1 //===--- CGCall.cpp - Encapsulate calling convention details ----*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // These classes wrap the information about a call or function
11 // definition used to handle ABI compliancy.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "CGCall.h"
16 #include "CGCXXABI.h"
17 #include "ABIInfo.h"
18 #include "CodeGenFunction.h"
19 #include "CodeGenModule.h"
20 #include "TargetInfo.h"
21 #include "clang/Basic/TargetInfo.h"
22 #include "clang/AST/Decl.h"
23 #include "clang/AST/DeclCXX.h"
24 #include "clang/AST/DeclObjC.h"
25 #include "clang/Frontend/CodeGenOptions.h"
26 #include "llvm/Attributes.h"
27 #include "llvm/Support/CallSite.h"
28 #include "llvm/Target/TargetData.h"
29 #include "llvm/InlineAsm.h"
30 #include "llvm/Transforms/Utils/Local.h"
31 using namespace clang;
32 using namespace CodeGen;
33
34 /***/
35
ClangCallConvToLLVMCallConv(CallingConv CC)36 static unsigned ClangCallConvToLLVMCallConv(CallingConv CC) {
37 switch (CC) {
38 default: return llvm::CallingConv::C;
39 case CC_X86StdCall: return llvm::CallingConv::X86_StdCall;
40 case CC_X86FastCall: return llvm::CallingConv::X86_FastCall;
41 case CC_X86ThisCall: return llvm::CallingConv::X86_ThisCall;
42 case CC_AAPCS: return llvm::CallingConv::ARM_AAPCS;
43 case CC_AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP;
44 // TODO: add support for CC_X86Pascal to llvm
45 }
46 }
47
48 /// Derives the 'this' type for codegen purposes, i.e. ignoring method
49 /// qualification.
50 /// FIXME: address space qualification?
GetThisType(ASTContext & Context,const CXXRecordDecl * RD)51 static CanQualType GetThisType(ASTContext &Context, const CXXRecordDecl *RD) {
52 QualType RecTy = Context.getTagDeclType(RD)->getCanonicalTypeInternal();
53 return Context.getPointerType(CanQualType::CreateUnsafe(RecTy));
54 }
55
56 /// Returns the canonical formal type of the given C++ method.
GetFormalType(const CXXMethodDecl * MD)57 static CanQual<FunctionProtoType> GetFormalType(const CXXMethodDecl *MD) {
58 return MD->getType()->getCanonicalTypeUnqualified()
59 .getAs<FunctionProtoType>();
60 }
61
62 /// Returns the "extra-canonicalized" return type, which discards
63 /// qualifiers on the return type. Codegen doesn't care about them,
64 /// and it makes ABI code a little easier to be able to assume that
65 /// all parameter and return types are top-level unqualified.
GetReturnType(QualType RetTy)66 static CanQualType GetReturnType(QualType RetTy) {
67 return RetTy->getCanonicalTypeUnqualified().getUnqualifiedType();
68 }
69
70 /// Arrange the argument and result information for a value of the given
71 /// unprototyped freestanding function type.
72 const CGFunctionInfo &
arrangeFreeFunctionType(CanQual<FunctionNoProtoType> FTNP)73 CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionNoProtoType> FTNP) {
74 // When translating an unprototyped function type, always use a
75 // variadic type.
76 return arrangeLLVMFunctionInfo(FTNP->getResultType().getUnqualifiedType(),
77 ArrayRef<CanQualType>(),
78 FTNP->getExtInfo(),
79 RequiredArgs(0));
80 }
81
82 /// Arrange the LLVM function layout for a value of the given function
83 /// type, on top of any implicit parameters already stored. Use the
84 /// given ExtInfo instead of the ExtInfo from the function type.
arrangeLLVMFunctionInfo(CodeGenTypes & CGT,SmallVectorImpl<CanQualType> & prefix,CanQual<FunctionProtoType> FTP,FunctionType::ExtInfo extInfo)85 static const CGFunctionInfo &arrangeLLVMFunctionInfo(CodeGenTypes &CGT,
86 SmallVectorImpl<CanQualType> &prefix,
87 CanQual<FunctionProtoType> FTP,
88 FunctionType::ExtInfo extInfo) {
89 RequiredArgs required = RequiredArgs::forPrototypePlus(FTP, prefix.size());
90 // FIXME: Kill copy.
91 for (unsigned i = 0, e = FTP->getNumArgs(); i != e; ++i)
92 prefix.push_back(FTP->getArgType(i));
93 CanQualType resultType = FTP->getResultType().getUnqualifiedType();
94 return CGT.arrangeLLVMFunctionInfo(resultType, prefix, extInfo, required);
95 }
96
97 /// Arrange the argument and result information for a free function (i.e.
98 /// not a C++ or ObjC instance method) of the given type.
arrangeFreeFunctionType(CodeGenTypes & CGT,SmallVectorImpl<CanQualType> & prefix,CanQual<FunctionProtoType> FTP)99 static const CGFunctionInfo &arrangeFreeFunctionType(CodeGenTypes &CGT,
100 SmallVectorImpl<CanQualType> &prefix,
101 CanQual<FunctionProtoType> FTP) {
102 return arrangeLLVMFunctionInfo(CGT, prefix, FTP, FTP->getExtInfo());
103 }
104
105 /// Given the formal ext-info of a C++ instance method, adjust it
106 /// according to the C++ ABI in effect.
adjustCXXMethodInfo(CodeGenTypes & CGT,FunctionType::ExtInfo & extInfo,bool isVariadic)107 static void adjustCXXMethodInfo(CodeGenTypes &CGT,
108 FunctionType::ExtInfo &extInfo,
109 bool isVariadic) {
110 if (extInfo.getCC() == CC_Default) {
111 CallingConv CC = CGT.getContext().getDefaultCXXMethodCallConv(isVariadic);
112 extInfo = extInfo.withCallingConv(CC);
113 }
114 }
115
116 /// Arrange the argument and result information for a free function (i.e.
117 /// not a C++ or ObjC instance method) of the given type.
arrangeCXXMethodType(CodeGenTypes & CGT,SmallVectorImpl<CanQualType> & prefix,CanQual<FunctionProtoType> FTP)118 static const CGFunctionInfo &arrangeCXXMethodType(CodeGenTypes &CGT,
119 SmallVectorImpl<CanQualType> &prefix,
120 CanQual<FunctionProtoType> FTP) {
121 FunctionType::ExtInfo extInfo = FTP->getExtInfo();
122 adjustCXXMethodInfo(CGT, extInfo, FTP->isVariadic());
123 return arrangeLLVMFunctionInfo(CGT, prefix, FTP, extInfo);
124 }
125
126 /// Arrange the argument and result information for a value of the
127 /// given freestanding function type.
128 const CGFunctionInfo &
arrangeFreeFunctionType(CanQual<FunctionProtoType> FTP)129 CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionProtoType> FTP) {
130 SmallVector<CanQualType, 16> argTypes;
131 return ::arrangeFreeFunctionType(*this, argTypes, FTP);
132 }
133
getCallingConventionForDecl(const Decl * D)134 static CallingConv getCallingConventionForDecl(const Decl *D) {
135 // Set the appropriate calling convention for the Function.
136 if (D->hasAttr<StdCallAttr>())
137 return CC_X86StdCall;
138
139 if (D->hasAttr<FastCallAttr>())
140 return CC_X86FastCall;
141
142 if (D->hasAttr<ThisCallAttr>())
143 return CC_X86ThisCall;
144
145 if (D->hasAttr<PascalAttr>())
146 return CC_X86Pascal;
147
148 if (PcsAttr *PCS = D->getAttr<PcsAttr>())
149 return (PCS->getPCS() == PcsAttr::AAPCS ? CC_AAPCS : CC_AAPCS_VFP);
150
151 return CC_C;
152 }
153
154 /// Arrange the argument and result information for a call to an
155 /// unknown C++ non-static member function of the given abstract type.
156 /// The member function must be an ordinary function, i.e. not a
157 /// constructor or destructor.
158 const CGFunctionInfo &
arrangeCXXMethodType(const CXXRecordDecl * RD,const FunctionProtoType * FTP)159 CodeGenTypes::arrangeCXXMethodType(const CXXRecordDecl *RD,
160 const FunctionProtoType *FTP) {
161 SmallVector<CanQualType, 16> argTypes;
162
163 // Add the 'this' pointer.
164 argTypes.push_back(GetThisType(Context, RD));
165
166 return ::arrangeCXXMethodType(*this, argTypes,
167 FTP->getCanonicalTypeUnqualified().getAs<FunctionProtoType>());
168 }
169
170 /// Arrange the argument and result information for a declaration or
171 /// definition of the given C++ non-static member function. The
172 /// member function must be an ordinary function, i.e. not a
173 /// constructor or destructor.
174 const CGFunctionInfo &
arrangeCXXMethodDeclaration(const CXXMethodDecl * MD)175 CodeGenTypes::arrangeCXXMethodDeclaration(const CXXMethodDecl *MD) {
176 assert(!isa<CXXConstructorDecl>(MD) && "wrong method for contructors!");
177 assert(!isa<CXXDestructorDecl>(MD) && "wrong method for destructors!");
178
179 CanQual<FunctionProtoType> prototype = GetFormalType(MD);
180
181 if (MD->isInstance()) {
182 // The abstract case is perfectly fine.
183 return arrangeCXXMethodType(MD->getParent(), prototype.getTypePtr());
184 }
185
186 return arrangeFreeFunctionType(prototype);
187 }
188
189 /// Arrange the argument and result information for a declaration
190 /// or definition to the given constructor variant.
191 const CGFunctionInfo &
arrangeCXXConstructorDeclaration(const CXXConstructorDecl * D,CXXCtorType ctorKind)192 CodeGenTypes::arrangeCXXConstructorDeclaration(const CXXConstructorDecl *D,
193 CXXCtorType ctorKind) {
194 SmallVector<CanQualType, 16> argTypes;
195 argTypes.push_back(GetThisType(Context, D->getParent()));
196 CanQualType resultType = Context.VoidTy;
197
198 TheCXXABI.BuildConstructorSignature(D, ctorKind, resultType, argTypes);
199
200 CanQual<FunctionProtoType> FTP = GetFormalType(D);
201
202 RequiredArgs required = RequiredArgs::forPrototypePlus(FTP, argTypes.size());
203
204 // Add the formal parameters.
205 for (unsigned i = 0, e = FTP->getNumArgs(); i != e; ++i)
206 argTypes.push_back(FTP->getArgType(i));
207
208 FunctionType::ExtInfo extInfo = FTP->getExtInfo();
209 adjustCXXMethodInfo(*this, extInfo, FTP->isVariadic());
210 return arrangeLLVMFunctionInfo(resultType, argTypes, extInfo, required);
211 }
212
213 /// Arrange the argument and result information for a declaration,
214 /// definition, or call to the given destructor variant. It so
215 /// happens that all three cases produce the same information.
216 const CGFunctionInfo &
arrangeCXXDestructor(const CXXDestructorDecl * D,CXXDtorType dtorKind)217 CodeGenTypes::arrangeCXXDestructor(const CXXDestructorDecl *D,
218 CXXDtorType dtorKind) {
219 SmallVector<CanQualType, 2> argTypes;
220 argTypes.push_back(GetThisType(Context, D->getParent()));
221 CanQualType resultType = Context.VoidTy;
222
223 TheCXXABI.BuildDestructorSignature(D, dtorKind, resultType, argTypes);
224
225 CanQual<FunctionProtoType> FTP = GetFormalType(D);
226 assert(FTP->getNumArgs() == 0 && "dtor with formal parameters");
227 assert(FTP->isVariadic() == 0 && "dtor with formal parameters");
228
229 FunctionType::ExtInfo extInfo = FTP->getExtInfo();
230 adjustCXXMethodInfo(*this, extInfo, false);
231 return arrangeLLVMFunctionInfo(resultType, argTypes, extInfo,
232 RequiredArgs::All);
233 }
234
235 /// Arrange the argument and result information for the declaration or
236 /// definition of the given function.
237 const CGFunctionInfo &
arrangeFunctionDeclaration(const FunctionDecl * FD)238 CodeGenTypes::arrangeFunctionDeclaration(const FunctionDecl *FD) {
239 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD))
240 if (MD->isInstance())
241 return arrangeCXXMethodDeclaration(MD);
242
243 CanQualType FTy = FD->getType()->getCanonicalTypeUnqualified();
244
245 assert(isa<FunctionType>(FTy));
246
247 // When declaring a function without a prototype, always use a
248 // non-variadic type.
249 if (isa<FunctionNoProtoType>(FTy)) {
250 CanQual<FunctionNoProtoType> noProto = FTy.getAs<FunctionNoProtoType>();
251 return arrangeLLVMFunctionInfo(noProto->getResultType(),
252 ArrayRef<CanQualType>(),
253 noProto->getExtInfo(),
254 RequiredArgs::All);
255 }
256
257 assert(isa<FunctionProtoType>(FTy));
258 return arrangeFreeFunctionType(FTy.getAs<FunctionProtoType>());
259 }
260
261 /// Arrange the argument and result information for the declaration or
262 /// definition of an Objective-C method.
263 const CGFunctionInfo &
arrangeObjCMethodDeclaration(const ObjCMethodDecl * MD)264 CodeGenTypes::arrangeObjCMethodDeclaration(const ObjCMethodDecl *MD) {
265 // It happens that this is the same as a call with no optional
266 // arguments, except also using the formal 'self' type.
