• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright (c) 1994-2006 Sun Microsystems Inc.
2 // All Rights Reserved.
3 //
4 // Redistribution and use in source and binary forms, with or without
5 // modification, are permitted provided that the following conditions are
6 // met:
7 //
8 // - Redistributions of source code must retain the above copyright notice,
9 // this list of conditions and the following disclaimer.
10 //
11 // - Redistribution in binary form must reproduce the above copyright
12 // notice, this list of conditions and the following disclaimer in the
13 // documentation and/or other materials provided with the distribution.
14 //
15 // - Neither the name of Sun Microsystems or the names of contributors may
16 // be used to endorse or promote products derived from this software without
17 // specific prior written permission.
18 //
19 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
20 // IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
21 // THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 // PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
23 // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
24 // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
25 // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
26 // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
27 // LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
28 // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
29 // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 
31 // The original source code covered by the above license above has been
32 // modified significantly by Google Inc.
33 // Copyright 2012 the V8 project authors. All rights reserved.
34 
35 #include "assembler.h"
36 
37 #include <math.h>  // For cos, log, pow, sin, tan, etc.
38 #include "api.h"
39 #include "builtins.h"
40 #include "counters.h"
41 #include "cpu.h"
42 #include "debug.h"
43 #include "deoptimizer.h"
44 #include "execution.h"
45 #include "ic.h"
46 #include "isolate.h"
47 #include "jsregexp.h"
48 #include "lazy-instance.h"
49 #include "platform.h"
50 #include "regexp-macro-assembler.h"
51 #include "regexp-stack.h"
52 #include "runtime.h"
53 #include "serialize.h"
54 #include "store-buffer-inl.h"
55 #include "stub-cache.h"
56 #include "token.h"
57 
58 #if V8_TARGET_ARCH_IA32
59 #include "ia32/assembler-ia32-inl.h"
60 #elif V8_TARGET_ARCH_X64
61 #include "x64/assembler-x64-inl.h"
62 #elif V8_TARGET_ARCH_ARM
63 #include "arm/assembler-arm-inl.h"
64 #elif V8_TARGET_ARCH_MIPS
65 #include "mips/assembler-mips-inl.h"
66 #else
67 #error "Unknown architecture."
68 #endif
69 
70 // Include native regexp-macro-assembler.
71 #ifndef V8_INTERPRETED_REGEXP
72 #if V8_TARGET_ARCH_IA32
73 #include "ia32/regexp-macro-assembler-ia32.h"
74 #elif V8_TARGET_ARCH_X64
75 #include "x64/regexp-macro-assembler-x64.h"
76 #elif V8_TARGET_ARCH_ARM
77 #include "arm/regexp-macro-assembler-arm.h"
78 #elif V8_TARGET_ARCH_MIPS
79 #include "mips/regexp-macro-assembler-mips.h"
80 #else  // Unknown architecture.
81 #error "Unknown architecture."
82 #endif  // Target architecture.
83 #endif  // V8_INTERPRETED_REGEXP
84 
85 namespace v8 {
86 namespace internal {
87 
88 // -----------------------------------------------------------------------------
89 // Common double constants.
90 
91 struct DoubleConstant BASE_EMBEDDED {
92   double min_int;
93   double one_half;
94   double minus_zero;
95   double zero;
96   double uint8_max_value;
97   double negative_infinity;
98   double canonical_non_hole_nan;
99   double the_hole_nan;
100 };
101 
102 struct InitializeDoubleConstants {
Constructv8::internal::InitializeDoubleConstants103   static void Construct(DoubleConstant* double_constants) {
104     double_constants->min_int = kMinInt;
105     double_constants->one_half = 0.5;
106     double_constants->minus_zero = -0.0;
107     double_constants->uint8_max_value = 255;
108     double_constants->zero = 0.0;
109     double_constants->canonical_non_hole_nan = OS::nan_value();
110     double_constants->the_hole_nan = BitCast<double>(kHoleNanInt64);
111     double_constants->negative_infinity = -V8_INFINITY;
112   }
113 };
114 
115 static LazyInstance<DoubleConstant, InitializeDoubleConstants>::type
116     double_constants = LAZY_INSTANCE_INITIALIZER;
117 
118 const char* const RelocInfo::kFillerCommentString = "DEOPTIMIZATION PADDING";
119 
120 // -----------------------------------------------------------------------------
121 // Implementation of AssemblerBase
122 
AssemblerBase(Isolate * isolate)123 AssemblerBase::AssemblerBase(Isolate* isolate)
124     : isolate_(isolate),
125       jit_cookie_(0) {
126   if (FLAG_mask_constants_with_cookie && isolate != NULL)  {
127     jit_cookie_ = V8::RandomPrivate(isolate);
128   }
129 }
130 
131 
132 // -----------------------------------------------------------------------------
133 // Implementation of Label
134 
pos() const135 int Label::pos() const {
136   if (pos_ < 0) return -pos_ - 1;
137   if (pos_ > 0) return  pos_ - 1;
138   UNREACHABLE();
139   return 0;
140 }
141 
142 
143 // -----------------------------------------------------------------------------
144 // Implementation of RelocInfoWriter and RelocIterator
145 //
146 // Relocation information is written backwards in memory, from high addresses
147 // towards low addresses, byte by byte.  Therefore, in the encodings listed
148 // below, the first byte listed it at the highest address, and successive
149 // bytes in the record are at progressively lower addresses.
150 //
151 // Encoding
152 //
153 // The most common modes are given single-byte encodings.  Also, it is
154 // easy to identify the type of reloc info and skip unwanted modes in
155 // an iteration.
156 //
157 // The encoding relies on the fact that there are fewer than 14
158 // different non-compactly encoded relocation modes.
159 //
160 // The first byte of a relocation record has a tag in its low 2 bits:
161 // Here are the record schemes, depending on the low tag and optional higher
162 // tags.
163 //
164 // Low tag:
165 //   00: embedded_object:      [6-bit pc delta] 00
166 //
167 //   01: code_target:          [6-bit pc delta] 01
168 //
169 //   10: short_data_record:    [6-bit pc delta] 10 followed by
170 //                             [6-bit data delta] [2-bit data type tag]
171 //
172 //   11: long_record           [2-bit high tag][4 bit middle_tag] 11
173 //                             followed by variable data depending on type.
174 //
175 //  2-bit data type tags, used in short_data_record and data_jump long_record:
176 //   code_target_with_id: 00
177 //   position:            01
178 //   statement_position:  10
179 //   comment:             11 (not used in short_data_record)
180 //
181 //  Long record format:
182 //    4-bit middle_tag:
183 //      0000 - 1100 : Short record for RelocInfo::Mode middle_tag + 2
184 //         (The middle_tag encodes rmode - RelocInfo::LAST_COMPACT_ENUM,
185 //          and is between 0000 and 1100)
186 //        The format is:
187 //                              00 [4 bit middle_tag] 11 followed by
188 //                              00 [6 bit pc delta]
189 //
190 //      1101: not used (would allow one more relocation mode to be added)
191 //      1110: long_data_record
192 //        The format is:       [2-bit data_type_tag] 1110 11
193 //                             signed intptr_t, lowest byte written first
194 //                             (except data_type code_target_with_id, which
195 //                             is followed by a signed int, not intptr_t.)
