1 // Copyright (c) 1994-2006 Sun Microsystems Inc.
2 // All Rights Reserved.
3 //
4 // Redistribution and use in source and binary forms, with or without
5 // modification, are permitted provided that the following conditions are
6 // met:
7 //
8 // - Redistributions of source code must retain the above copyright notice,
9 // this list of conditions and the following disclaimer.
10 //
11 // - Redistribution in binary form must reproduce the above copyright
12 // notice, this list of conditions and the following disclaimer in the
13 // documentation and/or other materials provided with the distribution.
14 //
15 // - Neither the name of Sun Microsystems or the names of contributors may
16 // be used to endorse or promote products derived from this software without
17 // specific prior written permission.
18 //
19 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
20 // IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
21 // THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 // PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
23 // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
24 // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
25 // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
26 // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
27 // LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
28 // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
29 // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30
31 // The original source code covered by the above license above has been
32 // modified significantly by Google Inc.
33 // Copyright 2012 the V8 project authors. All rights reserved.
34
35 #include "assembler.h"
36
37 #include <math.h> // For cos, log, pow, sin, tan, etc.
38 #include "api.h"
39 #include "builtins.h"
40 #include "counters.h"
41 #include "cpu.h"
42 #include "debug.h"
43 #include "deoptimizer.h"
44 #include "execution.h"
45 #include "ic.h"
46 #include "isolate.h"
47 #include "jsregexp.h"
48 #include "lazy-instance.h"
49 #include "platform.h"
50 #include "regexp-macro-assembler.h"
51 #include "regexp-stack.h"
52 #include "runtime.h"
53 #include "serialize.h"
54 #include "store-buffer-inl.h"
55 #include "stub-cache.h"
56 #include "token.h"
57
58 #if V8_TARGET_ARCH_IA32
59 #include "ia32/assembler-ia32-inl.h"
60 #elif V8_TARGET_ARCH_X64
61 #include "x64/assembler-x64-inl.h"
62 #elif V8_TARGET_ARCH_ARM
63 #include "arm/assembler-arm-inl.h"
64 #elif V8_TARGET_ARCH_MIPS
65 #include "mips/assembler-mips-inl.h"
66 #else
67 #error "Unknown architecture."
68 #endif
69
70 // Include native regexp-macro-assembler.
71 #ifndef V8_INTERPRETED_REGEXP
72 #if V8_TARGET_ARCH_IA32
73 #include "ia32/regexp-macro-assembler-ia32.h"
74 #elif V8_TARGET_ARCH_X64
75 #include "x64/regexp-macro-assembler-x64.h"
76 #elif V8_TARGET_ARCH_ARM
77 #include "arm/regexp-macro-assembler-arm.h"
78 #elif V8_TARGET_ARCH_MIPS
79 #include "mips/regexp-macro-assembler-mips.h"
80 #else // Unknown architecture.
81 #error "Unknown architecture."
82 #endif // Target architecture.
83 #endif // V8_INTERPRETED_REGEXP
84
85 namespace v8 {
86 namespace internal {
87
88 // -----------------------------------------------------------------------------
89 // Common double constants.
90
91 struct DoubleConstant BASE_EMBEDDED {
92 double min_int;
93 double one_half;
94 double minus_zero;
95 double zero;
96 double uint8_max_value;
97 double negative_infinity;
98 double canonical_non_hole_nan;
99 double the_hole_nan;
100 };
101
102 struct InitializeDoubleConstants {
Constructv8::internal::InitializeDoubleConstants103 static void Construct(DoubleConstant* double_constants) {
104 double_constants->min_int = kMinInt;
105 double_constants->one_half = 0.5;
106 double_constants->minus_zero = -0.0;
107 double_constants->uint8_max_value = 255;
108 double_constants->zero = 0.0;
109 double_constants->canonical_non_hole_nan = OS::nan_value();
110 double_constants->the_hole_nan = BitCast<double>(kHoleNanInt64);
111 double_constants->negative_infinity = -V8_INFINITY;
112 }
113 };
114
115 static LazyInstance<DoubleConstant, InitializeDoubleConstants>::type
116 double_constants = LAZY_INSTANCE_INITIALIZER;
117
118 const char* const RelocInfo::kFillerCommentString = "DEOPTIMIZATION PADDING";
119
120 // -----------------------------------------------------------------------------
121 // Implementation of AssemblerBase
122
AssemblerBase(Isolate * isolate)123 AssemblerBase::AssemblerBase(Isolate* isolate)
124 : isolate_(isolate),
125 jit_cookie_(0) {
126 if (FLAG_mask_constants_with_cookie && isolate != NULL) {
127 jit_cookie_ = V8::RandomPrivate(isolate);
128 }
129 }
130
131
132 // -----------------------------------------------------------------------------
133 // Implementation of Label
134
pos() const135 int Label::pos() const {
136 if (pos_ < 0) return -pos_ - 1;
137 if (pos_ > 0) return pos_ - 1;
138 UNREACHABLE();
139 return 0;
140 }
141
142
143 // -----------------------------------------------------------------------------
144 // Implementation of RelocInfoWriter and RelocIterator
145 //
146 // Relocation information is written backwards in memory, from high addresses
147 // towards low addresses, byte by byte. Therefore, in the encodings listed
148 // below, the first byte listed it at the highest address, and successive
149 // bytes in the record are at progressively lower addresses.
150 //
151 // Encoding
152 //
153 // The most common modes are given single-byte encodings. Also, it is
154 // easy to identify the type of reloc info and skip unwanted modes in
155 // an iteration.
156 //
157 // The encoding relies on the fact that there are fewer than 14
158 // different non-compactly encoded relocation modes.
159 //
160 // The first byte of a relocation record has a tag in its low 2 bits:
161 // Here are the record schemes, depending on the low tag and optional higher
162 // tags.
163 //
164 // Low tag:
165 // 00: embedded_object: [6-bit pc delta] 00
166 //
167 // 01: code_target: [6-bit pc delta] 01
168 //
169 // 10: short_data_record: [6-bit pc delta] 10 followed by
170 // [6-bit data delta] [2-bit data type tag]
171 //
172 // 11: long_record [2-bit high tag][4 bit middle_tag] 11
173 // followed by variable data depending on type.
174 //
175 // 2-bit data type tags, used in short_data_record and data_jump long_record:
176 // code_target_with_id: 00
177 // position: 01
178 // statement_position: 10
179 // comment: 11 (not used in short_data_record)
180 //
181 // Long record format:
182 // 4-bit middle_tag:
183 // 0000 - 1100 : Short record for RelocInfo::Mode middle_tag + 2
184 // (The middle_tag encodes rmode - RelocInfo::LAST_COMPACT_ENUM,
185 // and is between 0000 and 1100)
186 // The format is:
187 // 00 [4 bit middle_tag] 11 followed by
188 // 00 [6 bit pc delta]
189 //
190 // 1101: not used (would allow one more relocation mode to be added)
191 // 1110: long_data_record
192 // The format is: [2-bit data_type_tag] 1110 11
193 // signed intptr_t, lowest byte written first
194 // (except data_type code_target_with_id, which
195 // is followed by a signed int, not intptr_t.)
