1 /* crypto/bn/bn_mul.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young's, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word 'cryptographic' can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */
58
59 #ifndef BN_DEBUG
60 # undef NDEBUG /* avoid conflicting definitions */
61 # define NDEBUG
62 #endif
63
64 #include <stdio.h>
65 #include <assert.h>
66 #include "cryptlib.h"
67 #include "bn_lcl.h"
68
69 #if defined(OPENSSL_NO_ASM) || !defined(OPENSSL_BN_ASM_PART_WORDS)
70 /* Here follows specialised variants of bn_add_words() and
71 bn_sub_words(). They have the property performing operations on
72 arrays of different sizes. The sizes of those arrays is expressed through
73 cl, which is the common length ( basicall, min(len(a),len(b)) ), and dl,
74 which is the delta between the two lengths, calculated as len(a)-len(b).
75 All lengths are the number of BN_ULONGs... For the operations that require
76 a result array as parameter, it must have the length cl+abs(dl).
77 These functions should probably end up in bn_asm.c as soon as there are
78 assembler counterparts for the systems that use assembler files. */
79
bn_sub_part_words(BN_ULONG * r,const BN_ULONG * a,const BN_ULONG * b,int cl,int dl)80 BN_ULONG bn_sub_part_words(BN_ULONG *r,
81 const BN_ULONG *a, const BN_ULONG *b,
82 int cl, int dl)
83 {
84 BN_ULONG c, t;
85
86 assert(cl >= 0);
87 c = bn_sub_words(r, a, b, cl);
88
89 if (dl == 0)
90 return c;
91
92 r += cl;
93 a += cl;
94 b += cl;
95
96 if (dl < 0)
97 {
98 #ifdef BN_COUNT
99 fprintf(stderr, " bn_sub_part_words %d + %d (dl < 0, c = %d)\n", cl, dl, c);
100 #endif
101 for (;;)
102 {
103 t = b[0];
104 r[0] = (0-t-c)&BN_MASK2;
105 if (t != 0) c=1;
106 if (++dl >= 0) break;
107
108 t = b[1];
109 r[1] = (0-t-c)&BN_MASK2;
110 if (t != 0) c=1;
111 if (++dl >= 0) break;
112
113 t = b[2];
114 r[2] = (0-t-c)&BN_MASK2;
115 if (t != 0) c=1;
116 if (++dl >= 0) break;
117
118 t = b[3];
119 r[3] = (0-t-c)&BN_MASK2;
120 if (t != 0) c=1;
121 if (++dl >= 0) break;
122
123 b += 4;
124 r += 4;
125 }
126 }
127 else
128 {
129 int save_dl = dl;
130 #ifdef BN_COUNT
131 fprintf(stderr, " bn_sub_part_words %d + %d (dl > 0, c = %d)\n", cl, dl, c);
132 #endif
133 while(c)
134 {
135 t = a[0];
136 r[0] = (t-c)&BN_MASK2;
137 if (t != 0) c=0;
138 if (--dl <= 0) break;
139
140 t = a[1];
141 r[1] = (t-c)&BN_MASK2;
142 if (t != 0) c=0;
143 if (--dl <= 0) break;
144
145 t = a[2];
146 r[2] = (t-c)&BN_MASK2;
147 if (t != 0) c=0;
148 if (--dl <= 0) break;
149
150 t = a[3];
151 r[3] = (t-c)&BN_MASK2;
152 if (t != 0) c=0;
153 if (--dl <= 0) break;
154
155 save_dl = dl;
156 a += 4;
157 r += 4;
158 }
159 if (dl > 0)
160 {
161 #ifdef BN_COUNT
162 fprintf(stderr, " bn_sub_part_words %d + %d (dl > 0, c == 0)\n", cl, dl);
163 #endif
164 if (save_dl > dl)
165 {
166 switch (save_dl - dl)
167 {
168 case 1:
169 r[1] = a[1];
170 if (--dl <= 0) break;
171 case 2:
172 r[2] = a[2];
173 if (--dl <= 0) break;
174 case 3:
175 r[3] = a[3];
176 if (--dl <= 0) break;
177 }
178 a += 4;
179 r += 4;
180 }
181 }
182 if (dl > 0)
183 {
184 #ifdef BN_COUNT
185 fprintf(stderr, " bn_sub_part_words %d + %d (dl > 0, copy)\n", cl, dl);
186 #endif
187 for(;;)
188 {
189 r[0] = a[0];
190 if (--dl <= 0) break;
191 r[1] = a[1];
192 if (--dl <= 0) break;
193 r[2] = a[2];
194 if (--dl <= 0) break;
195 r[3] = a[3];
196 if (--dl <= 0) break;
197
