFunctionState &PFS,
3399 unsigned Opc) {
3400 LocTy Loc;
3401 Value *Op;
3402 Type *DestTy = 0;
3403 if (ParseTypeAndValue(Op, Loc, PFS) ||
3404 ParseToken(lltok::kw_to, "expected 'to' after cast value") ||
3405 ParseType(DestTy))
3406 return true;
3407
3408 if (!CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy)) {
3409 CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy);
3410 return Error(Loc, "invalid cast opcode for cast from '" +
3411 getTypeString(Op->getType()) + "' to '" +
3412 getTypeString(DestTy) + "'");
3413 }
3414 Inst = CastInst::Create((Instruction::CastOps)Opc, Op, DestTy);
3415 return false;
3416 }
3417
3418 /// ParseSelect
3419 /// ::= 'select' TypeAndValue ',' TypeAndValue ',' TypeAndValue
ParseSelect(Instruction * & Inst,PerFunctionState & PFS)3420 bool LLParser::ParseSelect(Instruction *&Inst, PerFunctionState &PFS) {
3421 LocTy Loc;
3422 Value *Op0, *Op1, *Op2;
3423 if (ParseTypeAndValue(Op0, Loc, PFS) ||
3424 ParseToken(lltok::comma, "expected ',' after select condition") ||
3425 ParseTypeAndValue(Op1, PFS) ||
3426 ParseToken(lltok::comma, "expected ',' after select value") ||
3427 ParseTypeAndValue(Op2, PFS))
3428 return true;
3429
3430 if (const char *Reason = SelectInst::areInvalidOperands(Op0, Op1, Op2))
3431 return Error(Loc, Reason);
3432
3433 Inst = SelectInst::Create(Op0, Op1, Op2);
3434 return false;
3435 }
3436
3437 /// ParseVA_Arg
3438 /// ::= 'va_arg' TypeAndValue ',' Type
ParseVA_Arg(Instruction * & Inst,PerFunctionState & PFS)3439 bool LLParser::ParseVA_Arg(Instruction *&Inst, PerFunctionState &PFS) {
3440 Value *Op;
3441 Type *EltTy = 0;
3442 LocTy TypeLoc;
3443 if (ParseTypeAndValue(Op, PFS) ||
3444 ParseToken(lltok::comma, "expected ',' after vaarg operand") ||
3445 ParseType(EltTy, TypeLoc))
3446 return true;
3447
3448 if (!EltTy->isFirstClassType())
3449 return Error(TypeLoc, "va_arg requires operand with first class type");
3450
3451 Inst = new VAArgInst(Op, EltTy);
3452 return false;
3453 }
3454
3455 /// ParseExtractElement
3456 /// ::= 'extractelement' TypeAndValue ',' TypeAndValue
ParseExtractElement(Instruction * & Inst,PerFunctionState & PFS)3457 bool LLParser::ParseExtractElement(Instruction *&Inst, PerFunctionState &PFS) {
3458 LocTy Loc;
3459 Value *Op0, *Op1;
3460 if (ParseTypeAndValue(Op0, Loc, PFS) ||
3461 ParseToken(lltok::comma, "expected ',' after extract value") ||
3462 ParseTypeAndValue(Op1, PFS))
3463 return true;
3464
3465 if (!ExtractElementInst::isValidOperands(Op0, Op1))
3466 return Error(Loc, "invalid extractelement operands");
3467
3468 Inst = ExtractElementInst::Create(Op0, Op1);
3469 return false;
3470 }
3471
3472 /// ParseInsertElement
3473 /// ::= 'insertelement' TypeAndValue ',' TypeAndValue ',' TypeAndValue
ParseInsertElement(Instruction * & Inst,PerFunctionState & PFS)3474 bool LLParser::ParseInsertElement(Instruction *&Inst, PerFunctionState &PFS) {
3475 LocTy Loc;
3476 Value *Op0, *Op1, *Op2;
3477 if (ParseTypeAndValue(Op0, Loc, PFS) ||
3478 ParseToken(lltok::comma, "expected ',' after insertelement value") ||
3479 ParseTypeAndValue(Op1, PFS) ||