196 //
197 //      1111: long_pc_jump
198 //        The format is:
199 //          pc-jump:             00 1111 11,
200 //                               00 [6 bits pc delta]
201 //        or
202 //          pc-jump (variable length):
203 //                               01 1111 11,
204 //                               [7 bits data] 0
205 //                                  ...
206 //                               [7 bits data] 1
207 //               (Bits 6..31 of pc delta, with leading zeroes
208 //                dropped, and last non-zero chunk tagged with 1.)
209 
210 
211 const int kMaxRelocModes = 14;
212 
213 const int kTagBits = 2;
214 const int kTagMask = (1 << kTagBits) - 1;
215 const int kExtraTagBits = 4;
216 const int kLocatableTypeTagBits = 2;
217 const int kSmallDataBits = kBitsPerByte - kLocatableTypeTagBits;
218 
219 const int kEmbeddedObjectTag = 0;
220 const int kCodeTargetTag = 1;
221 const int kLocatableTag = 2;
222 const int kDefaultTag = 3;
223 
224 const int kPCJumpExtraTag = (1 << kExtraTagBits) - 1;
225 
226 const int kSmallPCDeltaBits = kBitsPerByte - kTagBits;
227 const int kSmallPCDeltaMask = (1 << kSmallPCDeltaBits) - 1;
228 const int RelocInfo::kMaxSmallPCDelta = kSmallPCDeltaMask;
229 
230 const int kVariableLengthPCJumpTopTag = 1;
231 const int kChunkBits = 7;
232 const int kChunkMask = (1 << kChunkBits) - 1;
233 const int kLastChunkTagBits = 1;
234 const int kLastChunkTagMask = 1;
235 const int kLastChunkTag = 1;
236 
237 
238 const int kDataJumpExtraTag = kPCJumpExtraTag - 1;
239 
240 const int kCodeWithIdTag = 0;
241 const int kNonstatementPositionTag = 1;
242 const int kStatementPositionTag = 2;
243 const int kCommentTag = 3;
244 
245 
WriteVariableLengthPCJump(uint32_t pc_delta)246 uint32_t RelocInfoWriter::WriteVariableLengthPCJump(uint32_t pc_delta) {
247   // Return if the pc_delta can fit in kSmallPCDeltaBits bits.
248   // Otherwise write a variable length PC jump for the bits that do
249   // not fit in the kSmallPCDeltaBits bits.
250   if (is_uintn(pc_delta, kSmallPCDeltaBits)) return pc_delta;
251   WriteExtraTag(kPCJumpExtraTag, kVariableLengthPCJumpTopTag);
252   uint32_t pc_jump = pc_delta >> kSmallPCDeltaBits;
253   ASSERT(pc_jump > 0);
254   // Write kChunkBits size chunks of the pc_jump.
255   for (; pc_jump > 0; pc_jump = pc_jump >> kChunkBits) {
256     byte b = pc_jump & kChunkMask;
257     *--pos_ = b << kLastChunkTagBits;
258   }
259   // Tag the last chunk so it can be identified.
260   *pos_ = *pos_ | kLastChunkTag;
261   // Return the remaining kSmallPCDeltaBits of the pc_delta.
262   return pc_delta & kSmallPCDeltaMask;
263 }
264 
265 
WriteTaggedPC(uint32_t pc_delta,int tag)266 void RelocInfoWriter::WriteTaggedPC(uint32_t pc_delta, int tag) {
267   // Write a byte of tagged pc-delta, possibly preceded by var. length pc-jump.
268   pc_delta = WriteVariableLengthPCJump(pc_delta);
269   *--pos_ = pc_delta << kTagBits | tag;
270 }
271 
272 
WriteTaggedData(intptr_t data_delta,int tag)273 void RelocInfoWriter::WriteTaggedData(intptr_t data_delta, int tag) {
274   *--pos_ = static_cast<byte>(data_delta << kLocatableTypeTagBits | tag);
275 }
276 
277 
WriteExtraTag(int extra_tag,int top_tag)278 void RelocInfoWriter::WriteExtraTag(int extra_tag, int top_tag) {
279   *--pos_ = static_cast<int>(top_tag << (kTagBits + kExtraTagBits) |
280                              extra_tag << kTagBits |
281                              kDefaultTag);
282 }
283 
284 
WriteExtraTaggedPC(uint32_t pc_delta,int extra_tag)285 void RelocInfoWriter::WriteExtraTaggedPC(uint32_t pc_delta, int extra_tag) {
286   // Write two-byte tagged pc-delta, possibly preceded by var. length pc-jump.
287   pc_delta = WriteVariableLengthPCJump(pc_delta);
288   WriteExtraTag(extra_tag, 0);
289   *--pos_ = pc_delta;
290 }
291 
292 
WriteExtraTaggedIntData(int data_delta,int top_tag)293 void RelocInfoWriter::WriteExtraTaggedIntData(int data_delta, int top_tag) {
294   WriteExtraTag(kDataJumpExtraTag, top_tag);
295   for (int i = 0; i < kIntSize; i++) {
296     *--pos_ = static_cast<byte>(data_delta);
297     // Signed right shift is arithmetic shift.  Tested in test-utils.cc.
298     data_delta = data_delta >> kBitsPerByte;
299   }
300 }
301 
WriteExtraTaggedData(intptr_t data_delta,int top_tag)302 void RelocInfoWriter::WriteExtraTaggedData(intptr_t data_delta, int top_tag) {
303   WriteExtraTag(kDataJumpExtraTag, top_tag);
304   for (int i = 0; i < kIntptrSize; i++) {
305     *--pos_ = static_cast<byte>(data_delta);
306     // Signed right shift is arithmetic shift.  Tested in test-utils.cc.
307     data_delta = data_delta >> kBitsPerByte;
308   }
309 }
310 
311 
Write(const RelocInfo * rinfo)312 void RelocInfoWriter::Write(const RelocInfo* rinfo) {
313 #ifdef DEBUG
314   byte* begin_pos = pos_;
315 #endif
316   ASSERT(rinfo->pc() - last_pc_ >= 0);
317   ASSERT(RelocInfo::NUMBER_OF_MODES - RelocInfo::LAST_COMPACT_ENUM <=
318          kMaxRelocModes);
319   // Use unsigned delta-encoding for pc.
320   uint32_t pc_delta = static_cast<uint32_t>(rinfo->pc() - last_pc_);
321   RelocInfo::Mode rmode = rinfo->rmode();
322 
323   // The two most common modes are given small tags, and usually fit in a byte.