267 return arrangeObjCMessageSendSignature(MD, MD->getSelfDecl()->getType());
268 }
269
270 /// Arrange the argument and result information for the function type
271 /// through which to perform a send to the given Objective-C method,
272 /// using the given receiver type. The receiver type is not always
273 /// the 'self' type of the method or even an Objective-C pointer type.
274 /// This is *not* the right method for actually performing such a
275 /// message send, due to the possibility of optional arguments.
276 const CGFunctionInfo &
arrangeObjCMessageSendSignature(const ObjCMethodDecl * MD,QualType receiverType)277 CodeGenTypes::arrangeObjCMessageSendSignature(const ObjCMethodDecl *MD,
278 QualType receiverType) {
279 SmallVector<CanQualType, 16> argTys;
280 argTys.push_back(Context.getCanonicalParamType(receiverType));
281 argTys.push_back(Context.getCanonicalParamType(Context.getObjCSelType()));
282 // FIXME: Kill copy?
283 for (ObjCMethodDecl::param_const_iterator i = MD->param_begin(),
284 e = MD->param_end(); i != e; ++i) {
285 argTys.push_back(Context.getCanonicalParamType((*i)->getType()));
286 }
287
288 FunctionType::ExtInfo einfo;
289 einfo = einfo.withCallingConv(getCallingConventionForDecl(MD));
290
291 if (getContext().getLangOpts().ObjCAutoRefCount &&
292 MD->hasAttr<NSReturnsRetainedAttr>())
293 einfo = einfo.withProducesResult(true);
294
295 RequiredArgs required =
296 (MD->isVariadic() ? RequiredArgs(argTys.size()) : RequiredArgs::All);
297
298 return arrangeLLVMFunctionInfo(GetReturnType(MD->getResultType()), argTys,
299 einfo, required);
300 }
301
302 const CGFunctionInfo &
arrangeGlobalDeclaration(GlobalDecl GD)303 CodeGenTypes::arrangeGlobalDeclaration(GlobalDecl GD) {
304 // FIXME: Do we need to handle ObjCMethodDecl?
305 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
306
307 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD))
308 return arrangeCXXConstructorDeclaration(CD, GD.getCtorType());
309
310 if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(FD))
311 return arrangeCXXDestructor(DD, GD.getDtorType());
312
313 return arrangeFunctionDeclaration(FD);
314 }
315
316 /// Figure out the rules for calling a function with the given formal
317 /// type using the given arguments. The arguments are necessary
318 /// because the function might be unprototyped, in which case it's
319 /// target-dependent in crazy ways.
320 const CGFunctionInfo &
arrangeFreeFunctionCall(const CallArgList & args,const FunctionType * fnType)321 CodeGenTypes::arrangeFreeFunctionCall(const CallArgList &args,
322 const FunctionType *fnType) {
323 RequiredArgs required = RequiredArgs::All;
324 if (const FunctionProtoType *proto = dyn_cast<FunctionProtoType>(fnType)) {
325 if (proto->isVariadic())
326 required = RequiredArgs(proto->getNumArgs());
327 } else if (CGM.getTargetCodeGenInfo()
328 .isNoProtoCallVariadic(args, cast<FunctionNoProtoType>(fnType))) {
329 required = RequiredArgs(0);
330 }
331
332 return arrangeFreeFunctionCall(fnType->getResultType(), args,
333 fnType->getExtInfo(), required);
334 }
335
336 const CGFunctionInfo &
arrangeFreeFunctionCall(QualType resultType,const CallArgList & args,FunctionType::ExtInfo info,RequiredArgs required)337 CodeGenTypes::arrangeFreeFunctionCall(QualType resultType,
338 const CallArgList &args,
339 FunctionType::ExtInfo info,
340 RequiredArgs required) {
341 // FIXME: Kill copy.
342 SmallVector<CanQualType, 16> argTypes;
343 for (CallArgList::const_iterator i = args.begin(), e = args.end();
344 i != e; ++i)
345 argTypes.push_back(Context.getCanonicalParamType(i->Ty));
346 return arrangeLLVMFunctionInfo(GetReturnType(resultType), argTypes, info,
347 required);
348 }
349
350 /// Arrange a call to a C++ method, passing the given arguments.
351 const CGFunctionInfo &
arrangeCXXMethodCall(const CallArgList & args,const FunctionProtoType * FPT,RequiredArgs required)352 CodeGenTypes::arrangeCXXMethodCall(const CallArgList &args,
353 const FunctionProtoType *FPT,
354 RequiredArgs required) {
355 // FIXME: Kill copy.
356 SmallVector<CanQualType, 16> argTypes;
357 for (CallArgList::const_iterator i = args.begin(), e = args.end();
358 i != e; ++i)
359 argTypes.push_back(Context.getCanonicalParamType(i->Ty));
360
361 FunctionType::ExtInfo info = FPT->getExtInfo();
362 adjustCXXMethodInfo(*this, info, FPT->isVariadic());
363 return arrangeLLVMFunctionInfo(GetReturnType(FPT->getResultType()),
364 argTypes, info, required);
365 }
366
367 const CGFunctionInfo &
arrangeFunctionDeclaration(QualType resultType,const FunctionArgList & args,const FunctionType::ExtInfo & info,bool isVariadic)368 CodeGenTypes::arrangeFunctionDeclaration(QualType resultType,
369 const FunctionArgList &args,
370 const FunctionType::ExtInfo &info,
371 bool isVariadic) {
372 // FIXME: Kill copy.
373 SmallVector<CanQualType, 16> argTypes;
374 for (FunctionArgList::const_iterator i = args.begin(), e = args.end();
375 i != e; ++i)
376 argTypes.push_back(Context.getCanonicalParamType((*i)->getType()));
377
378 RequiredArgs required =
379 (isVariadic ? RequiredArgs(args.size()) : RequiredArgs::All);
380 return arrangeLLVMFunctionInfo(GetReturnType(resultType), argTypes, info,
381 required);
382 }
383
arrangeNullaryFunction()384 const CGFunctionInfo &CodeGenTypes::arrangeNullaryFunction() {
385 return arrangeLLVMFunctionInfo(getContext().VoidTy, ArrayRef<CanQualType>(),
386 FunctionType::ExtInfo(), RequiredArgs::All);
387 }
388
389 /// Arrange the argument and result information for an abstract value
390 /// of a given function type. This is the method which all of the
391 /// above functions ultimately defer to.
392 const CGFunctionInfo &
arrangeLLVMFunctionInfo(CanQualType resultType,ArrayRef<CanQualType> argTypes,FunctionType::ExtInfo info,RequiredArgs required)393 CodeGenTypes::arrangeLLVMFunctionInfo(CanQualType resultType,
394 ArrayRef<CanQualType> argTypes,
395 FunctionType::ExtInfo info,
396 RequiredArgs required) {
397 #ifndef NDEBUG
398 for (ArrayRef<CanQualType>::const_iterator
399 I = argTypes.begin(), E = argTypes.end(); I != E; ++I)
400 assert(I->isCanonicalAsParam());
401 #endif
402
403 unsigned CC = ClangCallConvToLLVMCallConv(info.getCC());
404
405 // Lookup or create unique function info.
406 llvm::FoldingSetNodeID ID;
407 CGFunctionInfo::Profile(ID, info, required, resultType, argTypes);
408
409 void *insertPos = 0;
410 CGFunctionInfo *FI = FunctionInfos.FindNodeOrInsertPos(ID, insertPos);
411 if (FI)
412 return *FI;
413
414 // Construct the function info. We co-allocate the ArgInfos.
415 FI = CGFunctionInfo::create(CC, info, resultType, argTypes, required);
416 FunctionInfos.InsertNode(FI, insertPos);
417
418 bool inserted = FunctionsBeingProcessed.insert(FI); (void)inserted;
419 assert(inserted && "Recursively being processed?");
420
421 // Compute ABI information.
422 getABIInfo().computeInfo(*FI);
423
424 // Loop over all of the computed argument and return value info. If any of
425 // them are direct or extend without a specified coerce type, specify the
426 // default now.
427 ABIArgInfo &retInfo = FI->getReturnInfo();
428 if (retInfo.canHaveCoerceToType() && retInfo.getCoerceToType() == 0)
429 retInfo.setCoerceToType(ConvertType(FI->getReturnType()));
430
431 for (CGFunctionInfo::arg_iterator I = FI->arg_begin(), E = FI->arg_end();
432 I != E; ++I)
433 if (I->info.canHaveCoerceToType() && I->info.getCoerceToType() == 0)
434 I->info.setCoerceToType(ConvertType(I->type));
435
436 bool erased = FunctionsBeingProcessed.erase(FI); (void)erased;
437 assert(erased && "Not in set?");
438
439 return *FI;
440 }
441
create(unsigned llvmCC,const FunctionType::ExtInfo & info,CanQualType resultType,ArrayRef<CanQualType> argTypes,RequiredArgs required)442 CGFunctionInfo *CGFunctionInfo::create(unsigned llvmCC,
443 const FunctionType::ExtInfo &info,
444 CanQualType resultType,
445 ArrayRef<CanQualType> argTypes,
446 RequiredArgs required) {
447 void *buffer = operator new(sizeof(CGFunctionInfo) +
448 sizeof(ArgInfo) * (argTypes.size() + 1));
449 CGFunctionInfo *FI = new(buffer) CGFunctionInfo();
450 FI->CallingConvention = llvmCC;
451 FI->EffectiveCallingConvention = llvmCC;
452 FI->ASTCallingConvention = info.getCC();
453 FI->NoReturn = info.getNoReturn();
454 FI->ReturnsRetained = info.getProducesResult();
455 FI->Required = required;
456 FI->HasRegParm = info.getHasRegParm();
457 FI->RegParm = info.getRegParm();
458 FI->NumArgs = argTypes.size();
459 FI->getArgsBuffer()[0].type = resultType;
460 for (unsigned i = 0, e = argTypes.size(); i != e; ++i)
461 FI->getArgsBuffer()[i + 1].type = argTypes[i];
462 return FI;
463 }
464
465 /***/
466
GetExpandedTypes(QualType type,SmallVectorImpl<llvm::Type * > & expandedTypes)467 void CodeGenTypes::GetExpandedTypes(QualType type,
468 SmallVectorImpl<llvm::Type*> &expandedTypes) {
469 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(type)) {
470 uint64_t NumElts = AT->getSize().getZExtValue();
471 for (uint64_t Elt = 0; Elt < NumElts; ++Elt)
472 GetExpandedTypes(AT->getElementType(), expandedTypes);
473 } else if (const RecordType *RT = type->getAs<RecordType>()) {
474 const RecordDecl *RD = RT->getDecl();
475 assert(!RD->hasFlexibleArrayMember() &&
476 "Cannot expand structure with flexible array.");
477 if (RD->isUnion()) {
478 // Unions can be here only in degenerative cases - all the fields are same
479 // after flattening. Thus we have to use the "largest" field.
480 const FieldDecl *LargestFD = 0;
481 CharUnits UnionSize = CharUnits::Zero();
482
483 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
484 i != e; ++i) {
485 const FieldDecl *FD = *i;
486 assert(!FD->isBitField() &&
487 "Cannot expand structure with bit-field members.");
488 CharUnits FieldSize = getContext().getTypeSizeInChars(FD->getType());
489 if (UnionSize < FieldSize) {
490 UnionSize = FieldSize;
491 LargestFD = FD;
492 }
493 }
494 if (LargestFD)
495 GetExpandedTypes(LargestFD->getType(), expandedTypes);
496 } else {
497 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
498 i != e; ++i) {
499 assert(!i->isBitField() &&
500 "Cannot expand structure with bit-field members.");
501 GetExpandedTypes(i->getType(), expandedTypes);
502 }
503 }
504 } else if (const ComplexType *CT = type->getAs<ComplexType>()) {
505 llvm::Type *EltTy = ConvertType(CT->getElementType());
506 expandedTypes.push_back(EltTy);
507 expandedTypes.push_back(EltTy);
508 } else
509 expandedTypes.push_back(ConvertType(type));
510 }
511
512 llvm::Function::arg_iterator
ExpandTypeFromArgs(QualType Ty,LValue LV,llvm::Function::arg_iterator AI)513 CodeGenFunction::ExpandTypeFromArgs(QualType Ty, LValue LV,
514 llvm::Function::arg_iterator AI) {
515 assert(LV.isSimple() &&
516 "Unexpected non-simple lvalue during struct expansion.");
517
518 if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
519 unsigned NumElts = AT->getSize().getZExtValue();
520 QualType EltTy = AT->getElementType();
521 for (unsigned Elt = 0; Elt < NumElts; ++Elt) {
522 llvm::Value *EltAddr = Builder.CreateConstGEP2_32(LV.getAddress(), 0, Elt);
523 LValue LV = MakeAddrLValue(EltAddr, EltTy);
524 AI = ExpandTypeFromArgs(EltTy, LV, AI);
525 }
526 } else if (const RecordType *RT = Ty->getAs<RecordType>()) {
527 RecordDecl *RD = RT->getDecl();
528 if (RD->isUnion()) {
529 // Unions can be here only in degenerative cases - all the fields are same
530 // after flattening. Thus we have to use the "largest" field.
531 const FieldDecl *LargestFD = 0;
532 CharUnits UnionSize = CharUnits::Zero();
533
534 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
535 i != e; ++i) {
536 const FieldDecl *FD = *i;
537 assert(!FD->isBitField() &&
538 "Cannot expand structure with bit-field members.");
539 CharUnits FieldSize = getContext().getTypeSizeInChars(FD->getType());
540 if (UnionSize < FieldSize) {
541 UnionSize = FieldSize;
542 LargestFD = FD;
543 }
544 }
545 if (LargestFD) {
546 // FIXME: What are the right qualifiers here?
