• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* @(#)s_cbrt.c 5.1 93/09/24 */
2 /*
3  * ====================================================
4  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
5  *
6  * Developed at SunPro, a Sun Microsystems, Inc. business.
7  * Permission to use, copy, modify, and distribute this
8  * software is freely granted, provided that this notice
9  * is preserved.
10  * ====================================================
11  *
12  * Optimized by Bruce D. Evans.
13  */
14 
15 #ifndef lint
16 static char rcsid[] = "$FreeBSD: src/lib/msun/src/s_cbrt.c,v 1.10 2005/12/13 20:17:23 bde Exp $";
17 #endif
18 
19 #include "math.h"
20 #include "math_private.h"
21 
22 /* cbrt(x)
23  * Return cube root of x
24  */
25 static const u_int32_t
26 	B1 = 715094163, /* B1 = (1023-1023/3-0.03306235651)*2**20 */
27 	B2 = 696219795; /* B2 = (1023-1023/3-54/3-0.03306235651)*2**20 */
28 
29 static const double
30 C =  5.42857142857142815906e-01, /* 19/35     = 0x3FE15F15, 0xF15F15F1 */
31 D = -7.05306122448979611050e-01, /* -864/1225 = 0xBFE691DE, 0x2532C834 */
32 E =  1.41428571428571436819e+00, /* 99/70     = 0x3FF6A0EA, 0x0EA0EA0F */
33 F =  1.60714285714285720630e+00, /* 45/28     = 0x3FF9B6DB, 0x6DB6DB6E */
34 G =  3.57142857142857150787e-01; /* 5/14      = 0x3FD6DB6D, 0xB6DB6DB7 */
35 
36 double
cbrt(double x)37 cbrt(double x)
38 {
39 	int32_t	hx;
40 	double r,s,t=0.0,w;
41 	u_int32_t sign;
42 	u_int32_t high,low;
43 
44 	GET_HIGH_WORD(hx,x);
45 	sign=hx&0x80000000; 		/* sign= sign(x) */
46 	hx  ^=sign;
47 	if(hx>=0x7ff00000) return(x+x); /* cbrt(NaN,INF) is itself */
48 	GET_LOW_WORD(low,x);
49 	if((hx|low)==0)
50 	    return(x);		/* cbrt(0) is itself */
51 
52     /*
53      * Rough cbrt to 5 bits:
54      *    cbrt(2**e*(1+m) ~= 2**(e/3)*(1+(e%3+m)/3)
55      * where e is integral and >= 0, m is real and in [0, 1), and "/" and
56      * "%" are integer division and modulus with rounding towards minus
57      * infinity.  The RHS is always >= the LHS and has a maximum relative
58      * error of about 1 in 16.  Adding a bias of -0.03306235651 to the
59      * (e%3+m)/3 term reduces the error to about 1 in 32. With the IEEE
60      * floating point representation, for finite positive normal values,
61      * ordinary integer divison of the value in bits magically gives
62      * almost exactly the RHS of the above provided we first subtract the
63      * exponent bias (1023 for doubles) and later add it back.  We do the
64      * subtraction virtually to keep e >= 0 so that ordinary integer
65      * division rounds towards minus infinity; this is also efficient.
66      */
67 	if(hx<0x00100000) { 		/* subnormal number */
68 	    SET_HIGH_WORD(t,0x43500000); /* set t= 2**54 */
69 	    t*=x;
70 	    GET_HIGH_WORD(high,t);
71 	    SET_HIGH_WORD(t,sign|((high&0x7fffffff)/3+B2));
72 	} else
73 	    SET_HIGH_WORD(t,sign|(hx/3+B1));
74 
75     /* new cbrt to 23 bits; may be implemented in single precision */
76 	r=t*t/x;
77 	s=C+r*t;
78 	t*=G+F/(s+E+D/s);
79 
80     /* chop t to 20 bits and make it larger in magnitude than cbrt(x) */
81 	GET_HIGH_WORD(high,t);
82 	INSERT_WORDS(t,high+0x00000001,0);
83 
84     /* one step Newton iteration to 53 bits with error less than 0.667 ulps */
85 	s=t*t;		/* t*t is exact */
86 	r=x/s;
87 	w=t+t;
88 	r=(r-t)/(w+r);	/* r-t is exact */
89 	t=t+t*r;
90 
91 	return(t);
92 }
93