324   if (rmode == RelocInfo::EMBEDDED_OBJECT) {
325     WriteTaggedPC(pc_delta, kEmbeddedObjectTag);
326   } else if (rmode == RelocInfo::CODE_TARGET) {
327     WriteTaggedPC(pc_delta, kCodeTargetTag);
328     ASSERT(begin_pos - pos_ <= RelocInfo::kMaxCallSize);
329   } else if (rmode == RelocInfo::CODE_TARGET_WITH_ID) {
330     // Use signed delta-encoding for id.
331     ASSERT(static_cast<int>(rinfo->data()) == rinfo->data());
332     int id_delta = static_cast<int>(rinfo->data()) - last_id_;
333     // Check if delta is small enough to fit in a tagged byte.
334     if (is_intn(id_delta, kSmallDataBits)) {
335       WriteTaggedPC(pc_delta, kLocatableTag);
336       WriteTaggedData(id_delta, kCodeWithIdTag);
337     } else {
338       // Otherwise, use costly encoding.
339       WriteExtraTaggedPC(pc_delta, kPCJumpExtraTag);
340       WriteExtraTaggedIntData(id_delta, kCodeWithIdTag);
341     }
342     last_id_ = static_cast<int>(rinfo->data());
343   } else if (RelocInfo::IsPosition(rmode)) {
344     // Use signed delta-encoding for position.
345     ASSERT(static_cast<int>(rinfo->data()) == rinfo->data());
346     int pos_delta = static_cast<int>(rinfo->data()) - last_position_;
347     int pos_type_tag = (rmode == RelocInfo::POSITION) ? kNonstatementPositionTag
348                                                       : kStatementPositionTag;
349     // Check if delta is small enough to fit in a tagged byte.
350     if (is_intn(pos_delta, kSmallDataBits)) {
351       WriteTaggedPC(pc_delta, kLocatableTag);
352       WriteTaggedData(pos_delta, pos_type_tag);
353     } else {
354       // Otherwise, use costly encoding.
355       WriteExtraTaggedPC(pc_delta, kPCJumpExtraTag);
356       WriteExtraTaggedIntData(pos_delta, pos_type_tag);
357     }
358     last_position_ = static_cast<int>(rinfo->data());
359   } else if (RelocInfo::IsComment(rmode)) {
360     // Comments are normally not generated, so we use the costly encoding.
361     WriteExtraTaggedPC(pc_delta, kPCJumpExtraTag);
362     WriteExtraTaggedData(rinfo->data(), kCommentTag);
363     ASSERT(begin_pos - pos_ >= RelocInfo::kMinRelocCommentSize);
364   } else {
365     ASSERT(rmode > RelocInfo::LAST_COMPACT_ENUM);
366     int saved_mode = rmode - RelocInfo::LAST_COMPACT_ENUM;
367     // For all other modes we simply use the mode as the extra tag.
368     // None of these modes need a data component.
369     ASSERT(saved_mode < kPCJumpExtraTag && saved_mode < kDataJumpExtraTag);
370     WriteExtraTaggedPC(pc_delta, saved_mode);
371   }
372   last_pc_ = rinfo->pc();
373 #ifdef DEBUG
374   ASSERT(begin_pos - pos_ <= kMaxSize);
375 #endif
376 }
377 
378 
AdvanceGetTag()379 inline int RelocIterator::AdvanceGetTag() {
380   return *--pos_ & kTagMask;
381 }
382 
383 
GetExtraTag()384 inline int RelocIterator::GetExtraTag() {
385   return (*pos_ >> kTagBits) & ((1 << kExtraTagBits) - 1);
386 }
387 
388 
GetTopTag()389 inline int RelocIterator::GetTopTag() {
390   return *pos_ >> (kTagBits + kExtraTagBits);
391 }
392 
393 
ReadTaggedPC()394 inline void RelocIterator::ReadTaggedPC() {
395   rinfo_.pc_ += *pos_ >> kTagBits;
396 }
397 
398 
AdvanceReadPC()399 inline void RelocIterator::AdvanceReadPC() {
400   rinfo_.pc_ += *--pos_;
401 }
402 
403 
AdvanceReadId()404 void RelocIterator::AdvanceReadId() {
405   int x = 0;
406   for (int i = 0; i < kIntSize; i++) {
407     x |= static_cast<int>(*--pos_) << i * kBitsPerByte;
408   }
409   last_id_ += x;
410   rinfo_.data_ = last_id_;
411 }
412 
413 
AdvanceReadPosition()414 void RelocIterator::AdvanceReadPosition() {
415   int x = 0;
416   for (int i = 0; i < kIntSize; i++) {
417     x |= static_cast<int>(*--pos_) << i * kBitsPerByte;
418   }
419   last_position_ += x;
420   rinfo_.data_ = last_position_;
421 }
422 
423 
AdvanceReadData()424 void RelocIterator::AdvanceReadData() {
425   intptr_t x = 0;
426   for (int i = 0; i < kIntptrSize; i++) {
427     x |= static_cast<intptr_t>(*--pos_) << i * kBitsPerByte;
428   }
429   rinfo_.data_ = x;
430 }
431 
432 
AdvanceReadVariableLengthPCJump()433 void RelocIterator::AdvanceReadVariableLengthPCJump() {
434   // Read the 32-kSmallPCDeltaBits most significant bits of the
435   // pc jump in kChunkBits bit chunks and shift them into place.
436   // Stop when the last chunk is encountered.
437   uint32_t pc_jump = 0;
438   for (int i = 0; i < kIntSize; i++) {
439     byte pc_jump_part = *--pos_;
440     pc_jump |= (pc_jump_part >> kLastChunkTagBits) << i * kChunkBits;
441     if ((pc_jump_part & kLastChunkTagMask) == 1) break;
442   }
443   // The least significant kSmallPCDeltaBits bits will be added
444   // later.
445   rinfo_.pc_ += pc_jump << kSmallPCDeltaBits;
446 }
447 
448 
GetLocatableTypeTag()449 inline int RelocIterator::GetLocatableTypeTag() {
450   return *pos_ & ((1 << kLocatableTypeTagBits) - 1);
451 }
452 
453 
ReadTaggedId()454 inline void RelocIterator::ReadTaggedId() {
455   int8_t signed_b = *pos_;
456   // Signed right shift is arithmetic shift.  Tested in test-utils.cc.
457   last_id_ += signed_b >> kLocatableTypeTagBits;
458   rinfo_.data_ = last_id_;
459 }
460 
461 
ReadTaggedPosition()462 inline void RelocIterator::ReadTaggedPosition() {
463   int8_t signed_b = *pos_;
464   // Signed right shift is arithmetic shift.  Tested in test-utils.cc.
465   last_position_ += signed_b >> kLocatableTypeTagBits;
466   rinfo_.data_ = last_position_;
467 }
468 
469 
GetPositionModeFromTag(int tag)470 static inline RelocInfo::Mode GetPositionModeFromTag(int tag) {
471   ASSERT(tag == kNonstatementPositionTag ||
472          tag == kStatementPositionTag);
473   return (tag == kNonstatementPositionTag) ?
