• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Redistribution and use in source and binary forms, with or without
3 // modification, are permitted provided that the following conditions are
4 // met:
5 //
6 //     * Redistributions of source code must retain the above copyright
7 //       notice, this list of conditions and the following disclaimer.
8 //     * Redistributions in binary form must reproduce the above
9 //       copyright notice, this list of conditions and the following
10 //       disclaimer in the documentation and/or other materials provided
11 //       with the distribution.
12 //     * Neither the name of Google Inc. nor the names of its
13 //       contributors may be used to endorse or promote products derived
14 //       from this software without specific prior written permission.
15 //
16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 
28 #ifndef V8_SCOPES_H_
29 #define V8_SCOPES_H_
30 
31 #include "ast.h"
32 #include "zone.h"
33 
34 namespace v8 {
35 namespace internal {
36 
37 class CompilationInfo;
38 
39 
40 // A hash map to support fast variable declaration and lookup.
41 class VariableMap: public ZoneHashMap {
42  public:
43   VariableMap();
44 
45   virtual ~VariableMap();
46 
47   Variable* Declare(Scope* scope,
48                     Handle<String> name,
49                     VariableMode mode,
50                     bool is_valid_lhs,
51                     Variable::Kind kind,
52                     InitializationFlag initialization_flag,
53                     Interface* interface = Interface::NewValue());
54 
55   Variable* Lookup(Handle<String> name);
56 };
57 
58 
59 // The dynamic scope part holds hash maps for the variables that will
60 // be looked up dynamically from within eval and with scopes. The objects
61 // are allocated on-demand from Scope::NonLocal to avoid wasting memory
62 // and setup time for scopes that don't need them.
63 class DynamicScopePart : public ZoneObject {
64  public:
GetMap(VariableMode mode)65   VariableMap* GetMap(VariableMode mode) {
66     int index = mode - DYNAMIC;
67     ASSERT(index >= 0 && index < 3);
68     return &maps_[index];
69   }
70 
71  private:
72   VariableMap maps_[3];
73 };
74 
75 
76 // Global invariants after AST construction: Each reference (i.e. identifier)
77 // to a JavaScript variable (including global properties) is represented by a
78 // VariableProxy node. Immediately after AST construction and before variable
79 // allocation, most VariableProxy nodes are "unresolved", i.e. not bound to a
80 // corresponding variable (though some are bound during parse time). Variable
81 // allocation binds each unresolved VariableProxy to one Variable and assigns
82 // a location. Note that many VariableProxy nodes may refer to the same Java-
83 // Script variable.
84 
85 class Scope: public ZoneObject {
86  public:
87   // ---------------------------------------------------------------------------
88   // Construction
89 
90   Scope(Scope* outer_scope, ScopeType type);
91 
92   // Compute top scope and allocate variables. For lazy compilation the top
93   // scope only contains the single lazily compiled function, so this
94   // doesn't re-allocate variables repeatedly.
95   static bool Analyze(CompilationInfo* info);
96 
97   static Scope* DeserializeScopeChain(Context* context, Scope* global_scope);
98 
99   // The scope name is only used for printing/debugging.
SetScopeName(Handle<String> scope_name)100   void SetScopeName(Handle<String> scope_name) { scope_name_ = scope_name; }
101 
102   void Initialize();
103 
104   // Checks if the block scope is redundant, i.e. it does not contain any
105   // block scoped declarations. In that case it is removed from the scope
106   // tree and its children are reparented.
107   Scope* FinalizeBlockScope();
108 
109   // ---------------------------------------------------------------------------
110   // Declarations
111 
112   // Lookup a variable in this scope. Returns the variable or NULL if not found.
113   Variable* LocalLookup(Handle<String> name);
114 
115   // This lookup corresponds to a lookup in the "intermediate" scope sitting
116   // between this scope and the outer scope. (ECMA-262, 3rd., requires that
117   // the name of named function literal is kept in an intermediate scope
118   // in between this scope and the next outer scope.)
119   Variable* LookupFunctionVar(Handle<String> name,
120                               AstNodeFactory<AstNullVisitor>* factory);
121 
122   // Lookup a variable in this scope or outer scopes.