547 LValue SubLV = EmitLValueForField(LV, LargestFD);
548 AI = ExpandTypeFromArgs(LargestFD->getType(), SubLV, AI);
549 }
550 } else {
551 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
552 i != e; ++i) {
553 FieldDecl *FD = *i;
554 QualType FT = FD->getType();
555
556 // FIXME: What are the right qualifiers here?
557 LValue SubLV = EmitLValueForField(LV, FD);
558 AI = ExpandTypeFromArgs(FT, SubLV, AI);
559 }
560 }
561 } else if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
562 QualType EltTy = CT->getElementType();
563 llvm::Value *RealAddr = Builder.CreateStructGEP(LV.getAddress(), 0, "real");
564 EmitStoreThroughLValue(RValue::get(AI++), MakeAddrLValue(RealAddr, EltTy));
565 llvm::Value *ImagAddr = Builder.CreateStructGEP(LV.getAddress(), 1, "imag");
566 EmitStoreThroughLValue(RValue::get(AI++), MakeAddrLValue(ImagAddr, EltTy));
567 } else {
568 EmitStoreThroughLValue(RValue::get(AI), LV);
569 ++AI;
570 }
571
572 return AI;
573 }
574
575 /// EnterStructPointerForCoercedAccess - Given a struct pointer that we are
576 /// accessing some number of bytes out of it, try to gep into the struct to get
577 /// at its inner goodness. Dive as deep as possible without entering an element
578 /// with an in-memory size smaller than DstSize.
579 static llvm::Value *
EnterStructPointerForCoercedAccess(llvm::Value * SrcPtr,llvm::StructType * SrcSTy,uint64_t DstSize,CodeGenFunction & CGF)580 EnterStructPointerForCoercedAccess(llvm::Value *SrcPtr,
581 llvm::StructType *SrcSTy,
582 uint64_t DstSize, CodeGenFunction &CGF) {
583 // We can't dive into a zero-element struct.
584 if (SrcSTy->getNumElements() == 0) return SrcPtr;
585
586 llvm::Type *FirstElt = SrcSTy->getElementType(0);
587
588 // If the first elt is at least as large as what we're looking for, or if the
589 // first element is the same size as the whole struct, we can enter it.
590 uint64_t FirstEltSize =
591 CGF.CGM.getTargetData().getTypeAllocSize(FirstElt);
592 if (FirstEltSize < DstSize &&
593 FirstEltSize < CGF.CGM.getTargetData().getTypeAllocSize(SrcSTy))
594 return SrcPtr;
595
596 // GEP into the first element.
597 SrcPtr = CGF.Builder.CreateConstGEP2_32(SrcPtr, 0, 0, "coerce.dive");
598
599 // If the first element is a struct, recurse.
600 llvm::Type *SrcTy =
601 cast<llvm::PointerType>(SrcPtr->getType())->getElementType();
602 if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy))
603 return EnterStructPointerForCoercedAccess(SrcPtr, SrcSTy, DstSize, CGF);
604
605 return SrcPtr;
606 }
607
608 /// CoerceIntOrPtrToIntOrPtr - Convert a value Val to the specific Ty where both
609 /// are either integers or pointers. This does a truncation of the value if it
610 /// is too large or a zero extension if it is too small.
CoerceIntOrPtrToIntOrPtr(llvm::Value * Val,llvm::Type * Ty,CodeGenFunction & CGF)611 static llvm::Value *CoerceIntOrPtrToIntOrPtr(llvm::Value *Val,
612 llvm::Type *Ty,
613 CodeGenFunction &CGF) {
614 if (Val->getType() == Ty)
615 return Val;
616
617 if (isa<llvm::PointerType>(Val->getType())) {
618 // If this is Pointer->Pointer avoid conversion to and from int.
619 if (isa<llvm::PointerType>(Ty))
620 return CGF.Builder.CreateBitCast(Val, Ty, "coerce.val");
621
622 // Convert the pointer to an integer so we can play with its width.
623 Val = CGF.Builder.CreatePtrToInt(Val, CGF.IntPtrTy, "coerce.val.pi");
624 }
625
626 llvm::Type *DestIntTy = Ty;
627 if (isa<llvm::PointerType>(DestIntTy))
628 DestIntTy = CGF.IntPtrTy;
629
630 if (Val->getType() != DestIntTy)
631 Val = CGF.Builder.CreateIntCast(Val, DestIntTy, false, "coerce.val.ii");
632
633 if (isa<llvm::PointerType>(Ty))
634 Val = CGF.Builder.CreateIntToPtr(Val, Ty, "coerce.val.ip");
635 return Val;
636 }
637
638
639
640 /// CreateCoercedLoad - Create a load from \arg SrcPtr interpreted as
641 /// a pointer to an object of type \arg Ty.
642 ///
643 /// This safely handles the case when the src type is smaller than the
644 /// destination type; in this situation the values of bits which not
645 /// present in the src are undefined.
CreateCoercedLoad(llvm::Value * SrcPtr,llvm::Type * Ty,CodeGenFunction & CGF)646 static llvm::Value *CreateCoercedLoad(llvm::Value *SrcPtr,
647 llvm::Type *Ty,
648 CodeGenFunction &CGF) {
649 llvm::Type *SrcTy =
650 cast<llvm::PointerType>(SrcPtr->getType())->getElementType();
651
652 // If SrcTy and Ty are the same, just do a load.
653 if (SrcTy == Ty)
654 return CGF.Builder.CreateLoad(SrcPtr);
655
656 uint64_t DstSize = CGF.CGM.getTargetData().getTypeAllocSize(Ty);
657
658 if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy)) {
659 SrcPtr = EnterStructPointerForCoercedAccess(SrcPtr, SrcSTy, DstSize, CGF);
660 SrcTy = cast<llvm::PointerType>(SrcPtr->getType())->getElementType();
661 }
662
663 uint64_t SrcSize = CGF.CGM.getTargetData().getTypeAllocSize(SrcTy);
664
665 // If the source and destination are integer or pointer types, just do an
666 // extension or truncation to the desired type.
667 if ((isa<llvm::IntegerType>(Ty) || isa<llvm::PointerType>(Ty)) &&
668 (isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy))) {
669 llvm::LoadInst *Load = CGF.Builder.CreateLoad(SrcPtr);
670 return CoerceIntOrPtrToIntOrPtr(Load, Ty, CGF);
671 }
672
673 // If load is legal, just bitcast the src pointer.
674 if (SrcSize >= DstSize) {
675 // Generally SrcSize is never greater than DstSize, since this means we are
676 // losing bits. However, this can happen in cases where the structure has
677 // additional padding, for example due to a user specified alignment.
678 //
679 // FIXME: Assert that we aren't truncating non-padding bits when have access
680 // to that information.
681 llvm::Value *Casted =
682 CGF.Builder.CreateBitCast(SrcPtr, llvm::PointerType::getUnqual(Ty));
683 llvm::LoadInst *Load = CGF.Builder.CreateLoad(Casted);
684 // FIXME: Use better alignment / avoid requiring aligned load.
685 Load->setAlignment(1);
686 return Load;
687 }
688
689 // Otherwise do coercion through memory. This is stupid, but
690 // simple.
691 llvm::Value *Tmp = CGF.CreateTempAlloca(Ty);
692 llvm::Value *Casted =
693 CGF.Builder.CreateBitCast(Tmp, llvm::PointerType::getUnqual(SrcTy));
694 llvm::StoreInst *Store =
695 CGF.Builder.CreateStore(CGF.Builder.CreateLoad(SrcPtr), Casted);
696 // FIXME: Use better alignment / avoid requiring aligned store.
697 Store->setAlignment(1);
698 return CGF.Builder.CreateLoad(Tmp);
699 }
700
701 // Function to store a first-class aggregate into memory. We prefer to
702 // store the elements rather than the aggregate to be more friendly to
703 // fast-isel.
704 // FIXME: Do we need to recurse here?
BuildAggStore(CodeGenFunction & CGF,llvm::Value * Val,llvm::Value * DestPtr,bool DestIsVolatile,bool LowAlignment)705 static void BuildAggStore(CodeGenFunction &CGF, llvm::Value *Val,
706 llvm::Value *DestPtr, bool DestIsVolatile,
707 bool LowAlignment) {
708 // Prefer scalar stores to first-class aggregate stores.
709 if (llvm::StructType *STy =
710 dyn_cast<llvm::StructType>(Val->getType())) {
711 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
712 llvm::Value *EltPtr = CGF.Builder.CreateConstGEP2_32(DestPtr, 0, i);
713 llvm::Value *Elt = CGF.Builder.CreateExtractValue(Val, i);
714 llvm::StoreInst *SI = CGF.Builder.CreateStore(Elt, EltPtr,
715 DestIsVolatile);
716 if (LowAlignment)
717 SI->setAlignment(1);
718 }
719 } else {
720 llvm::StoreInst *SI = CGF.Builder.CreateStore(Val, DestPtr, DestIsVolatile);
721 if (LowAlignment)
722 SI->setAlignment(1);
723 }
724 }
725
726 /// CreateCoercedStore - Create a store to \arg DstPtr from \arg Src,
727 /// where the source and destination may have different types.
728 ///
729 /// This safely handles the case when the src type is larger than the
730 /// destination type; the upper bits of the src will be lost.
CreateCoercedStore(llvm::Value * Src,llvm::Value * DstPtr,bool DstIsVolatile,CodeGenFunction & CGF)731 static void CreateCoercedStore(llvm::Value *Src,
732 llvm::Value *DstPtr,
733 bool DstIsVolatile,
734 CodeGenFunction &CGF) {
735 llvm::Type *SrcTy = Src->getType();
736 llvm::Type *DstTy =
737 cast<llvm::PointerType>(DstPtr->getType())->getElementType();
738 if (SrcTy == DstTy) {
739 CGF.Builder.CreateStore(Src, DstPtr, DstIsVolatile);
740 return;
741 }
742
743 uint64_t SrcSize = CGF.CGM.getTargetData().getTypeAllocSize(SrcTy);
744
745 if (llvm::StructType *DstSTy = dyn_cast<llvm::StructType>(DstTy)) {
746 DstPtr = EnterStructPointerForCoercedAccess(DstPtr, DstSTy, SrcSize, CGF);
747 DstTy = cast<llvm::PointerType>(DstPtr->getType())->getElementType();
748 }
749
750 // If the source and destination are integer or pointer types, just do an
751 // extension or truncation to the desired type.
752 if ((isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy)) &&
753 (isa<llvm::IntegerType>(DstTy) || isa<llvm::PointerType>(DstTy))) {
754 Src = CoerceIntOrPtrToIntOrPtr(Src, DstTy, CGF);
755 CGF.Builder.CreateStore(Src, DstPtr, DstIsVolatile);
756 return;
757 }
758
759 uint64_t DstSize = CGF.CGM.getTargetData().getTypeAllocSize(DstTy);
760
761 // If store is legal, just bitcast the src pointer.
762 if (SrcSize <= DstSize) {
763 llvm::Value *Casted =
764 CGF.Builder.CreateBitCast(DstPtr, llvm::PointerType::getUnqual(SrcTy));
765 // FIXME: Use better alignment / avoid requiring aligned store.
766 BuildAggStore(CGF, Src, Casted, DstIsVolatile, true);
767 } else {
768 // Otherwise do coercion through memory. This is stupid, but
769 // simple.
770
771 // Generally SrcSize is never greater than DstSize, since this means we are
772 // losing bits. However, this can happen in cases where the structure has
773 // additional padding, for example due to a user specified alignment.
774 //
775 // FIXME: Assert that we aren't truncating non-padding bits when have access
776 // to that information.
777 llvm::Value *Tmp = CGF.CreateTempAlloca(SrcTy);
778 CGF.Builder.CreateStore(Src, Tmp);
779 llvm::Value *Casted =
780 CGF.Builder.CreateBitCast(Tmp, llvm::PointerType::getUnqual(DstTy));
781 llvm::LoadInst *Load = CGF.Builder.CreateLoad(Casted);
782 // FIXME: Use better alignment / avoid requiring aligned load.