196 //
197 // 1111: long_pc_jump
198 // The format is:
199 // pc-jump: 00 1111 11,
200 // 00 [6 bits pc delta]
201 // or
202 // pc-jump (variable length):
203 // 01 1111 11,
204 // [7 bits data] 0
205 // ...
206 // [7 bits data] 1
207 // (Bits 6..31 of pc delta, with leading zeroes
208 // dropped, and last non-zero chunk tagged with 1.)
209
210
211 const int kMaxRelocModes = 14;
212
213 const int kTagBits = 2;
214 const int kTagMask = (1 << kTagBits) - 1;
215 const int kExtraTagBits = 4;
216 const int kLocatableTypeTagBits = 2;
217 const int kSmallDataBits = kBitsPerByte - kLocatableTypeTagBits;
218
219 const int kEmbeddedObjectTag = 0;
220 const int kCodeTargetTag = 1;
221 const int kLocatableTag = 2;
222 const int kDefaultTag = 3;
223
224 const int kPCJumpExtraTag = (1 << kExtraTagBits) - 1;
225
226 const int kSmallPCDeltaBits = kBitsPerByte - kTagBits;
227 const int kSmallPCDeltaMask = (1 << kSmallPCDeltaBits) - 1;
228 const int RelocInfo::kMaxSmallPCDelta = kSmallPCDeltaMask;
229
230 const int kVariableLengthPCJumpTopTag = 1;
231 const int kChunkBits = 7;
232 const int kChunkMask = (1 << kChunkBits) - 1;
233 const int kLastChunkTagBits = 1;
234 const int kLastChunkTagMask = 1;
235 const int kLastChunkTag = 1;
236
237
238 const int kDataJumpExtraTag = kPCJumpExtraTag - 1;
239
240 const int kCodeWithIdTag = 0;
241 const int kNonstatementPositionTag = 1;
242 const int kStatementPositionTag = 2;
243 const int kCommentTag = 3;
244
245
WriteVariableLengthPCJump(uint32_t pc_delta)246 uint32_t RelocInfoWriter::WriteVariableLengthPCJump(uint32_t pc_delta) {
247 // Return if the pc_delta can fit in kSmallPCDeltaBits bits.
248 // Otherwise write a variable length PC jump for the bits that do
249 // not fit in the kSmallPCDeltaBits bits.
250 if (is_uintn(pc_delta, kSmallPCDeltaBits)) return pc_delta;
251 WriteExtraTag(kPCJumpExtraTag, kVariableLengthPCJumpTopTag);
252 uint32_t pc_jump = pc_delta >> kSmallPCDeltaBits;
253 ASSERT(pc_jump > 0);
254 // Write kChunkBits size chunks of the pc_jump.
255 for (; pc_jump > 0; pc_jump = pc_jump >> kChunkBits) {
256 byte b = pc_jump & kChunkMask;
257 *--pos_ = b << kLastChunkTagBits;
258 }
259 // Tag the last chunk so it can be identified.
260 *pos_ = *pos_ | kLastChunkTag;
261 // Return the remaining kSmallPCDeltaBits of the pc_delta.
262 return pc_delta & kSmallPCDeltaMask;
263 }
264
265
WriteTaggedPC(uint32_t pc_delta,int tag)266 void RelocInfoWriter::WriteTaggedPC(uint32_t pc_delta, int tag) {
267 // Write a byte of tagged pc-delta, possibly preceded by var. length pc-jump.
268 pc_delta = WriteVariableLengthPCJump(pc_delta);
269 *--pos_ = pc_delta << kTagBits | tag;
270 }
271
272
WriteTaggedData(intptr_t data_delta,int tag)273 void RelocInfoWriter::WriteTaggedData(intptr_t data_delta, int tag) {
274 *--pos_ = static_cast<byte>(data_delta << kLocatableTypeTagBits | tag);
275 }
276
277
WriteExtraTag(int extra_tag,int top_tag)278 void RelocInfoWriter::WriteExtraTag(int extra_tag, int top_tag) {
279 *--pos_ = static_cast<int>(top_tag << (kTagBits + kExtraTagBits) |
280 extra_tag << kTagBits |
281 kDefaultTag);
282 }
283
284
WriteExtraTaggedPC(uint32_t pc_delta,int extra_tag)285 void RelocInfoWriter::WriteExtraTaggedPC(uint32_t pc_delta, int extra_tag) {
286 // Write two-byte tagged pc-delta, possibly preceded by var. length pc-jump.
287 pc_delta = WriteVariableLengthPCJump(pc_delta);
288 WriteExtraTag(extra_tag, 0);
289 *--pos_ = pc_delta;
290 }
291
292
WriteExtraTaggedIntData(int data_delta,int top_tag)293 void RelocInfoWriter::WriteExtraTaggedIntData(int data_delta, int top_tag) {
294 WriteExtraTag(kDataJumpExtraTag, top_tag);
295 for (int i = 0; i < kIntSize; i++) {
296 *--pos_ = static_cast<byte>(data_delta);
297 // Signed right shift is arithmetic shift. Tested in test-utils.cc.
298 data_delta = data_delta >> kBitsPerByte;
299 }
300 }
301
WriteExtraTaggedData(intptr_t data_delta,int top_tag)302 void RelocInfoWriter::WriteExtraTaggedData(intptr_t data_delta, int top_tag) {
303 WriteExtraTag(kDataJumpExtraTag, top_tag);
304 for (int i = 0; i < kIntptrSize; i++) {
305 *--pos_ = static_cast<byte>(data_delta);
306 // Signed right shift is arithmetic shift. Tested in test-utils.cc.
307 data_delta = data_delta >> kBitsPerByte;
308 }
309 }
310
311
Write(const RelocInfo * rinfo)312 void RelocInfoWriter::Write(const RelocInfo* rinfo) {
313 #ifdef DEBUG
314 byte* begin_pos = pos_;
315 #endif
316 ASSERT(rinfo->pc() - last_pc_ >= 0);
317 ASSERT(RelocInfo::NUMBER_OF_MODES - RelocInfo::LAST_COMPACT_ENUM <=
318 kMaxRelocModes);
319 // Use unsigned delta-encoding for pc.
320 uint32_t pc_delta = static_cast<uint32_t>(rinfo->pc() - last_pc_);
321 RelocInfo::Mode rmode = rinfo->rmode();
322
323 // The two most common modes are given small tags, and usually fit in a byte.