123   // Returns the variable or NULL if not found.
124   Variable* Lookup(Handle<String> name);
125 
126   // Declare the function variable for a function literal. This variable
127   // is in an intermediate scope between this function scope and the the
128   // outer scope. Only possible for function scopes; at most one variable.
129   template<class Visitor>
DeclareFunctionVar(Handle<String> name,VariableMode mode,AstNodeFactory<Visitor> * factory)130   Variable* DeclareFunctionVar(Handle<String> name,
131                                VariableMode mode,
132                                AstNodeFactory<Visitor>* factory) {
133     ASSERT(is_function_scope() && function_ == NULL);
134     Variable* function_var = new Variable(
135         this, name, mode, true, Variable::NORMAL, kCreatedInitialized);
136     function_ = factory->NewVariableProxy(function_var);
137     return function_var;
138   }
139 
140   // Declare a parameter in this scope.  When there are duplicated
141   // parameters the rightmost one 'wins'.  However, the implementation
142   // expects all parameters to be declared and from left to right.
143   void DeclareParameter(Handle<String> name, VariableMode mode);
144 
145   // Declare a local variable in this scope. If the variable has been
146   // declared before, the previously declared variable is returned.
147   Variable* DeclareLocal(Handle<String> name,
148                          VariableMode mode,
149                          InitializationFlag init_flag,
150                          Interface* interface = Interface::NewValue());
151 
152   // Declare an implicit global variable in this scope which must be a
153   // global scope.  The variable was introduced (possibly from an inner
154   // scope) by a reference to an unresolved variable with no intervening
155   // with statements or eval calls.
156   Variable* DeclareGlobal(Handle<String> name);
157 
158   // Create a new unresolved variable.
159   template<class Visitor>
160   VariableProxy* NewUnresolved(AstNodeFactory<Visitor>* factory,
161                                Handle<String> name,
162                                int position = RelocInfo::kNoPosition,
163                                Interface* interface = Interface::NewValue()) {
164     // Note that we must not share the unresolved variables with
165     // the same name because they may be removed selectively via
166     // RemoveUnresolved().
167     ASSERT(!already_resolved());
168     VariableProxy* proxy =
169         factory->NewVariableProxy(name, false, position, interface);
170     unresolved_.Add(proxy);
171     return proxy;
172   }
173 
174   // Remove a unresolved variable. During parsing, an unresolved variable
175   // may have been added optimistically, but then only the variable name
176   // was used (typically for labels). If the variable was not declared, the
177   // addition introduced a new unresolved variable which may end up being
178   // allocated globally as a "ghost" variable. RemoveUnresolved removes
179   // such a variable again if it was added; otherwise this is a no-op.
180   void RemoveUnresolved(VariableProxy* var);
181 
182   // Creates a new temporary variable in this scope.  The name is only used
183   // for printing and cannot be used to find the variable.  In particular,
184   // the only way to get hold of the temporary is by keeping the Variable*
185   // around.
186   Variable* NewTemporary(Handle<String> name);
187 
188   // Adds the specific declaration node to the list of declarations in
189   // this scope. The declarations are processed as part of entering
190   // the scope; see codegen.cc:ProcessDeclarations.
191   void AddDeclaration(Declaration* declaration);
192 
193   // ---------------------------------------------------------------------------
194   // Illegal redeclaration support.
195 
196   // Set an expression node that will be executed when the scope is
197   // entered. We only keep track of one illegal redeclaration node per
198   // scope - the first one - so if you try to set it multiple times
199   // the additional requests will be silently ignored.
200   void SetIllegalRedeclaration(Expression* expression);
201 
202   // Visit the illegal redeclaration expression. Do not call if the
203   // scope doesn't have an illegal redeclaration node.
204   void VisitIllegalRedeclaration(AstVisitor* visitor);
205 
206   // Check if the scope has (at least) one illegal redeclaration.
HasIllegalRedeclaration()207   bool HasIllegalRedeclaration() const { return illegal_redecl_ != NULL; }
208 
209   // For harmony block scoping mode: Check if the scope has conflicting var
210   // declarations, i.e. a var declaration that has been hoisted from a nested
211   // scope over a let binding of the same name.
