• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===-- asan_allocator.cc -------------------------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file is a part of AddressSanitizer, an address sanity checker.
11 //
12 // Implementation of ASan's memory allocator.
13 // Evey piece of memory (AsanChunk) allocated by the allocator
14 // has a left redzone of REDZONE bytes and
15 // a right redzone such that the end of the chunk is aligned by REDZONE
16 // (i.e. the right redzone is between 0 and REDZONE-1).
17 // The left redzone is always poisoned.
18 // The right redzone is poisoned on malloc, the body is poisoned on free.
19 // Once freed, a chunk is moved to a quarantine (fifo list).
20 // After quarantine, a chunk is returned to freelists.
21 //
22 // The left redzone contains ASan's internal data and the stack trace of
23 // the malloc call.
24 // Once freed, the body of the chunk contains the stack trace of the free call.
25 //
26 //===----------------------------------------------------------------------===//
27 
28 #include "asan_allocator.h"
29 #include "asan_interceptors.h"
30 #include "asan_internal.h"
31 #include "asan_lock.h"
32 #include "asan_mapping.h"
33 #include "asan_stats.h"
34 #include "asan_report.h"
35 #include "asan_thread.h"
36 #include "asan_thread_registry.h"
37 #include "sanitizer/asan_interface.h"
38 #include "sanitizer_common/sanitizer_atomic.h"
39 
40 #if defined(_WIN32) && !defined(__clang__)
41 #include <intrin.h>
42 #endif
43 
44 namespace __asan {
45 
46 #define REDZONE ((uptr)(flags()->redzone))
47 static const uptr kMinAllocSize = REDZONE * 2;
48 static const u64 kMaxAvailableRam = 128ULL << 30;  // 128G
49 static const uptr kMaxThreadLocalQuarantine = 1 << 20;  // 1M
50 
51 static const uptr kMinMmapSize = (ASAN_LOW_MEMORY) ? 4UL << 17 : 4UL << 20;
52 static const uptr kMaxSizeForThreadLocalFreeList =
53     (ASAN_LOW_MEMORY) ? 1 << 15 : 1 << 17;
54 
55 // Size classes less than kMallocSizeClassStep are powers of two.
56 // All other size classes are multiples of kMallocSizeClassStep.
57 static const uptr kMallocSizeClassStepLog = 26;
58 static const uptr kMallocSizeClassStep = 1UL << kMallocSizeClassStepLog;
59 
60 static const uptr kMaxAllowedMallocSize =
61     (__WORDSIZE == 32) ? 3UL << 30 : 8UL << 30;
62 
IsAligned(uptr a,uptr alignment)63 static inline bool IsAligned(uptr a, uptr alignment) {
64   return (a & (alignment - 1)) == 0;
65 }
66 
Log2(uptr x)67 static inline uptr Log2(uptr x) {
68   CHECK(IsPowerOfTwo(x));
69 #if !defined(_WIN32) || defined(__clang__)
70   return __builtin_ctzl(x);
71 #elif defined(_WIN64)
72   unsigned long ret;  // NOLINT
73   _BitScanForward64(&ret, x);
74   return ret;
75 #else
76   unsigned long ret;  // NOLINT
77   _BitScanForward(&ret, x);
78   return ret;
79 #endif
80 }
81 
RoundUpToPowerOfTwo(uptr size)82 static inline uptr RoundUpToPowerOfTwo(uptr size) {
83   CHECK(size);
84   if (IsPowerOfTwo(size)) return size;
85 
86   unsigned long up;  // NOLINT
87 #if !defined(_WIN32) || defined(__clang__)
88   up = __WORDSIZE - 1 - __builtin_clzl(size);
89 #elif defined(_WIN64)
90   _BitScanReverse64(&up, size);
91 #else
92   _BitScanReverse(&up, size);
93 #endif
94   CHECK(size < (1ULL << (up + 1)));
95   CHECK(size > (1ULL << up));
96   return 1UL << (up + 1);
97 }
98 
SizeClassToSize(u8 size_class)99 static inline uptr SizeClassToSize(u8 size_class) {
100   CHECK(size_class < kNumberOfSizeClasses);
101   if (size_class <= kMallocSizeClassStepLog) {
102     return 1UL << size_class;
103   } else {
104     return (size_class - kMallocSizeClassStepLog) * kMallocSizeClassStep;
105   }
106 }
107 
SizeToSizeClass(uptr size)108 static inline u8 SizeToSizeClass(uptr size) {
109   u8 res = 0;
110   if (size <= kMallocSizeClassStep) {
111     uptr rounded = RoundUpToPowerOfTwo(size);
112     res = Log2(rounded);
113   } else {
114     res = ((size + kMallocSizeClassStep - 1) / kMallocSizeClassStep)
115         + kMallocSizeClassStepLog;
116   }
117   CHECK(res < kNumberOfSizeClasses);
118   CHECK(size <= SizeClassToSize(res));
119   return res;
120 }
121 
122 // Given REDZONE bytes, we need to mark first size bytes
123 // as addressable and the rest REDZONE-size bytes as unaddressable.
PoisonHeapPartialRightRedzone(uptr mem,uptr size)124 static void PoisonHeapPartialRightRedzone(uptr mem, uptr size) {
125   CHECK(size <= REDZONE);
126   CHECK(IsAligned(mem, REDZONE));
127   CHECK(IsPowerOfTwo(SHADOW_GRANULARITY));
128   CHECK(IsPowerOfTwo(REDZONE));
129   CHECK(REDZONE >= SHADOW_GRANULARITY);
130   PoisonShadowPartialRightRedzone(mem, size, REDZONE,
131                                   kAsanHeapRightRedzoneMagic);
132 }
133 
MmapNewPagesAndPoisonShadow(uptr size)134 static u8 *MmapNewPagesAndPoisonShadow(uptr size) {
135   CHECK(IsAligned(size, kPageSize));
136   u8 *res = (u8*)MmapOrDie(size, __FUNCTION__);
137   PoisonShadow((uptr)res, size, kAsanHeapLeftRedzoneMagic);
138   if (flags()->debug) {
139     Printf("ASAN_MMAP: [%p, %p)\n", res, res + size);
140   }
141   return res;
142 }
143 
144 // Every chunk of memory allocated by this allocator can be in one of 3 states:
145 // CHUNK_AVAILABLE: the chunk is in the free list and ready to be allocated.