324 if (rmode == RelocInfo::EMBEDDED_OBJECT) {
325 WriteTaggedPC(pc_delta, kEmbeddedObjectTag);
326 } else if (rmode == RelocInfo::CODE_TARGET) {
327 WriteTaggedPC(pc_delta, kCodeTargetTag);
328 ASSERT(begin_pos - pos_ <= RelocInfo::kMaxCallSize);
329 } else if (rmode == RelocInfo::CODE_TARGET_WITH_ID) {
330 // Use signed delta-encoding for id.
331 ASSERT(static_cast<int>(rinfo->data()) == rinfo->data());
332 int id_delta = static_cast<int>(rinfo->data()) - last_id_;
333 // Check if delta is small enough to fit in a tagged byte.
334 if (is_intn(id_delta, kSmallDataBits)) {
335 WriteTaggedPC(pc_delta, kLocatableTag);
336 WriteTaggedData(id_delta, kCodeWithIdTag);
337 } else {
338 // Otherwise, use costly encoding.
339 WriteExtraTaggedPC(pc_delta, kPCJumpExtraTag);
340 WriteExtraTaggedIntData(id_delta, kCodeWithIdTag);
341 }
342 last_id_ = static_cast<int>(rinfo->data());
343 } else if (RelocInfo::IsPosition(rmode)) {
344 // Use signed delta-encoding for position.
345 ASSERT(static_cast<int>(rinfo->data()) == rinfo->data());
346 int pos_delta = static_cast<int>(rinfo->data()) - last_position_;
347 int pos_type_tag = (rmode == RelocInfo::POSITION) ? kNonstatementPositionTag
348 : kStatementPositionTag;
349 // Check if delta is small enough to fit in a tagged byte.
350 if (is_intn(pos_delta, kSmallDataBits)) {
351 WriteTaggedPC(pc_delta, kLocatableTag);
352 WriteTaggedData(pos_delta, pos_type_tag);
353 } else {
354 // Otherwise, use costly encoding.
355 WriteExtraTaggedPC(pc_delta, kPCJumpExtraTag);
356 WriteExtraTaggedIntData(pos_delta, pos_type_tag);
357 }
358 last_position_ = static_cast<int>(rinfo->data());
359 } else if (RelocInfo::IsComment(rmode)) {
360 // Comments are normally not generated, so we use the costly encoding.
361 WriteExtraTaggedPC(pc_delta, kPCJumpExtraTag);
362 WriteExtraTaggedData(rinfo->data(), kCommentTag);
363 ASSERT(begin_pos - pos_ >= RelocInfo::kMinRelocCommentSize);
364 } else {
365 ASSERT(rmode > RelocInfo::LAST_COMPACT_ENUM);
366 int saved_mode = rmode - RelocInfo::LAST_COMPACT_ENUM;
367 // For all other modes we simply use the mode as the extra tag.
368 // None of these modes need a data component.
369 ASSERT(saved_mode < kPCJumpExtraTag && saved_mode < kDataJumpExtraTag);
370 WriteExtraTaggedPC(pc_delta, saved_mode);
371 }
372 last_pc_ = rinfo->pc();
373 #ifdef DEBUG
374 ASSERT(begin_pos - pos_ <= kMaxSize);
375 #endif
376 }
377
378
AdvanceGetTag()379 inline int RelocIterator::AdvanceGetTag() {
380 return *--pos_ & kTagMask;
381 }
382
383
GetExtraTag()384 inline int RelocIterator::GetExtraTag() {
385 return (*pos_ >> kTagBits) & ((1 << kExtraTagBits) - 1);
386 }
387
388
GetTopTag()389 inline int RelocIterator::GetTopTag() {
390 return *pos_ >> (kTagBits + kExtraTagBits);
391 }
392
393
ReadTaggedPC()394 inline void RelocIterator::ReadTaggedPC() {
395 rinfo_.pc_ += *pos_ >> kTagBits;
396 }
397
398
AdvanceReadPC()399 inline void RelocIterator::AdvanceReadPC() {
400 rinfo_.pc_ += *--pos_;
401 }
402
403
AdvanceReadId()404 void RelocIterator::AdvanceReadId() {
405 int x = 0;
406 for (int i = 0; i < kIntSize; i++) {
407 x |= static_cast<int>(*--pos_) << i * kBitsPerByte;
408 }
409 last_id_ += x;
410 rinfo_.data_ = last_id_;
411 }
412
413
AdvanceReadPosition()414 void RelocIterator::AdvanceReadPosition() {
415 int x = 0;
416 for (int i = 0; i < kIntSize; i++) {
417 x |= static_cast<int>(*--pos_) << i * kBitsPerByte;
418 }
419 last_position_ += x;
420 rinfo_.data_ = last_position_;
421 }
422
423
AdvanceReadData()424 void RelocIterator::AdvanceReadData() {
425 intptr_t x = 0;
426 for (int i = 0; i < kIntptrSize; i++) {
427 x |= static_cast<intptr_t>(*--pos_) << i * kBitsPerByte;
428 }
429 rinfo_.data_ = x;
430 }
431
432
AdvanceReadVariableLengthPCJump()433 void RelocIterator::AdvanceReadVariableLengthPCJump() {
434 // Read the 32-kSmallPCDeltaBits most significant bits of the
435 // pc jump in kChunkBits bit chunks and shift them into place.
436 // Stop when the last chunk is encountered.
437 uint32_t pc_jump = 0;
438 for (int i = 0; i < kIntSize; i++) {
439 byte pc_jump_part = *--pos_;
440 pc_jump |= (pc_jump_part >> kLastChunkTagBits) << i * kChunkBits;
441 if ((pc_jump_part & kLastChunkTagMask) == 1) break;
442 }
443 // The least significant kSmallPCDeltaBits bits will be added
444 // later.
445 rinfo_.pc_ += pc_jump << kSmallPCDeltaBits;
446 }
447
448
GetLocatableTypeTag()449 inline int RelocIterator::GetLocatableTypeTag() {
450 return *pos_ & ((1 << kLocatableTypeTagBits) - 1);
451 }
452
453
ReadTaggedId()454 inline void RelocIterator::ReadTaggedId() {
455 int8_t signed_b = *pos_;
456 // Signed right shift is arithmetic shift. Tested in test-utils.cc.
457 last_id_ += signed_b >> kLocatableTypeTagBits;
458 rinfo_.data_ = last_id_;
459 }
460
461
ReadTaggedPosition()462 inline void RelocIterator::ReadTaggedPosition() {
463 int8_t signed_b = *pos_;
464 // Signed right shift is arithmetic shift. Tested in test-utils.cc.
465 last_position_ += signed_b >> kLocatableTypeTagBits;
466 rinfo_.data_ = last_position_;
467 }
468
469
GetPositionModeFromTag(int tag)470 static inline RelocInfo::Mode GetPositionModeFromTag(int tag) {
471 ASSERT(tag == kNonstatementPositionTag ||
472 tag == kStatementPositionTag);
473 return (tag == kNonstatementPositionTag) ?