3480 ParseToken(lltok::comma, "expected ',' after insertelement value") ||
3481 ParseTypeAndValue(Op2, PFS))
3482 return true;
3483
3484 if (!InsertElementInst::isValidOperands(Op0, Op1, Op2))
3485 return Error(Loc, "invalid insertelement operands");
3486
3487 Inst = InsertElementInst::Create(Op0, Op1, Op2);
3488 return false;
3489 }
3490
3491 /// ParseShuffleVector
3492 /// ::= 'shufflevector' TypeAndValue ',' TypeAndValue ',' TypeAndValue
ParseShuffleVector(Instruction * & Inst,PerFunctionState & PFS)3493 bool LLParser::ParseShuffleVector(Instruction *&Inst, PerFunctionState &PFS) {
3494 LocTy Loc;
3495 Value *Op0, *Op1, *Op2;
3496 if (ParseTypeAndValue(Op0, Loc, PFS) ||
3497 ParseToken(lltok::comma, "expected ',' after shuffle mask") ||
3498 ParseTypeAndValue(Op1, PFS) ||
3499 ParseToken(lltok::comma, "expected ',' after shuffle value") ||
3500 ParseTypeAndValue(Op2, PFS))
3501 return true;
3502
3503 if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2))
3504 return Error(Loc, "invalid shufflevector operands");
3505
3506 Inst = new ShuffleVectorInst(Op0, Op1, Op2);
3507 return false;
3508 }
3509
3510 /// ParsePHI
3511 /// ::= 'phi' Type '[' Value ',' Value ']' (',' '[' Value ',' Value ']')*
ParsePHI(Instruction * & Inst,PerFunctionState & PFS)3512 int LLParser::ParsePHI(Instruction *&Inst, PerFunctionState &PFS) {
3513 Type *Ty = 0; LocTy TypeLoc;
3514 Value *Op0, *Op1;
3515
3516 if (ParseType(Ty, TypeLoc) ||
3517 ParseToken(lltok::lsquare, "expected '[' in phi value list") ||
3518 ParseValue(Ty, Op0, PFS) ||
3519 ParseToken(lltok::comma, "expected ',' after insertelement value") ||
3520 ParseValue(Type::getLabelTy(Context), Op1, PFS) ||
3521 ParseToken(lltok::rsquare, "expected ']' in phi value list"))
3522 return true;
3523
3524 bool AteExtraComma = false;
3525 SmallVector<std::pair<Value*, BasicBlock*>, 16> PHIVals;
3526 while (1) {
3527 PHIVals.push_back(std::make_pair(Op0, cast<BasicBlock>(Op1)));
3528
3529 if (!EatIfPresent(lltok::comma))
3530 break;
3531
3532 if (Lex.getKind() == lltok::MetadataVar) {
3533 AteExtraComma = true;
3534 break;
3535 }
3536
3537 if (ParseToken(lltok::lsquare, "expected '[' in phi value list") ||
3538 ParseValue(Ty, Op0, PFS) ||
3539 ParseToken(lltok::comma, "expected ',' after insertelement value") ||
3540 ParseValue(Type::getLabelTy(Context), Op1, PFS) ||
3541 ParseToken(lltok::rsquare, "expected ']' in phi value list"))
3542 return true;
3543 }
3544
3545 if (!Ty->isFirstClassType())
3546 return Error(TypeLoc, "phi node must have first class type");
3547
3548 PHINode *PN = PHINode::Create(Ty, PHIVals.size());
3549 for (unsigned i = 0, e = PHIVals.size(); i != e; ++i)
3550 PN->addIncoming(PHIVals[i].first, PHIVals[i].second);
3551 Inst = PN;
3552 return AteExtraComma ? InstExtraComma : InstNormal;
3553 }
3554
3555 /// ParseLandingPad
3556 /// ::= 'landingpad' Type 'personality' TypeAndValue 'cleanup'? Clause+
3557 /// Clause
3558 /// ::= 'catch' TypeAndValue
3559 /// ::= 'filter'
3560 /// ::= 'filter' TypeAndValue ( ',' TypeAndValue )*