474          RelocInfo::POSITION :
475          RelocInfo::STATEMENT_POSITION;
476 }
477 
478 
next()479 void RelocIterator::next() {
480   ASSERT(!done());
481   // Basically, do the opposite of RelocInfoWriter::Write.
482   // Reading of data is as far as possible avoided for unwanted modes,
483   // but we must always update the pc.
484   //
485   // We exit this loop by returning when we find a mode we want.
486   while (pos_ > end_) {
487     int tag = AdvanceGetTag();
488     if (tag == kEmbeddedObjectTag) {
489       ReadTaggedPC();
490       if (SetMode(RelocInfo::EMBEDDED_OBJECT)) return;
491     } else if (tag == kCodeTargetTag) {
492       ReadTaggedPC();
493       if (SetMode(RelocInfo::CODE_TARGET)) return;
494     } else if (tag == kLocatableTag) {
495       ReadTaggedPC();
496       Advance();
497       int locatable_tag = GetLocatableTypeTag();
498       if (locatable_tag == kCodeWithIdTag) {
499         if (SetMode(RelocInfo::CODE_TARGET_WITH_ID)) {
500           ReadTaggedId();
501           return;
502         }
503       } else {
504         // Compact encoding is never used for comments,
505         // so it must be a position.
506         ASSERT(locatable_tag == kNonstatementPositionTag ||
507                locatable_tag == kStatementPositionTag);
508         if (mode_mask_ & RelocInfo::kPositionMask) {
509           ReadTaggedPosition();
510           if (SetMode(GetPositionModeFromTag(locatable_tag))) return;
511         }
512       }
513     } else {
514       ASSERT(tag == kDefaultTag);
515       int extra_tag = GetExtraTag();
516       if (extra_tag == kPCJumpExtraTag) {
517         int top_tag = GetTopTag();
518         if (top_tag == kVariableLengthPCJumpTopTag) {
519           AdvanceReadVariableLengthPCJump();
520         } else {
521           AdvanceReadPC();
522         }
523       } else if (extra_tag == kDataJumpExtraTag) {
524         int locatable_tag = GetTopTag();
525         if (locatable_tag == kCodeWithIdTag) {
526           if (SetMode(RelocInfo::CODE_TARGET_WITH_ID)) {
527             AdvanceReadId();
528             return;
529           }
530           Advance(kIntSize);
531         } else if (locatable_tag != kCommentTag) {
532           ASSERT(locatable_tag == kNonstatementPositionTag ||
533                  locatable_tag == kStatementPositionTag);
534           if (mode_mask_ & RelocInfo::kPositionMask) {
535             AdvanceReadPosition();
536             if (SetMode(GetPositionModeFromTag(locatable_tag))) return;
537           } else {
538             Advance(kIntSize);
539           }
540         } else {
541           ASSERT(locatable_tag == kCommentTag);
542           if (SetMode(RelocInfo::COMMENT)) {
543             AdvanceReadData();
544             return;
545           }
546           Advance(kIntptrSize);
547         }
548       } else {
549         AdvanceReadPC();
550         int rmode = extra_tag + RelocInfo::LAST_COMPACT_ENUM;
551         if (SetMode(static_cast<RelocInfo::Mode>(rmode))) return;
552       }
553     }
554   }
555   done_ = true;
556 }
557 
558 
RelocIterator(Code * code,int mode_mask)559 RelocIterator::RelocIterator(Code* code, int mode_mask) {
560   rinfo_.host_ = code;
561   rinfo_.pc_ = code->instruction_start();
562   rinfo_.data_ = 0;
563   // Relocation info is read backwards.
564   pos_ = code->relocation_start() + code->relocation_size();
565   end_ = code->relocation_start();
566   done_ = false;
567   mode_mask_ = mode_mask;
568   last_id_ = 0;
569   last_position_ = 0;
570   if (mode_mask_ == 0) pos_ = end_;
571   next();
572 }
573 
574 
RelocIterator(const CodeDesc & desc,int mode_mask)575 RelocIterator::RelocIterator(const CodeDesc& desc, int mode_mask) {
576   rinfo_.pc_ = desc.buffer;
577   rinfo_.data_ = 0;
578   // Relocation info is read backwards.
579   pos_ = desc.buffer + desc.buffer_size;
580   end_ = pos_ - desc.reloc_size;
581   done_ = false;
582   mode_mask_ = mode_mask;
583   last_id_ = 0;
584   last_position_ = 0;
585   if (mode_mask_ == 0) pos_ = end_;
586   next();
587 }
588 
589 
590 // -----------------------------------------------------------------------------
591 // Implementation of RelocInfo
592 
593 
594 #ifdef ENABLE_DISASSEMBLER
RelocModeName(RelocInfo::Mode rmode)595 const char* RelocInfo::RelocModeName(RelocInfo::Mode rmode) {
596   switch (rmode) {
597     case RelocInfo::NONE:
598       return "no reloc";
599     case RelocInfo::EMBEDDED_OBJECT:
600       return "embedded object";
601     case RelocInfo::CONSTRUCT_CALL:
602       return "code target (js construct call)";
603     case RelocInfo::CODE_TARGET_CONTEXT:
604       return "code target (context)";
605     case RelocInfo::DEBUG_BREAK:
606 #ifndef ENABLE_DEBUGGER_SUPPORT
607       UNREACHABLE();
608 #endif
609       return "debug break";
610     case RelocInfo::CODE_TARGET:
611       return "code target";
612     case RelocInfo::CODE_TARGET_WITH_ID:
613       return "code target with id";
614     case RelocInfo::GLOBAL_PROPERTY_CELL:
615       return "global property cell";
616     case RelocInfo::RUNTIME_ENTRY:
617       return "runtime entry";
618     case RelocInfo::JS_RETURN:
619       return "js return";
620     case RelocInfo::COMMENT:
621       return "comment";
622     case RelocInfo::POSITION:
623       return "position";
624     case RelocInfo::STATEMENT_POSITION:
625       return "statement position";
626     case RelocInfo::EXTERNAL_REFERENCE:
627       return "external reference";
628     case RelocInfo::INTERNAL_REFERENCE:
629       return "internal reference";
630     case RelocInfo::DEBUG_BREAK_SLOT:
631 #ifndef ENABLE_DEBUGGER_SUPPORT
632       UNREACHABLE();
633 #endif
634       return "debug break slot";
635     case RelocInfo::NUMBER_OF_MODES:
636       UNREACHABLE();
637       return "number_of_modes";
638   }
639   return "unknown relocation type";
640 }
641 
642 
Print(FILE * out)643 void RelocInfo::Print(FILE* out) {
644   PrintF(out, "%p  %s", pc_, RelocModeName(rmode_));
645   if (IsComment(rmode_)) {
646     PrintF(out, "  (%s)", reinterpret_cast<char*>(data_));
647   } else if (rmode_ == EMBEDDED_OBJECT) {
648     PrintF(out, "  (");
649     target_object()->ShortPrint(out);
650     PrintF(out, ")");
651   } else if (rmode_ == EXTERNAL_REFERENCE) {
652     ExternalReferenceEncoder ref_encoder;
653     PrintF(out, " (%s)  (%p)",
654            ref_encoder.NameOfAddress(*target_reference_address()),
655            *target_reference_address());
656   } else if (IsCodeTarget(rmode_)) {
657     Code* code = Code::GetCodeFromTargetAddress(target_address());
658     PrintF(out, " (%s)  (%p)", Code::Kind2String(code->kind()),
659            target_address());
660     if (rmode_ == CODE_TARGET_WITH_ID) {
661       PrintF(" (id=%d)", static_cast<int>(data_));
662     }
663   } else if (IsPosition(rmode_)) {
664     PrintF(out, "  (%" V8_PTR_PREFIX "d)", data());
665   } else if (rmode_ == RelocInfo::RUNTIME_ENTRY &&
666              Isolate::Current()->deoptimizer_data() != NULL) {
667     // Depotimization bailouts are stored as runtime entries.