212   Declaration* CheckConflictingVarDeclarations();
213 
214   // For harmony block scoping mode: Check if the scope has variable proxies
215   // that are used as lvalues and point to const variables. Assumes that scopes
216   // have been analyzed and variables been resolved.
217   VariableProxy* CheckAssignmentToConst();
218 
219   // ---------------------------------------------------------------------------
220   // Scope-specific info.
221 
222   // Inform the scope that the corresponding code contains a with statement.
RecordWithStatement()223   void RecordWithStatement() { scope_contains_with_ = true; }
224 
225   // Inform the scope that the corresponding code contains an eval call.
RecordEvalCall()226   void RecordEvalCall() { if (!is_global_scope()) scope_calls_eval_ = true; }
227 
228   // Set the strict mode flag (unless disabled by a global flag).
SetLanguageMode(LanguageMode language_mode)229   void SetLanguageMode(LanguageMode language_mode) {
230     language_mode_ = language_mode;
231   }
232 
233   // Position in the source where this scope begins and ends.
234   //
235   // * For the scope of a with statement
236   //     with (obj) stmt
237   //   start position: start position of first token of 'stmt'
238   //   end position: end position of last token of 'stmt'
239   // * For the scope of a block
240   //     { stmts }
241   //   start position: start position of '{'
242   //   end position: end position of '}'
243   // * For the scope of a function literal or decalaration
244   //     function fun(a,b) { stmts }
245   //   start position: start position of '('
246   //   end position: end position of '}'
247   // * For the scope of a catch block
248   //     try { stms } catch(e) { stmts }
249   //   start position: start position of '('
250   //   end position: end position of ')'
251   // * For the scope of a for-statement
252   //     for (let x ...) stmt
253   //   start position: start position of '('
254   //   end position: end position of last token of 'stmt'
start_position()255   int start_position() const { return start_position_; }
set_start_position(int statement_pos)256   void set_start_position(int statement_pos) {
257     start_position_ = statement_pos;
258   }
end_position()259   int end_position() const { return end_position_; }
set_end_position(int statement_pos)260   void set_end_position(int statement_pos) {
261     end_position_ = statement_pos;
262   }
263 
264   // ---------------------------------------------------------------------------
265   // Predicates.
266 
267   // Specific scope types.
is_eval_scope()268   bool is_eval_scope() const { return type_ == EVAL_SCOPE; }
is_function_scope()269   bool is_function_scope() const { return type_ == FUNCTION_SCOPE; }
is_module_scope()270   bool is_module_scope() const { return type_ == MODULE_SCOPE; }
is_global_scope()271   bool is_global_scope() const { return type_ == GLOBAL_SCOPE; }
is_catch_scope()272   bool is_catch_scope() const { return type_ == CATCH_SCOPE; }
is_block_scope()273   bool is_block_scope() const { return type_ == BLOCK_SCOPE; }
is_with_scope()274   bool is_with_scope() const { return type_ == WITH_SCOPE; }
is_declaration_scope()275   bool is_declaration_scope() const {
276     return is_eval_scope() || is_function_scope() || is_global_scope();
277   }
is_classic_mode()278   bool is_classic_mode() const {
279     return language_mode() == CLASSIC_MODE;
280   }
is_extended_mode()281   bool is_extended_mode() const {
282     return language_mode() == EXTENDED_MODE;
283   }
is_strict_or_extended_eval_scope()284   bool is_strict_or_extended_eval_scope() const {
285     return is_eval_scope() && !is_classic_mode();
286   }
287 
288   // Information about which scopes calls eval.
calls_eval()289   bool calls_eval() const { return scope_calls_eval_; }
calls_non_strict_eval()290   bool calls_non_strict_eval() {
291     return scope_calls_eval_ && is_classic_mode();
292   }
outer_scope_calls_non_strict_eval()293   bool outer_scope_calls_non_strict_eval() const {
294     return outer_scope_calls_non_strict_eval_;
295   }
296 
297   // Is this scope inside a with statement.
inside_with()298   bool inside_with() const { return scope_inside_with_; }
299   // Does this scope contain a with statement.
contains_with()300   bool contains_with() const { return scope_contains_with_; }
301 
302   // ---------------------------------------------------------------------------
303   // Accessors.
