1 // SValBuilder.cpp - Basic class for all SValBuilder implementations -*- C++ -*-
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines SValBuilder, the base class for all (complete) SValBuilder
11 // implementations.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "clang/AST/ExprCXX.h"
16 #include "clang/AST/DeclCXX.h"
17 #include "clang/StaticAnalyzer/Core/PathSensitive/MemRegion.h"
18 #include "clang/StaticAnalyzer/Core/PathSensitive/SVals.h"
19 #include "clang/StaticAnalyzer/Core/PathSensitive/SValBuilder.h"
20 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
21 #include "clang/StaticAnalyzer/Core/PathSensitive/BasicValueFactory.h"
22
23 using namespace clang;
24 using namespace ento;
25
26 //===----------------------------------------------------------------------===//
27 // Basic SVal creation.
28 //===----------------------------------------------------------------------===//
29
anchor()30 void SValBuilder::anchor() { }
31
makeZeroVal(QualType type)32 DefinedOrUnknownSVal SValBuilder::makeZeroVal(QualType type) {
33 if (Loc::isLocType(type))
34 return makeNull();
35
36 if (type->isIntegerType())
37 return makeIntVal(0, type);
38
39 // FIXME: Handle floats.
40 // FIXME: Handle structs.
41 return UnknownVal();
42 }
43
makeNonLoc(const SymExpr * lhs,BinaryOperator::Opcode op,const llvm::APSInt & rhs,QualType type)44 NonLoc SValBuilder::makeNonLoc(const SymExpr *lhs, BinaryOperator::Opcode op,
45 const llvm::APSInt& rhs, QualType type) {
46 // The Environment ensures we always get a persistent APSInt in
47 // BasicValueFactory, so we don't need to get the APSInt from
48 // BasicValueFactory again.
49 assert(lhs);
50 assert(!Loc::isLocType(type));
51 return nonloc::SymbolVal(SymMgr.getSymIntExpr(lhs, op, rhs, type));
52 }
53
makeNonLoc(const llvm::APSInt & lhs,BinaryOperator::Opcode op,const SymExpr * rhs,QualType type)54 NonLoc SValBuilder::makeNonLoc(const llvm::APSInt& lhs,
55 BinaryOperator::Opcode op, const SymExpr *rhs,
56 QualType type) {
57 assert(rhs);
58 assert(!Loc::isLocType(type));
59 return nonloc::SymbolVal(SymMgr.getIntSymExpr(lhs, op, rhs, type));
60 }
61
makeNonLoc(const SymExpr * lhs,BinaryOperator::Opcode op,const SymExpr * rhs,QualType type)62 NonLoc SValBuilder::makeNonLoc(const SymExpr *lhs, BinaryOperator::Opcode op,
63 const SymExpr *rhs, QualType type) {
64 assert(lhs && rhs);
65 assert(!Loc::isLocType(type));
66 return nonloc::SymbolVal(SymMgr.getSymSymExpr(lhs, op, rhs, type));
67 }
68
makeNonLoc(const SymExpr * operand,QualType fromTy,QualType toTy)69 NonLoc SValBuilder::makeNonLoc(const SymExpr *operand,
70 QualType fromTy, QualType toTy) {
71 assert(operand);
72 assert(!Loc::isLocType(toTy));
73 return nonloc::SymbolVal(SymMgr.getCastSymbol(operand, fromTy, toTy));
74 }
75
convertToArrayIndex(SVal val)76 SVal SValBuilder::convertToArrayIndex(SVal val) {
77 if (val.isUnknownOrUndef())
78 return val;
79
80 // Common case: we have an appropriately sized integer.