474 RelocInfo::POSITION :
475 RelocInfo::STATEMENT_POSITION;
476 }
477
478
next()479 void RelocIterator::next() {
480 ASSERT(!done());
481 // Basically, do the opposite of RelocInfoWriter::Write.
482 // Reading of data is as far as possible avoided for unwanted modes,
483 // but we must always update the pc.
484 //
485 // We exit this loop by returning when we find a mode we want.
486 while (pos_ > end_) {
487 int tag = AdvanceGetTag();
488 if (tag == kEmbeddedObjectTag) {
489 ReadTaggedPC();
490 if (SetMode(RelocInfo::EMBEDDED_OBJECT)) return;
491 } else if (tag == kCodeTargetTag) {
492 ReadTaggedPC();
493 if (SetMode(RelocInfo::CODE_TARGET)) return;
494 } else if (tag == kLocatableTag) {
495 ReadTaggedPC();
496 Advance();
497 int locatable_tag = GetLocatableTypeTag();
498 if (locatable_tag == kCodeWithIdTag) {
499 if (SetMode(RelocInfo::CODE_TARGET_WITH_ID)) {
500 ReadTaggedId();
501 return;
502 }
503 } else {
504 // Compact encoding is never used for comments,
505 // so it must be a position.
506 ASSERT(locatable_tag == kNonstatementPositionTag ||
507 locatable_tag == kStatementPositionTag);
508 if (mode_mask_ & RelocInfo::kPositionMask) {
509 ReadTaggedPosition();
510 if (SetMode(GetPositionModeFromTag(locatable_tag))) return;
511 }
512 }
513 } else {
514 ASSERT(tag == kDefaultTag);
515 int extra_tag = GetExtraTag();
516 if (extra_tag == kPCJumpExtraTag) {
517 int top_tag = GetTopTag();
518 if (top_tag == kVariableLengthPCJumpTopTag) {
519 AdvanceReadVariableLengthPCJump();
520 } else {
521 AdvanceReadPC();
522 }
523 } else if (extra_tag == kDataJumpExtraTag) {
524 int locatable_tag = GetTopTag();
525 if (locatable_tag == kCodeWithIdTag) {
526 if (SetMode(RelocInfo::CODE_TARGET_WITH_ID)) {
527 AdvanceReadId();
528 return;
529 }
530 Advance(kIntSize);
531 } else if (locatable_tag != kCommentTag) {
532 ASSERT(locatable_tag == kNonstatementPositionTag ||
533 locatable_tag == kStatementPositionTag);
534 if (mode_mask_ & RelocInfo::kPositionMask) {
535 AdvanceReadPosition();
536 if (SetMode(GetPositionModeFromTag(locatable_tag))) return;
537 } else {
538 Advance(kIntSize);
539 }
540 } else {
541 ASSERT(locatable_tag == kCommentTag);
542 if (SetMode(RelocInfo::COMMENT)) {
543 AdvanceReadData();
544 return;
545 }
546 Advance(kIntptrSize);
547 }
548 } else {
549 AdvanceReadPC();
550 int rmode = extra_tag + RelocInfo::LAST_COMPACT_ENUM;
551 if (SetMode(static_cast<RelocInfo::Mode>(rmode))) return;
552 }
553 }
554 }
555 done_ = true;
556 }
557
558
RelocIterator(Code * code,int mode_mask)559 RelocIterator::RelocIterator(Code* code, int mode_mask) {
560 rinfo_.host_ = code;
561 rinfo_.pc_ = code->instruction_start();
562 rinfo_.data_ = 0;
563 // Relocation info is read backwards.
564 pos_ = code->relocation_start() + code->relocation_size();
565 end_ = code->relocation_start();
566 done_ = false;
567 mode_mask_ = mode_mask;
568 last_id_ = 0;
569 last_position_ = 0;
570 if (mode_mask_ == 0) pos_ = end_;
571 next();
572 }
573
574
RelocIterator(const CodeDesc & desc,int mode_mask)575 RelocIterator::RelocIterator(const CodeDesc& desc, int mode_mask) {
576 rinfo_.pc_ = desc.buffer;
577 rinfo_.data_ = 0;
578 // Relocation info is read backwards.
579 pos_ = desc.buffer + desc.buffer_size;
580 end_ = pos_ - desc.reloc_size;
581 done_ = false;
582 mode_mask_ = mode_mask;
583 last_id_ = 0;
584 last_position_ = 0;
585 if (mode_mask_ == 0) pos_ = end_;
586 next();
587 }
588
589
590 // -----------------------------------------------------------------------------
591 // Implementation of RelocInfo
592
593
594 #ifdef ENABLE_DISASSEMBLER
RelocModeName(RelocInfo::Mode rmode)595 const char* RelocInfo::RelocModeName(RelocInfo::Mode rmode) {
596 switch (rmode) {
597 case RelocInfo::NONE:
598 return "no reloc";
599 case RelocInfo::EMBEDDED_OBJECT:
600 return "embedded object";
601 case RelocInfo::CONSTRUCT_CALL:
602 return "code target (js construct call)";
603 case RelocInfo::CODE_TARGET_CONTEXT:
604 return "code target (context)";
605 case RelocInfo::DEBUG_BREAK:
606 #ifndef ENABLE_DEBUGGER_SUPPORT
607 UNREACHABLE();
608 #endif
609 return "debug break";
610 case RelocInfo::CODE_TARGET:
611 return "code target";
612 case RelocInfo::CODE_TARGET_WITH_ID:
613 return "code target with id";
614 case RelocInfo::GLOBAL_PROPERTY_CELL:
615 return "global property cell";
616 case RelocInfo::RUNTIME_ENTRY:
617 return "runtime entry";
618 case RelocInfo::JS_RETURN:
619 return "js return";
620 case RelocInfo::COMMENT:
621 return "comment";
622 case RelocInfo::POSITION:
623 return "position";
624 case RelocInfo::STATEMENT_POSITION:
625 return "statement position";
626 case RelocInfo::EXTERNAL_REFERENCE:
627 return "external reference";
628 case RelocInfo::INTERNAL_REFERENCE:
629 return "internal reference";
630 case RelocInfo::DEBUG_BREAK_SLOT:
631 #ifndef ENABLE_DEBUGGER_SUPPORT
632 UNREACHABLE();
633 #endif
634 return "debug break slot";
635 case RelocInfo::NUMBER_OF_MODES:
636 UNREACHABLE();
637 return "number_of_modes";
638 }
639 return "unknown relocation type";
640 }
641
642
Print(FILE * out)643 void RelocInfo::Print(FILE* out) {
644 PrintF(out, "%p %s", pc_, RelocModeName(rmode_));
645 if (IsComment(rmode_)) {
646 PrintF(out, " (%s)", reinterpret_cast<char*>(data_));
647 } else if (rmode_ == EMBEDDED_OBJECT) {
648 PrintF(out, " (");
649 target_object()->ShortPrint(out);
650 PrintF(out, ")");
651 } else if (rmode_ == EXTERNAL_REFERENCE) {
652 ExternalReferenceEncoder ref_encoder;
653 PrintF(out, " (%s) (%p)",
654 ref_encoder.NameOfAddress(*target_reference_address()),
655 *target_reference_address());
656 } else if (IsCodeTarget(rmode_)) {
657 Code* code = Code::GetCodeFromTargetAddress(target_address());
658 PrintF(out, " (%s) (%p)", Code::Kind2String(code->kind()),
659 target_address());
660 if (rmode_ == CODE_TARGET_WITH_ID) {
661 PrintF(" (id=%d)", static_cast<int>(data_));
662 }
663 } else if (IsPosition(rmode_)) {
664 PrintF(out, " (%" V8_PTR_PREFIX "d)", data());
665 } else if (rmode_ == RelocInfo::RUNTIME_ENTRY &&
666 Isolate::Current()->deoptimizer_data() != NULL) {
667 // Depotimization bailouts are stored as runtime entries.