783 Load->setAlignment(1);
784 CGF.Builder.CreateStore(Load, DstPtr, DstIsVolatile);
785 }
786 }
787
788 /***/
789
ReturnTypeUsesSRet(const CGFunctionInfo & FI)790 bool CodeGenModule::ReturnTypeUsesSRet(const CGFunctionInfo &FI) {
791 return FI.getReturnInfo().isIndirect();
792 }
793
ReturnTypeUsesFPRet(QualType ResultType)794 bool CodeGenModule::ReturnTypeUsesFPRet(QualType ResultType) {
795 if (const BuiltinType *BT = ResultType->getAs<BuiltinType>()) {
796 switch (BT->getKind()) {
797 default:
798 return false;
799 case BuiltinType::Float:
800 return getContext().getTargetInfo().useObjCFPRetForRealType(TargetInfo::Float);
801 case BuiltinType::Double:
802 return getContext().getTargetInfo().useObjCFPRetForRealType(TargetInfo::Double);
803 case BuiltinType::LongDouble:
804 return getContext().getTargetInfo().useObjCFPRetForRealType(
805 TargetInfo::LongDouble);
806 }
807 }
808
809 return false;
810 }
811
ReturnTypeUsesFP2Ret(QualType ResultType)812 bool CodeGenModule::ReturnTypeUsesFP2Ret(QualType ResultType) {
813 if (const ComplexType *CT = ResultType->getAs<ComplexType>()) {
814 if (const BuiltinType *BT = CT->getElementType()->getAs<BuiltinType>()) {
815 if (BT->getKind() == BuiltinType::LongDouble)
816 return getContext().getTargetInfo().useObjCFP2RetForComplexLongDouble();
817 }
818 }
819
820 return false;
821 }
822
GetFunctionType(GlobalDecl GD)823 llvm::FunctionType *CodeGenTypes::GetFunctionType(GlobalDecl GD) {
824 const CGFunctionInfo &FI = arrangeGlobalDeclaration(GD);
825 return GetFunctionType(FI);
826 }
827
828 llvm::FunctionType *
GetFunctionType(const CGFunctionInfo & FI)829 CodeGenTypes::GetFunctionType(const CGFunctionInfo &FI) {
830
831 bool Inserted = FunctionsBeingProcessed.insert(&FI); (void)Inserted;
832 assert(Inserted && "Recursively being processed?");
833
834 SmallVector<llvm::Type*, 8> argTypes;
835 llvm::Type *resultType = 0;
836
837 const ABIArgInfo &retAI = FI.getReturnInfo();
838 switch (retAI.getKind()) {
839 case ABIArgInfo::Expand:
840 llvm_unreachable("Invalid ABI kind for return argument");
841
842 case ABIArgInfo::Extend:
843 case ABIArgInfo::Direct:
844 resultType = retAI.getCoerceToType();
845 break;
846
847 case ABIArgInfo::Indirect: {
848 assert(!retAI.getIndirectAlign() && "Align unused on indirect return.");
849 resultType = llvm::Type::getVoidTy(getLLVMContext());
850
851 QualType ret = FI.getReturnType();
852 llvm::Type *ty = ConvertType(ret);
853 unsigned addressSpace = Context.getTargetAddressSpace(ret);
854 argTypes.push_back(llvm::PointerType::get(ty, addressSpace));
855 break;
856 }
857
858 case ABIArgInfo::Ignore:
859 resultType = llvm::Type::getVoidTy(getLLVMContext());
860 break;
861 }
862
863 for (CGFunctionInfo::const_arg_iterator it = FI.arg_begin(),
864 ie = FI.arg_end(); it != ie; ++it) {
865 const ABIArgInfo &argAI = it->info;
866
867 switch (argAI.getKind()) {
868 case ABIArgInfo::Ignore:
869 break;
870
871 case ABIArgInfo::Indirect: {
872 // indirect arguments are always on the stack, which is addr space #0.
873 llvm::Type *LTy = ConvertTypeForMem(it->type);
874 argTypes.push_back(LTy->getPointerTo());
875 break;
876 }
877
878 case ABIArgInfo::Extend:
879 case ABIArgInfo::Direct: {
880 // Insert a padding type to ensure proper alignment.
881 if (llvm::Type *PaddingType = argAI.getPaddingType())
882 argTypes.push_back(PaddingType);
883 // If the coerce-to type is a first class aggregate, flatten it. Either
884 // way is semantically identical, but fast-isel and the optimizer
885 // generally likes scalar values better than FCAs.
886 llvm::Type *argType = argAI.getCoerceToType();
887 if (llvm::StructType *st = dyn_cast<llvm::StructType>(argType)) {
888 for (unsigned i = 0, e = st->getNumElements(); i != e; ++i)
889 argTypes.push_back(st->getElementType(i));
890 } else {
891 argTypes.push_back(argType);
892 }
893 break;
894 }
895
896 case ABIArgInfo::Expand:
897 GetExpandedTypes(it->type, argTypes);
898 break;
899 }
900 }
901
902 bool Erased = FunctionsBeingProcessed.erase(&FI); (void)Erased;
903 assert(Erased && "Not in set?");
904
905 return llvm::FunctionType::get(resultType, argTypes, FI.isVariadic());
906 }
907
GetFunctionTypeForVTable(GlobalDecl GD)908 llvm::Type *CodeGenTypes::GetFunctionTypeForVTable(GlobalDecl GD) {
909 const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl());
910 const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>();
911
912 if (!isFuncTypeConvertible(FPT))
913 return llvm::StructType::get(getLLVMContext());
914
915 const CGFunctionInfo *Info;
916 if (isa<CXXDestructorDecl>(MD))
917 Info = &arrangeCXXDestructor(cast<CXXDestructorDecl>(MD), GD.getDtorType());
918 else
919 Info = &arrangeCXXMethodDeclaration(MD);
920 return GetFunctionType(*Info);
921 }
922
ConstructAttributeList(const CGFunctionInfo & FI,const Decl * TargetDecl,AttributeListType & PAL,unsigned & CallingConv)923 void CodeGenModule::ConstructAttributeList(const CGFunctionInfo &FI,
924 const Decl *TargetDecl,
925 AttributeListType &PAL,
926 unsigned &CallingConv) {
927 llvm::Attributes FuncAttrs;
928 llvm::Attributes RetAttrs;
929
930 CallingConv = FI.getEffectiveCallingConvention();
931
932 if (FI.isNoReturn())
933 FuncAttrs |= llvm::Attribute::NoReturn;
934
935 // FIXME: handle sseregparm someday...
936 if (TargetDecl) {
937 if (TargetDecl->hasAttr<ReturnsTwiceAttr>())
938 FuncAttrs |= llvm::Attribute::ReturnsTwice;
939 if (TargetDecl->hasAttr<NoThrowAttr>())
940 FuncAttrs |= llvm::Attribute::NoUnwind;
941 else if (const FunctionDecl *Fn = dyn_cast<FunctionDecl>(TargetDecl)) {
942 const FunctionProtoType *FPT = Fn->getType()->getAs<FunctionProtoType>();
943 if (FPT && FPT->isNothrow(getContext()))
944 FuncAttrs |= llvm::Attribute::NoUnwind;
945 }
946
947 if (TargetDecl->hasAttr<NoReturnAttr>())
948 FuncAttrs |= llvm::Attribute::NoReturn;
949
950 if (TargetDecl->hasAttr<ReturnsTwiceAttr>())
951 FuncAttrs |= llvm::Attribute::ReturnsTwice;
952
953 // 'const' and 'pure' attribute functions are also nounwind.
954 if (TargetDecl->hasAttr<ConstAttr>()) {
955 FuncAttrs |= llvm::Attribute::ReadNone;
956 FuncAttrs |= llvm::Attribute::NoUnwind;
957 } else if (TargetDecl->hasAttr<PureAttr>()) {
958 FuncAttrs |= llvm::Attribute::ReadOnly;
959 FuncAttrs |= llvm::Attribute::NoUnwind;
960 }
961 if (TargetDecl->hasAttr<MallocAttr>())
962 RetAttrs |= llvm::Attribute::NoAlias;
963 }
964
965 if (CodeGenOpts.OptimizeSize)
966 FuncAttrs |= llvm::Attribute::OptimizeForSize;
967 if (CodeGenOpts.DisableRedZone)
968 FuncAttrs |= llvm::Attribute::NoRedZone;
969 if (CodeGenOpts.NoImplicitFloat)
970 FuncAttrs |= llvm::Attribute::NoImplicitFloat;
971
972 QualType RetTy = FI.getReturnType();
973 unsigned Index = 1;
974 const ABIArgInfo &RetAI = FI.getReturnInfo();
975 switch (RetAI.getKind()) {
976 case ABIArgInfo::Extend:
977 if (RetTy->hasSignedIntegerRepresentation())
978 RetAttrs |= llvm::Attribute::SExt;
979 else if (RetTy->hasUnsignedIntegerRepresentation())
980 RetAttrs |= llvm::Attribute::ZExt;
981 break;
982 case ABIArgInfo::Direct:
983 case ABIArgInfo::Ignore:
984 break;
985
986 case ABIArgInfo::Indirect: {
987 llvm::Attributes SRETAttrs = llvm::Attribute::StructRet;
988 if (RetAI.getInReg())
989 SRETAttrs |= llvm::Attribute::InReg;
990 PAL.push_back(llvm::AttributeWithIndex::get(Index, SRETAttrs));
991
992 ++Index;
993 // sret disables readnone and readonly
994 FuncAttrs &= ~(llvm::Attribute::ReadOnly |
995 llvm::Attribute::ReadNone);
996 break;
997 }
998
999 case ABIArgInfo::Expand:
1000 llvm_unreachable("Invalid ABI kind for return argument");
1001 }
1002
1003 if (RetAttrs)
1004 PAL.push_back(llvm::AttributeWithIndex::get(0, RetAttrs));
1005
1006 for (CGFunctionInfo::const_arg_iterator it = FI.arg_begin(),
1007 ie = FI.arg_end(); it != ie; ++it) {
1008 QualType ParamType = it->type;
1009 const ABIArgInfo &AI = it->info;
1010 llvm::Attributes Attrs;
1011
1012 // 'restrict' -> 'noalias' is done in EmitFunctionProlog when we
1013 // have the corresponding parameter variable. It doesn't make
1014 // sense to do it here because parameters are so messed up.
1015 switch (AI.getKind()) {
1016 case ABIArgInfo::Extend:
1017 if (ParamType->isSignedIntegerOrEnumerationType())
1018 Attrs |= llvm::Attribute::SExt;
1019 else if (ParamType->isUnsignedIntegerOrEnumerationType())
1020 Attrs |= llvm::Attribute::ZExt;
1021 // FALL THROUGH
1022 case ABIArgInfo::Direct:
1023 if (AI.getInReg())
1024 Attrs |= llvm::Attribute::InReg;
1025
1026 // FIXME: handle sseregparm someday...
1027
1028 // Increment Index if there is padding.
1029 Index += (AI.getPaddingType() != 0);
1030
1031 if (llvm::StructType *STy =
1032 dyn_cast<llvm::StructType>(AI.getCoerceToType())) {
1033 unsigned Extra = STy->getNumElements()-1; // 1 will be added below.
1034 if (Attrs != llvm::Attribute::None)
1035 for (unsigned I = 0; I < Extra; ++I)
1036 PAL.push_back(llvm::AttributeWithIndex::get(Index + I, Attrs));
1037 Index += Extra;
1038 }
1039 break;
1040
1041 case ABIArgInfo::Indirect:
1042 if (AI.getIndirectByVal())
1043 Attrs |= llvm::Attribute::ByVal;
1044
1045 Attrs |=
1046 llvm::Attribute::constructAlignmentFromInt(AI.getIndirectAlign());
1047 // byval disables readnone and readonly.
1048 FuncAttrs &= ~(llvm::Attribute::ReadOnly |
1049 llvm::Attribute::ReadNone);
1050 break;
1051
1052 case ABIArgInfo::Ignore:
1053 // Skip increment, no matching LLVM parameter.
1054 continue;
1055
1056 case ABIArgInfo::Expand: {
1057 SmallVector<llvm::Type*, 8> types;
1058 // FIXME: This is rather inefficient. Do we ever actually need to do
1059 // anything here? The result should be just reconstructed on the other
1060 // side, so extension should be a non-issue.
1061 getTypes().GetExpandedTypes(ParamType, types);
1062 Index += types.size();
1063 continue;
1064 }
1065 }
1066
1067 if (Attrs)
1068 PAL.push_back(llvm::AttributeWithIndex::get(Index, Attrs));
1069 ++Index;
1070 }
1071 if (FuncAttrs)
1072 PAL.push_back(llvm::AttributeWithIndex::get(~0, FuncAttrs));
1073 }
1074
1075 /// An argument came in as a promoted argument; demote it back to its
1076 /// declared type.
emitArgumentDemotion(CodeGenFunction & CGF,const VarDecl * var,llvm::Value * value)1077 static llvm::Value *emitArgumentDemotion(CodeGenFunction &CGF,
1078 const VarDecl *var,
1079 llvm::Value *value) {
1080 llvm::Type *varType = CGF.ConvertType(var->getType());
1081
1082 // This can happen with promotions that actually don't change the
1083 // underlying type, like the enum promotions.
1084 if (value->getType() == varType) return value;
1085
1086 assert((varType->isIntegerTy() || varType->isFloatingPointTy())
1087 && "unexpected promotion type");
1088
1089 if (isa<llvm::IntegerType>(varType))
1090 return CGF.Builder.CreateTrunc(value, varType, "arg.unpromote");
1091
1092 return CGF.Builder.CreateFPCast(value, varType, "arg.unpromote");
1093 }
1094
EmitFunctionProlog(const CGFunctionInfo & FI,llvm::Function * Fn,const FunctionArgList & Args)1095 void CodeGenFunction::EmitFunctionProlog(const CGFunctionInfo &FI,
1096 llvm::Function *Fn,
1097 const FunctionArgList &Args) {
1098 // If this is an implicit-return-zero function, go ahead and
1099 // initialize the return value. TODO: it might be nice to have
1100 // a more general mechanism for this that didn't require synthesized
1101 // return statements.
1102 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl)) {
1103 if (FD->hasImplicitReturnZero()) {
1104 QualType RetTy = FD->getResultType().getUnqualifiedType();
1105 llvm::Type* LLVMTy = CGM.getTypes().ConvertType(RetTy);
1106 llvm::Constant* Zero = llvm::Constant::getNullValue(LLVMTy);
1107 Builder.CreateStore(Zero, ReturnValue);
1108 }
1109 }
1110
1111 // FIXME: We no longer need the types from FunctionArgList; lift up and
1112 // simplify.
1113
1114 // Emit allocs for param decls. Give the LLVM Argument nodes names.
1115 llvm::Function::arg_iterator AI = Fn->arg_begin();
1116
1117 // Name the struct return argument.