198 a += 4;
199 r += 4;
200 }
201 }
202 }
203 return c;
204 }
205 #endif
206
bn_add_part_words(BN_ULONG * r,const BN_ULONG * a,const BN_ULONG * b,int cl,int dl)207 BN_ULONG bn_add_part_words(BN_ULONG *r,
208 const BN_ULONG *a, const BN_ULONG *b,
209 int cl, int dl)
210 {
211 BN_ULONG c, l, t;
212
213 assert(cl >= 0);
214 c = bn_add_words(r, a, b, cl);
215
216 if (dl == 0)
217 return c;
218
219 r += cl;
220 a += cl;
221 b += cl;
222
223 if (dl < 0)
224 {
225 int save_dl = dl;
226 #ifdef BN_COUNT
227 fprintf(stderr, " bn_add_part_words %d + %d (dl < 0, c = %d)\n", cl, dl, c);
228 #endif
229 while (c)
230 {
231 l=(c+b[0])&BN_MASK2;
232 c=(l < c);
233 r[0]=l;
234 if (++dl >= 0) break;
235
236 l=(c+b[1])&BN_MASK2;
237 c=(l < c);
238 r[1]=l;
239 if (++dl >= 0) break;
240
241 l=(c+b[2])&BN_MASK2;
242 c=(l < c);
243 r[2]=l;
244 if (++dl >= 0) break;
245
246 l=(c+b[3])&BN_MASK2;
247 c=(l < c);
248 r[3]=l;
249 if (++dl >= 0) break;
250
251 save_dl = dl;
252 b+=4;
253 r+=4;
254 }
255 if (dl < 0)
256 {
257 #ifdef BN_COUNT
258 fprintf(stderr, " bn_add_part_words %d + %d (dl < 0, c == 0)\n", cl, dl);
259 #endif
260 if (save_dl < dl)
261 {
262 switch (dl - save_dl)
263 {
264 case 1:
265 r[1] = b[1];
266 if (++dl >= 0) break;
267 case 2:
268 r[2] = b[2];
269 if (++dl >= 0) break;
270 case 3:
271 r[3] = b[3];
272 if (++dl >= 0) break;
273 }
274 b += 4;
275 r += 4;
276 }
277 }
278 if (dl < 0)
279 {
280 #ifdef BN_COUNT
281 fprintf(stderr, " bn_add_part_words %d + %d (dl < 0, copy)\n", cl, dl);
282 #endif
283 for(;;)
284 {
285 r[0] = b[0];
286 if (++dl >= 0) break;
287 r[1] = b[1];
288 if (++dl >= 0) break;
289 r[2] = b[2];
290 if (++dl >= 0) break;
291 r[3] = b[3];
292 if (++dl >= 0) break;
293
294 b += 4;
295 r += 4;
296 }
297 }
298 }
299 else
300 {
301 int save_dl = dl;
302 #ifdef BN_COUNT
303 fprintf(stderr, " bn_add_part_words %d + %d (dl > 0)\n", cl, dl);
304 #endif
305 while (c)
306 {
307 t=(a[0]+c)&BN_MASK2;
308 c=(t < c);
309 r[0]=t;
310 if (--dl <= 0) break;
311
312 t=(a[1]+c)&BN_MASK2;
313 c=(t < c);
314 r[1]=t;
315 if (--dl <= 0) break;
316
317 t=(a[2]+c)&BN_MASK2;
318 c=(t < c);
319 r[2]=t;
320 if (--dl <= 0) break;
321
322 t=(a[3]+c)&BN_MASK2;
323 c=(t < c);
324 r[3]=t;
325 if (--dl <= 0) break;
326
327 save_dl = dl;
328 a+=4;
329 r+=4;
330 }
331 #ifdef BN_COUNT
332 fprintf(stderr, " bn_add_part_words %d + %d (dl > 0, c == 0)\n", cl, dl);
333 #endif
334 if (dl > 0)
335 {
336 if (save_dl > dl)
337 {
338 switch (save_dl - dl)
339 {
340 case 1:
341 r[1] = a[1];
342 if (--dl <= 0) break;
343 case 2:
344 r[2] = a[2];
345 if (--dl <= 0) break;
346 case 3:
347 r[3] = a[3];
348 if (--dl <= 0) break;
349 }
350 a += 4;
351 r += 4;
352 }
353 }
354 if (dl > 0)
355 {
356 #ifdef BN_COUNT
357 fprintf(stderr, " bn_add_part_words %d + %d (dl > 0, copy)\n", cl, dl);
358 #endif
359 for(;;)
360 {
361 r[0] = a[0];
362 if (--dl <= 0) break;
363 r[1] = a[1];
364 if (--dl <= 0) break;
365 r[2] = a[2];
366 if (--dl <= 0) break;
367 r[3] = a[3];
368 if (--dl <= 0) break;
369
370 a += 4;
371 r += 4;
372 }
373 }
374 }
375 return c;
376 }
377
378 #ifdef BN_RECURSION
379 /* Karatsuba recursive multiplication algorithm
380 * (cf. Knuth, The Art of Computer Programming, Vol. 2) */
381
382 /* r is 2*n2 words in size,
383 * a and b are both n2 words in size.
384 * n2 must be a power of 2.
385 * We multiply and return the result.