668 int id = Deoptimizer::GetDeoptimizationId(
669 target_address(), Deoptimizer::EAGER);
670 if (id != Deoptimizer::kNotDeoptimizationEntry) {
671 PrintF(out, " (deoptimization bailout %d)", id);
672 }
673 }
674
675 PrintF(out, "\n");
676 }
677 #endif // ENABLE_DISASSEMBLER
678
679
680 #ifdef DEBUG
Verify()681 void RelocInfo::Verify() {
682 switch (rmode_) {
683 case EMBEDDED_OBJECT:
684 Object::VerifyPointer(target_object());
685 break;
686 case GLOBAL_PROPERTY_CELL:
687 Object::VerifyPointer(target_cell());
688 break;
689 case DEBUG_BREAK:
690 #ifndef ENABLE_DEBUGGER_SUPPORT
691 UNREACHABLE();
692 break;
693 #endif
694 case CONSTRUCT_CALL:
695 case CODE_TARGET_CONTEXT:
696 case CODE_TARGET_WITH_ID:
697 case CODE_TARGET: {
698 // convert inline target address to code object
699 Address addr = target_address();
700 ASSERT(addr != NULL);
701 // Check that we can find the right code object.
702 Code* code = Code::GetCodeFromTargetAddress(addr);
703 Object* found = HEAP->FindCodeObject(addr);
704 ASSERT(found->IsCode());
705 ASSERT(code->address() == HeapObject::cast(found)->address());
706 break;
707 }
708 case RUNTIME_ENTRY:
709 case JS_RETURN:
710 case COMMENT:
711 case POSITION:
712 case STATEMENT_POSITION:
713 case EXTERNAL_REFERENCE:
714 case INTERNAL_REFERENCE:
715 case DEBUG_BREAK_SLOT:
716 case NONE:
717 break;
718 case NUMBER_OF_MODES:
719 UNREACHABLE();
720 break;
721 }
722 }
723 #endif // DEBUG
724
725
726 // -----------------------------------------------------------------------------
727 // Implementation of ExternalReference
728
ExternalReference(Builtins::CFunctionId id,Isolate * isolate)729 ExternalReference::ExternalReference(Builtins::CFunctionId id, Isolate* isolate)
730 : address_(Redirect(isolate, Builtins::c_function_address(id))) {}
731
732
ExternalReference(ApiFunction * fun,Type type=ExternalReference::BUILTIN_CALL,Isolate * isolate=NULL)733 ExternalReference::ExternalReference(
734 ApiFunction* fun,
735 Type type = ExternalReference::BUILTIN_CALL,
736 Isolate* isolate = NULL)
737 : address_(Redirect(isolate, fun->address(), type)) {}
738
739
ExternalReference(Builtins::Name name,Isolate * isolate)740 ExternalReference::ExternalReference(Builtins::Name name, Isolate* isolate)
741 : address_(isolate->builtins()->builtin_address(name)) {}
742
743
ExternalReference(Runtime::FunctionId id,Isolate * isolate)744 ExternalReference::ExternalReference(Runtime::FunctionId id,
745 Isolate* isolate)
746 : address_(Redirect(isolate, Runtime::FunctionForId(id)->entry)) {}
747
748
ExternalReference(const Runtime::Function * f,Isolate * isolate)749 ExternalReference::ExternalReference(const Runtime::Function* f,
750 Isolate* isolate)
751 : address_(Redirect(isolate, f->entry)) {}
752
753
isolate_address()754 ExternalReference ExternalReference::isolate_address() {
755 return ExternalReference(Isolate::Current());
756 }
757
758
ExternalReference(const IC_Utility & ic_utility,Isolate * isolate)759 ExternalReference::ExternalReference(const IC_Utility& ic_utility,
760 Isolate* isolate)
761 : address_(Redirect(isolate, ic_utility.address())) {}
762
763 #ifdef ENABLE_DEBUGGER_SUPPORT
ExternalReference(const Debug_Address & debug_address,Isolate * isolate)764 ExternalReference::ExternalReference(const Debug_Address& debug_address,
765 Isolate* isolate)
766 : address_(debug_address.address(isolate)) {}
767 #endif
768
ExternalReference(StatsCounter * counter)769 ExternalReference::ExternalReference(StatsCounter* counter)
770 : address_(reinterpret_cast<Address>(counter->GetInternalPointer())) {}
771
772
ExternalReference(Isolate::AddressId id,Isolate * isolate)773 ExternalReference::ExternalReference(Isolate::AddressId id, Isolate* isolate)
774 : address_(isolate->get_address_from_id(id)) {}
775
776
ExternalReference(const SCTableReference & table_ref)777 ExternalReference::ExternalReference(const SCTableReference& table_ref)
778 : address_(table_ref.address()) {}
779
780
781 ExternalReference ExternalReference::
incremental_marking_record_write_function(Isolate * isolate)782 incremental_marking_record_write_function(Isolate* isolate) {
783 return ExternalReference(Redirect(
784 isolate,
785 FUNCTION_ADDR(IncrementalMarking::RecordWriteFromCode)));
786 }
787
788
789 ExternalReference ExternalReference::
incremental_evacuation_record_write_function(Isolate * isolate)790 incremental_evacuation_record_write_function(Isolate* isolate) {
791 return ExternalReference(Redirect(
792 isolate,
793 FUNCTION_ADDR(IncrementalMarking::RecordWriteForEvacuationFromCode)));
794 }
795
796
797 ExternalReference ExternalReference::
store_buffer_overflow_function(Isolate * isolate)798 store_buffer_overflow_function(Isolate* isolate) {
799 return ExternalReference(Redirect(
800 isolate,
801 FUNCTION_ADDR(StoreBuffer::StoreBufferOverflow)));
802 }
803
804
flush_icache_function(Isolate * isolate)805 ExternalReference ExternalReference::flush_icache_function(Isolate* isolate) {
806 return ExternalReference(Redirect(isolate, FUNCTION_ADDR(CPU::FlushICache)));
807 }
808
809
perform_gc_function(Isolate * isolate)810 ExternalReference ExternalReference::perform_gc_function(Isolate* isolate) {
811 return
812 ExternalReference(Redirect(isolate, FUNCTION_ADDR(Runtime::PerformGC)));
813 }
814
815
fill_heap_number_with_random_function(Isolate * isolate)816 ExternalReference ExternalReference::fill_heap_number_with_random_function(
817 Isolate* isolate) {
818 return ExternalReference(Redirect(
819 isolate,
820 FUNCTION_ADDR(V8::FillHeapNumberWithRandom)));
821 }
822
823
delete_handle_scope_extensions(Isolate * isolate)824 ExternalReference ExternalReference::delete_handle_scope_extensions(
825 Isolate* isolate) {