1118 if (CGM.ReturnTypeUsesSRet(FI)) {
1119 AI->setName("agg.result");
1120 AI->addAttr(llvm::Attribute::NoAlias);
1121 ++AI;
1122 }
1123
1124 assert(FI.arg_size() == Args.size() &&
1125 "Mismatch between function signature & arguments.");
1126 unsigned ArgNo = 1;
1127 CGFunctionInfo::const_arg_iterator info_it = FI.arg_begin();
1128 for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
1129 i != e; ++i, ++info_it, ++ArgNo) {
1130 const VarDecl *Arg = *i;
1131 QualType Ty = info_it->type;
1132 const ABIArgInfo &ArgI = info_it->info;
1133
1134 bool isPromoted =
1135 isa<ParmVarDecl>(Arg) && cast<ParmVarDecl>(Arg)->isKNRPromoted();
1136
1137 switch (ArgI.getKind()) {
1138 case ABIArgInfo::Indirect: {
1139 llvm::Value *V = AI;
1140
1141 if (hasAggregateLLVMType(Ty)) {
1142 // Aggregates and complex variables are accessed by reference. All we
1143 // need to do is realign the value, if requested
1144 if (ArgI.getIndirectRealign()) {
1145 llvm::Value *AlignedTemp = CreateMemTemp(Ty, "coerce");
1146
1147 // Copy from the incoming argument pointer to the temporary with the
1148 // appropriate alignment.
1149 //
1150 // FIXME: We should have a common utility for generating an aggregate
1151 // copy.
1152 llvm::Type *I8PtrTy = Builder.getInt8PtrTy();
1153 CharUnits Size = getContext().getTypeSizeInChars(Ty);
1154 llvm::Value *Dst = Builder.CreateBitCast(AlignedTemp, I8PtrTy);
1155 llvm::Value *Src = Builder.CreateBitCast(V, I8PtrTy);
1156 Builder.CreateMemCpy(Dst,
1157 Src,
1158 llvm::ConstantInt::get(IntPtrTy,
1159 Size.getQuantity()),
1160 ArgI.getIndirectAlign(),
1161 false);
1162 V = AlignedTemp;
1163 }
1164 } else {
1165 // Load scalar value from indirect argument.
1166 CharUnits Alignment = getContext().getTypeAlignInChars(Ty);
1167 V = EmitLoadOfScalar(V, false, Alignment.getQuantity(), Ty);
1168
1169 if (isPromoted)
1170 V = emitArgumentDemotion(*this, Arg, V);
1171 }
1172 EmitParmDecl(*Arg, V, ArgNo);
1173 break;
1174 }
1175
1176 case ABIArgInfo::Extend:
1177 case ABIArgInfo::Direct: {
1178 // Skip the dummy padding argument.
1179 if (ArgI.getPaddingType())
1180 ++AI;
1181
1182 // If we have the trivial case, handle it with no muss and fuss.
1183 if (!isa<llvm::StructType>(ArgI.getCoerceToType()) &&
1184 ArgI.getCoerceToType() == ConvertType(Ty) &&
1185 ArgI.getDirectOffset() == 0) {
1186 assert(AI != Fn->arg_end() && "Argument mismatch!");
1187 llvm::Value *V = AI;
1188
1189 if (Arg->getType().isRestrictQualified())
1190 AI->addAttr(llvm::Attribute::NoAlias);
1191
1192 // Ensure the argument is the correct type.
1193 if (V->getType() != ArgI.getCoerceToType())
1194 V = Builder.CreateBitCast(V, ArgI.getCoerceToType());
1195
1196 if (isPromoted)
1197 V = emitArgumentDemotion(*this, Arg, V);
1198
1199 EmitParmDecl(*Arg, V, ArgNo);
1200 break;
1201 }
1202
1203 llvm::AllocaInst *Alloca = CreateMemTemp(Ty, Arg->getName());
1204
1205 // The alignment we need to use is the max of the requested alignment for
1206 // the argument plus the alignment required by our access code below.
1207 unsigned AlignmentToUse =
1208 CGM.getTargetData().getABITypeAlignment(ArgI.getCoerceToType());
1209 AlignmentToUse = std::max(AlignmentToUse,
1210 (unsigned)getContext().getDeclAlign(Arg).getQuantity());
1211
1212 Alloca->setAlignment(AlignmentToUse);
1213 llvm::Value *V = Alloca;
1214 llvm::Value *Ptr = V; // Pointer to store into.
1215
1216 // If the value is offset in memory, apply the offset now.
1217 if (unsigned Offs = ArgI.getDirectOffset()) {
1218 Ptr = Builder.CreateBitCast(Ptr, Builder.getInt8PtrTy());
1219 Ptr = Builder.CreateConstGEP1_32(Ptr, Offs);
1220 Ptr = Builder.CreateBitCast(Ptr,
1221 llvm::PointerType::getUnqual(ArgI.getCoerceToType()));
1222 }
1223
1224 // If the coerce-to type is a first class aggregate, we flatten it and
1225 // pass the elements. Either way is semantically identical, but fast-isel
1226 // and the optimizer generally likes scalar values better than FCAs.
1227 llvm::StructType *STy = dyn_cast<llvm::StructType>(ArgI.getCoerceToType());
1228 if (STy && STy->getNumElements() > 1) {
1229 uint64_t SrcSize = CGM.getTargetData().getTypeAllocSize(STy);
1230 llvm::Type *DstTy =
1231 cast<llvm::PointerType>(Ptr->getType())->getElementType();
1232 uint64_t DstSize = CGM.getTargetData().getTypeAllocSize(DstTy);
1233
1234 if (SrcSize <= DstSize) {
1235 Ptr = Builder.CreateBitCast(Ptr, llvm::PointerType::getUnqual(STy));
1236
1237 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1238 assert(AI != Fn->arg_end() && "Argument mismatch!");
1239 AI->setName(Arg->getName() + ".coerce" + Twine(i));
1240 llvm::Value *EltPtr = Builder.CreateConstGEP2_32(Ptr, 0, i);
1241 Builder.CreateStore(AI++, EltPtr);
1242 }
1243 } else {
1244 llvm::AllocaInst *TempAlloca =
1245 CreateTempAlloca(ArgI.getCoerceToType(), "coerce");
1246 TempAlloca->setAlignment(AlignmentToUse);
1247 llvm::Value *TempV = TempAlloca;
1248
1249 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1250 assert(AI != Fn->arg_end() && "Argument mismatch!");
1251 AI->setName(Arg->getName() + ".coerce" + Twine(i));
1252 llvm::Value *EltPtr = Builder.CreateConstGEP2_32(TempV, 0, i);
1253 Builder.CreateStore(AI++, EltPtr);
1254 }
1255
1256 Builder.CreateMemCpy(Ptr, TempV, DstSize, AlignmentToUse);
1257 }
1258 } else {
1259 // Simple case, just do a coerced store of the argument into the alloca.
1260 assert(AI != Fn->arg_end() && "Argument mismatch!");
1261 AI->setName(Arg->getName() + ".coerce");
1262 CreateCoercedStore(AI++, Ptr, /*DestIsVolatile=*/false, *this);
1263 }
1264
1265
1266 // Match to what EmitParmDecl is expecting for this type.
1267 if (!CodeGenFunction::hasAggregateLLVMType(Ty)) {
1268 V = EmitLoadOfScalar(V, false, AlignmentToUse, Ty);
1269 if (isPromoted)
1270 V = emitArgumentDemotion(*this, Arg, V);
1271 }
1272 EmitParmDecl(*Arg, V, ArgNo);
1273 continue; // Skip ++AI increment, already done.
1274 }
1275
1276 case ABIArgInfo::Expand: {
1277 // If this structure was expanded into multiple arguments then
1278 // we need to create a temporary and reconstruct it from the
1279 // arguments.
1280 llvm::AllocaInst *Alloca = CreateMemTemp(Ty);
1281 CharUnits Align = getContext().getDeclAlign(Arg);
1282 Alloca->setAlignment(Align.getQuantity());
1283 LValue LV = MakeAddrLValue(Alloca, Ty, Align);
1284 llvm::Function::arg_iterator End = ExpandTypeFromArgs(Ty, LV, AI);
1285 EmitParmDecl(*Arg, Alloca, ArgNo);
1286
1287 // Name the arguments used in expansion and increment AI.
1288 unsigned Index = 0;
1289 for (; AI != End; ++AI, ++Index)
1290 AI->setName(Arg->getName() + "." + Twine(Index));
1291 continue;
1292 }
1293
1294 case ABIArgInfo::Ignore:
1295 // Initialize the local variable appropriately.
1296 if (hasAggregateLLVMType(Ty))
1297 EmitParmDecl(*Arg, CreateMemTemp(Ty), ArgNo);
1298 else
1299 EmitParmDecl(*Arg, llvm::UndefValue::get(ConvertType(Arg->getType())),
1300 ArgNo);
1301
1302 // Skip increment, no matching LLVM parameter.
1303 continue;
1304 }
1305
1306 ++AI;
1307 }
1308 assert(AI == Fn->arg_end() && "Argument mismatch!");
1309 }
1310
eraseUnusedBitCasts(llvm::Instruction * insn)1311 static void eraseUnusedBitCasts(llvm::Instruction *insn) {
1312 while (insn->use_empty()) {
1313 llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(insn);
1314 if (!bitcast) return;
1315
1316 // This is "safe" because we would have used a ConstantExpr otherwise.
1317 insn = cast<llvm::Instruction>(bitcast->getOperand(0));
1318 bitcast->eraseFromParent();
1319 }
1320 }
1321
1322 /// Try to emit a fused autorelease of a return result.
tryEmitFusedAutoreleaseOfResult(CodeGenFunction & CGF,llvm::Value * result)1323 static llvm::Value *tryEmitFusedAutoreleaseOfResult(CodeGenFunction &CGF,
1324 llvm::Value *result) {
1325 // We must be immediately followed the cast.
1326 llvm::BasicBlock *BB = CGF.Builder.GetInsertBlock();
1327 if (BB->empty()) return 0;
1328 if (&BB->back() != result) return 0;
1329
1330 llvm::Type *resultType = result->getType();
1331
1332 // result is in a BasicBlock and is therefore an Instruction.
1333 llvm::Instruction *generator = cast<llvm::Instruction>(result);
1334
1335 SmallVector<llvm::Instruction*,4> insnsToKill;
1336
1337 // Look for:
1338 // %generator = bitcast %type1* %generator2 to %type2*
1339 while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(generator)) {
1340 // We would have emitted this as a constant if the operand weren't
1341 // an Instruction.
1342 generator = cast<llvm::Instruction>(bitcast->getOperand(0));
1343
1344 // Require the generator to be immediately followed by the cast.
1345 if (generator->getNextNode() != bitcast)
1346 return 0;
1347
1348 insnsToKill.push_back(bitcast);
1349 }
1350
1351 // Look for:
1352 // %generator = call i8* @objc_retain(i8* %originalResult)
1353 // or
1354 // %generator = call i8* @objc_retainAutoreleasedReturnValue(i8* %originalResult)
1355 llvm::CallInst *call = dyn_cast<llvm::CallInst>(generator);
1356 if (!call) return 0;
1357
1358 bool doRetainAutorelease;
1359
1360 if (call->getCalledValue() == CGF.CGM.getARCEntrypoints().objc_retain) {
1361 doRetainAutorelease = true;
1362 } else if (call->getCalledValue() == CGF.CGM.getARCEntrypoints()
1363 .objc_retainAutoreleasedReturnValue) {
1364 doRetainAutorelease = false;
1365
1366 // If we emitted an assembly marker for this call (and the
1367 // ARCEntrypoints field should have been set if so), go looking
1368 // for that call. If we can't find it, we can't do this
1369 // optimization. But it should always be the immediately previous
1370 // instruction, unless we needed bitcasts around the call.
1371 if (CGF.CGM.getARCEntrypoints().retainAutoreleasedReturnValueMarker) {
1372 llvm::Instruction *prev = call->getPrevNode();
1373 assert(prev);
1374 if (isa<llvm::BitCastInst>(prev)) {
1375 prev = prev->getPrevNode();
1376 assert(prev);
1377 }
1378 assert(isa<llvm::CallInst>(prev));
1379 assert(cast<llvm::CallInst>(prev)->getCalledValue() ==
1380 CGF.CGM.getARCEntrypoints().retainAutoreleasedReturnValueMarker);
1381 insnsToKill.push_back(prev);
1382 }
1383 } else {
1384 return 0;
1385 }
1386
1387 result = call->getArgOperand(0);
1388 insnsToKill.push_back(call);
1389
1390 // Keep killing bitcasts, for sanity. Note that we no longer care
1391 // about precise ordering as long as there's exactly one use.
1392 while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(result)) {
1393 if (!bitcast->hasOneUse()) break;
1394 insnsToKill.push_back(bitcast);
1395 result = bitcast->getOperand(0);
1396 }
1397
1398 // Delete all the unnecessary instructions, from latest to earliest.
1399 for (SmallVectorImpl<llvm::Instruction*>::iterator
1400 i = insnsToKill.begin(), e = insnsToKill.end(); i != e; ++i)
1401 (*i)->eraseFromParent();
1402
1403 // Do the fused retain/autorelease if we were asked to.
1404 if (doRetainAutorelease)
1405 result = CGF.EmitARCRetainAutoreleaseReturnValue(result);
1406
1407 // Cast back to the result type.
1408 return CGF.Builder.CreateBitCast(result, resultType);
1409 }
1410
1411 /// If this is a +1 of the value of an immutable 'self', remove it.
tryRemoveRetainOfSelf(CodeGenFunction & CGF,llvm::Value * result)1412 static llvm::Value *tryRemoveRetainOfSelf(CodeGenFunction &CGF,
1413 llvm::Value *result) {
1414 // This is only applicable to a method with an immutable 'self'.