386 * t must be 2*n2 words in size
387 * We calculate
388 * a[0]*b[0]
389 * a[0]*b[0]+a[1]*b[1]+(a[0]-a[1])*(b[1]-b[0])
390 * a[1]*b[1]
391 */
392 /* dnX may not be positive, but n2/2+dnX has to be */
bn_mul_recursive(BN_ULONG * r,BN_ULONG * a,BN_ULONG * b,int n2,int dna,int dnb,BN_ULONG * t)393 void bn_mul_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n2,
394 int dna, int dnb, BN_ULONG *t)
395 {
396 int n=n2/2,c1,c2;
397 int tna=n+dna, tnb=n+dnb;
398 unsigned int neg,zero;
399 BN_ULONG ln,lo,*p;
400
401 # ifdef BN_COUNT
402 fprintf(stderr," bn_mul_recursive %d%+d * %d%+d\n",n2,dna,n2,dnb);
403 # endif
404 # ifdef BN_MUL_COMBA
405 # if 0
406 if (n2 == 4)
407 {
408 bn_mul_comba4(r,a,b);
409 return;
410 }
411 # endif
412 /* Only call bn_mul_comba 8 if n2 == 8 and the
413 * two arrays are complete [steve]
414 */
415 if (n2 == 8 && dna == 0 && dnb == 0)
416 {
417 bn_mul_comba8(r,a,b);
418 return;
419 }
420 # endif /* BN_MUL_COMBA */
421 /* Else do normal multiply */
422 if (n2 < BN_MUL_RECURSIVE_SIZE_NORMAL)
423 {
424 bn_mul_normal(r,a,n2+dna,b,n2+dnb);
425 if ((dna + dnb) < 0)
426 memset(&r[2*n2 + dna + dnb], 0,
427 sizeof(BN_ULONG) * -(dna + dnb));
428 return;
429 }
430 /* r=(a[0]-a[1])*(b[1]-b[0]) */
431 c1=bn_cmp_part_words(a,&(a[n]),tna,n-tna);
432 c2=bn_cmp_part_words(&(b[n]),b,tnb,tnb-n);
433 zero=neg=0;
434 switch (c1*3+c2)
435 {
436 case -4:
437 bn_sub_part_words(t, &(a[n]),a, tna,tna-n); /* - */
438 bn_sub_part_words(&(t[n]),b, &(b[n]),tnb,n-tnb); /* - */
439 break;
440 case -3:
441 zero=1;
442 break;
443 case -2:
444 bn_sub_part_words(t, &(a[n]),a, tna,tna-n); /* - */
445 bn_sub_part_words(&(t[n]),&(b[n]),b, tnb,tnb-n); /* + */
446 neg=1;
447 break;
448 case -1:
449 case 0:
450 case 1:
451 zero=1;
452 break;
453 case 2:
454 bn_sub_part_words(t, a, &(a[n]),tna,n-tna); /* + */
455 bn_sub_part_words(&(t[n]),b, &(b[n]),tnb,n-tnb); /* - */
456 neg=1;
457 break;
458 case 3:
459 zero=1;
460 break;
461 case 4:
462 bn_sub_part_words(t, a, &(a[n]),tna,n-tna);
463 bn_sub_part_words(&(t[n]),&(b[n]),b, tnb,tnb-n);
464 break;
465 }
466
467 # ifdef BN_MUL_COMBA
468 if (n == 4 && dna == 0 && dnb == 0) /* XXX: bn_mul_comba4 could take
469 extra args to do this well */
470 {
471 if (!zero)
472 bn_mul_comba4(&(t[n2]),t,&(t[n]));
473 else
474 memset(&(t[n2]),0,8*sizeof(BN_ULONG));
475
476 bn_mul_comba4(r,a,b);
477 bn_mul_comba4(&(r[n2]),&(a[n]),&(b[n]));
478 }
479 else if (n == 8 && dna == 0 && dnb == 0) /* XXX: bn_mul_comba8 could
480 take extra args to do this
481 well */
482 {
483 if (!zero)
484 bn_mul_comba8(&(t[n2]),t,&(t[n]));
485 else
486 memset(&(t[n2]),0,16*sizeof(BN_ULONG));
487
488 bn_mul_comba8(r,a,b);
489 bn_mul_comba8(&(r[n2]),&(a[n]),&(b[n]));
490 }
491 else
492 # endif /* BN_MUL_COMBA */
493 {
494 p= &(t[n2*2]);
495 if (!zero)
496 bn_mul_recursive(&(t[n2]),t,&(t[n]),n,0,0,p);
497 else
498 memset(&(t[n2]),0,n2*sizeof(BN_ULONG));
499 bn_mul_recursive(r,a,b,n,0,0,p);
500 bn_mul_recursive(&(r[n2]),&(a[n]),&(b[n]),n,dna,dnb,p);
501 }
502
503 /* t[32] holds (a[0]-a[1])*(b[1]-b[0]), c1 is the sign
504 * r[10] holds (a[0]*b[0])