ParseLandingPad(Instruction * & Inst,PerFunctionState & PFS)3561 bool LLParser::ParseLandingPad(Instruction *&Inst, PerFunctionState &PFS) {
3562 Type *Ty = 0; LocTy TyLoc;
3563 Value *PersFn; LocTy PersFnLoc;
3564
3565 if (ParseType(Ty, TyLoc) ||
3566 ParseToken(lltok::kw_personality, "expected 'personality'") ||
3567 ParseTypeAndValue(PersFn, PersFnLoc, PFS))
3568 return true;
3569
3570 LandingPadInst *LP = LandingPadInst::Create(Ty, PersFn, 0);
3571 LP->setCleanup(EatIfPresent(lltok::kw_cleanup));
3572
3573 while (Lex.getKind() == lltok::kw_catch || Lex.getKind() == lltok::kw_filter){
3574 LandingPadInst::ClauseType CT;
3575 if (EatIfPresent(lltok::kw_catch))
3576 CT = LandingPadInst::Catch;
3577 else if (EatIfPresent(lltok::kw_filter))
3578 CT = LandingPadInst::Filter;
3579 else
3580 return TokError("expected 'catch' or 'filter' clause type");
3581
3582 Value *V; LocTy VLoc;
3583 if (ParseTypeAndValue(V, VLoc, PFS)) {
3584 delete LP;
3585 return true;
3586 }
3587
3588 // A 'catch' type expects a non-array constant. A filter clause expects an
3589 // array constant.
3590 if (CT == LandingPadInst::Catch) {
3591 if (isa<ArrayType>(V->getType()))
3592 Error(VLoc, "'catch' clause has an invalid type");
3593 } else {
3594 if (!isa<ArrayType>(V->getType()))
3595 Error(VLoc, "'filter' clause has an invalid type");
3596 }
3597
3598 LP->addClause(V);
3599 }
3600
3601 Inst = LP;
3602 return false;
3603 }
3604
3605 /// ParseCall
3606 /// ::= 'tail'? 'call' OptionalCallingConv OptionalAttrs Type Value
3607 /// ParameterList OptionalAttrs
ParseCall(Instruction * & Inst,PerFunctionState & PFS,bool isTail)3608 bool LLParser::ParseCall(Instruction *&Inst, PerFunctionState &PFS,
3609 bool isTail) {
3610 Attributes RetAttrs, FnAttrs;
3611 CallingConv::ID CC;
3612 Type *RetType = 0;
3613 LocTy RetTypeLoc;
3614 ValID CalleeID;
3615 SmallVector<ParamInfo, 16> ArgList;
3616 LocTy CallLoc = Lex.getLoc();
3617
3618 if ((isTail && ParseToken(lltok::kw_call, "expected 'tail call'")) ||
3619 ParseOptionalCallingConv(CC) ||
3620 ParseOptionalAttrs(RetAttrs, 1) ||
3621 ParseType(RetType, RetTypeLoc, true /*void allowed*/) ||
3622 ParseValID(CalleeID) ||
3623 ParseParameterList(ArgList, PFS) ||
3624 ParseOptionalAttrs(FnAttrs, 2))
3625 return true;
3626
3627 // If RetType is a non-function pointer type, then this is the short syntax
3628 // for the call, which means that RetType is just the return type. Infer the
3629 // rest of the function argument types from the arguments that are present.
3630 PointerType *PFTy = 0;
3631 FunctionType *Ty = 0;
3632 if (!(PFTy = dyn_cast<PointerType>(RetType)) ||
3633 !(Ty = dyn_cast<FunctionType>(PFTy->getElementType()))) {
3634 // Pull out the types of all of the arguments...
3635 std::vector<Type*> ParamTypes;
3636 for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
3637 ParamTypes.push_back(ArgList[i].V->getType());
3638
3639 if (!FunctionType::isValidReturnType(RetType))
3640 return Error(RetTypeLoc, "Invalid result type for LLVM function");
3641
3642 Ty = FunctionType::get(RetType, ParamTypes, false);
3643 PFTy = PointerType::getUnqual(Ty);
3644 }
3645
3646 // Look up the callee.