826 return ExternalReference(Redirect(
827 isolate,
828 FUNCTION_ADDR(HandleScope::DeleteExtensions)));
829 }
830
831
random_uint32_function(Isolate * isolate)832 ExternalReference ExternalReference::random_uint32_function(
833 Isolate* isolate) {
834 return ExternalReference(Redirect(isolate, FUNCTION_ADDR(V8::Random)));
835 }
836
837
get_date_field_function(Isolate * isolate)838 ExternalReference ExternalReference::get_date_field_function(
839 Isolate* isolate) {
840 return ExternalReference(Redirect(isolate, FUNCTION_ADDR(JSDate::GetField)));
841 }
842
843
date_cache_stamp(Isolate * isolate)844 ExternalReference ExternalReference::date_cache_stamp(Isolate* isolate) {
845 return ExternalReference(isolate->date_cache()->stamp_address());
846 }
847
848
transcendental_cache_array_address(Isolate * isolate)849 ExternalReference ExternalReference::transcendental_cache_array_address(
850 Isolate* isolate) {
851 return ExternalReference(
852 isolate->transcendental_cache()->cache_array_address());
853 }
854
855
new_deoptimizer_function(Isolate * isolate)856 ExternalReference ExternalReference::new_deoptimizer_function(
857 Isolate* isolate) {
858 return ExternalReference(
859 Redirect(isolate, FUNCTION_ADDR(Deoptimizer::New)));
860 }
861
862
compute_output_frames_function(Isolate * isolate)863 ExternalReference ExternalReference::compute_output_frames_function(
864 Isolate* isolate) {
865 return ExternalReference(
866 Redirect(isolate, FUNCTION_ADDR(Deoptimizer::ComputeOutputFrames)));
867 }
868
869
keyed_lookup_cache_keys(Isolate * isolate)870 ExternalReference ExternalReference::keyed_lookup_cache_keys(Isolate* isolate) {
871 return ExternalReference(isolate->keyed_lookup_cache()->keys_address());
872 }
873
874
keyed_lookup_cache_field_offsets(Isolate * isolate)875 ExternalReference ExternalReference::keyed_lookup_cache_field_offsets(
876 Isolate* isolate) {
877 return ExternalReference(
878 isolate->keyed_lookup_cache()->field_offsets_address());
879 }
880
881
roots_array_start(Isolate * isolate)882 ExternalReference ExternalReference::roots_array_start(Isolate* isolate) {
883 return ExternalReference(isolate->heap()->roots_array_start());
884 }
885
886
address_of_stack_limit(Isolate * isolate)887 ExternalReference ExternalReference::address_of_stack_limit(Isolate* isolate) {
888 return ExternalReference(isolate->stack_guard()->address_of_jslimit());
889 }
890
891
address_of_real_stack_limit(Isolate * isolate)892 ExternalReference ExternalReference::address_of_real_stack_limit(
893 Isolate* isolate) {
894 return ExternalReference(isolate->stack_guard()->address_of_real_jslimit());
895 }
896
897
address_of_regexp_stack_limit(Isolate * isolate)898 ExternalReference ExternalReference::address_of_regexp_stack_limit(
899 Isolate* isolate) {
900 return ExternalReference(isolate->regexp_stack()->limit_address());
901 }
902
903
new_space_start(Isolate * isolate)904 ExternalReference ExternalReference::new_space_start(Isolate* isolate) {
905 return ExternalReference(isolate->heap()->NewSpaceStart());
906 }
907
908
store_buffer_top(Isolate * isolate)909 ExternalReference ExternalReference::store_buffer_top(Isolate* isolate) {
910 return ExternalReference(isolate->heap()->store_buffer()->TopAddress());
911 }
912
913
new_space_mask(Isolate * isolate)914 ExternalReference ExternalReference::new_space_mask(Isolate* isolate) {
915 return ExternalReference(reinterpret_cast<Address>(
916 isolate->heap()->NewSpaceMask()));
917 }
918
919
new_space_allocation_top_address(Isolate * isolate)920 ExternalReference ExternalReference::new_space_allocation_top_address(
921 Isolate* isolate) {
922 return ExternalReference(isolate->heap()->NewSpaceAllocationTopAddress());
923 }
924
925
heap_always_allocate_scope_depth(Isolate * isolate)926 ExternalReference ExternalReference::heap_always_allocate_scope_depth(
927 Isolate* isolate) {
928 Heap* heap = isolate->heap();
929 return ExternalReference(heap->always_allocate_scope_depth_address());
930 }
931
932
new_space_allocation_limit_address(Isolate * isolate)933 ExternalReference ExternalReference::new_space_allocation_limit_address(
934 Isolate* isolate) {
935 return ExternalReference(isolate->heap()->NewSpaceAllocationLimitAddress());
936 }
937
938
handle_scope_level_address()939 ExternalReference ExternalReference::handle_scope_level_address() {
940 return ExternalReference(HandleScope::current_level_address());
941 }
942
943
handle_scope_next_address()944 ExternalReference ExternalReference::handle_scope_next_address() {
945 return ExternalReference(HandleScope::current_next_address());
946 }
947
948
handle_scope_limit_address()949 ExternalReference ExternalReference::handle_scope_limit_address() {
950 return ExternalReference(HandleScope::current_limit_address());
951 }
952
953
scheduled_exception_address(Isolate * isolate)954 ExternalReference ExternalReference::scheduled_exception_address(
955 Isolate* isolate) {
956 return ExternalReference(isolate->scheduled_exception_address());
957 }
958
959
address_of_min_int()960 ExternalReference ExternalReference::address_of_min_int() {
961 return ExternalReference(reinterpret_cast<void*>(
962 &double_constants.Pointer()->min_int));
963 }
964
965
address_of_one_half()966 ExternalReference ExternalReference::address_of_one_half() {
967 return ExternalReference(reinterpret_cast<void*>(
968 &double_constants.Pointer()->one_half));
969 }
970
971
address_of_minus_zero()972 ExternalReference ExternalReference::address_of_minus_zero() {
973 return ExternalReference(reinterpret_cast<void*>(
974 &double_constants.Pointer()->minus_zero));
975 }
976
977
address_of_zero()978 ExternalReference ExternalReference::address_of_zero() {