505 * r[32] holds (b[1]*b[1])
506 */
507
508 c1=(int)(bn_add_words(t,r,&(r[n2]),n2));
509
510 if (neg) /* if t[32] is negative */
511 {
512 c1-=(int)(bn_sub_words(&(t[n2]),t,&(t[n2]),n2));
513 }
514 else
515 {
516 /* Might have a carry */
517 c1+=(int)(bn_add_words(&(t[n2]),&(t[n2]),t,n2));
518 }
519
520 /* t[32] holds (a[0]-a[1])*(b[1]-b[0])+(a[0]*b[0])+(a[1]*b[1])
521 * r[10] holds (a[0]*b[0])
522 * r[32] holds (b[1]*b[1])
523 * c1 holds the carry bits
524 */
525 c1+=(int)(bn_add_words(&(r[n]),&(r[n]),&(t[n2]),n2));
526 if (c1)
527 {
528 p= &(r[n+n2]);
529 lo= *p;
530 ln=(lo+c1)&BN_MASK2;
531 *p=ln;
532
533 /* The overflow will stop before we over write
534 * words we should not overwrite */
535 if (ln < (BN_ULONG)c1)
536 {
537 do {
538 p++;
539 lo= *p;
540 ln=(lo+1)&BN_MASK2;
541 *p=ln;
542 } while (ln == 0);
543 }
544 }
545 }
546
547 /* n+tn is the word length
548 * t needs to be n*4 is size, as does r */
549 /* tnX may not be negative but less than n */
bn_mul_part_recursive(BN_ULONG * r,BN_ULONG * a,BN_ULONG * b,int n,int tna,int tnb,BN_ULONG * t)550 void bn_mul_part_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n,
551 int tna, int tnb, BN_ULONG *t)
552 {
553 int i,j,n2=n*2;
554 int c1,c2,neg;
555 BN_ULONG ln,lo,*p;
556
557 # ifdef BN_COUNT
558 fprintf(stderr," bn_mul_part_recursive (%d%+d) * (%d%+d)\n",
559 n, tna, n, tnb);
560 # endif
561 if (n < 8)
562 {
563 bn_mul_normal(r,a,n+tna,b,n+tnb);
564 return;
565 }
566
567 /* r=(a[0]-a[1])*(b[1]-b[0]) */
568 c1=bn_cmp_part_words(a,&(a[n]),tna,n-tna);
569 c2=bn_cmp_part_words(&(b[n]),b,tnb,tnb-n);
570 neg=0;
571 switch (c1*3+c2)
572 {
573 case -4:
574 bn_sub_part_words(t, &(a[n]),a, tna,tna-n); /* - */
575 bn_sub_part_words(&(t[n]),b, &(b[n]),tnb,n-tnb); /* - */
576 break;
577 case -3:
578 /* break; */
579 case -2:
580 bn_sub_part_words(t, &(a[n]),a, tna,tna-n); /* - */
581 bn_sub_part_words(&(t[n]),&(b[n]),b, tnb,tnb-n); /* + */
582 neg=1;
583 break;
584 case -1:
585 case 0:
586 case 1:
587 /* break; */
588 case 2:
589 bn_sub_part_words(t, a, &(a[n]),tna,n-tna); /* + */
590 bn_sub_part_words(&(t[n]),b, &(b[n]),tnb,n-tnb); /* - */
591 neg=1;
592 break;
593 case 3:
594 /* break; */
595 case 4:
596 bn_sub_part_words(t, a, &(a[n]),tna,n-tna);
597 bn_sub_part_words(&(t[n]),&(b[n]),b, tnb,tnb-n);
598 break;
599 }
600 /* The zero case isn't yet implemented here. The speedup
601 would probably be negligible. */
602 # if 0
603 if (n == 4)
604 {
605 bn_mul_comba4(&(t[n2]),t,&(t[n]));
606 bn_mul_comba4(r,a,b);
607 bn_mul_normal(&(r[n2]),&(a[n]),tn,&(b[n]),tn);
608 memset(&(r[n2+tn*2]),0,sizeof(BN_ULONG)*(n2-tn*2));
609 }
610 else
611 # endif
612 if (n == 8)
613 {
614 bn_mul_comba8(&(t[n2]),t,&(t[n]));
615 bn_mul_comba8(r,a,b);
616 bn_mul_normal(&(r[n2]),&(a[n]),tna,&(b[n]),tnb);
617 memset(&(r[n2+tna+tnb]),0,sizeof(BN_ULONG)*(n2-tna-tnb));
618 }
619 else
620 {
621 p= &(t[n2*2]);
622 bn_mul_recursive(&(t[n2]),t,&(t[n]),n,0,0,p);
623 bn_mul_recursive(r,a,b,n,0,0,p);
624 i=n/2;
625 /* If there is only a bottom half to the number,
626 * just do it */
627 if (tna > tnb)
628 j = tna - i;
629 else
630 j = tnb - i;