668     int id = Deoptimizer::GetDeoptimizationId(
669         target_address(), Deoptimizer::EAGER);
670     if (id != Deoptimizer::kNotDeoptimizationEntry) {
671       PrintF(out, "  (deoptimization bailout %d)", id);
672     }
673   }
674 
675   PrintF(out, "\n");
676 }
677 #endif  // ENABLE_DISASSEMBLER
678 
679 
680 #ifdef DEBUG
Verify()681 void RelocInfo::Verify() {
682   switch (rmode_) {
683     case EMBEDDED_OBJECT:
684       Object::VerifyPointer(target_object());
685       break;
686     case GLOBAL_PROPERTY_CELL:
687       Object::VerifyPointer(target_cell());
688       break;
689     case DEBUG_BREAK:
690 #ifndef ENABLE_DEBUGGER_SUPPORT
691       UNREACHABLE();
692       break;
693 #endif
694     case CONSTRUCT_CALL:
695     case CODE_TARGET_CONTEXT:
696     case CODE_TARGET_WITH_ID:
697     case CODE_TARGET: {
698       // convert inline target address to code object
699       Address addr = target_address();
700       ASSERT(addr != NULL);
701       // Check that we can find the right code object.
702       Code* code = Code::GetCodeFromTargetAddress(addr);
703       Object* found = HEAP->FindCodeObject(addr);
704       ASSERT(found->IsCode());
705       ASSERT(code->address() == HeapObject::cast(found)->address());
706       break;
707     }
708     case RUNTIME_ENTRY:
709     case JS_RETURN:
710     case COMMENT:
711     case POSITION:
712     case STATEMENT_POSITION:
713     case EXTERNAL_REFERENCE:
714     case INTERNAL_REFERENCE:
715     case DEBUG_BREAK_SLOT:
716     case NONE:
717       break;
718     case NUMBER_OF_MODES:
719       UNREACHABLE();
720       break;
721   }
722 }
723 #endif  // DEBUG
724 
725 
726 // -----------------------------------------------------------------------------
727 // Implementation of ExternalReference
728 
ExternalReference(Builtins::CFunctionId id,Isolate * isolate)729 ExternalReference::ExternalReference(Builtins::CFunctionId id, Isolate* isolate)
730   : address_(Redirect(isolate, Builtins::c_function_address(id))) {}
731 
732 
ExternalReference(ApiFunction * fun,Type type=ExternalReference::BUILTIN_CALL,Isolate * isolate=NULL)733 ExternalReference::ExternalReference(
734     ApiFunction* fun,
735     Type type = ExternalReference::BUILTIN_CALL,
736     Isolate* isolate = NULL)
737   : address_(Redirect(isolate, fun->address(), type)) {}
738 
739 
ExternalReference(Builtins::Name name,Isolate * isolate)740 ExternalReference::ExternalReference(Builtins::Name name, Isolate* isolate)
741   : address_(isolate->builtins()->builtin_address(name)) {}
742 
743 
ExternalReference(Runtime::FunctionId id,Isolate * isolate)744 ExternalReference::ExternalReference(Runtime::FunctionId id,
745                                      Isolate* isolate)
746   : address_(Redirect(isolate, Runtime::FunctionForId(id)->entry)) {}
747 
748 
ExternalReference(const Runtime::Function * f,Isolate * isolate)749 ExternalReference::ExternalReference(const Runtime::Function* f,
750                                      Isolate* isolate)
751   : address_(Redirect(isolate, f->entry)) {}
752 
753 
isolate_address()754 ExternalReference ExternalReference::isolate_address() {
755   return ExternalReference(Isolate::Current());
756 }
757 
758 
ExternalReference(const IC_Utility & ic_utility,Isolate * isolate)759 ExternalReference::ExternalReference(const IC_Utility& ic_utility,
760                                      Isolate* isolate)
761   : address_(Redirect(isolate, ic_utility.address())) {}
762 
763 #ifdef ENABLE_DEBUGGER_SUPPORT
ExternalReference(const Debug_Address & debug_address,Isolate * isolate)764 ExternalReference::ExternalReference(const Debug_Address& debug_address,
765                                      Isolate* isolate)
766   : address_(debug_address.address(isolate)) {}
767 #endif
768 
ExternalReference(StatsCounter * counter)769 ExternalReference::ExternalReference(StatsCounter* counter)
770   : address_(reinterpret_cast<Address>(counter->GetInternalPointer())) {}
771 
772 
ExternalReference(Isolate::AddressId id,Isolate * isolate)773 ExternalReference::ExternalReference(Isolate::AddressId id, Isolate* isolate)
774   : address_(isolate->get_address_from_id(id)) {}
775 
776 
ExternalReference(const SCTableReference & table_ref)777 ExternalReference::ExternalReference(const SCTableReference& table_ref)
778   : address_(table_ref.address()) {}
779 
780 
781 ExternalReference ExternalReference::
incremental_marking_record_write_function(Isolate * isolate)782     incremental_marking_record_write_function(Isolate* isolate) {
783   return ExternalReference(Redirect(
784       isolate,
785       FUNCTION_ADDR(IncrementalMarking::RecordWriteFromCode)));
786 }
787 
788 
789 ExternalReference ExternalReference::
incremental_evacuation_record_write_function(Isolate * isolate)790     incremental_evacuation_record_write_function(Isolate* isolate) {
791   return ExternalReference(Redirect(
792       isolate,
793       FUNCTION_ADDR(IncrementalMarking::RecordWriteForEvacuationFromCode)));
794 }
795 
796 
797 ExternalReference ExternalReference::
store_buffer_overflow_function(Isolate * isolate)798     store_buffer_overflow_function(Isolate* isolate) {
799   return ExternalReference(Redirect(
800       isolate,
801       FUNCTION_ADDR(StoreBuffer::StoreBufferOverflow)));
802 }
803 
804 
flush_icache_function(Isolate * isolate)805 ExternalReference ExternalReference::flush_icache_function(Isolate* isolate) {
806   return ExternalReference(Redirect(isolate, FUNCTION_ADDR(CPU::FlushICache)));
807 }
808 
809 
perform_gc_function(Isolate * isolate)810 ExternalReference ExternalReference::perform_gc_function(Isolate* isolate) {
811   return
812       ExternalReference(Redirect(isolate, FUNCTION_ADDR(Runtime::PerformGC)));
813 }
814 
815 
fill_heap_number_with_random_function(Isolate * isolate)816 ExternalReference ExternalReference::fill_heap_number_with_random_function(
817     Isolate* isolate) {
818   return ExternalReference(Redirect(
819       isolate,
820       FUNCTION_ADDR(V8::FillHeapNumberWithRandom)));
821 }
822 
823 