3647 Value *Callee;
3648 if (ConvertValIDToValue(PFTy, CalleeID, Callee, &PFS)) return true;
3649
3650 // Set up the Attributes for the function.
3651 SmallVector<AttributeWithIndex, 8> Attrs;
3652 if (RetAttrs != Attribute::None)
3653 Attrs.push_back(AttributeWithIndex::get(0, RetAttrs));
3654
3655 SmallVector<Value*, 8> Args;
3656
3657 // Loop through FunctionType's arguments and ensure they are specified
3658 // correctly. Also, gather any parameter attributes.
3659 FunctionType::param_iterator I = Ty->param_begin();
3660 FunctionType::param_iterator E = Ty->param_end();
3661 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
3662 Type *ExpectedTy = 0;
3663 if (I != E) {
3664 ExpectedTy = *I++;
3665 } else if (!Ty->isVarArg()) {
3666 return Error(ArgList[i].Loc, "too many arguments specified");
3667 }
3668
3669 if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
3670 return Error(ArgList[i].Loc, "argument is not of expected type '" +
3671 getTypeString(ExpectedTy) + "'");
3672 Args.push_back(ArgList[i].V);
3673 if (ArgList[i].Attrs != Attribute::None)
3674 Attrs.push_back(AttributeWithIndex::get(i+1, ArgList[i].Attrs));
3675 }
3676
3677 if (I != E)
3678 return Error(CallLoc, "not enough parameters specified for call");
3679
3680 if (FnAttrs != Attribute::None)
3681 Attrs.push_back(AttributeWithIndex::get(~0, FnAttrs));
3682
3683 // Finish off the Attributes and check them
3684 AttrListPtr PAL = AttrListPtr::get(Attrs);
3685
3686 CallInst *CI = CallInst::Create(Callee, Args);
3687 CI->setTailCall(isTail);
3688 CI->setCallingConv(CC);
3689 CI->setAttributes(PAL);
3690 Inst = CI;
3691 return false;
3692 }
3693
3694 //===----------------------------------------------------------------------===//
3695 // Memory Instructions.
3696 //===----------------------------------------------------------------------===//
3697
3698 /// ParseAlloc
3699 /// ::= 'alloca' Type (',' TypeAndValue)? (',' OptionalInfo)?
ParseAlloc(Instruction * & Inst,PerFunctionState & PFS)3700 int LLParser::ParseAlloc(Instruction *&Inst, PerFunctionState &PFS) {
3701 Value *Size = 0;
3702 LocTy SizeLoc;
3703 unsigned Alignment = 0;
3704 Type *Ty = 0;
3705 if (ParseType(Ty)) return true;
3706
3707 bool AteExtraComma = false;
3708 if (EatIfPresent(lltok::comma)) {
3709 if (Lex.getKind() == lltok::kw_align) {
3710 if (ParseOptionalAlignment(Alignment)) return true;
3711 } else if (Lex.getKind() == lltok::MetadataVar) {
3712 AteExtraComma = true;
3713 } else {
3714 if (ParseTypeAndValue(Size, SizeLoc, PFS) ||
3715 ParseOptionalCommaAlign(Alignment, AteExtraComma))
3716 return true;
3717 }
3718 }
3719
3720 if (Size && !Size->getType()->isIntegerTy())
3721 return Error(SizeLoc, "element count must have integer type");
3722
3723 Inst = new AllocaInst(Ty, Size, Alignment);
3724 return AteExtraComma ? InstExtraComma : InstNormal;
3725 }
3726
3727 /// ParseLoad
3728 /// ::= 'load' 'volatile'? TypeAndValue (',' 'align' i32)?
3729 /// ::= 'load' 'atomic' 'volatile'? TypeAndValue
3730 /// 'singlethread'? AtomicOrdering (',' 'align' i32)?