631 if (j == 0)
632 {
633 bn_mul_recursive(&(r[n2]),&(a[n]),&(b[n]),
634 i,tna-i,tnb-i,p);
635 memset(&(r[n2+i*2]),0,sizeof(BN_ULONG)*(n2-i*2));
636 }
637 else if (j > 0) /* eg, n == 16, i == 8 and tn == 11 */
638 {
639 bn_mul_part_recursive(&(r[n2]),&(a[n]),&(b[n]),
640 i,tna-i,tnb-i,p);
641 memset(&(r[n2+tna+tnb]),0,
642 sizeof(BN_ULONG)*(n2-tna-tnb));
643 }
644 else /* (j < 0) eg, n == 16, i == 8 and tn == 5 */
645 {
646 memset(&(r[n2]),0,sizeof(BN_ULONG)*n2);
647 if (tna < BN_MUL_RECURSIVE_SIZE_NORMAL
648 && tnb < BN_MUL_RECURSIVE_SIZE_NORMAL)
649 {
650 bn_mul_normal(&(r[n2]),&(a[n]),tna,&(b[n]),tnb);
651 }
652 else
653 {
654 for (;;)
655 {
656 i/=2;
657 /* these simplified conditions work
658 * exclusively because difference
659 * between tna and tnb is 1 or 0 */
660 if (i < tna || i < tnb)
661 {
662 bn_mul_part_recursive(&(r[n2]),
663 &(a[n]),&(b[n]),
664 i,tna-i,tnb-i,p);
665 break;
666 }
667 else if (i == tna || i == tnb)
668 {
669 bn_mul_recursive(&(r[n2]),
670 &(a[n]),&(b[n]),
671 i,tna-i,tnb-i,p);
672 break;
673 }
674 }
675 }
676 }
677 }
678
679 /* t[32] holds (a[0]-a[1])*(b[1]-b[0]), c1 is the sign
680 * r[10] holds (a[0]*b[0])
681 * r[32] holds (b[1]*b[1])
682 */
683
684 c1=(int)(bn_add_words(t,r,&(r[n2]),n2));
685
686 if (neg) /* if t[32] is negative */
687 {
688 c1-=(int)(bn_sub_words(&(t[n2]),t,&(t[n2]),n2));
689 }
690 else
691 {
692 /* Might have a carry */
693 c1+=(int)(bn_add_words(&(t[n2]),&(t[n2]),t,n2));
694 }
695
696 /* t[32] holds (a[0]-a[1])*(b[1]-b[0])+(a[0]*b[0])+(a[1]*b[1])
697 * r[10] holds (a[0]*b[0])
698 * r[32] holds (b[1]*b[1])
699 * c1 holds the carry bits
700 */
701 c1+=(int)(bn_add_words(&(r[n]),&(r[n]),&(t[n2]),n2));
702 if (c1)
703 {
704 p= &(r[n+n2]);
705 lo= *p;
706 ln=(lo+c1)&BN_MASK2;
707 *p=ln;
708
709 /* The overflow will stop before we over write
710 * words we should not overwrite */
711 if (ln < (BN_ULONG)c1)
712 {
713 do {
714 p++;
715 lo= *p;
716 ln=(lo+1)&BN_MASK2;
717 *p=ln;
718 } while (ln == 0);
719 }
720 }
721 }
722
723 /* a and b must be the same size, which is n2.
724 * r needs to be n2 words and t needs to be n2*2
725 */
bn_mul_low_recursive(BN_ULONG * r,BN_ULONG * a,BN_ULONG * b,int n2,BN_ULONG * t)726 void bn_mul_low_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n2,
727 BN_ULONG *t)
728 {
729 int n=n2/2;
730
731 # ifdef BN_COUNT
732 fprintf(stderr," bn_mul_low_recursive %d * %d\n",n2,n2);
733 # endif
734
735 bn_mul_recursive(r,a,b,n,0,0,&(t[0]));
736 if (n >= BN_MUL_LOW_RECURSIVE_SIZE_NORMAL)
737 {
738 bn_mul_low_recursive(&(t[0]),&(a[0]),&(b[n]),n,&(t[n2]));
739 bn_add_words(&(r[n]),&(r[n]),&(t[0]),n);
740 bn_mul_low_recursive(&(t[0]),&(a[n]),&(b[0]),n,&(t[n2]));
741 bn_add_words(&(r[n]),&(r[n]),&(t[0]),n);
742 }
743 else
744 {
745 bn_mul_low_normal(&(t[0]),&(a[0]),&(b[n]),n);
746 bn_mul_low_normal(&(t[n]),&(a[n]),&(b[0]),n);
747 bn_add_words(&(r[n]),&(r[n]),&(t[0]),n);
748 bn_add_words(&(r[n]),&(r[n]),&(t[n]),n);
749 }
750 }
751
752 /* a and b must be the same size, which is n2.
753 * r needs to be n2 words and t needs to be n2*2
754 * l is the low words of the output.