delete_handle_scope_extensions(Isolate * isolate)824 ExternalReference ExternalReference::delete_handle_scope_extensions(
825     Isolate* isolate) {
826   return ExternalReference(Redirect(
827       isolate,
828       FUNCTION_ADDR(HandleScope::DeleteExtensions)));
829 }
830 
831 
random_uint32_function(Isolate * isolate)832 ExternalReference ExternalReference::random_uint32_function(
833     Isolate* isolate) {
834   return ExternalReference(Redirect(isolate, FUNCTION_ADDR(V8::Random)));
835 }
836 
837 
get_date_field_function(Isolate * isolate)838 ExternalReference ExternalReference::get_date_field_function(
839     Isolate* isolate) {
840   return ExternalReference(Redirect(isolate, FUNCTION_ADDR(JSDate::GetField)));
841 }
842 
843 
date_cache_stamp(Isolate * isolate)844 ExternalReference ExternalReference::date_cache_stamp(Isolate* isolate) {
845   return ExternalReference(isolate->date_cache()->stamp_address());
846 }
847 
848 
transcendental_cache_array_address(Isolate * isolate)849 ExternalReference ExternalReference::transcendental_cache_array_address(
850     Isolate* isolate) {
851   return ExternalReference(
852       isolate->transcendental_cache()->cache_array_address());
853 }
854 
855 
new_deoptimizer_function(Isolate * isolate)856 ExternalReference ExternalReference::new_deoptimizer_function(
857     Isolate* isolate) {
858   return ExternalReference(
859       Redirect(isolate, FUNCTION_ADDR(Deoptimizer::New)));
860 }
861 
862 
compute_output_frames_function(Isolate * isolate)863 ExternalReference ExternalReference::compute_output_frames_function(
864     Isolate* isolate) {
865   return ExternalReference(
866       Redirect(isolate, FUNCTION_ADDR(Deoptimizer::ComputeOutputFrames)));
867 }
868 
869 
keyed_lookup_cache_keys(Isolate * isolate)870 ExternalReference ExternalReference::keyed_lookup_cache_keys(Isolate* isolate) {
871   return ExternalReference(isolate->keyed_lookup_cache()->keys_address());
872 }
873 
874 
keyed_lookup_cache_field_offsets(Isolate * isolate)875 ExternalReference ExternalReference::keyed_lookup_cache_field_offsets(
876     Isolate* isolate) {
877   return ExternalReference(
878       isolate->keyed_lookup_cache()->field_offsets_address());
879 }
880 
881 
roots_array_start(Isolate * isolate)882 ExternalReference ExternalReference::roots_array_start(Isolate* isolate) {
883   return ExternalReference(isolate->heap()->roots_array_start());
884 }
885 
886 
address_of_stack_limit(Isolate * isolate)887 ExternalReference ExternalReference::address_of_stack_limit(Isolate* isolate) {
888   return ExternalReference(isolate->stack_guard()->address_of_jslimit());
889 }
890 
891 
address_of_real_stack_limit(Isolate * isolate)892 ExternalReference ExternalReference::address_of_real_stack_limit(
893     Isolate* isolate) {
894   return ExternalReference(isolate->stack_guard()->address_of_real_jslimit());
895 }
896 
897 
address_of_regexp_stack_limit(Isolate * isolate)898 ExternalReference ExternalReference::address_of_regexp_stack_limit(
899     Isolate* isolate) {
900   return ExternalReference(isolate->regexp_stack()->limit_address());
901 }
902 
903 
new_space_start(Isolate * isolate)904 ExternalReference ExternalReference::new_space_start(Isolate* isolate) {
905   return ExternalReference(isolate->heap()->NewSpaceStart());
906 }
907 
908 
store_buffer_top(Isolate * isolate)909 ExternalReference ExternalReference::store_buffer_top(Isolate* isolate) {
910   return ExternalReference(isolate->heap()->store_buffer()->TopAddress());
911 }
912 
913 
new_space_mask(Isolate * isolate)914 ExternalReference ExternalReference::new_space_mask(Isolate* isolate) {
915   return ExternalReference(reinterpret_cast<Address>(
916       isolate->heap()->NewSpaceMask()));
917 }
918 
919 
new_space_allocation_top_address(Isolate * isolate)920 ExternalReference ExternalReference::new_space_allocation_top_address(
921     Isolate* isolate) {
922   return ExternalReference(isolate->heap()->NewSpaceAllocationTopAddress());
923 }
924 
925 
heap_always_allocate_scope_depth(Isolate * isolate)926 ExternalReference ExternalReference::heap_always_allocate_scope_depth(
927     Isolate* isolate) {
928   Heap* heap = isolate->heap();
929   return ExternalReference(heap->always_allocate_scope_depth_address());
930 }
931 
932 
new_space_allocation_limit_address(Isolate * isolate)933 ExternalReference ExternalReference::new_space_allocation_limit_address(
934     Isolate* isolate) {
935   return ExternalReference(isolate->heap()->NewSpaceAllocationLimitAddress());
936 }
937 
938 
handle_scope_level_address()939 ExternalReference ExternalReference::handle_scope_level_address() {
940   return ExternalReference(HandleScope::current_level_address());
941 }
942 
943 
handle_scope_next_address()944 ExternalReference ExternalReference::handle_scope_next_address() {
945   return ExternalReference(HandleScope::current_next_address());
946 }
947 
948 
handle_scope_limit_address()949 ExternalReference ExternalReference::handle_scope_limit_address() {
950   return ExternalReference(HandleScope::current_limit_address());
951 }
952 
953 
scheduled_exception_address(Isolate * isolate)954 ExternalReference ExternalReference::scheduled_exception_address(
955     Isolate* isolate) {
956   return ExternalReference(isolate->scheduled_exception_address());
957 }
958 
959 
address_of_min_int()960 ExternalReference ExternalReference::address_of_min_int() {
961   return ExternalReference(reinterpret_cast<void*>(
962       &double_constants.Pointer()->min_int));
963 }
964 
965 
address_of_one_half()966 ExternalReference ExternalReference::address_of_one_half() {
967   return ExternalReference(reinterpret_cast<void*>(
968       &double_constants.Pointer()->one_half));
969 }
970 
971 
address_of_minus_zero()972 ExternalReference ExternalReference::address_of_minus_zero() {
973   return ExternalReference(reinterpret_cast<void*>(
974       &double_constants.Pointer()->minus_zero));
975 }
976 
977 
address_of_zero()978 ExternalReference ExternalReference::address_of_zero() {
979   return ExternalReference(reinterpret_cast<void*>(
980       &double_constants.Pointer()->zero));