1415 const ObjCMethodDecl *method =
1416 dyn_cast_or_null<ObjCMethodDecl>(CGF.CurCodeDecl);
1417 if (!method) return 0;
1418 const VarDecl *self = method->getSelfDecl();
1419 if (!self->getType().isConstQualified()) return 0;
1420
1421 // Look for a retain call.
1422 llvm::CallInst *retainCall =
1423 dyn_cast<llvm::CallInst>(result->stripPointerCasts());
1424 if (!retainCall ||
1425 retainCall->getCalledValue() != CGF.CGM.getARCEntrypoints().objc_retain)
1426 return 0;
1427
1428 // Look for an ordinary load of 'self'.
1429 llvm::Value *retainedValue = retainCall->getArgOperand(0);
1430 llvm::LoadInst *load =
1431 dyn_cast<llvm::LoadInst>(retainedValue->stripPointerCasts());
1432 if (!load || load->isAtomic() || load->isVolatile() ||
1433 load->getPointerOperand() != CGF.GetAddrOfLocalVar(self))
1434 return 0;
1435
1436 // Okay! Burn it all down. This relies for correctness on the
1437 // assumption that the retain is emitted as part of the return and
1438 // that thereafter everything is used "linearly".
1439 llvm::Type *resultType = result->getType();
1440 eraseUnusedBitCasts(cast<llvm::Instruction>(result));
1441 assert(retainCall->use_empty());
1442 retainCall->eraseFromParent();
1443 eraseUnusedBitCasts(cast<llvm::Instruction>(retainedValue));
1444
1445 return CGF.Builder.CreateBitCast(load, resultType);
1446 }
1447
1448 /// Emit an ARC autorelease of the result of a function.
1449 ///
1450 /// \return the value to actually return from the function
emitAutoreleaseOfResult(CodeGenFunction & CGF,llvm::Value * result)1451 static llvm::Value *emitAutoreleaseOfResult(CodeGenFunction &CGF,
1452 llvm::Value *result) {
1453 // If we're returning 'self', kill the initial retain. This is a
1454 // heuristic attempt to "encourage correctness" in the really unfortunate
1455 // case where we have a return of self during a dealloc and we desperately
1456 // need to avoid the possible autorelease.
1457 if (llvm::Value *self = tryRemoveRetainOfSelf(CGF, result))
1458 return self;
1459
1460 // At -O0, try to emit a fused retain/autorelease.
1461 if (CGF.shouldUseFusedARCCalls())
1462 if (llvm::Value *fused = tryEmitFusedAutoreleaseOfResult(CGF, result))
1463 return fused;
1464
1465 return CGF.EmitARCAutoreleaseReturnValue(result);
1466 }
1467
1468 /// Heuristically search for a dominating store to the return-value slot.
findDominatingStoreToReturnValue(CodeGenFunction & CGF)1469 static llvm::StoreInst *findDominatingStoreToReturnValue(CodeGenFunction &CGF) {
1470 // If there are multiple uses of the return-value slot, just check
1471 // for something immediately preceding the IP. Sometimes this can
1472 // happen with how we generate implicit-returns; it can also happen
1473 // with noreturn cleanups.
1474 if (!CGF.ReturnValue->hasOneUse()) {
1475 llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock();
1476 if (IP->empty()) return 0;
1477 llvm::StoreInst *store = dyn_cast<llvm::StoreInst>(&IP->back());
1478 if (!store) return 0;
1479 if (store->getPointerOperand() != CGF.ReturnValue) return 0;
1480 assert(!store->isAtomic() && !store->isVolatile()); // see below
1481 return store;
1482 }
1483
1484 llvm::StoreInst *store =
1485 dyn_cast<llvm::StoreInst>(CGF.ReturnValue->use_back());
1486 if (!store) return 0;
1487
1488 // These aren't actually possible for non-coerced returns, and we
1489 // only care about non-coerced returns on this code path.
1490 assert(!store->isAtomic() && !store->isVolatile());
1491
1492 // Now do a first-and-dirty dominance check: just walk up the
1493 // single-predecessors chain from the current insertion point.
1494 llvm::BasicBlock *StoreBB = store->getParent();
1495 llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock();
1496 while (IP != StoreBB) {
1497 if (!(IP = IP->getSinglePredecessor()))
1498 return 0;
1499 }
1500
1501 // Okay, the store's basic block dominates the insertion point; we
1502 // can do our thing.
1503 return store;
1504 }
1505
EmitFunctionEpilog(const CGFunctionInfo & FI)1506 void CodeGenFunction::EmitFunctionEpilog(const CGFunctionInfo &FI) {
1507 // Functions with no result always return void.
1508 if (ReturnValue == 0) {
1509 Builder.CreateRetVoid();
1510 return;
1511 }
1512
1513 llvm::DebugLoc RetDbgLoc;
1514 llvm::Value *RV = 0;
1515 QualType RetTy = FI.getReturnType();
1516 const ABIArgInfo &RetAI = FI.getReturnInfo();
1517
1518 switch (RetAI.getKind()) {
1519 case ABIArgInfo::Indirect: {
1520 unsigned Alignment = getContext().getTypeAlignInChars(RetTy).getQuantity();
1521 if (RetTy->isAnyComplexType()) {
1522 ComplexPairTy RT = LoadComplexFromAddr(ReturnValue, false);
1523 StoreComplexToAddr(RT, CurFn->arg_begin(), false);
1524 } else if (CodeGenFunction::hasAggregateLLVMType(RetTy)) {
1525 // Do nothing; aggregrates get evaluated directly into the destination.
1526 } else {
1527 EmitStoreOfScalar(Builder.CreateLoad(ReturnValue), CurFn->arg_begin(),
1528 false, Alignment, RetTy);
1529 }
1530 break;
1531 }
1532
1533 case ABIArgInfo::Extend:
1534 case ABIArgInfo::Direct:
1535 if (RetAI.getCoerceToType() == ConvertType(RetTy) &&
1536 RetAI.getDirectOffset() == 0) {
1537 // The internal return value temp always will have pointer-to-return-type
1538 // type, just do a load.
1539
1540 // If there is a dominating store to ReturnValue, we can elide
1541 // the load, zap the store, and usually zap the alloca.
1542 if (llvm::StoreInst *SI = findDominatingStoreToReturnValue(*this)) {
1543 // Get the stored value and nuke the now-dead store.
1544 RetDbgLoc = SI->getDebugLoc();
1545 RV = SI->getValueOperand();
1546 SI->eraseFromParent();
1547
1548 // If that was the only use of the return value, nuke it as well now.
1549 if (ReturnValue->use_empty() && isa<llvm::AllocaInst>(ReturnValue)) {
1550 cast<llvm::AllocaInst>(ReturnValue)->eraseFromParent();
1551 ReturnValue = 0;
1552 }
1553
1554 // Otherwise, we have to do a simple load.
1555 } else {
1556 RV = Builder.CreateLoad(ReturnValue);
1557 }
1558 } else {
1559 llvm::Value *V = ReturnValue;
1560 // If the value is offset in memory, apply the offset now.
1561 if (unsigned Offs = RetAI.getDirectOffset()) {
1562 V = Builder.CreateBitCast(V, Builder.getInt8PtrTy());
1563 V = Builder.CreateConstGEP1_32(V, Offs);
1564 V = Builder.CreateBitCast(V,
1565 llvm::PointerType::getUnqual(RetAI.getCoerceToType()));
1566 }
1567
1568 RV = CreateCoercedLoad(V, RetAI.getCoerceToType(), *this);
1569 }
1570
1571 // In ARC, end functions that return a retainable type with a call
1572 // to objc_autoreleaseReturnValue.
1573 if (AutoreleaseResult) {
1574 assert(getLangOpts().ObjCAutoRefCount &&
1575 !FI.isReturnsRetained() &&
1576 RetTy->isObjCRetainableType());
1577 RV = emitAutoreleaseOfResult(*this, RV);
1578 }
1579
1580 break;
1581
1582 case ABIArgInfo::Ignore:
1583 break;
1584
1585 case ABIArgInfo::Expand:
1586 llvm_unreachable("Invalid ABI kind for return argument");
1587 }
1588
1589 llvm::Instruction *Ret = RV ? Builder.CreateRet(RV) : Builder.CreateRetVoid();
1590 if (!RetDbgLoc.isUnknown())
1591 Ret->setDebugLoc(RetDbgLoc);
1592 }
1593
EmitDelegateCallArg(CallArgList & args,const VarDecl * param)1594 void CodeGenFunction::EmitDelegateCallArg(CallArgList &args,
1595 const VarDecl *param) {
1596 // StartFunction converted the ABI-lowered parameter(s) into a
1597 // local alloca. We need to turn that into an r-value suitable
1598 // for EmitCall.
1599 llvm::Value *local = GetAddrOfLocalVar(param);
1600
1601 QualType type = param->getType();
1602
1603 // For the most part, we just need to load the alloca, except:
1604 // 1) aggregate r-values are actually pointers to temporaries, and
1605 // 2) references to aggregates are pointers directly to the aggregate.
1606 // I don't know why references to non-aggregates are different here.
1607 if (const ReferenceType *ref = type->getAs<ReferenceType>()) {
1608 if (hasAggregateLLVMType(ref->getPointeeType()))
1609 return args.add(RValue::getAggregate(local), type);
1610
1611 // Locals which are references to scalars are represented
1612 // with allocas holding the pointer.
1613 return args.add(RValue::get(Builder.CreateLoad(local)), type);
1614 }
1615
1616 if (type->isAnyComplexType()) {
1617 ComplexPairTy complex = LoadComplexFromAddr(local, /*volatile*/ false);
1618 return args.add(RValue::getComplex(complex), type);
1619 }
1620
1621 if (hasAggregateLLVMType(type))
1622 return args.add(RValue::getAggregate(local), type);
1623
1624 unsigned alignment = getContext().getDeclAlign(param).getQuantity();
1625 llvm::Value *value = EmitLoadOfScalar(local, false, alignment, type);
1626 return args.add(RValue::get(value), type);
1627 }
1628
isProvablyNull(llvm::Value * addr)1629 static bool isProvablyNull(llvm::Value *addr) {
1630 return isa<llvm::ConstantPointerNull>(addr);
1631 }
1632
isProvablyNonNull(llvm::Value * addr)1633 static bool isProvablyNonNull(llvm::Value *addr) {
1634 return isa<llvm::AllocaInst>(addr);
1635 }
1636
1637 /// Emit the actual writing-back of a writeback.
emitWriteback(CodeGenFunction & CGF,const CallArgList::Writeback & writeback)1638 static void emitWriteback(CodeGenFunction &CGF,
1639 const CallArgList::Writeback &writeback) {
1640 llvm::Value *srcAddr = writeback.Address;
1641 assert(!isProvablyNull(srcAddr) &&
1642 "shouldn't have writeback for provably null argument");
1643
1644 llvm::BasicBlock *contBB = 0;
1645
1646 // If the argument wasn't provably non-null, we need to null check
1647 // before doing the store.
1648 bool provablyNonNull = isProvablyNonNull(srcAddr);
1649 if (!provablyNonNull) {
1650 llvm::BasicBlock *writebackBB = CGF.createBasicBlock("icr.writeback");
1651 contBB = CGF.createBasicBlock("icr.done");
1652
1653 llvm::Value *isNull = CGF.Builder.CreateIsNull(srcAddr, "icr.isnull");
1654 CGF.Builder.CreateCondBr(isNull, contBB, writebackBB);
1655 CGF.EmitBlock(writebackBB);
1656 }
1657
1658 // Load the value to writeback.
1659 llvm::Value *value = CGF.Builder.CreateLoad(writeback.Temporary);
1660
1661 // Cast it back, in case we're writing an id to a Foo* or something.
1662 value = CGF.Builder.CreateBitCast(value,
1663 cast<llvm::PointerType>(srcAddr->getType())->getElementType(),
1664 "icr.writeback-cast");
1665
1666 // Perform the writeback.
1667 QualType srcAddrType = writeback.AddressType;
1668 CGF.EmitStoreThroughLValue(RValue::get(value),
1669 CGF.MakeAddrLValue(srcAddr, srcAddrType));
1670
1671 // Jump to the continuation block.
1672 if (!provablyNonNull)
1673 CGF.EmitBlock(contBB);
1674 }
1675
emitWritebacks(CodeGenFunction & CGF,const CallArgList & args)1676 static void emitWritebacks(CodeGenFunction &CGF,
1677 const CallArgList &args) {
1678 for (CallArgList::writeback_iterator
1679 i = args.writeback_begin(), e = args.writeback_end(); i != e; ++i)
1680 emitWriteback(CGF, *i);
1681 }
1682
1683 /// Emit an argument that's being passed call-by-writeback. That is,
1684 /// we are passing the address of
emitWritebackArg(CodeGenFunction & CGF,CallArgList & args,const ObjCIndirectCopyRestoreExpr * CRE)1685 static void emitWritebackArg(CodeGenFunction &CGF, CallArgList &args,
1686 const ObjCIndirectCopyRestoreExpr *CRE) {
1687 llvm::Value *srcAddr = CGF.EmitScalarExpr(CRE->getSubExpr());
1688
1689 // The dest and src types don't necessarily match in LLVM terms
1690 // because of the crazy ObjC compatibility rules.
1691
1692 llvm::PointerType *destType =
1693 cast<llvm::PointerType>(CGF.ConvertType(CRE->getType()));
1694
1695 // If the address is a constant null, just pass the appropriate null.