ParseLoad(Instruction * & Inst,PerFunctionState & PFS)3731 int LLParser::ParseLoad(Instruction *&Inst, PerFunctionState &PFS) {
3732 Value *Val; LocTy Loc;
3733 unsigned Alignment = 0;
3734 bool AteExtraComma = false;
3735 bool isAtomic = false;
3736 AtomicOrdering Ordering = NotAtomic;
3737 SynchronizationScope Scope = CrossThread;
3738
3739 if (Lex.getKind() == lltok::kw_atomic) {
3740 isAtomic = true;
3741 Lex.Lex();
3742 }
3743
3744 bool isVolatile = false;
3745 if (Lex.getKind() == lltok::kw_volatile) {
3746 isVolatile = true;
3747 Lex.Lex();
3748 }
3749
3750 if (ParseTypeAndValue(Val, Loc, PFS) ||
3751 ParseScopeAndOrdering(isAtomic, Scope, Ordering) ||
3752 ParseOptionalCommaAlign(Alignment, AteExtraComma))
3753 return true;
3754
3755 if (!Val->getType()->isPointerTy() ||
3756 !cast<PointerType>(Val->getType())->getElementType()->isFirstClassType())
3757 return Error(Loc, "load operand must be a pointer to a first class type");
3758 if (isAtomic && !Alignment)
3759 return Error(Loc, "atomic load must have explicit non-zero alignment");
3760 if (Ordering == Release || Ordering == AcquireRelease)
3761 return Error(Loc, "atomic load cannot use Release ordering");
3762
3763 Inst = new LoadInst(Val, "", isVolatile, Alignment, Ordering, Scope);
3764 return AteExtraComma ? InstExtraComma : InstNormal;
3765 }
3766
3767 /// ParseStore
3768
3769 /// ::= 'store' 'volatile'? TypeAndValue ',' TypeAndValue (',' 'align' i32)?
3770 /// ::= 'store' 'atomic' 'volatile'? TypeAndValue ',' TypeAndValue
3771 /// 'singlethread'? AtomicOrdering (',' 'align' i32)?
ParseStore(Instruction * & Inst,PerFunctionState & PFS)3772 int LLParser::ParseStore(Instruction *&Inst, PerFunctionState &PFS) {
3773 Value *Val, *Ptr; LocTy Loc, PtrLoc;
3774 unsigned Alignment = 0;
3775 bool AteExtraComma = false;
3776 bool isAtomic = false;
3777 AtomicOrdering Ordering = NotAtomic;
3778 SynchronizationScope Scope = CrossThread;
3779
3780 if (Lex.getKind() == lltok::kw_atomic) {
3781 isAtomic = true;
3782 Lex.Lex();
3783 }
3784
3785 bool isVolatile = false;
3786 if (Lex.getKind() == lltok::kw_volatile) {
3787 isVolatile = true;
3788 Lex.Lex();
3789 }
3790
3791 if (ParseTypeAndValue(Val, Loc, PFS) ||
3792 ParseToken(lltok::comma, "expected ',' after store operand") ||
3793 ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
3794 ParseScopeAndOrdering(isAtomic, Scope, Ordering) ||
3795 ParseOptionalCommaAlign(Alignment, AteExtraComma))
3796 return true;
3797
3798 if (!Ptr->getType()->isPointerTy())
3799 return Error(PtrLoc, "store operand must be a pointer");
3800 if (!Val->getType()->isFirstClassType())
3801 return Error(Loc, "store operand must be a first class value");
3802 if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType())
3803 return Error(Loc, "stored value and pointer type do not match");
3804 if (isAtomic && !Alignment)
3805 return Error(Loc, "atomic store must have explicit non-zero alignment");
3806 if (Ordering == Acquire || Ordering == AcquireRelease)
3807 return Error(Loc, "atomic store cannot use Acquire ordering");
3808
3809 Inst = new StoreInst(Val, Ptr, isVolatile, Alignment, Ordering, Scope);
3810 return AteExtraComma ? InstExtraComma : InstNormal;
3811 }
3812
3813 /// ParseCmpXchg
3814 /// ::= 'cmpxchg' 'volatile'? TypeAndValue ',' TypeAndValue ',' TypeAndValue