981 }
982 
983 
address_of_uint8_max_value()984 ExternalReference ExternalReference::address_of_uint8_max_value() {
985   return ExternalReference(reinterpret_cast<void*>(
986       &double_constants.Pointer()->uint8_max_value));
987 }
988 
989 
address_of_negative_infinity()990 ExternalReference ExternalReference::address_of_negative_infinity() {
991   return ExternalReference(reinterpret_cast<void*>(
992       &double_constants.Pointer()->negative_infinity));
993 }
994 
995 
address_of_canonical_non_hole_nan()996 ExternalReference ExternalReference::address_of_canonical_non_hole_nan() {
997   return ExternalReference(reinterpret_cast<void*>(
998       &double_constants.Pointer()->canonical_non_hole_nan));
999 }
1000 
1001 
address_of_the_hole_nan()1002 ExternalReference ExternalReference::address_of_the_hole_nan() {
1003   return ExternalReference(reinterpret_cast<void*>(
1004       &double_constants.Pointer()->the_hole_nan));
1005 }
1006 
1007 
1008 #ifndef V8_INTERPRETED_REGEXP
1009 
re_check_stack_guard_state(Isolate * isolate)1010 ExternalReference ExternalReference::re_check_stack_guard_state(
1011     Isolate* isolate) {
1012   Address function;
1013 #ifdef V8_TARGET_ARCH_X64
1014   function = FUNCTION_ADDR(RegExpMacroAssemblerX64::CheckStackGuardState);
1015 #elif V8_TARGET_ARCH_IA32
1016   function = FUNCTION_ADDR(RegExpMacroAssemblerIA32::CheckStackGuardState);
1017 #elif V8_TARGET_ARCH_ARM
1018   function = FUNCTION_ADDR(RegExpMacroAssemblerARM::CheckStackGuardState);
1019 #elif V8_TARGET_ARCH_MIPS
1020   function = FUNCTION_ADDR(RegExpMacroAssemblerMIPS::CheckStackGuardState);
1021 #else
1022   UNREACHABLE();
1023 #endif
1024   return ExternalReference(Redirect(isolate, function));
1025 }
1026 
re_grow_stack(Isolate * isolate)1027 ExternalReference ExternalReference::re_grow_stack(Isolate* isolate) {
1028   return ExternalReference(
1029       Redirect(isolate, FUNCTION_ADDR(NativeRegExpMacroAssembler::GrowStack)));
1030 }
1031 
re_case_insensitive_compare_uc16(Isolate * isolate)1032 ExternalReference ExternalReference::re_case_insensitive_compare_uc16(
1033     Isolate* isolate) {
1034   return ExternalReference(Redirect(
1035       isolate,
1036       FUNCTION_ADDR(NativeRegExpMacroAssembler::CaseInsensitiveCompareUC16)));
1037 }
1038 
re_word_character_map()1039 ExternalReference ExternalReference::re_word_character_map() {
1040   return ExternalReference(
1041       NativeRegExpMacroAssembler::word_character_map_address());
1042 }
1043 
address_of_static_offsets_vector(Isolate * isolate)1044 ExternalReference ExternalReference::address_of_static_offsets_vector(
1045     Isolate* isolate) {
1046   return ExternalReference(
1047       OffsetsVector::static_offsets_vector_address(isolate));
1048 }
1049 
address_of_regexp_stack_memory_address(Isolate * isolate)1050 ExternalReference ExternalReference::address_of_regexp_stack_memory_address(
1051     Isolate* isolate) {
1052   return ExternalReference(
1053       isolate->regexp_stack()->memory_address());
1054 }
1055 
address_of_regexp_stack_memory_size(Isolate * isolate)1056 ExternalReference ExternalReference::address_of_regexp_stack_memory_size(
1057     Isolate* isolate) {
1058   return ExternalReference(isolate->regexp_stack()->memory_size_address());
1059 }
1060 
1061 #endif  // V8_INTERPRETED_REGEXP
1062 
1063 
add_two_doubles(double x,double y)1064 static double add_two_doubles(double x, double y) {
1065   return x + y;
1066 }
1067 
1068 
sub_two_doubles(double x,double y)1069 static double sub_two_doubles(double x, double y) {
1070   return x - y;
1071 }
1072 
1073 
mul_two_doubles(double x,double y)1074 static double mul_two_doubles(double x, double y) {
1075   return x * y;
1076 }
1077 
1078 
div_two_doubles(double x,double y)1079 static double div_two_doubles(double x, double y) {
1080   return x / y;
1081 }
1082 
1083 
mod_two_doubles(double x,double y)1084 static double mod_two_doubles(double x, double y) {
1085   return modulo(x, y);
1086 }
1087 
1088 
math_sin_double(double x)1089 static double math_sin_double(double x) {
1090   return sin(x);
1091 }
1092 
1093 
math_cos_double(double x)1094 static double math_cos_double(double x) {
1095   return cos(x);
1096 }
1097 
1098 
math_tan_double(double x)1099 static double math_tan_double(double x) {
1100   return tan(x);
1101 }
1102 
1103 
math_log_double(double x)1104 static double math_log_double(double x) {
1105   return log(x);
1106 }
1107 
1108 
math_sin_double_function(Isolate * isolate)1109 ExternalReference ExternalReference::math_sin_double_function(
1110     Isolate* isolate) {
1111   return ExternalReference(Redirect(isolate,
1112                                     FUNCTION_ADDR(math_sin_double),
1113                                     BUILTIN_FP_CALL));
1114 }
1115 
1116 
math_cos_double_function(Isolate * isolate)1117 ExternalReference ExternalReference::math_cos_double_function(
1118     Isolate* isolate) {
1119   return ExternalReference(Redirect(isolate,
1120                                     FUNCTION_ADDR(math_cos_double),
1121                                     BUILTIN_FP_CALL));
1122 }
1123 
1124 
math_tan_double_function(Isolate * isolate)1125 ExternalReference ExternalReference::math_tan_double_function(
1126     Isolate* isolate) {
1127   return ExternalReference(Redirect(isolate,
1128                                     FUNCTION_ADDR(math_tan_double),
1129                                     BUILTIN_FP_CALL));
1130 }
1131 
1132 
math_log_double_function(Isolate * isolate)1133 ExternalReference ExternalReference::math_log_double_function(
1134     Isolate* isolate) {
1135   return ExternalReference(Redirect(isolate,
1136                                     FUNCTION_ADDR(math_log_double),
1137                                     BUILTIN_FP_CALL));
1138 }
1139 
1140 
1141 // Helper function to compute x^y, where y is known to be an
1142 // integer. Uses binary decomposition to limit the number of
1143 // multiplications; see the discussion in "Hacker's Delight" by Henry
1144 // S. Warren, Jr., figure 11-6, page 213.