304 
305   // The type of this scope.
type()306   ScopeType type() const { return type_; }
307 
308   // The language mode of this scope.
language_mode()309   LanguageMode language_mode() const { return language_mode_; }
310 
311   // The variable corresponding the 'this' value.
receiver()312   Variable* receiver() { return receiver_; }
313 
314   // The variable holding the function literal for named function
315   // literals, or NULL.
316   // Only valid for function scopes.
function()317   VariableProxy* function() const {
318     ASSERT(is_function_scope());
319     return function_;
320   }
321 
322   // Parameters. The left-most parameter has index 0.
323   // Only valid for function scopes.
parameter(int index)324   Variable* parameter(int index) const {
325     ASSERT(is_function_scope());
326     return params_[index];
327   }
328 
num_parameters()329   int num_parameters() const { return params_.length(); }
330 
331   // The local variable 'arguments' if we need to allocate it; NULL otherwise.
arguments()332   Variable* arguments() const { return arguments_; }
333 
334   // Declarations list.
declarations()335   ZoneList<Declaration*>* declarations() { return &decls_; }
336 
337   // Inner scope list.
inner_scopes()338   ZoneList<Scope*>* inner_scopes() { return &inner_scopes_; }
339 
340   // The scope immediately surrounding this scope, or NULL.
outer_scope()341   Scope* outer_scope() const { return outer_scope_; }
342 
343   // The interface as inferred so far; only for module scopes.
interface()344   Interface* interface() const { return interface_; }
345 
346   // ---------------------------------------------------------------------------
347   // Variable allocation.
348 
349   // Collect stack and context allocated local variables in this scope. Note
350   // that the function variable - if present - is not collected and should be
351   // handled separately.
352   void CollectStackAndContextLocals(ZoneList<Variable*>* stack_locals,
353                                     ZoneList<Variable*>* context_locals);
354 
355   // Current number of var or const locals.
num_var_or_const()356   int num_var_or_const() { return num_var_or_const_; }
357 
358   // Result of variable allocation.
num_stack_slots()359   int num_stack_slots() const { return num_stack_slots_; }
num_heap_slots()360   int num_heap_slots() const { return num_heap_slots_; }
361 
362   int StackLocalCount() const;
363   int ContextLocalCount() const;
364 
365   // Make sure this scope and all outer scopes are eagerly compiled.
ForceEagerCompilation()366   void ForceEagerCompilation()  { force_eager_compilation_ = true; }
367 
368   // Determine if we can use lazy compilation for this scope.
369   bool AllowsLazyCompilation() const;
370 
371   // True if we can lazily recompile functions with this scope.
372   bool AllowsLazyRecompilation() const;
373 
374   // True if the outer context of this scope is always the global context.
375   bool HasTrivialOuterContext() const;
376 
377   // True if this scope is inside a with scope and all declaration scopes
378   // between them have empty contexts. Such declaration scopes become
379   // invisible during scope info deserialization.
380   bool TrivialDeclarationScopesBeforeWithScope() const;
381 
382   // The number of contexts between this and scope; zero if this == scope.
383   int ContextChainLength(Scope* scope);
384 
385   // Find the first function, global, or eval scope.  This is the scope
386   // where var declarations will be hoisted to in the implementation.
387   Scope* DeclarationScope();
388 
389   Handle<ScopeInfo> GetScopeInfo();
390 
391   // Get the chain of nested scopes within this scope for the source statement
392   // position. The scopes will be added to the list from the outermost scope to
393   // the innermost scope. Only nested block, catch or with scopes are tracked
394   // and will be returned, but no inner function scopes.
395   void GetNestedScopeChain(List<Handle<ScopeInfo> >* chain,
396                            int statement_position);
397 
398   // ---------------------------------------------------------------------------
399   // Strict mode support.
IsDeclared(Handle<String> name)400   bool IsDeclared(Handle<String> name) {
401     // During formal parameter list parsing the scope only contains
402     // two variables inserted at initialization: "this" and "arguments".