1696 if (isProvablyNull(srcAddr)) {
1697 args.add(RValue::get(llvm::ConstantPointerNull::get(destType)),
1698 CRE->getType());
1699 return;
1700 }
1701
1702 QualType srcAddrType =
1703 CRE->getSubExpr()->getType()->castAs<PointerType>()->getPointeeType();
1704
1705 // Create the temporary.
1706 llvm::Value *temp = CGF.CreateTempAlloca(destType->getElementType(),
1707 "icr.temp");
1708
1709 // Zero-initialize it if we're not doing a copy-initialization.
1710 bool shouldCopy = CRE->shouldCopy();
1711 if (!shouldCopy) {
1712 llvm::Value *null =
1713 llvm::ConstantPointerNull::get(
1714 cast<llvm::PointerType>(destType->getElementType()));
1715 CGF.Builder.CreateStore(null, temp);
1716 }
1717
1718 llvm::BasicBlock *contBB = 0;
1719
1720 // If the address is *not* known to be non-null, we need to switch.
1721 llvm::Value *finalArgument;
1722
1723 bool provablyNonNull = isProvablyNonNull(srcAddr);
1724 if (provablyNonNull) {
1725 finalArgument = temp;
1726 } else {
1727 llvm::Value *isNull = CGF.Builder.CreateIsNull(srcAddr, "icr.isnull");
1728
1729 finalArgument = CGF.Builder.CreateSelect(isNull,
1730 llvm::ConstantPointerNull::get(destType),
1731 temp, "icr.argument");
1732
1733 // If we need to copy, then the load has to be conditional, which
1734 // means we need control flow.
1735 if (shouldCopy) {
1736 contBB = CGF.createBasicBlock("icr.cont");
1737 llvm::BasicBlock *copyBB = CGF.createBasicBlock("icr.copy");
1738 CGF.Builder.CreateCondBr(isNull, contBB, copyBB);
1739 CGF.EmitBlock(copyBB);
1740 }
1741 }
1742
1743 // Perform a copy if necessary.
1744 if (shouldCopy) {
1745 LValue srcLV = CGF.MakeAddrLValue(srcAddr, srcAddrType);
1746 RValue srcRV = CGF.EmitLoadOfLValue(srcLV);
1747 assert(srcRV.isScalar());
1748
1749 llvm::Value *src = srcRV.getScalarVal();
1750 src = CGF.Builder.CreateBitCast(src, destType->getElementType(),
1751 "icr.cast");
1752
1753 // Use an ordinary store, not a store-to-lvalue.
1754 CGF.Builder.CreateStore(src, temp);
1755 }
1756
1757 // Finish the control flow if we needed it.
1758 if (shouldCopy && !provablyNonNull)
1759 CGF.EmitBlock(contBB);
1760
1761 args.addWriteback(srcAddr, srcAddrType, temp);
1762 args.add(RValue::get(finalArgument), CRE->getType());
1763 }
1764
EmitCallArg(CallArgList & args,const Expr * E,QualType type)1765 void CodeGenFunction::EmitCallArg(CallArgList &args, const Expr *E,
1766 QualType type) {
1767 if (const ObjCIndirectCopyRestoreExpr *CRE
1768 = dyn_cast<ObjCIndirectCopyRestoreExpr>(E)) {
1769 assert(getContext().getLangOpts().ObjCAutoRefCount);
1770 assert(getContext().hasSameType(E->getType(), type));
1771 return emitWritebackArg(*this, args, CRE);
1772 }
1773
1774 assert(type->isReferenceType() == E->isGLValue() &&
1775 "reference binding to unmaterialized r-value!");
1776
1777 if (E->isGLValue()) {
1778 assert(E->getObjectKind() == OK_Ordinary);
1779 return args.add(EmitReferenceBindingToExpr(E, /*InitializedDecl=*/0),
1780 type);
1781 }
1782
1783 if (hasAggregateLLVMType(type) && !E->getType()->isAnyComplexType() &&
1784 isa<ImplicitCastExpr>(E) &&
1785 cast<CastExpr>(E)->getCastKind() == CK_LValueToRValue) {
1786 LValue L = EmitLValue(cast<CastExpr>(E)->getSubExpr());
1787 assert(L.isSimple());
1788 args.add(L.asAggregateRValue(), type, /*NeedsCopy*/true);
1789 return;
1790 }
1791
1792 args.add(EmitAnyExprToTemp(E), type);
1793 }
1794
1795 // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
1796 // optimizer it can aggressively ignore unwind edges.
1797 void
AddObjCARCExceptionMetadata(llvm::Instruction * Inst)1798 CodeGenFunction::AddObjCARCExceptionMetadata(llvm::Instruction *Inst) {
1799 if (CGM.getCodeGenOpts().OptimizationLevel != 0 &&
1800 !CGM.getCodeGenOpts().ObjCAutoRefCountExceptions)
1801 Inst->setMetadata("clang.arc.no_objc_arc_exceptions",
1802 CGM.getNoObjCARCExceptionsMetadata());
1803 }
1804
1805 /// Emits a call or invoke instruction to the given function, depending
1806 /// on the current state of the EH stack.
1807 llvm::CallSite
EmitCallOrInvoke(llvm::Value * Callee,ArrayRef<llvm::Value * > Args,const Twine & Name)1808 CodeGenFunction::EmitCallOrInvoke(llvm::Value *Callee,
1809 ArrayRef<llvm::Value *> Args,
1810 const Twine &Name) {
1811 llvm::BasicBlock *InvokeDest = getInvokeDest();
1812
1813 llvm::Instruction *Inst;
1814 if (!InvokeDest)
1815 Inst = Builder.CreateCall(Callee, Args, Name);
1816 else {
1817 llvm::BasicBlock *ContBB = createBasicBlock("invoke.cont");
1818 Inst = Builder.CreateInvoke(Callee, ContBB, InvokeDest, Args, Name);
1819 EmitBlock(ContBB);
1820 }
1821
1822 // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
1823 // optimizer it can aggressively ignore unwind edges.
1824 if (CGM.getLangOpts().ObjCAutoRefCount)
1825 AddObjCARCExceptionMetadata(Inst);
1826
1827 return Inst;
1828 }
1829
1830 llvm::CallSite
EmitCallOrInvoke(llvm::Value * Callee,const Twine & Name)1831 CodeGenFunction::EmitCallOrInvoke(llvm::Value *Callee,
1832 const Twine &Name) {
1833 return EmitCallOrInvoke(Callee, ArrayRef<llvm::Value *>(), Name);
1834 }
1835
checkArgMatches(llvm::Value * Elt,unsigned & ArgNo,llvm::FunctionType * FTy)1836 static void checkArgMatches(llvm::Value *Elt, unsigned &ArgNo,
1837 llvm::FunctionType *FTy) {
1838 if (ArgNo < FTy->getNumParams())
1839 assert(Elt->getType() == FTy->getParamType(ArgNo));
1840 else
1841 assert(FTy->isVarArg());
1842 ++ArgNo;
1843 }
1844
ExpandTypeToArgs(QualType Ty,RValue RV,SmallVector<llvm::Value *,16> & Args,llvm::FunctionType * IRFuncTy)1845 void CodeGenFunction::ExpandTypeToArgs(QualType Ty, RValue RV,
1846 SmallVector<llvm::Value*,16> &Args,
1847 llvm::FunctionType *IRFuncTy) {
1848 if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
1849 unsigned NumElts = AT->getSize().getZExtValue();
1850 QualType EltTy = AT->getElementType();
1851 llvm::Value *Addr = RV.getAggregateAddr();
1852 for (unsigned Elt = 0; Elt < NumElts; ++Elt) {
1853 llvm::Value *EltAddr = Builder.CreateConstGEP2_32(Addr, 0, Elt);
1854 LValue LV = MakeAddrLValue(EltAddr, EltTy);
1855 RValue EltRV;
1856 if (EltTy->isAnyComplexType())
1857 // FIXME: Volatile?
1858 EltRV = RValue::getComplex(LoadComplexFromAddr(LV.getAddress(), false));
1859 else if (CodeGenFunction::hasAggregateLLVMType(EltTy))
1860 EltRV = LV.asAggregateRValue();
1861 else
1862 EltRV = EmitLoadOfLValue(LV);
1863 ExpandTypeToArgs(EltTy, EltRV, Args, IRFuncTy);
1864 }
1865 } else if (const RecordType *RT = Ty->getAs<RecordType>()) {
1866 RecordDecl *RD = RT->getDecl();
1867 assert(RV.isAggregate() && "Unexpected rvalue during struct expansion");
1868 LValue LV = MakeAddrLValue(RV.getAggregateAddr(), Ty);
1869
1870 if (RD->isUnion()) {
1871 const FieldDecl *LargestFD = 0;
1872 CharUnits UnionSize = CharUnits::Zero();
1873
1874 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
1875 i != e; ++i) {
1876 const FieldDecl *FD = *i;
1877 assert(!FD->isBitField() &&
1878 "Cannot expand structure with bit-field members.");
1879 CharUnits FieldSize = getContext().getTypeSizeInChars(FD->getType());
1880 if (UnionSize < FieldSize) {
1881 UnionSize = FieldSize;
1882 LargestFD = FD;
1883 }
1884 }
1885 if (LargestFD) {
1886 RValue FldRV = EmitRValueForField(LV, LargestFD);
1887 ExpandTypeToArgs(LargestFD->getType(), FldRV, Args, IRFuncTy);
1888 }
1889 } else {
1890 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
1891 i != e; ++i) {
1892 FieldDecl *FD = *i;
1893
1894 RValue FldRV = EmitRValueForField(LV, FD);
1895 ExpandTypeToArgs(FD->getType(), FldRV, Args, IRFuncTy);
1896 }
1897 }
1898 } else if (Ty->isAnyComplexType()) {
1899 ComplexPairTy CV = RV.getComplexVal();
1900 Args.push_back(CV.first);
1901 Args.push_back(CV.second);
1902 } else {
1903 assert(RV.isScalar() &&
1904 "Unexpected non-scalar rvalue during struct expansion.");
1905
1906 // Insert a bitcast as needed.
1907 llvm::Value *V = RV.getScalarVal();
1908 if (Args.size() < IRFuncTy->getNumParams() &&
1909 V->getType() != IRFuncTy->getParamType(Args.size()))
1910 V = Builder.CreateBitCast(V, IRFuncTy->getParamType(Args.size()));
1911
1912 Args.push_back(V);
1913 }
1914 }
1915
1916
EmitCall(const CGFunctionInfo & CallInfo,llvm::Value * Callee,ReturnValueSlot ReturnValue,const CallArgList & CallArgs,const Decl * TargetDecl,llvm::Instruction ** callOrInvoke)1917 RValue CodeGenFunction::EmitCall(const CGFunctionInfo &CallInfo,
1918 llvm::Value *Callee,
1919 ReturnValueSlot ReturnValue,
1920 const CallArgList &CallArgs,
1921 const Decl *TargetDecl,
1922 llvm::Instruction **callOrInvoke) {
1923 // FIXME: We no longer need the types from CallArgs; lift up and simplify.
1924 SmallVector<llvm::Value*, 16> Args;
1925
1926 // Handle struct-return functions by passing a pointer to the
1927 // location that we would like to return into.
1928 QualType RetTy = CallInfo.getReturnType();
1929 const ABIArgInfo &RetAI = CallInfo.getReturnInfo();
1930
1931 // IRArgNo - Keep track of the argument number in the callee we're looking at.
1932 unsigned IRArgNo = 0;
1933 llvm::FunctionType *IRFuncTy =
1934 cast<llvm::FunctionType>(
1935 cast<llvm::PointerType>(Callee->getType())->getElementType());
1936
1937 // If the call returns a temporary with struct return, create a temporary
1938 // alloca to hold the result, unless one is given to us.
1939 if (CGM.ReturnTypeUsesSRet(CallInfo)) {
1940 llvm::Value *Value = ReturnValue.getValue();
1941 if (!Value)
1942 Value = CreateMemTemp(RetTy);
1943 Args.push_back(Value);
1944 checkArgMatches(Value, IRArgNo, IRFuncTy);
1945 }
1946
1947 assert(CallInfo.arg_size() == CallArgs.size() &&
1948 "Mismatch between function signature & arguments.");
1949 CGFunctionInfo::const_arg_iterator info_it = CallInfo.arg_begin();
1950 for (CallArgList::const_iterator I = CallArgs.begin(), E = CallArgs.end();
1951 I != E; ++I, ++info_it) {
1952 const ABIArgInfo &ArgInfo = info_it->info;
1953 RValue RV = I->RV;
1954
1955 unsigned TypeAlign =
1956 getContext().getTypeAlignInChars(I->Ty).getQuantity();
1957 switch (ArgInfo.getKind()) {
1958 case ABIArgInfo::Indirect: {
1959 if (RV.isScalar() || RV.isComplex()) {
1960 // Make a temporary alloca to pass the argument.
1961 llvm::AllocaInst *AI = CreateMemTemp(I->Ty);
1962 if (ArgInfo.getIndirectAlign() > AI->getAlignment())
1963 AI->setAlignment(ArgInfo.getIndirectAlign());
1964 Args.push_back(AI);
1965
1966 if (RV.isScalar())
1967 EmitStoreOfScalar(RV.getScalarVal(), Args.back(), false,
1968 TypeAlign, I->Ty);
1969 else
1970 StoreComplexToAddr(RV.getComplexVal(), Args.back(), false);
1971
1972 // Validate argument match.