979 return ExternalReference(reinterpret_cast<void*>(
980 &double_constants.Pointer()->zero));
981 }
982
983
address_of_uint8_max_value()984 ExternalReference ExternalReference::address_of_uint8_max_value() {
985 return ExternalReference(reinterpret_cast<void*>(
986 &double_constants.Pointer()->uint8_max_value));
987 }
988
989
address_of_negative_infinity()990 ExternalReference ExternalReference::address_of_negative_infinity() {
991 return ExternalReference(reinterpret_cast<void*>(
992 &double_constants.Pointer()->negative_infinity));
993 }
994
995
address_of_canonical_non_hole_nan()996 ExternalReference ExternalReference::address_of_canonical_non_hole_nan() {
997 return ExternalReference(reinterpret_cast<void*>(
998 &double_constants.Pointer()->canonical_non_hole_nan));
999 }
1000
1001
address_of_the_hole_nan()1002 ExternalReference ExternalReference::address_of_the_hole_nan() {
1003 return ExternalReference(reinterpret_cast<void*>(
1004 &double_constants.Pointer()->the_hole_nan));
1005 }
1006
1007
1008 #ifndef V8_INTERPRETED_REGEXP
1009
re_check_stack_guard_state(Isolate * isolate)1010 ExternalReference ExternalReference::re_check_stack_guard_state(
1011 Isolate* isolate) {
1012 Address function;
1013 #ifdef V8_TARGET_ARCH_X64
1014 function = FUNCTION_ADDR(RegExpMacroAssemblerX64::CheckStackGuardState);
1015 #elif V8_TARGET_ARCH_IA32
1016 function = FUNCTION_ADDR(RegExpMacroAssemblerIA32::CheckStackGuardState);
1017 #elif V8_TARGET_ARCH_ARM
1018 function = FUNCTION_ADDR(RegExpMacroAssemblerARM::CheckStackGuardState);
1019 #elif V8_TARGET_ARCH_MIPS
1020 function = FUNCTION_ADDR(RegExpMacroAssemblerMIPS::CheckStackGuardState);
1021 #else
1022 UNREACHABLE();
1023 #endif
1024 return ExternalReference(Redirect(isolate, function));
1025 }
1026
re_grow_stack(Isolate * isolate)1027 ExternalReference ExternalReference::re_grow_stack(Isolate* isolate) {
1028 return ExternalReference(
1029 Redirect(isolate, FUNCTION_ADDR(NativeRegExpMacroAssembler::GrowStack)));
1030 }
1031
re_case_insensitive_compare_uc16(Isolate * isolate)1032 ExternalReference ExternalReference::re_case_insensitive_compare_uc16(
1033 Isolate* isolate) {
1034 return ExternalReference(Redirect(
1035 isolate,
1036 FUNCTION_ADDR(NativeRegExpMacroAssembler::CaseInsensitiveCompareUC16)));
1037 }
1038
re_word_character_map()1039 ExternalReference ExternalReference::re_word_character_map() {
1040 return ExternalReference(
1041 NativeRegExpMacroAssembler::word_character_map_address());
1042 }
1043
address_of_static_offsets_vector(Isolate * isolate)1044 ExternalReference ExternalReference::address_of_static_offsets_vector(
1045 Isolate* isolate) {
1046 return ExternalReference(
1047 OffsetsVector::static_offsets_vector_address(isolate));
1048 }
1049
address_of_regexp_stack_memory_address(Isolate * isolate)1050 ExternalReference ExternalReference::address_of_regexp_stack_memory_address(
1051 Isolate* isolate) {
1052 return ExternalReference(
1053 isolate->regexp_stack()->memory_address());
1054 }
1055
address_of_regexp_stack_memory_size(Isolate * isolate)1056 ExternalReference ExternalReference::address_of_regexp_stack_memory_size(
1057 Isolate* isolate) {
1058 return ExternalReference(isolate->regexp_stack()->memory_size_address());
1059 }
1060
1061 #endif // V8_INTERPRETED_REGEXP
1062
1063
add_two_doubles(double x,double y)1064 static double add_two_doubles(double x, double y) {
1065 return x + y;
1066 }
1067
1068
sub_two_doubles(double x,double y)1069 static double sub_two_doubles(double x, double y) {
1070 return x - y;
1071 }
1072
1073
mul_two_doubles(double x,double y)1074 static double mul_two_doubles(double x, double y) {
1075 return x * y;
1076 }
1077
1078
div_two_doubles(double x,double y)1079 static double div_two_doubles(double x, double y) {
1080 return x / y;
1081 }
1082
1083
mod_two_doubles(double x,double y)1084 static double mod_two_doubles(double x, double y) {
1085 return modulo(x, y);
1086 }
1087
1088
math_sin_double(double x)1089 static double math_sin_double(double x) {
1090 return sin(x);
1091 }
1092
1093
math_cos_double(double x)1094 static double math_cos_double(double x) {
1095 return cos(x);
1096 }
1097
1098
math_tan_double(double x)1099 static double math_tan_double(double x) {
1100 return tan(x);
1101 }
1102
1103
math_log_double(double x)1104 static double math_log_double(double x) {
1105 return log(x);
1106 }
1107
1108
math_sin_double_function(Isolate * isolate)1109 ExternalReference ExternalReference::math_sin_double_function(
1110 Isolate* isolate) {
1111 return ExternalReference(Redirect(isolate,
1112 FUNCTION_ADDR(math_sin_double),
1113 BUILTIN_FP_CALL));
1114 }
1115
1116
math_cos_double_function(Isolate * isolate)1117 ExternalReference ExternalReference::math_cos_double_function(
1118 Isolate* isolate) {
1119 return ExternalReference(Redirect(isolate,
1120 FUNCTION_ADDR(math_cos_double),
1121 BUILTIN_FP_CALL));
1122 }
1123
1124
math_tan_double_function(Isolate * isolate)1125 ExternalReference ExternalReference::math_tan_double_function(
1126 Isolate* isolate) {
1127 return ExternalReference(Redirect(isolate,
1128 FUNCTION_ADDR(math_tan_double),
1129 BUILTIN_FP_CALL));
1130 }
1131
1132
math_log_double_function(Isolate * isolate)1133 ExternalReference ExternalReference::math_log_double_function(
1134 Isolate* isolate) {
1135 return ExternalReference(Redirect(isolate,
1136 FUNCTION_ADDR(math_log_double),
1137 BUILTIN_FP_CALL));
1138 }
1139
1140
1141 // Helper function to compute x^y, where y is known to be an
1142 // integer. Uses binary decomposition to limit the number of
1143 // multiplications; see the discussion in "Hacker's Delight" by Henry
1144 // S. Warren, Jr., figure 11-6, page 213.