power_double_int(double x,int y)1145 double power_double_int(double x, int y) {
1146   double m = (y < 0) ? 1 / x : x;
1147   unsigned n = (y < 0) ? -y : y;
1148   double p = 1;
1149   while (n != 0) {
1150     if ((n & 1) != 0) p *= m;
1151     m *= m;
1152     if ((n & 2) != 0) p *= m;
1153     m *= m;
1154     n >>= 2;
1155   }
1156   return p;
1157 }
1158 
1159 
power_double_double(double x,double y)1160 double power_double_double(double x, double y) {
1161   // The checks for special cases can be dropped in ia32 because it has already
1162   // been done in generated code before bailing out here.
1163   if (isnan(y) || ((x == 1 || x == -1) && isinf(y))) return OS::nan_value();
1164   return pow(x, y);
1165 }
1166 
1167 
power_double_double_function(Isolate * isolate)1168 ExternalReference ExternalReference::power_double_double_function(
1169     Isolate* isolate) {
1170   return ExternalReference(Redirect(isolate,
1171                                     FUNCTION_ADDR(power_double_double),
1172                                     BUILTIN_FP_FP_CALL));
1173 }
1174 
1175 
power_double_int_function(Isolate * isolate)1176 ExternalReference ExternalReference::power_double_int_function(
1177     Isolate* isolate) {
1178   return ExternalReference(Redirect(isolate,
1179                                     FUNCTION_ADDR(power_double_int),
1180                                     BUILTIN_FP_INT_CALL));
1181 }
1182 
1183 
native_compare_doubles(double y,double x)1184 static int native_compare_doubles(double y, double x) {
1185   if (x == y) return EQUAL;
1186   return x < y ? LESS : GREATER;
1187 }
1188 
1189 
EvalComparison(Token::Value op,double op1,double op2)1190 bool EvalComparison(Token::Value op, double op1, double op2) {
1191   ASSERT(Token::IsCompareOp(op));
1192   switch (op) {
1193     case Token::EQ:
1194     case Token::EQ_STRICT: return (op1 == op2);
1195     case Token::NE: return (op1 != op2);
1196     case Token::LT: return (op1 < op2);
1197     case Token::GT: return (op1 > op2);
1198     case Token::LTE: return (op1 <= op2);
1199     case Token::GTE: return (op1 >= op2);
1200     default:
1201       UNREACHABLE();
1202       return false;
1203   }
1204 }
1205 
1206 
double_fp_operation(Token::Value operation,Isolate * isolate)1207 ExternalReference ExternalReference::double_fp_operation(
1208     Token::Value operation, Isolate* isolate) {
1209   typedef double BinaryFPOperation(double x, double y);
1210   BinaryFPOperation* function = NULL;
1211   switch (operation) {
1212     case Token::ADD:
1213       function = &add_two_doubles;
1214       break;
1215     case Token::SUB:
1216       function = &sub_two_doubles;
1217       break;
1218     case Token::MUL:
1219       function = &mul_two_doubles;
1220       break;
1221     case Token::DIV:
1222       function = &div_two_doubles;
1223       break;
1224     case Token::MOD:
1225       function = &mod_two_doubles;
1226       break;
1227     default:
1228       UNREACHABLE();
1229   }
1230   return ExternalReference(Redirect(isolate,
1231                                     FUNCTION_ADDR(function),
1232                                     BUILTIN_FP_FP_CALL));
1233 }
1234 
1235 
compare_doubles(Isolate * isolate)1236 ExternalReference ExternalReference::compare_doubles(Isolate* isolate) {
1237   return ExternalReference(Redirect(isolate,
1238                                     FUNCTION_ADDR(native_compare_doubles),
1239                                     BUILTIN_COMPARE_CALL));
1240 }
1241 
1242 
1243 #ifdef ENABLE_DEBUGGER_SUPPORT
debug_break(Isolate * isolate)1244 ExternalReference ExternalReference::debug_break(Isolate* isolate) {
1245   return ExternalReference(Redirect(isolate, FUNCTION_ADDR(Debug_Break)));
1246 }
1247 
1248 
debug_step_in_fp_address(Isolate * isolate)1249 ExternalReference ExternalReference::debug_step_in_fp_address(
1250     Isolate* isolate) {
1251   return ExternalReference(isolate->debug()->step_in_fp_addr());
1252 }
1253 #endif
1254 
1255 
RecordPosition(int pos)1256 void PositionsRecorder::RecordPosition(int pos) {
1257   ASSERT(pos != RelocInfo::kNoPosition);
1258   ASSERT(pos >= 0);
1259   state_.current_position = pos;
1260 #ifdef ENABLE_GDB_JIT_INTERFACE
1261   if (gdbjit_lineinfo_ != NULL) {
1262     gdbjit_lineinfo_->SetPosition(assembler_->pc_offset(), pos, false);
1263   }
1264 #endif
1265 }
1266 
1267 
RecordStatementPosition(int pos)1268 void PositionsRecorder::RecordStatementPosition(int pos) {
1269   ASSERT(pos != RelocInfo::kNoPosition);
1270   ASSERT(pos >= 0);
1271   state_.current_statement_position = pos;
1272 #ifdef ENABLE_GDB_JIT_INTERFACE
1273   if (gdbjit_lineinfo_ != NULL) {
1274     gdbjit_lineinfo_->SetPosition(assembler_->pc_offset(), pos, true);
1275   }
1276 #endif
1277 }
1278 
1279 
WriteRecordedPositions()1280 bool PositionsRecorder::WriteRecordedPositions() {
1281   bool written = false;
1282 
1283   // Write the statement position if it is different from what was written last
1284   // time.
1285   if (state_.current_statement_position != state_.written_statement_position) {
1286     EnsureSpace ensure_space(assembler_);
1287     assembler_->RecordRelocInfo(RelocInfo::STATEMENT_POSITION,
1288                                 state_.current_statement_position);
1289     state_.written_statement_position = state_.current_statement_position;
1290     written = true;
1291   }
1292 
1293   // Write the position if it is different from what was written last time and
1294   // also different from the written statement position.
1295   if (state_.current_position != state_.written_position &&
1296       state_.current_position != state_.written_statement_position) {
1297     EnsureSpace ensure_space(assembler_);
1298     assembler_->RecordRelocInfo(RelocInfo::POSITION, state_.current_position);
1299     state_.written_position = state_.current_position;
1300     written = true;
1301   }
1302 
1303   // Return whether something was written.
1304   return written;
1305 }
1306 
1307 } }  // namespace v8::internal
1308