755 * t needs to be n2*3
756 */
bn_mul_high(BN_ULONG * r,BN_ULONG * a,BN_ULONG * b,BN_ULONG * l,int n2,BN_ULONG * t)757 void bn_mul_high(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, BN_ULONG *l, int n2,
758 BN_ULONG *t)
759 {
760 int i,n;
761 int c1,c2;
762 int neg,oneg,zero;
763 BN_ULONG ll,lc,*lp,*mp;
764
765 # ifdef BN_COUNT
766 fprintf(stderr," bn_mul_high %d * %d\n",n2,n2);
767 # endif
768 n=n2/2;
769
770 /* Calculate (al-ah)*(bh-bl) */
771 neg=zero=0;
772 c1=bn_cmp_words(&(a[0]),&(a[n]),n);
773 c2=bn_cmp_words(&(b[n]),&(b[0]),n);
774 switch (c1*3+c2)
775 {
776 case -4:
777 bn_sub_words(&(r[0]),&(a[n]),&(a[0]),n);
778 bn_sub_words(&(r[n]),&(b[0]),&(b[n]),n);
779 break;
780 case -3:
781 zero=1;
782 break;
783 case -2:
784 bn_sub_words(&(r[0]),&(a[n]),&(a[0]),n);
785 bn_sub_words(&(r[n]),&(b[n]),&(b[0]),n);
786 neg=1;
787 break;
788 case -1:
789 case 0:
790 case 1:
791 zero=1;
792 break;
793 case 2:
794 bn_sub_words(&(r[0]),&(a[0]),&(a[n]),n);
795 bn_sub_words(&(r[n]),&(b[0]),&(b[n]),n);
796 neg=1;
797 break;
798 case 3:
799 zero=1;
800 break;
801 case 4:
802 bn_sub_words(&(r[0]),&(a[0]),&(a[n]),n);
803 bn_sub_words(&(r[n]),&(b[n]),&(b[0]),n);
804 break;
805 }
806
807 oneg=neg;
808 /* t[10] = (a[0]-a[1])*(b[1]-b[0]) */
809 /* r[10] = (a[1]*b[1]) */
810 # ifdef BN_MUL_COMBA
811 if (n == 8)
812 {
813 bn_mul_comba8(&(t[0]),&(r[0]),&(r[n]));
814 bn_mul_comba8(r,&(a[n]),&(b[n]));
815 }
816 else
817 # endif
818 {
819 bn_mul_recursive(&(t[0]),&(r[0]),&(r[n]),n,0,0,&(t[n2]));
820 bn_mul_recursive(r,&(a[n]),&(b[n]),n,0,0,&(t[n2]));
821 }
822
823 /* s0 == low(al*bl)
824 * s1 == low(ah*bh)+low((al-ah)*(bh-bl))+low(al*bl)+high(al*bl)
825 * We know s0 and s1 so the only unknown is high(al*bl)
826 * high(al*bl) == s1 - low(ah*bh+s0+(al-ah)*(bh-bl))
827 * high(al*bl) == s1 - (r[0]+l[0]+t[0])
828 */
829 if (l != NULL)
830 {
831 lp= &(t[n2+n]);
832 c1=(int)(bn_add_words(lp,&(r[0]),&(l[0]),n));
833 }
834 else
835 {
836 c1=0;
837 lp= &(r[0]);
838 }
839
840 if (neg)
841 neg=(int)(bn_sub_words(&(t[n2]),lp,&(t[0]),n));
842 else
843 {
844 bn_add_words(&(t[n2]),lp,&(t[0]),n);
845 neg=0;
846 }
847
848 if (l != NULL)
849 {
850 bn_sub_words(&(t[n2+n]),&(l[n]),&(t[n2]),n);
851 }
852 else
853 {
854 lp= &(t[n2+n]);
855 mp= &(t[n2]);
856 for (i=0; i<n; i++)
857 lp[i]=((~mp[i])+1)&BN_MASK2;
858 }
859
860 /* s[0] = low(al*bl)
861 * t[3] = high(al*bl)
862 * t[10] = (a[0]-a[1])*(b[1]-b[0]) neg is the sign
863 * r[10] = (a[1]*b[1])
864 */
865 /* R[10] = al*bl
866 * R[21] = al*bl + ah*bh + (a[0]-a[1])*(b[1]-b[0])
867 * R[32] = ah*bh
868 */
869 /* R[1]=t[3]+l[0]+r[0](+-)t[0] (have carry/borrow)
870 * R[2]=r[0]+t[3]+r[1](+-)t[1] (have carry/borrow)
871 * R[3]=r[1]+(carry/borrow)
872 */
873 if (l != NULL)
874 {
875 lp= &(t[n2]);
876 c1= (int)(bn_add_words(lp,&(t[n2+n]),&(l[0]),n));
877 }
878 else
879 {
880 lp= &(t[n2+n]);
881 c1=0;
882 }
883 c1+=(int)(bn_add_words(&(t[n2]),lp, &(r[0]),n));
884 if (oneg)
885 c1-=(int)(bn_sub_words(&(t[n2]),&(t[n2]),&(t[0]),n));
886 else
887 c1+=(int)(bn_add_words(&(t[n2]),&(t[n2]),&(t[0]),n));