146 // CHUNK_ALLOCATED: the chunk is allocated and not yet freed.
147 // CHUNK_QUARANTINE: the chunk was freed and put into quarantine zone.
148 //
149 // The pseudo state CHUNK_MEMALIGN is used to mark that the address is not
150 // the beginning of a AsanChunk (in which the actual chunk resides at
151 // this - this->used_size).
152 //
153 // The magic numbers for the enum values are taken randomly.
154 enum {
155   CHUNK_AVAILABLE  = 0x57,
156   CHUNK_ALLOCATED  = 0x32,
157   CHUNK_QUARANTINE = 0x19,
158   CHUNK_MEMALIGN   = 0xDC
159 };
160 
161 struct ChunkBase {
162   // First 8 bytes.
163   uptr  chunk_state : 8;
164   uptr  alloc_tid   : 24;
165   uptr  size_class  : 8;
166   uptr  free_tid    : 24;
167 
168   // Second 8 bytes.
169   uptr alignment_log : 8;
170   uptr used_size : FIRST_32_SECOND_64(32, 56);  // Size requested by the user.
171 
172   // This field may overlap with the user area and thus should not
173   // be used while the chunk is in CHUNK_ALLOCATED state.
174   AsanChunk *next;
175 
176   // Typically the beginning of the user-accessible memory is 'this'+REDZONE
177   // and is also aligned by REDZONE. However, if the memory is allocated
178   // by memalign, the alignment might be higher and the user-accessible memory
179   // starts at the first properly aligned address after 'this'.
Beg__asan::ChunkBase180   uptr Beg() { return RoundUpTo((uptr)this + 1, 1 << alignment_log); }
Size__asan::ChunkBase181   uptr Size() { return SizeClassToSize(size_class); }
SizeClass__asan::ChunkBase182   u8 SizeClass() { return size_class; }
183 };
184 
185 struct AsanChunk: public ChunkBase {
compressed_alloc_stack__asan::AsanChunk186   u32 *compressed_alloc_stack() {
187     return (u32*)((uptr)this + sizeof(ChunkBase));
188   }
compressed_free_stack__asan::AsanChunk189   u32 *compressed_free_stack() {
190     return (u32*)((uptr)this + Max((uptr)REDZONE, (uptr)sizeof(ChunkBase)));
191   }
192 
193   // The left redzone after the ChunkBase is given to the alloc stack trace.
compressed_alloc_stack_size__asan::AsanChunk194   uptr compressed_alloc_stack_size() {
195     if (REDZONE < sizeof(ChunkBase)) return 0;
196     return (REDZONE - sizeof(ChunkBase)) / sizeof(u32);
197   }
compressed_free_stack_size__asan::AsanChunk198   uptr compressed_free_stack_size() {
199     if (REDZONE < sizeof(ChunkBase)) return 0;
200     return (REDZONE) / sizeof(u32);
201   }
202 
AddrIsInside__asan::AsanChunk203   bool AddrIsInside(uptr addr, uptr access_size, uptr *offset) {
204     if (addr >= Beg() && (addr + access_size) <= (Beg() + used_size)) {
205       *offset = addr - Beg();
206       return true;
207     }
208     return false;
209   }
210 
AddrIsAtLeft__asan::AsanChunk211   bool AddrIsAtLeft(uptr addr, uptr access_size, uptr *offset) {
212     if (addr < Beg()) {
213       *offset = Beg() - addr;
214       return true;
215     }
216     return false;
217   }
218 
AddrIsAtRight__asan::AsanChunk219   bool AddrIsAtRight(uptr addr, uptr access_size, uptr *offset) {
220     if (addr + access_size >= Beg() + used_size) {
221       if (addr <= Beg() + used_size)
222         *offset = 0;
223       else
224         *offset = addr - (Beg() + used_size);
225       return true;
226     }
227     return false;
228   }
229 
DescribeAddress__asan::AsanChunk230   void DescribeAddress(uptr addr, uptr access_size) {
231     uptr offset;
232     Printf("%p is located ", (void*)addr);
233     if (AddrIsInside(addr, access_size, &offset)) {
234       Printf("%zu bytes inside of", offset);
235     } else if (AddrIsAtLeft(addr, access_size, &offset)) {
236       Printf("%zu bytes to the left of", offset);
237     } else if (AddrIsAtRight(addr, access_size, &offset)) {
238       Printf("%zu bytes to the right of", offset);
239     } else {
240       Printf(" somewhere around (this is AddressSanitizer bug!)");
241     }
242     Printf(" %zu-byte region [%p,%p)\n",
243                used_size, (void*)Beg(), (void*)(Beg() + used_size));
244   }
245 };
246 
PtrToChunk(uptr ptr)247 static AsanChunk *PtrToChunk(uptr ptr) {
248   AsanChunk *m = (AsanChunk*)(ptr - REDZONE);
249   if (m->chunk_state == CHUNK_MEMALIGN) {
250     m = (AsanChunk*)((uptr)m - m->used_size);
251   }
252   return m;
253 }
254 
255 
PushList(AsanChunkFifoList * q)256 void AsanChunkFifoList::PushList(AsanChunkFifoList *q) {
257   CHECK(q->size() > 0);
258   if (last_) {
259     CHECK(first_);
260     CHECK(!last_->next);
261     last_->next = q->first_;
262     last_ = q->last_;
263   } else {
264     CHECK(!first_);
265     last_ = q->last_;
266     first_ = q->first_;
267     CHECK(first_);
268   }
269   CHECK(last_);
270   CHECK(!last_->next);
271   size_ += q->size();
272   q->clear();
273 }
274 
Push(AsanChunk * n)275 void AsanChunkFifoList::Push(AsanChunk *n) {
276   CHECK(n->next == 0);
277   if (last_) {
278     CHECK(first_);
279     CHECK(!last_->next);
280     last_->next = n;
281     last_ = n;
282   } else {
283     CHECK(!first_);
284     last_ = first_ = n;
285   }
286   size_ += n->Size();
287 }
288 
289 // Interesting performance observation: this function takes up to 15% of overal
290 // allocator time. That's because *first_ has been evicted from cache long time
291 // ago. Not sure if we can or want to do anything with this.