3815 /// 'singlethread'? AtomicOrdering
ParseCmpXchg(Instruction * & Inst,PerFunctionState & PFS)3816 int LLParser::ParseCmpXchg(Instruction *&Inst, PerFunctionState &PFS) {
3817 Value *Ptr, *Cmp, *New; LocTy PtrLoc, CmpLoc, NewLoc;
3818 bool AteExtraComma = false;
3819 AtomicOrdering Ordering = NotAtomic;
3820 SynchronizationScope Scope = CrossThread;
3821 bool isVolatile = false;
3822
3823 if (EatIfPresent(lltok::kw_volatile))
3824 isVolatile = true;
3825
3826 if (ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
3827 ParseToken(lltok::comma, "expected ',' after cmpxchg address") ||
3828 ParseTypeAndValue(Cmp, CmpLoc, PFS) ||
3829 ParseToken(lltok::comma, "expected ',' after cmpxchg cmp operand") ||
3830 ParseTypeAndValue(New, NewLoc, PFS) ||
3831 ParseScopeAndOrdering(true /*Always atomic*/, Scope, Ordering))
3832 return true;
3833
3834 if (Ordering == Unordered)
3835 return TokError("cmpxchg cannot be unordered");
3836 if (!Ptr->getType()->isPointerTy())
3837 return Error(PtrLoc, "cmpxchg operand must be a pointer");
3838 if (cast<PointerType>(Ptr->getType())->getElementType() != Cmp->getType())
3839 return Error(CmpLoc, "compare value and pointer type do not match");
3840 if (cast<PointerType>(Ptr->getType())->getElementType() != New->getType())
3841 return Error(NewLoc, "new value and pointer type do not match");
3842 if (!New->getType()->isIntegerTy())
3843 return Error(NewLoc, "cmpxchg operand must be an integer");
3844 unsigned Size = New->getType()->getPrimitiveSizeInBits();
3845 if (Size < 8 || (Size & (Size - 1)))
3846 return Error(NewLoc, "cmpxchg operand must be power-of-two byte-sized"
3847 " integer");
3848
3849 AtomicCmpXchgInst *CXI =
3850 new AtomicCmpXchgInst(Ptr, Cmp, New, Ordering, Scope);
3851 CXI->setVolatile(isVolatile);
3852 Inst = CXI;
3853 return AteExtraComma ? InstExtraComma : InstNormal;
3854 }
3855
3856 /// ParseAtomicRMW
3857 /// ::= 'atomicrmw' 'volatile'? BinOp TypeAndValue ',' TypeAndValue
3858 /// 'singlethread'? AtomicOrdering
ParseAtomicRMW(Instruction * & Inst,PerFunctionState & PFS)3859 int LLParser::ParseAtomicRMW(Instruction *&Inst, PerFunctionState &PFS) {
3860 Value *Ptr, *Val; LocTy PtrLoc, ValLoc;
3861 bool AteExtraComma = false;
3862 AtomicOrdering Ordering = NotAtomic;
3863 SynchronizationScope Scope = CrossThread;
3864 bool isVolatile = false;
3865 AtomicRMWInst::BinOp Operation;
3866
3867 if (EatIfPresent(lltok::kw_volatile))
3868 isVolatile = true;
3869
3870 switch (Lex.getKind()) {
3871 default: return TokError("expected binary operation in atomicrmw");
3872 case lltok::kw_xchg: Operation = AtomicRMWInst::Xchg; break;
3873 case lltok::kw_add: Operation = AtomicRMWInst::Add; break;
3874 case lltok::kw_sub: Operation = AtomicRMWInst::Sub; break;
3875 case lltok::kw_and: Operation = AtomicRMWInst::And; break;
3876 case lltok::kw_nand: Operation = AtomicRMWInst::Nand; break;
3877 case lltok::kw_or: Operation = AtomicRMWInst::Or; break;
3878 case lltok::kw_xor: Operation = AtomicRMWInst::Xor; break;
3879 case lltok::kw_max: Operation = AtomicRMWInst::Max; break;
3880 case lltok::kw_min: Operation = AtomicRMWInst::Min; break;
3881 case lltok::kw_umax: Operation = AtomicRMWInst::UMax; break;
3882 case lltok::kw_umin: Operation = AtomicRMWInst::UMin; break;