888
889 c2 =(int)(bn_add_words(&(r[0]),&(r[0]),&(t[n2+n]),n));
890 c2+=(int)(bn_add_words(&(r[0]),&(r[0]),&(r[n]),n));
891 if (oneg)
892 c2-=(int)(bn_sub_words(&(r[0]),&(r[0]),&(t[n]),n));
893 else
894 c2+=(int)(bn_add_words(&(r[0]),&(r[0]),&(t[n]),n));
895
896 if (c1 != 0) /* Add starting at r[0], could be +ve or -ve */
897 {
898 i=0;
899 if (c1 > 0)
900 {
901 lc=c1;
902 do {
903 ll=(r[i]+lc)&BN_MASK2;
904 r[i++]=ll;
905 lc=(lc > ll);
906 } while (lc);
907 }
908 else
909 {
910 lc= -c1;
911 do {
912 ll=r[i];
913 r[i++]=(ll-lc)&BN_MASK2;
914 lc=(lc > ll);
915 } while (lc);
916 }
917 }
918 if (c2 != 0) /* Add starting at r[1] */
919 {
920 i=n;
921 if (c2 > 0)
922 {
923 lc=c2;
924 do {
925 ll=(r[i]+lc)&BN_MASK2;
926 r[i++]=ll;
927 lc=(lc > ll);
928 } while (lc);
929 }
930 else
931 {
932 lc= -c2;
933 do {
934 ll=r[i];
935 r[i++]=(ll-lc)&BN_MASK2;
936 lc=(lc > ll);
937 } while (lc);
938 }
939 }
940 }
941 #endif /* BN_RECURSION */
942
BN_mul(BIGNUM * r,const BIGNUM * a,const BIGNUM * b,BN_CTX * ctx)943 int BN_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx)
944 {
945 int ret=0;
946 int top,al,bl;
947 BIGNUM *rr;
948 #if defined(BN_MUL_COMBA) || defined(BN_RECURSION)
949 int i;
950 #endif
951 #ifdef BN_RECURSION
952 BIGNUM *t=NULL;
953 int j=0,k;
954 #endif
955
956 #ifdef BN_COUNT
957 fprintf(stderr,"BN_mul %d * %d\n",a->top,b->top);
958 #endif
959
960 bn_check_top(a);
961 bn_check_top(b);
962 bn_check_top(r);
963
964 al=a->top;
965 bl=b->top;
966
967 if ((al == 0) || (bl == 0))
968 {
969 BN_zero(r);
970 return(1);
971 }
972 top=al+bl;
973
974 BN_CTX_start(ctx);
975 if ((r == a) || (r == b))
976 {
977 if ((rr = BN_CTX_get(ctx)) == NULL) goto err;
978 }
979 else
980 rr = r;
981 rr->neg=a->neg^b->neg;
982
983 #if defined(BN_MUL_COMBA) || defined(BN_RECURSION)
984 i = al-bl;
985 #endif
986 #ifdef BN_MUL_COMBA
987 if (i == 0)
988 {
989 # if 0
990 if (al == 4)
991 {
992 if (bn_wexpand(rr,8) == NULL) goto err;
993 rr->top=8;
994 bn_mul_comba4(rr->d,a->d,b->d);
995 goto end;
996 }
997 # endif
998 if (al == 8)
999 {
1000 if (bn_wexpand(rr,16) == NULL) goto err;
1001 rr->top=16;
1002 bn_mul_comba8(rr->d,a->d,b->d);
1003 goto end;
1004 }
1005 }
1006 #endif /* BN_MUL_COMBA */
1007 #ifdef BN_RECURSION
1008 if ((al >= BN_MULL_SIZE_NORMAL) && (bl >= BN_MULL_SIZE_NORMAL))
1009 {
1010 if (i >= -1 && i <= 1)
1011 {
1012 /* Find out the power of two lower or equal
1013 to the longest of the two numbers */
1014 if (i >= 0)
1015 {
1016 j = BN_num_bits_word((BN_ULONG)al);
1017 }
1018 if (i == -1)
1019 {
1020 j = BN_num_bits_word((BN_ULONG)bl);
1021 }
1022 j = 1<<(j-1);
1023 assert(j <= al || j <= bl);
1024 k = j+j;
1025 t = BN_CTX_get(ctx);
1026 if (t == NULL)
1027 goto err;
1028 if (al > j || bl > j)
1029 {
1030 if (bn_wexpand(t,k*4) == NULL) goto err;
1031 if (bn_wexpand(rr,k*4) == NULL) goto err;
1032 bn_mul_part_recursive(rr->d,a->d,b->d,
1033 j,al-j,bl-j,t->d);
1034 }
1035 else /* al <= j || bl <= j */
1036 {
1037 if (bn_wexpand(t,k*2) == NULL) goto err;
1038 if (bn_wexpand(rr,k*2) == NULL) goto err;