Pop()292 AsanChunk *AsanChunkFifoList::Pop() {
293   CHECK(first_);
294   AsanChunk *res = first_;
295   first_ = first_->next;
296   if (first_ == 0)
297     last_ = 0;
298   CHECK(size_ >= res->Size());
299   size_ -= res->Size();
300   if (last_) {
301     CHECK(!last_->next);
302   }
303   return res;
304 }
305 
306 // All pages we ever allocated.
307 struct PageGroup {
308   uptr beg;
309   uptr end;
310   uptr size_of_chunk;
311   uptr last_chunk;
InRange__asan::PageGroup312   bool InRange(uptr addr) {
313     return addr >= beg && addr < end;
314   }
315 };
316 
317 class MallocInfo {
318  public:
MallocInfo(LinkerInitialized x)319   explicit MallocInfo(LinkerInitialized x) : mu_(x) { }
320 
AllocateChunks(u8 size_class,uptr n_chunks)321   AsanChunk *AllocateChunks(u8 size_class, uptr n_chunks) {
322     AsanChunk *m = 0;
323     AsanChunk **fl = &free_lists_[size_class];
324     {
325       ScopedLock lock(&mu_);
326       for (uptr i = 0; i < n_chunks; i++) {
327         if (!(*fl)) {
328           *fl = GetNewChunks(size_class);
329         }
330         AsanChunk *t = *fl;
331         *fl = t->next;
332         t->next = m;
333         CHECK(t->chunk_state == CHUNK_AVAILABLE);
334         m = t;
335       }
336     }
337     return m;
338   }
339 
SwallowThreadLocalMallocStorage(AsanThreadLocalMallocStorage * x,bool eat_free_lists)340   void SwallowThreadLocalMallocStorage(AsanThreadLocalMallocStorage *x,
341                                        bool eat_free_lists) {
342     CHECK(flags()->quarantine_size > 0);
343     ScopedLock lock(&mu_);
344     AsanChunkFifoList *q = &x->quarantine_;
345     if (q->size() > 0) {
346       quarantine_.PushList(q);
347       while (quarantine_.size() > (uptr)flags()->quarantine_size) {
348         QuarantinePop();
349       }
350     }
351     if (eat_free_lists) {
352       for (uptr size_class = 0; size_class < kNumberOfSizeClasses;
353            size_class++) {
354         AsanChunk *m = x->free_lists_[size_class];
355         while (m) {
356           AsanChunk *t = m->next;
357           m->next = free_lists_[size_class];
358           free_lists_[size_class] = m;
359           m = t;
360         }
361         x->free_lists_[size_class] = 0;
362       }
363     }
364   }
365 
BypassThreadLocalQuarantine(AsanChunk * chunk)366   void BypassThreadLocalQuarantine(AsanChunk *chunk) {
367     ScopedLock lock(&mu_);
368     quarantine_.Push(chunk);
369   }
370 
FindMallocedOrFreed(uptr addr,uptr access_size)371   AsanChunk *FindMallocedOrFreed(uptr addr, uptr access_size) {
372     ScopedLock lock(&mu_);
373     return FindChunkByAddr(addr);
374   }
375 
AllocationSize(uptr ptr)376   uptr AllocationSize(uptr ptr) {
377     if (!ptr) return 0;
378     ScopedLock lock(&mu_);
379 
380     // Make sure this is our chunk and |ptr| actually points to the beginning
381     // of the allocated memory.
382     AsanChunk *m = FindChunkByAddr(ptr);
383     if (!m || m->Beg() != ptr) return 0;
384 
385     if (m->chunk_state == CHUNK_ALLOCATED) {
386       return m->used_size;
387     } else {
388       return 0;
389     }
390   }
391 
ForceLock()392   void ForceLock() {
393     mu_.Lock();
394   }
395 
ForceUnlock()396   void ForceUnlock() {
397     mu_.Unlock();
398   }
399 
PrintStatus()400   void PrintStatus() {
401     ScopedLock lock(&mu_);
402     uptr malloced = 0;
403 
404     Printf(" MallocInfo: in quarantine: %zu malloced: %zu; ",
405            quarantine_.size() >> 20, malloced >> 20);
406     for (uptr j = 1; j < kNumberOfSizeClasses; j++) {
407       AsanChunk *i = free_lists_[j];
408       if (!i) continue;
409       uptr t = 0;
410       for (; i; i = i->next) {
411         t += i->Size();
412       }
413       Printf("%zu:%zu ", j, t >> 20);
414     }
415     Printf("\n");
416   }
417 
FindPageGroup(uptr addr)418   PageGroup *FindPageGroup(uptr addr) {
419     ScopedLock lock(&mu_);
420     return FindPageGroupUnlocked(addr);
421   }
422 
423  private:
FindPageGroupUnlocked(uptr addr)424   PageGroup *FindPageGroupUnlocked(uptr addr) {
425     int n = atomic_load(&n_page_groups_, memory_order_relaxed);
426     // If the page groups are not sorted yet, sort them.
427     if (n_sorted_page_groups_ < n) {
428       SortArray((uptr*)page_groups_, n);
429       n_sorted_page_groups_ = n;
430     }
431     // Binary search over the page groups.
432     int beg = 0, end = n;
433     while (beg < end) {
434       int med = (beg + end) / 2;
435       uptr g = (uptr)page_groups_[med];
436       if (addr > g) {
437         // 'g' points to the end of the group, so 'addr'
438         // may not belong to page_groups_[med] or any previous group.