403     // "this" is an invalid parameter name and "arguments" is invalid parameter
404     // name in strict mode. Therefore looking up with the map which includes
405     // "this" and "arguments" in addition to all formal parameters is safe.
406     return variables_.Lookup(name) != NULL;
407   }
408 
409   // ---------------------------------------------------------------------------
410   // Debugging.
411 
412 #ifdef DEBUG
413   void Print(int n = 0);  // n = indentation; n < 0 => don't print recursively
414 #endif
415 
416   // ---------------------------------------------------------------------------
417   // Implementation.
418  protected:
419   friend class ParserFactory;
420 
421   Isolate* const isolate_;
422 
423   // Scope tree.
424   Scope* outer_scope_;  // the immediately enclosing outer scope, or NULL
425   ZoneList<Scope*> inner_scopes_;  // the immediately enclosed inner scopes
426 
427   // The scope type.
428   ScopeType type_;
429 
430   // Debugging support.
431   Handle<String> scope_name_;
432 
433   // The variables declared in this scope:
434   //
435   // All user-declared variables (incl. parameters).  For global scopes
436   // variables may be implicitly 'declared' by being used (possibly in
437   // an inner scope) with no intervening with statements or eval calls.
438   VariableMap variables_;
439   // Compiler-allocated (user-invisible) temporaries.
440   ZoneList<Variable*> temps_;
441   // Parameter list in source order.
442   ZoneList<Variable*> params_;
443   // Variables that must be looked up dynamically.
444   DynamicScopePart* dynamics_;
445   // Unresolved variables referred to from this scope.
446   ZoneList<VariableProxy*> unresolved_;
447   // Declarations.
448   ZoneList<Declaration*> decls_;
449   // Convenience variable.
450   Variable* receiver_;
451   // Function variable, if any; function scopes only.
452   VariableProxy* function_;
453   // Convenience variable; function scopes only.
454   Variable* arguments_;
455   // Interface; module scopes only.
456   Interface* interface_;
457 
458   // Illegal redeclaration.
459   Expression* illegal_redecl_;
460 
461   // Scope-specific information computed during parsing.
462   //
463   // This scope is inside a 'with' of some outer scope.
464   bool scope_inside_with_;
465   // This scope contains a 'with' statement.
466   bool scope_contains_with_;
467   // This scope or a nested catch scope or with scope contain an 'eval' call. At
468   // the 'eval' call site this scope is the declaration scope.
469   bool scope_calls_eval_;
470   // The language mode of this scope.
471   LanguageMode language_mode_;
472   // Source positions.
473   int start_position_;
474   int end_position_;
475 
476   // Computed via PropagateScopeInfo.
477   bool outer_scope_calls_non_strict_eval_;
478   bool inner_scope_calls_eval_;
479   bool force_eager_compilation_;
480 
481   // True if it doesn't need scope resolution (e.g., if the scope was
482   // constructed based on a serialized scope info or a catch context).
483   bool already_resolved_;
484 
485   // Computed as variables are declared.
486   int num_var_or_const_;
487 
488   // Computed via AllocateVariables; function, block and catch scopes only.
489   int num_stack_slots_;
490   int num_heap_slots_;
491 
492   // Serialized scope info support.
493   Handle<ScopeInfo> scope_info_;
already_resolved()494   bool already_resolved() { return already_resolved_; }
495 
496   // Create a non-local variable with a given name.
497   // These variables are looked up dynamically at runtime.
498   Variable* NonLocal(Handle<String> name, VariableMode mode);
499 
500   // Variable resolution.
501   // Possible results of a recursive variable lookup telling if and how a
502   // variable is bound. These are returned in the output parameter *binding_kind
503   // of the LookupRecursive function.
504   enum BindingKind {
505     // The variable reference could be statically resolved to a variable binding
506     // which is returned. There is no 'with' statement between the reference and
507     // the binding and no scope between the reference scope (inclusive) and
508     // binding scope (exclusive) makes a non-strict 'eval' call.
509     BOUND,
510 
511     // The variable reference could be statically resolved to a variable binding
512     // which is returned. There is no 'with' statement between the reference and
513     // the binding, but some scope between the reference scope (inclusive) and
514     // binding scope (exclusive) makes a non-strict 'eval' call, that might
515     // possibly introduce variable bindings shadowing the found one. Thus the
516     // found variable binding is just a guess.