1039 bn_mul_recursive(rr->d,a->d,b->d,
1040 j,al-j,bl-j,t->d);
1041 }
1042 rr->top=top;
1043 goto end;
1044 }
1045 #if 0
1046 if (i == 1 && !BN_get_flags(b,BN_FLG_STATIC_DATA))
1047 {
1048 BIGNUM *tmp_bn = (BIGNUM *)b;
1049 if (bn_wexpand(tmp_bn,al) == NULL) goto err;
1050 tmp_bn->d[bl]=0;
1051 bl++;
1052 i--;
1053 }
1054 else if (i == -1 && !BN_get_flags(a,BN_FLG_STATIC_DATA))
1055 {
1056 BIGNUM *tmp_bn = (BIGNUM *)a;
1057 if (bn_wexpand(tmp_bn,bl) == NULL) goto err;
1058 tmp_bn->d[al]=0;
1059 al++;
1060 i++;
1061 }
1062 if (i == 0)
1063 {
1064 /* symmetric and > 4 */
1065 /* 16 or larger */
1066 j=BN_num_bits_word((BN_ULONG)al);
1067 j=1<<(j-1);
1068 k=j+j;
1069 t = BN_CTX_get(ctx);
1070 if (al == j) /* exact multiple */
1071 {
1072 if (bn_wexpand(t,k*2) == NULL) goto err;
1073 if (bn_wexpand(rr,k*2) == NULL) goto err;
1074 bn_mul_recursive(rr->d,a->d,b->d,al,t->d);
1075 }
1076 else
1077 {
1078 if (bn_wexpand(t,k*4) == NULL) goto err;
1079 if (bn_wexpand(rr,k*4) == NULL) goto err;
1080 bn_mul_part_recursive(rr->d,a->d,b->d,al-j,j,t->d);
1081 }
1082 rr->top=top;
1083 goto end;
1084 }
1085 #endif
1086 }
1087 #endif /* BN_RECURSION */
1088 if (bn_wexpand(rr,top) == NULL) goto err;
1089 rr->top=top;
1090 bn_mul_normal(rr->d,a->d,al,b->d,bl);
1091
1092 #if defined(BN_MUL_COMBA) || defined(BN_RECURSION)
1093 end:
1094 #endif
1095 bn_correct_top(rr);
1096 if (r != rr) BN_copy(r,rr);
1097 ret=1;
1098 err:
1099 bn_check_top(r);
1100 BN_CTX_end(ctx);
1101 return(ret);
1102 }
1103
bn_mul_normal(BN_ULONG * r,BN_ULONG * a,int na,BN_ULONG * b,int nb)1104 void bn_mul_normal(BN_ULONG *r, BN_ULONG *a, int na, BN_ULONG *b, int nb)
1105 {
1106 BN_ULONG *rr;
1107
1108 #ifdef BN_COUNT
1109 fprintf(stderr," bn_mul_normal %d * %d\n",na,nb);
1110 #endif
1111
1112 if (na < nb)
1113 {
1114 int itmp;
1115 BN_ULONG *ltmp;
1116
1117 itmp=na; na=nb; nb=itmp;
1118 ltmp=a; a=b; b=ltmp;
1119
1120 }
1121 rr= &(r[na]);
1122 if (nb <= 0)
1123 {
1124 (void)bn_mul_words(r,a,na,0);
1125 return;
1126 }
1127 else
1128 rr[0]=bn_mul_words(r,a,na,b[0]);
1129
1130 for (;;)
1131 {
1132 if (--nb <= 0) return;
1133 rr[1]=bn_mul_add_words(&(r[1]),a,na,b[1]);
1134 if (--nb <= 0) return;
1135 rr[2]=bn_mul_add_words(&(r[2]),a,na,b[2]);
1136 if (--nb <= 0) return;
1137 rr[3]=bn_mul_add_words(&(r[3]),a,na,b[3]);
1138 if (--nb <= 0) return;
1139 rr[4]=bn_mul_add_words(&(r[4]),a,na,b[4]);
1140 rr+=4;
1141 r+=4;
1142 b+=4;
1143 }
1144 }
1145
bn_mul_low_normal(BN_ULONG * r,BN_ULONG * a,BN_ULONG * b,int n)1146 void bn_mul_low_normal(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n)
1147 {
1148 #ifdef BN_COUNT
1149 fprintf(stderr," bn_mul_low_normal %d * %d\n",n,n);
1150 #endif
1151 bn_mul_words(r,a,n,b[0]);
1152
1153 for (;;)
1154 {
1155 if (--n <= 0) return;
1156 bn_mul_add_words(&(r[1]),a,n,b[1]);
1157 if (--n <= 0) return;
1158 bn_mul_add_words(&(r[2]),a,n,b[2]);
1159 if (--n <= 0) return;
1160 bn_mul_add_words(&(r[3]),a,n,b[3]);
1161 if (--n <= 0) return;
1162 bn_mul_add_words(&(r[4]),a,n,b[4]);
1163 r+=4;
1164 b+=4;
1165 }
1166 }
1167