439         beg = med + 1;
440       } else {
441         // 'addr' may belong to page_groups_[med] or a previous group.
442         end = med;
443       }
444     }
445     if (beg >= n)
446       return 0;
447     PageGroup *g = page_groups_[beg];
448     CHECK(g);
449     if (g->InRange(addr))
450       return g;
451     return 0;
452   }
453 
454   // We have an address between two chunks, and we want to report just one.
ChooseChunk(uptr addr,AsanChunk * left_chunk,AsanChunk * right_chunk)455   AsanChunk *ChooseChunk(uptr addr,
456                          AsanChunk *left_chunk, AsanChunk *right_chunk) {
457     // Prefer an allocated chunk or a chunk from quarantine.
458     if (left_chunk->chunk_state == CHUNK_AVAILABLE &&
459         right_chunk->chunk_state != CHUNK_AVAILABLE)
460       return right_chunk;
461     if (right_chunk->chunk_state == CHUNK_AVAILABLE &&
462         left_chunk->chunk_state != CHUNK_AVAILABLE)
463       return left_chunk;
464     // Choose based on offset.
465     uptr l_offset = 0, r_offset = 0;
466     CHECK(left_chunk->AddrIsAtRight(addr, 1, &l_offset));
467     CHECK(right_chunk->AddrIsAtLeft(addr, 1, &r_offset));
468     if (l_offset < r_offset)
469       return left_chunk;
470     return right_chunk;
471   }
472 
FindChunkByAddr(uptr addr)473   AsanChunk *FindChunkByAddr(uptr addr) {
474     PageGroup *g = FindPageGroupUnlocked(addr);
475     if (!g) return 0;
476     CHECK(g->size_of_chunk);
477     uptr offset_from_beg = addr - g->beg;
478     uptr this_chunk_addr = g->beg +
479         (offset_from_beg / g->size_of_chunk) * g->size_of_chunk;
480     CHECK(g->InRange(this_chunk_addr));
481     AsanChunk *m = (AsanChunk*)this_chunk_addr;
482     CHECK(m->chunk_state == CHUNK_ALLOCATED ||
483           m->chunk_state == CHUNK_AVAILABLE ||
484           m->chunk_state == CHUNK_QUARANTINE);
485     uptr offset = 0;
486     if (m->AddrIsInside(addr, 1, &offset))
487       return m;
488 
489     if (m->AddrIsAtRight(addr, 1, &offset)) {
490       if (this_chunk_addr == g->last_chunk)  // rightmost chunk
491         return m;
492       uptr right_chunk_addr = this_chunk_addr + g->size_of_chunk;
493       CHECK(g->InRange(right_chunk_addr));
494       return ChooseChunk(addr, m, (AsanChunk*)right_chunk_addr);
495     } else {
496       CHECK(m->AddrIsAtLeft(addr, 1, &offset));
497       if (this_chunk_addr == g->beg)  // leftmost chunk
498         return m;
499       uptr left_chunk_addr = this_chunk_addr - g->size_of_chunk;
500       CHECK(g->InRange(left_chunk_addr));
501       return ChooseChunk(addr, (AsanChunk*)left_chunk_addr, m);
502     }
503   }
504 
QuarantinePop()505   void QuarantinePop() {
506     CHECK(quarantine_.size() > 0);
507     AsanChunk *m = quarantine_.Pop();
508     CHECK(m);
509     // if (F_v >= 2) Printf("MallocInfo::pop %p\n", m);
510 
511     CHECK(m->chunk_state == CHUNK_QUARANTINE);
512     m->chunk_state = CHUNK_AVAILABLE;
513     PoisonShadow((uptr)m, m->Size(), kAsanHeapLeftRedzoneMagic);
514     CHECK(m->alloc_tid >= 0);
515     CHECK(m->free_tid >= 0);
516 
517     uptr size_class = m->SizeClass();
518     m->next = free_lists_[size_class];
519     free_lists_[size_class] = m;
520 
521     // Statistics.
522     AsanStats &thread_stats = asanThreadRegistry().GetCurrentThreadStats();
523     thread_stats.real_frees++;
524     thread_stats.really_freed += m->used_size;
525     thread_stats.really_freed_redzones += m->Size() - m->used_size;
526     thread_stats.really_freed_by_size[m->SizeClass()]++;
527   }
528 
529   // Get a list of newly allocated chunks.
GetNewChunks(u8 size_class)530   AsanChunk *GetNewChunks(u8 size_class) {
531     uptr size = SizeClassToSize(size_class);
532     CHECK(IsPowerOfTwo(kMinMmapSize));
533     CHECK(size < kMinMmapSize || (size % kMinMmapSize) == 0);
534     uptr mmap_size = Max(size, kMinMmapSize);
535     uptr n_chunks = mmap_size / size;
536     CHECK(n_chunks * size == mmap_size);
537     if (size < kPageSize) {
538       // Size is small, just poison the last chunk.
539       n_chunks--;
540     } else {
541       // Size is large, allocate an extra page at right and poison it.
542       mmap_size += kPageSize;
543     }
544     CHECK(n_chunks > 0);
545     u8 *mem = MmapNewPagesAndPoisonShadow(mmap_size);
546 
547     // Statistics.
548     AsanStats &thread_stats = asanThreadRegistry().GetCurrentThreadStats();
549     thread_stats.mmaps++;
550     thread_stats.mmaped += mmap_size;
551     thread_stats.mmaped_by_size[size_class] += n_chunks;
552 
553     AsanChunk *res = 0;
554     for (uptr i = 0; i < n_chunks; i++) {
555       AsanChunk *m = (AsanChunk*)(mem + i * size);
556       m->chunk_state = CHUNK_AVAILABLE;
557       m->size_class = size_class;
558       m->next = res;
559       res = m;
560     }
561     PageGroup *pg = (PageGroup*)(mem + n_chunks * size);
562     // This memory is already poisoned, no need to poison it again.