81 if (nonloc::ConcreteInt* CI = dyn_cast<nonloc::ConcreteInt>(&val)) {
82 const llvm::APSInt& I = CI->getValue();
83 if (I.getBitWidth() == ArrayIndexWidth && I.isSigned())
84 return val;
85 }
86
87 return evalCastFromNonLoc(cast<NonLoc>(val), ArrayIndexTy);
88 }
89
makeBoolVal(const CXXBoolLiteralExpr * boolean)90 nonloc::ConcreteInt SValBuilder::makeBoolVal(const CXXBoolLiteralExpr *boolean){
91 return makeTruthVal(boolean->getValue());
92 }
93
94 DefinedOrUnknownSVal
getRegionValueSymbolVal(const TypedValueRegion * region)95 SValBuilder::getRegionValueSymbolVal(const TypedValueRegion* region) {
96 QualType T = region->getValueType();
97
98 if (!SymbolManager::canSymbolicate(T))
99 return UnknownVal();
100
101 SymbolRef sym = SymMgr.getRegionValueSymbol(region);
102
103 if (Loc::isLocType(T))
104 return loc::MemRegionVal(MemMgr.getSymbolicRegion(sym));
105
106 return nonloc::SymbolVal(sym);
107 }
108
conjureSymbolVal(const void * symbolTag,const Expr * expr,const LocationContext * LCtx,unsigned count)109 DefinedOrUnknownSVal SValBuilder::conjureSymbolVal(const void *symbolTag,
110 const Expr *expr,
111 const LocationContext *LCtx,
112 unsigned count) {
113 QualType T = expr->getType();
114 return conjureSymbolVal(symbolTag, expr, LCtx, T, count);
115 }
116
conjureSymbolVal(const void * symbolTag,const Expr * expr,const LocationContext * LCtx,QualType type,unsigned count)117 DefinedOrUnknownSVal SValBuilder::conjureSymbolVal(const void *symbolTag,
118 const Expr *expr,
119 const LocationContext *LCtx,
120 QualType type,
121 unsigned count) {
122 if (!SymbolManager::canSymbolicate(type))
123 return UnknownVal();
124
125 SymbolRef sym = SymMgr.conjureSymbol(expr, LCtx, type, count, symbolTag);
126
127 if (Loc::isLocType(type))
128 return loc::MemRegionVal(MemMgr.getSymbolicRegion(sym));
129
130 return nonloc::SymbolVal(sym);
131 }
132
133
conjureSymbolVal(const Stmt * stmt,const LocationContext * LCtx,QualType type,unsigned visitCount)134 DefinedOrUnknownSVal SValBuilder::conjureSymbolVal(const Stmt *stmt,
135 const LocationContext *LCtx,
136 QualType type,
137 unsigned visitCount) {
138 if (!SymbolManager::canSymbolicate(type))
139 return UnknownVal();
140
141 SymbolRef sym = SymMgr.conjureSymbol(stmt, LCtx, type, visitCount);
142
143 if (Loc::isLocType(type))
144 return loc::MemRegionVal(MemMgr.getSymbolicRegion(sym));
145
146 return nonloc::SymbolVal(sym);
147 }
148
149 DefinedOrUnknownSVal
getConjuredHeapSymbolVal(const Expr * E,const LocationContext * LCtx,unsigned VisitCount)150 SValBuilder::getConjuredHeapSymbolVal(const Expr *E,
151 const LocationContext *LCtx,
152 unsigned VisitCount) {
153 QualType T = E->getType();
154 assert(Loc::isLocType(T));
155 assert(SymbolManager::canSymbolicate(T));
156
157 SymbolRef sym = SymMgr.conjureSymbol(E, LCtx, T, VisitCount);
158 return loc::MemRegionVal(MemMgr.getSymbolicHeapRegion(sym));
159 }
160
getMetadataSymbolVal(const void * symbolTag,const MemRegion * region,const Expr * expr,QualType type,unsigned count)161 DefinedSVal SValBuilder::getMetadataSymbolVal(const void *symbolTag,