3883 }
3884 Lex.Lex(); // Eat the operation.
3885
3886 if (ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
3887 ParseToken(lltok::comma, "expected ',' after atomicrmw address") ||
3888 ParseTypeAndValue(Val, ValLoc, PFS) ||
3889 ParseScopeAndOrdering(true /*Always atomic*/, Scope, Ordering))
3890 return true;
3891
3892 if (Ordering == Unordered)
3893 return TokError("atomicrmw cannot be unordered");
3894 if (!Ptr->getType()->isPointerTy())
3895 return Error(PtrLoc, "atomicrmw operand must be a pointer");
3896 if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType())
3897 return Error(ValLoc, "atomicrmw value and pointer type do not match");
3898 if (!Val->getType()->isIntegerTy())
3899 return Error(ValLoc, "atomicrmw operand must be an integer");
3900 unsigned Size = Val->getType()->getPrimitiveSizeInBits();
3901 if (Size < 8 || (Size & (Size - 1)))
3902 return Error(ValLoc, "atomicrmw operand must be power-of-two byte-sized"
3903 " integer");
3904
3905 AtomicRMWInst *RMWI =
3906 new AtomicRMWInst(Operation, Ptr, Val, Ordering, Scope);
3907 RMWI->setVolatile(isVolatile);
3908 Inst = RMWI;
3909 return AteExtraComma ? InstExtraComma : InstNormal;
3910 }
3911
3912 /// ParseFence
3913 /// ::= 'fence' 'singlethread'? AtomicOrdering
ParseFence(Instruction * & Inst,PerFunctionState & PFS)3914 int LLParser::ParseFence(Instruction *&Inst, PerFunctionState &PFS) {
3915 AtomicOrdering Ordering = NotAtomic;
3916 SynchronizationScope Scope = CrossThread;
3917 if (ParseScopeAndOrdering(true /*Always atomic*/, Scope, Ordering))
3918 return true;
3919
3920 if (Ordering == Unordered)
3921 return TokError("fence cannot be unordered");
3922 if (Ordering == Monotonic)
3923 return TokError("fence cannot be monotonic");
3924
3925 Inst = new FenceInst(Context, Ordering, Scope);
3926 return InstNormal;
3927 }
3928
3929 /// ParseGetElementPtr
3930 /// ::= 'getelementptr' 'inbounds'? TypeAndValue (',' TypeAndValue)*
ParseGetElementPtr(Instruction * & Inst,PerFunctionState & PFS)3931 int LLParser::ParseGetElementPtr(Instruction *&Inst, PerFunctionState &PFS) {
3932 Value *Ptr = 0;
3933 Value *Val = 0;
3934 LocTy Loc, EltLoc;
3935
3936 bool InBounds = EatIfPresent(lltok::kw_inbounds);
3937
3938 if (ParseTypeAndValue(Ptr, Loc, PFS)) return true;
3939
3940 if (!Ptr->getType()->getScalarType()->isPointerTy())
3941 return Error(Loc, "base of getelementptr must be a pointer");
3942
3943 SmallVector<Value*, 16> Indices;
3944 bool AteExtraComma = false;
3945 while (EatIfPresent(lltok::comma)) {
3946 if (Lex.getKind() == lltok::MetadataVar) {
3947 AteExtraComma = true;
3948 break;
3949 }
3950 if (ParseTypeAndValue(Val, EltLoc, PFS)) return true;
3951 if (!Val->getType()->getScalarType()->isIntegerTy())
3952 return Error(EltLoc, "getelementptr index must be an integer");
3953 if (Val->getType()->isVectorTy() != Ptr->getType()->isVectorTy())
3954 return Error(EltLoc, "getelementptr index type missmatch");
3955 if (Val->getType()->isVectorTy()) {
3956 unsigned ValNumEl = cast<VectorType>(Val->getType())->getNumElements();
3957 unsigned PtrNumEl = cast<VectorType>(Ptr->getType())->getNumElements();
3958 if (ValNumEl != PtrNumEl)
3959 return Error(EltLoc,
3960 "getelementptr vector index has a wrong number of elements");