563     pg->beg = (uptr)mem;
564     pg->end = pg->beg + mmap_size;
565     pg->size_of_chunk = size;
566     pg->last_chunk = (uptr)(mem + size * (n_chunks - 1));
567     int idx = atomic_fetch_add(&n_page_groups_, 1, memory_order_relaxed);
568     CHECK(idx < (int)ARRAY_SIZE(page_groups_));
569     page_groups_[idx] = pg;
570     return res;
571   }
572 
573   AsanChunk *free_lists_[kNumberOfSizeClasses];
574   AsanChunkFifoList quarantine_;
575   AsanLock mu_;
576 
577   PageGroup *page_groups_[kMaxAvailableRam / kMinMmapSize];
578   atomic_uint32_t n_page_groups_;
579   int n_sorted_page_groups_;
580 };
581 
582 static MallocInfo malloc_info(LINKER_INITIALIZED);
583 
CommitBack()584 void AsanThreadLocalMallocStorage::CommitBack() {
585   malloc_info.SwallowThreadLocalMallocStorage(this, true);
586 }
587 
DescribeHeapAddress(uptr addr,uptr access_size)588 void DescribeHeapAddress(uptr addr, uptr access_size) {
589   AsanChunk *m = malloc_info.FindMallocedOrFreed(addr, access_size);
590   if (!m) return;
591   m->DescribeAddress(addr, access_size);
592   CHECK(m->alloc_tid >= 0);
593   AsanThreadSummary *alloc_thread =
594       asanThreadRegistry().FindByTid(m->alloc_tid);
595   StackTrace alloc_stack;
596   StackTrace::UncompressStack(&alloc_stack, m->compressed_alloc_stack(),
597                                   m->compressed_alloc_stack_size());
598   AsanThread *t = asanThreadRegistry().GetCurrent();
599   CHECK(t);
600   if (m->free_tid != kInvalidTid) {
601     AsanThreadSummary *free_thread =
602         asanThreadRegistry().FindByTid(m->free_tid);
603     Printf("freed by thread T%d here:\n", free_thread->tid());
604     StackTrace free_stack;
605     StackTrace::UncompressStack(&free_stack, m->compressed_free_stack(),
606                                     m->compressed_free_stack_size());
607     PrintStack(&free_stack);
608     Printf("previously allocated by thread T%d here:\n",
609                alloc_thread->tid());
610 
611     PrintStack(&alloc_stack);
612     DescribeThread(t->summary());
613     DescribeThread(free_thread);
614     DescribeThread(alloc_thread);
615   } else {
616     Printf("allocated by thread T%d here:\n", alloc_thread->tid());
617     PrintStack(&alloc_stack);
618     DescribeThread(t->summary());
619     DescribeThread(alloc_thread);
620   }
621 }
622 
Allocate(uptr alignment,uptr size,StackTrace * stack)623 static u8 *Allocate(uptr alignment, uptr size, StackTrace *stack) {
624   __asan_init();
625   CHECK(stack);
626   if (size == 0) {
627     size = 1;  // TODO(kcc): do something smarter
628   }
629   CHECK(IsPowerOfTwo(alignment));
630   uptr rounded_size = RoundUpTo(size, REDZONE);
631   uptr needed_size = rounded_size + REDZONE;
632   if (alignment > REDZONE) {
633     needed_size += alignment;
634   }
635   CHECK(IsAligned(needed_size, REDZONE));
636   if (size > kMaxAllowedMallocSize || needed_size > kMaxAllowedMallocSize) {
637     Report("WARNING: AddressSanitizer failed to allocate %p bytes\n",
638            (void*)size);
639     return 0;
640   }
641 
642   u8 size_class = SizeToSizeClass(needed_size);
643   uptr size_to_allocate = SizeClassToSize(size_class);
644   CHECK(size_to_allocate >= kMinAllocSize);
645   CHECK(size_to_allocate >= needed_size);
646   CHECK(IsAligned(size_to_allocate, REDZONE));
647 
648   if (flags()->verbosity >= 3) {
649     Printf("Allocate align: %zu size: %zu class: %u real: %zu\n",
650          alignment, size, size_class, size_to_allocate);
651   }
652 
653   AsanThread *t = asanThreadRegistry().GetCurrent();
654   AsanStats &thread_stats = asanThreadRegistry().GetCurrentThreadStats();
655   // Statistics
656   thread_stats.mallocs++;
657   thread_stats.malloced += size;
658   thread_stats.malloced_redzones += size_to_allocate - size;
659   thread_stats.malloced_by_size[size_class]++;
660 
661   AsanChunk *m = 0;
662   if (!t || size_to_allocate >= kMaxSizeForThreadLocalFreeList) {
663     // get directly from global storage.
664     m = malloc_info.AllocateChunks(size_class, 1);
665     thread_stats.malloc_large++;
666   } else {
667     // get from the thread-local storage.