162 const MemRegion *region,
163 const Expr *expr, QualType type,
164 unsigned count) {
165 assert(SymbolManager::canSymbolicate(type) && "Invalid metadata symbol type");
166
167 SymbolRef sym =
168 SymMgr.getMetadataSymbol(region, expr, type, count, symbolTag);
169
170 if (Loc::isLocType(type))
171 return loc::MemRegionVal(MemMgr.getSymbolicRegion(sym));
172
173 return nonloc::SymbolVal(sym);
174 }
175
176 DefinedOrUnknownSVal
getDerivedRegionValueSymbolVal(SymbolRef parentSymbol,const TypedValueRegion * region)177 SValBuilder::getDerivedRegionValueSymbolVal(SymbolRef parentSymbol,
178 const TypedValueRegion *region) {
179 QualType T = region->getValueType();
180
181 if (!SymbolManager::canSymbolicate(T))
182 return UnknownVal();
183
184 SymbolRef sym = SymMgr.getDerivedSymbol(parentSymbol, region);
185
186 if (Loc::isLocType(T))
187 return loc::MemRegionVal(MemMgr.getSymbolicRegion(sym));
188
189 return nonloc::SymbolVal(sym);
190 }
191
getFunctionPointer(const FunctionDecl * func)192 DefinedSVal SValBuilder::getFunctionPointer(const FunctionDecl *func) {
193 return loc::MemRegionVal(MemMgr.getFunctionTextRegion(func));
194 }
195
getBlockPointer(const BlockDecl * block,CanQualType locTy,const LocationContext * locContext)196 DefinedSVal SValBuilder::getBlockPointer(const BlockDecl *block,
197 CanQualType locTy,
198 const LocationContext *locContext) {
199 const BlockTextRegion *BC =
200 MemMgr.getBlockTextRegion(block, locTy, locContext->getAnalysisDeclContext());
201 const BlockDataRegion *BD = MemMgr.getBlockDataRegion(BC, locContext);
202 return loc::MemRegionVal(BD);
203 }
204
205 /// Return a memory region for the 'this' object reference.
getCXXThis(const CXXMethodDecl * D,const StackFrameContext * SFC)206 loc::MemRegionVal SValBuilder::getCXXThis(const CXXMethodDecl *D,
207 const StackFrameContext *SFC) {
208 return loc::MemRegionVal(getRegionManager().
209 getCXXThisRegion(D->getThisType(getContext()), SFC));
210 }
211
212 /// Return a memory region for the 'this' object reference.
getCXXThis(const CXXRecordDecl * D,const StackFrameContext * SFC)213 loc::MemRegionVal SValBuilder::getCXXThis(const CXXRecordDecl *D,
214 const StackFrameContext *SFC) {
215 const Type *T = D->getTypeForDecl();
216 QualType PT = getContext().getPointerType(QualType(T, 0));
217 return loc::MemRegionVal(getRegionManager().getCXXThisRegion(PT, SFC));
218 }
219
220 //===----------------------------------------------------------------------===//
221
makeSymExprValNN(ProgramStateRef State,BinaryOperator::Opcode Op,NonLoc LHS,NonLoc RHS,QualType ResultTy)222 SVal SValBuilder::makeSymExprValNN(ProgramStateRef State,
223 BinaryOperator::Opcode Op,
224 NonLoc LHS, NonLoc RHS,
225 QualType ResultTy) {
226 if (!State->isTainted(RHS) && !State->isTainted(LHS))
227 return UnknownVal();
228
229 const SymExpr *symLHS = LHS.getAsSymExpr();
230 const SymExpr *symRHS = RHS.getAsSymExpr();
231 // TODO: When the Max Complexity is reached, we should conjure a symbol
232 // instead of generating an Unknown value and propagate the taint info to it.