517     BOUND_EVAL_SHADOWED,
518 
519     // The variable reference could not be statically resolved to any binding
520     // and thus should be considered referencing a global variable. NULL is
521     // returned. The variable reference is not inside any 'with' statement and
522     // no scope between the reference scope (inclusive) and global scope
523     // (exclusive) makes a non-strict 'eval' call.
524     UNBOUND,
525 
526     // The variable reference could not be statically resolved to any binding
527     // NULL is returned. The variable reference is not inside any 'with'
528     // statement, but some scope between the reference scope (inclusive) and
529     // global scope (exclusive) makes a non-strict 'eval' call, that might
530     // possibly introduce a variable binding. Thus the reference should be
531     // considered referencing a global variable unless it is shadowed by an
532     // 'eval' introduced binding.
533     UNBOUND_EVAL_SHADOWED,
534 
535     // The variable could not be statically resolved and needs to be looked up
536     // dynamically. NULL is returned. There are two possible reasons:
537     // * A 'with' statement has been encountered and there is no variable
538     //   binding for the name between the variable reference and the 'with'.
539     //   The variable potentially references a property of the 'with' object.
540     // * The code is being executed as part of a call to 'eval' and the calling
541     //   context chain contains either a variable binding for the name or it
542     //   contains a 'with' context.
543     DYNAMIC_LOOKUP
544   };
545 
546   // Lookup a variable reference given by name recursively starting with this
547   // scope. If the code is executed because of a call to 'eval', the context
548   // parameter should be set to the calling context of 'eval'.
549   Variable* LookupRecursive(Handle<String> name,
550                             BindingKind* binding_kind,
551                             AstNodeFactory<AstNullVisitor>* factory);
552   MUST_USE_RESULT
553   bool ResolveVariable(CompilationInfo* info,
554                        VariableProxy* proxy,
555                        AstNodeFactory<AstNullVisitor>* factory);
556   MUST_USE_RESULT
557   bool ResolveVariablesRecursively(CompilationInfo* info,
558                                    AstNodeFactory<AstNullVisitor>* factory);
559 
560   // Scope analysis.
561   bool PropagateScopeInfo(bool outer_scope_calls_non_strict_eval);
562   bool HasTrivialContext() const;
563 
564   // Predicates.
565   bool MustAllocate(Variable* var);
566   bool MustAllocateInContext(Variable* var);
567   bool HasArgumentsParameter();
568 
569   // Variable allocation.
570   void AllocateStackSlot(Variable* var);
571   void AllocateHeapSlot(Variable* var);
572   void AllocateParameterLocals();
573   void AllocateNonParameterLocal(Variable* var);
574   void AllocateNonParameterLocals();
575   void AllocateVariablesRecursively();
576 
577   // Resolve and fill in the allocation information for all variables
578   // in this scopes. Must be called *after* all scopes have been
579   // processed (parsed) to ensure that unresolved variables can be
580   // resolved properly.
581   //
582   // In the case of code compiled and run using 'eval', the context
583   // parameter is the context in which eval was called.  In all other
584   // cases the context parameter is an empty handle.
585   MUST_USE_RESULT
586   bool AllocateVariables(CompilationInfo* info,
587                          AstNodeFactory<AstNullVisitor>* factory);
588 
589  private:
590   // Construct a scope based on the scope info.
591   Scope(Scope* inner_scope, ScopeType type, Handle<ScopeInfo> scope_info);
592 
593   // Construct a catch scope with a binding for the name.
594   Scope(Scope* inner_scope, Handle<String> catch_variable_name);
595 
AddInnerScope(Scope * inner_scope)596   void AddInnerScope(Scope* inner_scope) {
597     if (inner_scope != NULL) {
598       inner_scopes_.Add(inner_scope);
599       inner_scope->outer_scope_ = this;
600     }
601   }
602 
603   void SetDefaults(ScopeType type,
604                    Scope* outer_scope,
605                    Handle<ScopeInfo> scope_info);
606 };
607 
608 } }  // namespace v8::internal
609 
610 #endif  // V8_SCOPES_H_
611