668     AsanChunk **fl = &t->malloc_storage().free_lists_[size_class];
669     if (!*fl) {
670       uptr n_new_chunks = kMaxSizeForThreadLocalFreeList / size_to_allocate;
671       *fl = malloc_info.AllocateChunks(size_class, n_new_chunks);
672       thread_stats.malloc_small_slow++;
673     }
674     m = *fl;
675     *fl = (*fl)->next;
676   }
677   CHECK(m);
678   CHECK(m->chunk_state == CHUNK_AVAILABLE);
679   m->chunk_state = CHUNK_ALLOCATED;
680   m->next = 0;
681   CHECK(m->Size() == size_to_allocate);
682   uptr addr = (uptr)m + REDZONE;
683   CHECK(addr <= (uptr)m->compressed_free_stack());
684 
685   if (alignment > REDZONE && (addr & (alignment - 1))) {
686     addr = RoundUpTo(addr, alignment);
687     CHECK((addr & (alignment - 1)) == 0);
688     AsanChunk *p = (AsanChunk*)(addr - REDZONE);
689     p->chunk_state = CHUNK_MEMALIGN;
690     p->used_size = (uptr)p - (uptr)m;
691     m->alignment_log = Log2(alignment);
692     CHECK(m->Beg() == addr);
693   } else {
694     m->alignment_log = Log2(REDZONE);
695   }
696   CHECK(m == PtrToChunk(addr));
697   m->used_size = size;
698   CHECK(m->Beg() == addr);
699   m->alloc_tid = t ? t->tid() : 0;
700   m->free_tid   = kInvalidTid;
701   StackTrace::CompressStack(stack, m->compressed_alloc_stack(),
702                                 m->compressed_alloc_stack_size());
703   PoisonShadow(addr, rounded_size, 0);
704   if (size < rounded_size) {
705     PoisonHeapPartialRightRedzone(addr + rounded_size - REDZONE,
706                                   size & (REDZONE - 1));
707   }
708   if (size <= (uptr)(flags()->max_malloc_fill_size)) {
709     REAL(memset)((void*)addr, 0, rounded_size);
710   }
711   return (u8*)addr;
712 }
713 
Deallocate(u8 * ptr,StackTrace * stack)714 static void Deallocate(u8 *ptr, StackTrace *stack) {
715   if (!ptr) return;
716   CHECK(stack);
717 
718   if (flags()->debug) {
719     CHECK(malloc_info.FindPageGroup((uptr)ptr));
720   }
721 
722   // Printf("Deallocate %p\n", ptr);
723   AsanChunk *m = PtrToChunk((uptr)ptr);
724 
725   // Flip the chunk_state atomically to avoid race on double-free.
726   u8 old_chunk_state = atomic_exchange((atomic_uint8_t*)m, CHUNK_QUARANTINE,
727                                        memory_order_acq_rel);
728 
729   if (old_chunk_state == CHUNK_QUARANTINE) {
730     ReportDoubleFree((uptr)ptr, stack);
731   } else if (old_chunk_state != CHUNK_ALLOCATED) {
732     ReportFreeNotMalloced((uptr)ptr, stack);
733   }
734   CHECK(old_chunk_state == CHUNK_ALLOCATED);
735   // With REDZONE==16 m->next is in the user area, otherwise it should be 0.
736   CHECK(REDZONE <= 16 || !m->next);
737   CHECK(m->free_tid == kInvalidTid);
738   CHECK(m->alloc_tid >= 0);
739   AsanThread *t = asanThreadRegistry().GetCurrent();
740   m->free_tid = t ? t->tid() : 0;
741   StackTrace::CompressStack(stack, m->compressed_free_stack(),
742                                 m->compressed_free_stack_size());
743   uptr rounded_size = RoundUpTo(m->used_size, REDZONE);
744   PoisonShadow((uptr)ptr, rounded_size, kAsanHeapFreeMagic);
745 
746   // Statistics.
747   AsanStats &thread_stats = asanThreadRegistry().GetCurrentThreadStats();
748   thread_stats.frees++;
749   thread_stats.freed += m->used_size;
750   thread_stats.freed_by_size[m->SizeClass()]++;
751 
752   CHECK(m->chunk_state == CHUNK_QUARANTINE);
753 
754   if (t) {
755     AsanThreadLocalMallocStorage *ms = &t->malloc_storage();
756     ms->quarantine_.Push(m);
757 
758     if (ms->quarantine_.size() > kMaxThreadLocalQuarantine) {
759       malloc_info.SwallowThreadLocalMallocStorage(ms, false);
760     }
761   } else {
762     malloc_info.BypassThreadLocalQuarantine(m);
763   }
764 }
765 
Reallocate(u8 * old_ptr,uptr new_size,StackTrace * stack)766 static u8 *Reallocate(u8 *old_ptr, uptr new_size,
767                            StackTrace *stack) {
768   CHECK(old_ptr && new_size);
769 
770   // Statistics.
771   AsanStats &thread_stats = asanThreadRegistry().GetCurrentThreadStats();
772   thread_stats.reallocs++;
773   thread_stats.realloced += new_size;
774 
775   AsanChunk *m = PtrToChunk((uptr)old_ptr);
776   CHECK(m->chunk_state == CHUNK_ALLOCATED);
777   uptr old_size = m->used_size;
778   uptr memcpy_size = Min(new_size, old_size);
779   u8 *new_ptr = Allocate(0, new_size, stack);
780   if (new_ptr) {
781     CHECK(REAL(memcpy) != 0);
782     REAL(memcpy)(new_ptr, old_ptr, memcpy_size);
783     Deallocate(old_ptr, stack);
784   }
785   return new_ptr;
786 }
787 
788 }  // namespace __asan
789 
790 // Default (no-op) implementation of malloc hooks.