233 const unsigned MaxComp = 10000; // 100000 28X
234
235 if (symLHS && symRHS &&
236 (symLHS->computeComplexity() + symRHS->computeComplexity()) < MaxComp)
237 return makeNonLoc(symLHS, Op, symRHS, ResultTy);
238
239 if (symLHS && symLHS->computeComplexity() < MaxComp)
240 if (const nonloc::ConcreteInt *rInt = dyn_cast<nonloc::ConcreteInt>(&RHS))
241 return makeNonLoc(symLHS, Op, rInt->getValue(), ResultTy);
242
243 if (symRHS && symRHS->computeComplexity() < MaxComp)
244 if (const nonloc::ConcreteInt *lInt = dyn_cast<nonloc::ConcreteInt>(&LHS))
245 return makeNonLoc(lInt->getValue(), Op, symRHS, ResultTy);
246
247 return UnknownVal();
248 }
249
250
evalBinOp(ProgramStateRef state,BinaryOperator::Opcode op,SVal lhs,SVal rhs,QualType type)251 SVal SValBuilder::evalBinOp(ProgramStateRef state, BinaryOperator::Opcode op,
252 SVal lhs, SVal rhs, QualType type) {
253
254 if (lhs.isUndef() || rhs.isUndef())
255 return UndefinedVal();
256
257 if (lhs.isUnknown() || rhs.isUnknown())
258 return UnknownVal();
259
260 if (isa<Loc>(lhs)) {
261 if (isa<Loc>(rhs))
262 return evalBinOpLL(state, op, cast<Loc>(lhs), cast<Loc>(rhs), type);
263
264 return evalBinOpLN(state, op, cast<Loc>(lhs), cast<NonLoc>(rhs), type);
265 }
266
267 if (isa<Loc>(rhs)) {
268 // Support pointer arithmetic where the addend is on the left
269 // and the pointer on the right.
270 assert(op == BO_Add);
271
272 // Commute the operands.
273 return evalBinOpLN(state, op, cast<Loc>(rhs), cast<NonLoc>(lhs), type);
274 }
275
276 return evalBinOpNN(state, op, cast<NonLoc>(lhs), cast<NonLoc>(rhs), type);
277 }
278
evalEQ(ProgramStateRef state,DefinedOrUnknownSVal lhs,DefinedOrUnknownSVal rhs)279 DefinedOrUnknownSVal SValBuilder::evalEQ(ProgramStateRef state,
280 DefinedOrUnknownSVal lhs,
281 DefinedOrUnknownSVal rhs) {
282 return cast<DefinedOrUnknownSVal>(evalBinOp(state, BO_EQ, lhs, rhs,
283 Context.IntTy));
284 }
285
286 /// Recursively check if the pointer types are equal modulo const, volatile,
287 /// and restrict qualifiers. Assumes the input types are canonical.
288 /// TODO: This is based off of code in SemaCast; can we reuse it.
haveSimilarTypes(ASTContext & Context,QualType T1,QualType T2)289 static bool haveSimilarTypes(ASTContext &Context, QualType T1,
290 QualType T2) {
291 while (Context.UnwrapSimilarPointerTypes(T1, T2)) {
292 Qualifiers Quals1, Quals2;
293 T1 = Context.getUnqualifiedArrayType(T1, Quals1);
294 T2 = Context.getUnqualifiedArrayType(T2, Quals2);
295
296 // Make sure that non cvr-qualifiers the other qualifiers (e.g., address
297 // spaces) are identical.
298 Quals1.removeCVRQualifiers();
299 Quals2.removeCVRQualifiers();
300 if (Quals1 != Quals2)
301 return false;
302 }
303
304 if (T1 != T2)
305 return false;
306
307 return true;
308 }
309
310 // FIXME: should rewrite according to the cast kind.
evalCast(SVal val,QualType castTy,QualType originalTy)311 SVal SValBuilder::evalCast(SVal val, QualType castTy, QualType originalTy) {
312 castTy = Context.getCanonicalType(castTy);
313 originalTy = Context.getCanonicalType(originalTy);
314 if (val.isUnknownOrUndef() || castTy == originalTy)
315 return val;
316
317 // For const casts, just propagate the value.
318 if (!castTy->isVariableArrayType() && !originalTy->isVariableArrayType())
319 if (haveSimilarTypes(Context, Context.getPointerType(castTy),
320 Context.getPointerType(originalTy)))
321 return val;
322
323 // Check for casts from pointers to integers.