1973 checkArgMatches(AI, IRArgNo, IRFuncTy);
1974 } else {
1975 // We want to avoid creating an unnecessary temporary+copy here;
1976 // however, we need one in two cases:
1977 // 1. If the argument is not byval, and we are required to copy the
1978 // source. (This case doesn't occur on any common architecture.)
1979 // 2. If the argument is byval, RV is not sufficiently aligned, and
1980 // we cannot force it to be sufficiently aligned.
1981 llvm::Value *Addr = RV.getAggregateAddr();
1982 unsigned Align = ArgInfo.getIndirectAlign();
1983 const llvm::TargetData *TD = &CGM.getTargetData();
1984 if ((!ArgInfo.getIndirectByVal() && I->NeedsCopy) ||
1985 (ArgInfo.getIndirectByVal() && TypeAlign < Align &&
1986 llvm::getOrEnforceKnownAlignment(Addr, Align, TD) < Align)) {
1987 // Create an aligned temporary, and copy to it.
1988 llvm::AllocaInst *AI = CreateMemTemp(I->Ty);
1989 if (Align > AI->getAlignment())
1990 AI->setAlignment(Align);
1991 Args.push_back(AI);
1992 EmitAggregateCopy(AI, Addr, I->Ty, RV.isVolatileQualified());
1993
1994 // Validate argument match.
1995 checkArgMatches(AI, IRArgNo, IRFuncTy);
1996 } else {
1997 // Skip the extra memcpy call.
1998 Args.push_back(Addr);
1999
2000 // Validate argument match.
2001 checkArgMatches(Addr, IRArgNo, IRFuncTy);
2002 }
2003 }
2004 break;
2005 }
2006
2007 case ABIArgInfo::Ignore:
2008 break;
2009
2010 case ABIArgInfo::Extend:
2011 case ABIArgInfo::Direct: {
2012 // Insert a padding argument to ensure proper alignment.
2013 if (llvm::Type *PaddingType = ArgInfo.getPaddingType()) {
2014 Args.push_back(llvm::UndefValue::get(PaddingType));
2015 ++IRArgNo;
2016 }
2017
2018 if (!isa<llvm::StructType>(ArgInfo.getCoerceToType()) &&
2019 ArgInfo.getCoerceToType() == ConvertType(info_it->type) &&
2020 ArgInfo.getDirectOffset() == 0) {
2021 llvm::Value *V;
2022 if (RV.isScalar())
2023 V = RV.getScalarVal();
2024 else
2025 V = Builder.CreateLoad(RV.getAggregateAddr());
2026
2027 // If the argument doesn't match, perform a bitcast to coerce it. This
2028 // can happen due to trivial type mismatches.
2029 if (IRArgNo < IRFuncTy->getNumParams() &&
2030 V->getType() != IRFuncTy->getParamType(IRArgNo))
2031 V = Builder.CreateBitCast(V, IRFuncTy->getParamType(IRArgNo));
2032 Args.push_back(V);
2033
2034 checkArgMatches(V, IRArgNo, IRFuncTy);
2035 break;
2036 }
2037
2038 // FIXME: Avoid the conversion through memory if possible.
2039 llvm::Value *SrcPtr;
2040 if (RV.isScalar()) {
2041 SrcPtr = CreateMemTemp(I->Ty, "coerce");
2042 EmitStoreOfScalar(RV.getScalarVal(), SrcPtr, false, TypeAlign, I->Ty);
2043 } else if (RV.isComplex()) {
2044 SrcPtr = CreateMemTemp(I->Ty, "coerce");
2045 StoreComplexToAddr(RV.getComplexVal(), SrcPtr, false);
2046 } else
2047 SrcPtr = RV.getAggregateAddr();
2048
2049 // If the value is offset in memory, apply the offset now.
2050 if (unsigned Offs = ArgInfo.getDirectOffset()) {
2051 SrcPtr = Builder.CreateBitCast(SrcPtr, Builder.getInt8PtrTy());
2052 SrcPtr = Builder.CreateConstGEP1_32(SrcPtr, Offs);
2053 SrcPtr = Builder.CreateBitCast(SrcPtr,
2054 llvm::PointerType::getUnqual(ArgInfo.getCoerceToType()));
2055
2056 }
2057
2058 // If the coerce-to type is a first class aggregate, we flatten it and
2059 // pass the elements. Either way is semantically identical, but fast-isel
2060 // and the optimizer generally likes scalar values better than FCAs.
2061 if (llvm::StructType *STy =
2062 dyn_cast<llvm::StructType>(ArgInfo.getCoerceToType())) {
2063 SrcPtr = Builder.CreateBitCast(SrcPtr,
2064 llvm::PointerType::getUnqual(STy));
2065 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
2066 llvm::Value *EltPtr = Builder.CreateConstGEP2_32(SrcPtr, 0, i);
2067 llvm::LoadInst *LI = Builder.CreateLoad(EltPtr);
2068 // We don't know what we're loading from.
2069 LI->setAlignment(1);
2070 Args.push_back(LI);
2071
2072 // Validate argument match.
2073 checkArgMatches(LI, IRArgNo, IRFuncTy);
2074 }
2075 } else {
2076 // In the simple case, just pass the coerced loaded value.
2077 Args.push_back(CreateCoercedLoad(SrcPtr, ArgInfo.getCoerceToType(),
2078 *this));
2079
2080 // Validate argument match.
2081 checkArgMatches(Args.back(), IRArgNo, IRFuncTy);
2082 }
2083
2084 break;
2085 }
2086
2087 case ABIArgInfo::Expand:
2088 ExpandTypeToArgs(I->Ty, RV, Args, IRFuncTy);
2089 IRArgNo = Args.size();
2090 break;
2091 }
2092 }
2093
2094 // If the callee is a bitcast of a function to a varargs pointer to function
2095 // type, check to see if we can remove the bitcast. This handles some cases
2096 // with unprototyped functions.
2097 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Callee))
2098 if (llvm::Function *CalleeF = dyn_cast<llvm::Function>(CE->getOperand(0))) {
2099 llvm::PointerType *CurPT=cast<llvm::PointerType>(Callee->getType());
2100 llvm::FunctionType *CurFT =
2101 cast<llvm::FunctionType>(CurPT->getElementType());
2102 llvm::FunctionType *ActualFT = CalleeF->getFunctionType();
2103
2104 if (CE->getOpcode() == llvm::Instruction::BitCast &&
2105 ActualFT->getReturnType() == CurFT->getReturnType() &&
2106 ActualFT->getNumParams() == CurFT->getNumParams() &&
2107 ActualFT->getNumParams() == Args.size() &&
2108 (CurFT->isVarArg() || !ActualFT->isVarArg())) {
2109 bool ArgsMatch = true;
2110 for (unsigned i = 0, e = ActualFT->getNumParams(); i != e; ++i)
2111 if (ActualFT->getParamType(i) != CurFT->getParamType(i)) {
2112 ArgsMatch = false;
2113 break;
2114 }
2115
2116 // Strip the cast if we can get away with it. This is a nice cleanup,
2117 // but also allows us to inline the function at -O0 if it is marked
2118 // always_inline.
2119 if (ArgsMatch)
2120 Callee = CalleeF;
2121 }
2122 }
2123
2124 unsigned CallingConv;
2125 CodeGen::AttributeListType AttributeList;
2126 CGM.ConstructAttributeList(CallInfo, TargetDecl, AttributeList, CallingConv);
2127 llvm::AttrListPtr Attrs = llvm::AttrListPtr::get(AttributeList);
2128
2129 llvm::BasicBlock *InvokeDest = 0;
2130 if (!(Attrs.getFnAttributes() & llvm::Attribute::NoUnwind))
2131 InvokeDest = getInvokeDest();
2132
2133 llvm::CallSite CS;
2134 if (!InvokeDest) {
2135 CS = Builder.CreateCall(Callee, Args);
2136 } else {
2137 llvm::BasicBlock *Cont = createBasicBlock("invoke.cont");
2138 CS = Builder.CreateInvoke(Callee, Cont, InvokeDest, Args);
2139 EmitBlock(Cont);
2140 }
2141 if (callOrInvoke)
2142 *callOrInvoke = CS.getInstruction();
2143
2144 CS.setAttributes(Attrs);
2145 CS.setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
2146
2147 // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
2148 // optimizer it can aggressively ignore unwind edges.
2149 if (CGM.getLangOpts().ObjCAutoRefCount)
2150 AddObjCARCExceptionMetadata(CS.getInstruction());
2151
2152 // If the call doesn't return, finish the basic block and clear the
2153 // insertion point; this allows the rest of IRgen to discard
2154 // unreachable code.
2155 if (CS.doesNotReturn()) {
2156 Builder.CreateUnreachable();
2157 Builder.ClearInsertionPoint();
2158
2159 // FIXME: For now, emit a dummy basic block because expr emitters in
2160 // generally are not ready to handle emitting expressions at unreachable
2161 // points.
2162 EnsureInsertPoint();
2163
2164 // Return a reasonable RValue.
2165 return GetUndefRValue(RetTy);
2166 }
2167
2168 llvm::Instruction *CI = CS.getInstruction();
2169 if (Builder.isNamePreserving() && !CI->getType()->isVoidTy())
2170 CI->setName("call");
2171
2172 // Emit any writebacks immediately. Arguably this should happen
2173 // after any return-value munging.
2174 if (CallArgs.hasWritebacks())
2175 emitWritebacks(*this, CallArgs);
2176
2177 switch (RetAI.getKind()) {
2178 case ABIArgInfo::Indirect: {
2179 unsigned Alignment = getContext().getTypeAlignInChars(RetTy).getQuantity();
2180 if (RetTy->isAnyComplexType())
2181 return RValue::getComplex(LoadComplexFromAddr(Args[0], false));
2182 if (CodeGenFunction::hasAggregateLLVMType(RetTy))
2183 return RValue::getAggregate(Args[0]);
2184 return RValue::get(EmitLoadOfScalar(Args[0], false, Alignment, RetTy));
2185 }
2186
2187 case ABIArgInfo::Ignore:
2188 // If we are ignoring an argument that had a result, make sure to
2189 // construct the appropriate return value for our caller.
2190 return GetUndefRValue(RetTy);
2191
2192 case ABIArgInfo::Extend:
2193 case ABIArgInfo::Direct: {
2194 llvm::Type *RetIRTy = ConvertType(RetTy);
2195 if (RetAI.getCoerceToType() == RetIRTy && RetAI.getDirectOffset() == 0) {
2196 if (RetTy->isAnyComplexType()) {
2197 llvm::Value *Real = Builder.CreateExtractValue(CI, 0);
2198 llvm::Value *Imag = Builder.CreateExtractValue(CI, 1);
2199 return RValue::getComplex(std::make_pair(Real, Imag));
2200 }
2201 if (CodeGenFunction::hasAggregateLLVMType(RetTy)) {
2202 llvm::Value *DestPtr = ReturnValue.getValue();
2203 bool DestIsVolatile = ReturnValue.isVolatile();
2204
2205 if (!DestPtr) {
2206 DestPtr = CreateMemTemp(RetTy, "agg.tmp");
2207 DestIsVolatile = false;
2208 }
2209 BuildAggStore(*this, CI, DestPtr, DestIsVolatile, false);
2210 return RValue::getAggregate(DestPtr);
2211 }
2212
2213 // If the argument doesn't match, perform a bitcast to coerce it. This
2214 // can happen due to trivial type mismatches.
2215 llvm::Value *V = CI;
2216 if (V->getType() != RetIRTy)
2217 V = Builder.CreateBitCast(V, RetIRTy);
2218 return RValue::get(V);
2219 }
2220
2221 llvm::Value *DestPtr = ReturnValue.getValue();
2222 bool DestIsVolatile = ReturnValue.isVolatile();
2223
2224 if (!DestPtr) {
2225 DestPtr = CreateMemTemp(RetTy, "coerce");
2226 DestIsVolatile = false;
2227 }
2228
2229 // If the value is offset in memory, apply the offset now.
2230 llvm::Value *StorePtr = DestPtr;
2231 if (unsigned Offs = RetAI.getDirectOffset()) {
2232 StorePtr = Builder.CreateBitCast(StorePtr, Builder.getInt8PtrTy());
2233 StorePtr = Builder.CreateConstGEP1_32(StorePtr, Offs);
2234 StorePtr = Builder.CreateBitCast(StorePtr,
2235 llvm::PointerType::getUnqual(RetAI.getCoerceToType()));
2236 }
2237 CreateCoercedStore(CI, StorePtr, DestIsVolatile, *this);
2238
2239 unsigned Alignment = getContext().getTypeAlignInChars(RetTy).getQuantity();
2240 if (RetTy->isAnyComplexType())
2241 return RValue::getComplex(LoadComplexFromAddr(DestPtr, false));
2242 if (CodeGenFunction::hasAggregateLLVMType(RetTy))
2243 return RValue::getAggregate(DestPtr);
2244 return RValue::get(EmitLoadOfScalar(DestPtr, false, Alignment, RetTy));
2245 }
2246
2247 case ABIArgInfo::Expand:
2248 llvm_unreachable("Invalid ABI kind for return argument");
2249 }
2250
2251 llvm_unreachable("Unhandled ABIArgInfo::Kind");
2252 }
2253
2254 /* VarArg handling */
2255
EmitVAArg(llvm::Value * VAListAddr,QualType Ty)2256 llvm::Value *CodeGenFunction::EmitVAArg(llvm::Value *VAListAddr, QualType Ty) {
2257 return CGM.getTypes().getABIInfo().EmitVAArg(VAListAddr, Ty, *this);
2258 }
2259