791 extern "C" {
792 SANITIZER_WEAK_ATTRIBUTE SANITIZER_INTERFACE_ATTRIBUTE
__asan_malloc_hook(void * ptr,uptr size)793 void __asan_malloc_hook(void *ptr, uptr size) {
794   (void)ptr;
795   (void)size;
796 }
797 SANITIZER_WEAK_ATTRIBUTE SANITIZER_INTERFACE_ATTRIBUTE
__asan_free_hook(void * ptr)798 void __asan_free_hook(void *ptr) {
799   (void)ptr;
800 }
801 }  // extern "C"
802 
803 namespace __asan {
804 
805 SANITIZER_INTERFACE_ATTRIBUTE
asan_memalign(uptr alignment,uptr size,StackTrace * stack)806 void *asan_memalign(uptr alignment, uptr size, StackTrace *stack) {
807   void *ptr = (void*)Allocate(alignment, size, stack);
808   __asan_malloc_hook(ptr, size);
809   return ptr;
810 }
811 
812 SANITIZER_INTERFACE_ATTRIBUTE
asan_free(void * ptr,StackTrace * stack)813 void asan_free(void *ptr, StackTrace *stack) {
814   __asan_free_hook(ptr);
815   Deallocate((u8*)ptr, stack);
816 }
817 
818 SANITIZER_INTERFACE_ATTRIBUTE
asan_malloc(uptr size,StackTrace * stack)819 void *asan_malloc(uptr size, StackTrace *stack) {
820   void *ptr = (void*)Allocate(0, size, stack);
821   __asan_malloc_hook(ptr, size);
822   return ptr;
823 }
824 
asan_calloc(uptr nmemb,uptr size,StackTrace * stack)825 void *asan_calloc(uptr nmemb, uptr size, StackTrace *stack) {
826   void *ptr = (void*)Allocate(0, nmemb * size, stack);
827   if (ptr)
828     REAL(memset)(ptr, 0, nmemb * size);
829   __asan_malloc_hook(ptr, nmemb * size);
830   return ptr;
831 }
832 
asan_realloc(void * p,uptr size,StackTrace * stack)833 void *asan_realloc(void *p, uptr size, StackTrace *stack) {
834   if (p == 0) {
835     void *ptr = (void*)Allocate(0, size, stack);
836     __asan_malloc_hook(ptr, size);
837     return ptr;
838   } else if (size == 0) {
839     __asan_free_hook(p);
840     Deallocate((u8*)p, stack);
841     return 0;
842   }
843   return Reallocate((u8*)p, size, stack);
844 }
845 
asan_valloc(uptr size,StackTrace * stack)846 void *asan_valloc(uptr size, StackTrace *stack) {
847   void *ptr = (void*)Allocate(kPageSize, size, stack);
848   __asan_malloc_hook(ptr, size);
849   return ptr;
850 }
851 
asan_pvalloc(uptr size,StackTrace * stack)852 void *asan_pvalloc(uptr size, StackTrace *stack) {
853   size = RoundUpTo(size, kPageSize);
854   if (size == 0) {
855     // pvalloc(0) should allocate one page.
856     size = kPageSize;
857   }
858   void *ptr = (void*)Allocate(kPageSize, size, stack);
859   __asan_malloc_hook(ptr, size);
860   return ptr;
861 }
862 
asan_posix_memalign(void ** memptr,uptr alignment,uptr size,StackTrace * stack)863 int asan_posix_memalign(void **memptr, uptr alignment, uptr size,
864                           StackTrace *stack) {
865   void *ptr = Allocate(alignment, size, stack);
866   CHECK(IsAligned((uptr)ptr, alignment));
867   __asan_malloc_hook(ptr, size);
868   *memptr = ptr;
869   return 0;
870 }
871 
asan_malloc_usable_size(void * ptr,StackTrace * stack)872 uptr asan_malloc_usable_size(void *ptr, StackTrace *stack) {
873   CHECK(stack);
874   if (ptr == 0) return 0;
875   uptr usable_size = malloc_info.AllocationSize((uptr)ptr);
876   if (flags()->check_malloc_usable_size && (usable_size == 0)) {
877     ReportMallocUsableSizeNotOwned((uptr)ptr, stack);
878   }
879   return usable_size;
880 }
881 
asan_mz_size(const void * ptr)882 uptr asan_mz_size(const void *ptr) {
883   return malloc_info.AllocationSize((uptr)ptr);
884 }
885 
asan_mz_force_lock()886 void asan_mz_force_lock() {
887   malloc_info.ForceLock();
888 }
889 
asan_mz_force_unlock()890 void asan_mz_force_unlock() {
891   malloc_info.ForceUnlock();
892 }
893 
894 // ---------------------- Fake stack-------------------- {{{1
FakeStack()895 FakeStack::FakeStack() {
896   CHECK(REAL(memset) != 0);
897   REAL(memset)(this, 0, sizeof(*this));
898 }
899 
AddrIsInSizeClass(uptr addr,uptr size_class)900 bool FakeStack::AddrIsInSizeClass(uptr addr, uptr size_class) {
901   uptr mem = allocated_size_classes_[size_class];
902   uptr size = ClassMmapSize(size_class);
903   bool res = mem && addr >= mem && addr < mem + size;
904   return res;
905 }
906 
AddrIsInFakeStack(uptr addr)907 uptr FakeStack::AddrIsInFakeStack(uptr addr) {
908   for (uptr i = 0; i < kNumberOfSizeClasses; i++) {
909     if (AddrIsInSizeClass(addr, i)) return allocated_size_classes_[i];
910   }
911   return 0;
912 }
913 
914 // We may want to compute this during compilation.