324 if (castTy->isIntegerType() && Loc::isLocType(originalTy))
325 return evalCastFromLoc(cast<Loc>(val), castTy);
326
327 // Check for casts from integers to pointers.
328 if (Loc::isLocType(castTy) && originalTy->isIntegerType()) {
329 if (nonloc::LocAsInteger *LV = dyn_cast<nonloc::LocAsInteger>(&val)) {
330 if (const MemRegion *R = LV->getLoc().getAsRegion()) {
331 StoreManager &storeMgr = StateMgr.getStoreManager();
332 R = storeMgr.castRegion(R, castTy);
333 return R ? SVal(loc::MemRegionVal(R)) : UnknownVal();
334 }
335 return LV->getLoc();
336 }
337 return dispatchCast(val, castTy);
338 }
339
340 // Just pass through function and block pointers.
341 if (originalTy->isBlockPointerType() || originalTy->isFunctionPointerType()) {
342 assert(Loc::isLocType(castTy));
343 return val;
344 }
345
346 // Check for casts from array type to another type.
347 if (originalTy->isArrayType()) {
348 // We will always decay to a pointer.
349 val = StateMgr.ArrayToPointer(cast<Loc>(val));
350
351 // Are we casting from an array to a pointer? If so just pass on
352 // the decayed value.
353 if (castTy->isPointerType() || castTy->isReferenceType())
354 return val;
355
356 // Are we casting from an array to an integer? If so, cast the decayed
357 // pointer value to an integer.
358 assert(castTy->isIntegerType());
359
360 // FIXME: Keep these here for now in case we decide soon that we
361 // need the original decayed type.
362 // QualType elemTy = cast<ArrayType>(originalTy)->getElementType();
363 // QualType pointerTy = C.getPointerType(elemTy);
364 return evalCastFromLoc(cast<Loc>(val), castTy);
365 }
366
367 // Check for casts from a region to a specific type.
368 if (const MemRegion *R = val.getAsRegion()) {
369 // Handle other casts of locations to integers.
370 if (castTy->isIntegerType())
371 return evalCastFromLoc(loc::MemRegionVal(R), castTy);
372
373 // FIXME: We should handle the case where we strip off view layers to get
374 // to a desugared type.
375 if (!Loc::isLocType(castTy)) {
376 // FIXME: There can be gross cases where one casts the result of a function
377 // (that returns a pointer) to some other value that happens to fit
378 // within that pointer value. We currently have no good way to
379 // model such operations. When this happens, the underlying operation
380 // is that the caller is reasoning about bits. Conceptually we are
381 // layering a "view" of a location on top of those bits. Perhaps
382 // we need to be more lazy about mutual possible views, even on an
383 // SVal? This may be necessary for bit-level reasoning as well.
384 return UnknownVal();
385 }
386
387 // We get a symbolic function pointer for a dereference of a function
388 // pointer, but it is of function type. Example:
389
390 // struct FPRec {
391 // void (*my_func)(int * x);
392 // };
393 //
394 // int bar(int x);
395 //
396 // int f1_a(struct FPRec* foo) {
397 // int x;
398 // (*foo->my_func)(&x);
399 // return bar(x)+1; // no-warning
400 // }
401
402 assert(Loc::isLocType(originalTy) || originalTy->isFunctionType() ||
403 originalTy->isBlockPointerType() || castTy->isReferenceType());
404
405 StoreManager &storeMgr = StateMgr.getStoreManager();
406
407 // Delegate to store manager to get the result of casting a region to a
408 // different type. If the MemRegion* returned is NULL, this expression
409 // Evaluates to UnknownVal.
410 R = storeMgr.castRegion(R, castTy);
411 return R ? SVal(loc::MemRegionVal(R)) : UnknownVal();
412 }
413
414 return dispatchCast(val, castTy);
415 }
416