3961 }
3962 Indices.push_back(Val);
3963 }
3964
3965 if (Val && Val->getType()->isVectorTy() && Indices.size() != 1)
3966 return Error(EltLoc, "vector getelementptrs must have a single index");
3967
3968 if (!GetElementPtrInst::getIndexedType(Ptr->getType(), Indices))
3969 return Error(Loc, "invalid getelementptr indices");
3970 Inst = GetElementPtrInst::Create(Ptr, Indices);
3971 if (InBounds)
3972 cast<GetElementPtrInst>(Inst)->setIsInBounds(true);
3973 return AteExtraComma ? InstExtraComma : InstNormal;
3974 }
3975
3976 /// ParseExtractValue
3977 /// ::= 'extractvalue' TypeAndValue (',' uint32)+
ParseExtractValue(Instruction * & Inst,PerFunctionState & PFS)3978 int LLParser::ParseExtractValue(Instruction *&Inst, PerFunctionState &PFS) {
3979 Value *Val; LocTy Loc;
3980 SmallVector<unsigned, 4> Indices;
3981 bool AteExtraComma;
3982 if (ParseTypeAndValue(Val, Loc, PFS) ||
3983 ParseIndexList(Indices, AteExtraComma))
3984 return true;
3985
3986 if (!Val->getType()->isAggregateType())
3987 return Error(Loc, "extractvalue operand must be aggregate type");
3988
3989 if (!ExtractValueInst::getIndexedType(Val->getType(), Indices))
3990 return Error(Loc, "invalid indices for extractvalue");
3991 Inst = ExtractValueInst::Create(Val, Indices);
3992 return AteExtraComma ? InstExtraComma : InstNormal;
3993 }
3994
3995 /// ParseInsertValue
3996 /// ::= 'insertvalue' TypeAndValue ',' TypeAndValue (',' uint32)+
ParseInsertValue(Instruction * & Inst,PerFunctionState & PFS)3997 int LLParser::ParseInsertValue(Instruction *&Inst, PerFunctionState &PFS) {
3998 Value *Val0, *Val1; LocTy Loc0, Loc1;
3999 SmallVector<unsigned, 4> Indices;
4000 bool AteExtraComma;
4001 if (ParseTypeAndValue(Val0, Loc0, PFS) ||
4002 ParseToken(lltok::comma, "expected comma after insertvalue operand") ||
4003 ParseTypeAndValue(Val1, Loc1, PFS) ||
4004 ParseIndexList(Indices, AteExtraComma))
4005 return true;
4006
4007 if (!Val0->getType()->isAggregateType())
4008 return Error(Loc0, "insertvalue operand must be aggregate type");
4009
4010 if (!ExtractValueInst::getIndexedType(Val0->getType(), Indices))
4011 return Error(Loc0, "invalid indices for insertvalue");
4012 Inst = InsertValueInst::Create(Val0, Val1, Indices);
4013 return AteExtraComma ? InstExtraComma : InstNormal;
4014 }
4015
4016 //===----------------------------------------------------------------------===//
4017 // Embedded metadata.
4018 //===----------------------------------------------------------------------===//
4019
4020 /// ParseMDNodeVector
4021 /// ::= Element (',' Element)*
4022 /// Element
4023 /// ::= 'null' | TypeAndValue
ParseMDNodeVector(SmallVectorImpl<Value * > & Elts,PerFunctionState * PFS)4024 bool LLParser::ParseMDNodeVector(SmallVectorImpl<Value*> &Elts,
4025 PerFunctionState *PFS) {
4026 // Check for an empty list.
4027 if (Lex.getKind() == lltok::rbrace)
4028 return false;
4029
4030 do {
4031 // Null is a special case since it is typeless.
4032 if (EatIfPresent(lltok::kw_null)) {
4033 Elts.push_back(0);
4034 continue;
4035 }
4036
4037 Value *V = 0;
4038 if (ParseTypeAndValue(V, PFS)) return true;
4039 Elts.push_back(V);
4040 } while (EatIfPresent(lltok::comma));
4041
4042 return false;
4043 }
4044