ComputeSizeClass(uptr alloc_size)915 inline uptr FakeStack::ComputeSizeClass(uptr alloc_size) {
916   uptr rounded_size = RoundUpToPowerOfTwo(alloc_size);
917   uptr log = Log2(rounded_size);
918   CHECK(alloc_size <= (1UL << log));
919   if (!(alloc_size > (1UL << (log-1)))) {
920     Printf("alloc_size %zu log %zu\n", alloc_size, log);
921   }
922   CHECK(alloc_size > (1UL << (log-1)));
923   uptr res = log < kMinStackFrameSizeLog ? 0 : log - kMinStackFrameSizeLog;
924   CHECK(res < kNumberOfSizeClasses);
925   CHECK(ClassSize(res) >= rounded_size);
926   return res;
927 }
928 
FifoPush(FakeFrame * node)929 void FakeFrameFifo::FifoPush(FakeFrame *node) {
930   CHECK(node);
931   node->next = 0;
932   if (first_ == 0 && last_ == 0) {
933     first_ = last_ = node;
934   } else {
935     CHECK(first_);
936     CHECK(last_);
937     last_->next = node;
938     last_ = node;
939   }
940 }
941 
FifoPop()942 FakeFrame *FakeFrameFifo::FifoPop() {
943   CHECK(first_ && last_ && "Exhausted fake stack");
944   FakeFrame *res = 0;
945   if (first_ == last_) {
946     res = first_;
947     first_ = last_ = 0;
948   } else {
949     res = first_;
950     first_ = first_->next;
951   }
952   return res;
953 }
954 
Init(uptr stack_size)955 void FakeStack::Init(uptr stack_size) {
956   stack_size_ = stack_size;
957   alive_ = true;
958 }
959 
Cleanup()960 void FakeStack::Cleanup() {
961   alive_ = false;
962   for (uptr i = 0; i < kNumberOfSizeClasses; i++) {
963     uptr mem = allocated_size_classes_[i];
964     if (mem) {
965       PoisonShadow(mem, ClassMmapSize(i), 0);
966       allocated_size_classes_[i] = 0;
967       UnmapOrDie((void*)mem, ClassMmapSize(i));
968     }
969   }
970 }
971 
ClassMmapSize(uptr size_class)972 uptr FakeStack::ClassMmapSize(uptr size_class) {
973   return RoundUpToPowerOfTwo(stack_size_);
974 }
975 
AllocateOneSizeClass(uptr size_class)976 void FakeStack::AllocateOneSizeClass(uptr size_class) {
977   CHECK(ClassMmapSize(size_class) >= kPageSize);
978   uptr new_mem = (uptr)MmapOrDie(
979       ClassMmapSize(size_class), __FUNCTION__);
980   // Printf("T%d new_mem[%zu]: %p-%p mmap %zu\n",
981   //       asanThreadRegistry().GetCurrent()->tid(),
982   //       size_class, new_mem, new_mem + ClassMmapSize(size_class),
983   //       ClassMmapSize(size_class));
984   uptr i;
985   for (i = 0; i < ClassMmapSize(size_class);
986        i += ClassSize(size_class)) {
987     size_classes_[size_class].FifoPush((FakeFrame*)(new_mem + i));
988   }
989   CHECK(i == ClassMmapSize(size_class));
990   allocated_size_classes_[size_class] = new_mem;
991 }
992 
AllocateStack(uptr size,uptr real_stack)993 uptr FakeStack::AllocateStack(uptr size, uptr real_stack) {
994   if (!alive_) return real_stack;
995   CHECK(size <= kMaxStackMallocSize && size > 1);
996   uptr size_class = ComputeSizeClass(size);
997   if (!allocated_size_classes_[size_class]) {
998     AllocateOneSizeClass(size_class);
999   }
1000   FakeFrame *fake_frame = size_classes_[size_class].FifoPop();
1001   CHECK(fake_frame);
1002   fake_frame->size_minus_one = size - 1;
1003   fake_frame->real_stack = real_stack;
1004   while (FakeFrame *top = call_stack_.top()) {
1005     if (top->real_stack > real_stack) break;
1006     call_stack_.LifoPop();
1007     DeallocateFrame(top);
1008   }
1009   call_stack_.LifoPush(fake_frame);
1010   uptr ptr = (uptr)fake_frame;
1011   PoisonShadow(ptr, size, 0);
1012   return ptr;
1013 }
1014 
DeallocateFrame(FakeFrame * fake_frame)1015 void FakeStack::DeallocateFrame(FakeFrame *fake_frame) {
1016   CHECK(alive_);
1017   uptr size = fake_frame->size_minus_one + 1;
1018   uptr size_class = ComputeSizeClass(size);
1019   CHECK(allocated_size_classes_[size_class]);
1020   uptr ptr = (uptr)fake_frame;
1021   CHECK(AddrIsInSizeClass(ptr, size_class));
1022   CHECK(AddrIsInSizeClass(ptr + size - 1, size_class));
1023   size_classes_[size_class].FifoPush(fake_frame);
1024 }
1025 
OnFree(uptr ptr,uptr size,uptr real_stack)1026 void FakeStack::OnFree(uptr ptr, uptr size, uptr real_stack) {
1027   FakeFrame *fake_frame = (FakeFrame*)ptr;
1028   CHECK(fake_frame->magic = kRetiredStackFrameMagic);
1029   CHECK(fake_frame->descr != 0);
1030   CHECK(fake_frame->size_minus_one == size - 1);
1031   PoisonShadow(ptr, size, kAsanStackAfterReturnMagic);
1032 }
1033 
1034 }  // namespace __asan
1035 
1036 // ---------------------- Interface ---------------- {{{1
1037 using namespace __asan;  // NOLINT
1038 
__asan_stack_malloc(uptr size,uptr real_stack)1039 uptr __asan_stack_malloc(uptr size, uptr real_stack) {
1040   if (!flags()->use_fake_stack) return real_stack;
1041   AsanThread *t = asanThreadRegistry().GetCurrent();
1042   if (!t) {
1043     // TSD is gone, use the real stack.
1044     return real_stack;
1045   }
1046   uptr ptr = t->fake_stack().AllocateStack(size, real_stack);
1047   // Printf("__asan_stack_malloc %p %zu %p\n", ptr, size, real_stack);
1048   return ptr;
1049 }
1050 
__asan_stack_free(uptr ptr,uptr size,uptr real_stack)1051 void __asan_stack_free(uptr ptr, uptr size, uptr real_stack) {
1052   if (!flags()->use_fake_stack) return;
1053   if (ptr != real_stack) {
1054     FakeStack::OnFree(ptr, size, real_stack);
1055   }
1056 }
1057 
1058 // ASan allocator doesn't reserve extra bytes, so normally we would
1059 // just return "size".
__asan_get_estimated_allocated_size(uptr size)1060 uptr __asan_get_estimated_allocated_size(uptr size) {
1061   if (size == 0) return 1;
1062   return Min(size, kMaxAllowedMallocSize);
1063 }
1064 
__asan_get_ownership(const void * p)1065 bool __asan_get_ownership(const void *p) {
1066   return malloc_info.AllocationSize((uptr)p) > 0;
1067 }
1068 
__asan_get_allocated_size(const void * p)1069 uptr __asan_get_allocated_size(const void *p) {
1070   if (p == 0) return 0;
1071   uptr allocated_size = malloc_info.AllocationSize((uptr)p);
1072   // Die if p is not malloced or if it is already freed.
1073   if (allocated_size == 0) {
1074     GET_STACK_TRACE_HERE(kStackTraceMax);
1075     ReportAsanGetAllocatedSizeNotOwned((uptr)p, &stack);
1076   }
1077   return allocated_size;
1078 }
1079