power_double_int(double x,int y)1145 double power_double_int(double x, int y) {
1146 double m = (y < 0) ? 1 / x : x;
1147 unsigned n = (y < 0) ? -y : y;
1148 double p = 1;
1149 while (n != 0) {
1150 if ((n & 1) != 0) p *= m;
1151 m *= m;
1152 if ((n & 2) != 0) p *= m;
1153 m *= m;
1154 n >>= 2;
1155 }
1156 return p;
1157 }
1158
1159
power_double_double(double x,double y)1160 double power_double_double(double x, double y) {
1161 // The checks for special cases can be dropped in ia32 because it has already
1162 // been done in generated code before bailing out here.
1163 if (isnan(y) || ((x == 1 || x == -1) && isinf(y))) return OS::nan_value();
1164 return pow(x, y);
1165 }
1166
1167
power_double_double_function(Isolate * isolate)1168 ExternalReference ExternalReference::power_double_double_function(
1169 Isolate* isolate) {
1170 return ExternalReference(Redirect(isolate,
1171 FUNCTION_ADDR(power_double_double),
1172 BUILTIN_FP_FP_CALL));
1173 }
1174
1175
power_double_int_function(Isolate * isolate)1176 ExternalReference ExternalReference::power_double_int_function(
1177 Isolate* isolate) {
1178 return ExternalReference(Redirect(isolate,
1179 FUNCTION_ADDR(power_double_int),
1180 BUILTIN_FP_INT_CALL));
1181 }
1182
1183
native_compare_doubles(double y,double x)1184 static int native_compare_doubles(double y, double x) {
1185 if (x == y) return EQUAL;
1186 return x < y ? LESS : GREATER;
1187 }
1188
1189
EvalComparison(Token::Value op,double op1,double op2)1190 bool EvalComparison(Token::Value op, double op1, double op2) {
1191 ASSERT(Token::IsCompareOp(op));
1192 switch (op) {
1193 case Token::EQ:
1194 case Token::EQ_STRICT: return (op1 == op2);
1195 case Token::NE: return (op1 != op2);
1196 case Token::LT: return (op1 < op2);
1197 case Token::GT: return (op1 > op2);
1198 case Token::LTE: return (op1 <= op2);
1199 case Token::GTE: return (op1 >= op2);
1200 default:
1201 UNREACHABLE();
1202 return false;
1203 }
1204 }
1205
1206
double_fp_operation(Token::Value operation,Isolate * isolate)1207 ExternalReference ExternalReference::double_fp_operation(
1208 Token::Value operation, Isolate* isolate) {
1209 typedef double BinaryFPOperation(double x, double y);
1210 BinaryFPOperation* function = NULL;
1211 switch (operation) {
1212 case Token::ADD:
1213 function = &add_two_doubles;
1214 break;
1215 case Token::SUB:
1216 function = &sub_two_doubles;
1217 break;
1218 case Token::MUL:
1219 function = &mul_two_doubles;
1220 break;
1221 case Token::DIV:
1222 function = &div_two_doubles;
1223 break;
1224 case Token::MOD:
1225 function = &mod_two_doubles;
1226 break;
1227 default:
1228 UNREACHABLE();
1229 }
1230 return ExternalReference(Redirect(isolate,
1231 FUNCTION_ADDR(function),
1232 BUILTIN_FP_FP_CALL));
1233 }
1234
1235
compare_doubles(Isolate * isolate)1236 ExternalReference ExternalReference::compare_doubles(Isolate* isolate) {
1237 return ExternalReference(Redirect(isolate,
1238 FUNCTION_ADDR(native_compare_doubles),
1239 BUILTIN_COMPARE_CALL));
1240 }
1241
1242
1243 #ifdef ENABLE_DEBUGGER_SUPPORT
debug_break(Isolate * isolate)1244 ExternalReference ExternalReference::debug_break(Isolate* isolate) {
1245 return ExternalReference(Redirect(isolate, FUNCTION_ADDR(Debug_Break)));
1246 }
1247
1248
debug_step_in_fp_address(Isolate * isolate)1249 ExternalReference ExternalReference::debug_step_in_fp_address(
1250 Isolate* isolate) {
1251 return ExternalReference(isolate->debug()->step_in_fp_addr());
1252 }
1253 #endif
1254
1255
RecordPosition(int pos)1256 void PositionsRecorder::RecordPosition(int pos) {
1257 ASSERT(pos != RelocInfo::kNoPosition);
1258 ASSERT(pos >= 0);
1259 state_.current_position = pos;
1260 #ifdef ENABLE_GDB_JIT_INTERFACE
1261 if (gdbjit_lineinfo_ != NULL) {
1262 gdbjit_lineinfo_->SetPosition(assembler_->pc_offset(), pos, false);
1263 }
1264 #endif
1265 }
1266
1267
RecordStatementPosition(int pos)1268 void PositionsRecorder::RecordStatementPosition(int pos) {
1269 ASSERT(pos != RelocInfo::kNoPosition);
1270 ASSERT(pos >= 0);
1271 state_.current_statement_position = pos;
1272 #ifdef ENABLE_GDB_JIT_INTERFACE
1273 if (gdbjit_lineinfo_ != NULL) {
1274 gdbjit_lineinfo_->SetPosition(assembler_->pc_offset(), pos, true);
1275 }
1276 #endif
1277 }
1278
1279
WriteRecordedPositions()1280 bool PositionsRecorder::WriteRecordedPositions() {
1281 bool written = false;
1282
1283 // Write the statement position if it is different from what was written last
1284 // time.
1285 if (state_.current_statement_position != state_.written_statement_position) {
1286 EnsureSpace ensure_space(assembler_);
1287 assembler_->RecordRelocInfo(RelocInfo::STATEMENT_POSITION,
1288 state_.current_statement_position);
1289 state_.written_statement_position = state_.current_statement_position;
1290 written = true;
1291 }
1292
1293 // Write the position if it is different from what was written last time and
1294 // also different from the written statement position.
1295 if (state_.current_position != state_.written_position &&
1296 state_.current_position != state_.written_statement_position) {
1297 EnsureSpace ensure_space(assembler_);
1298 assembler_->RecordRelocInfo(RelocInfo::POSITION, state_.current_position);
1299 state_.written_position = state_.current_position;
1300 written = true;
1301 }
1302
1303 // Return whether something was written.
1304 return written;
1305 }
1306
1307 } } // namespace v8::internal
1308