1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Redistribution and use in source and binary forms, with or without
3 // modification, are permitted provided that the following conditions are
4 // met:
5 //
6 // * Redistributions of source code must retain the above copyright
7 // notice, this list of conditions and the following disclaimer.
8 // * Redistributions in binary form must reproduce the above
9 // copyright notice, this list of conditions and the following
10 // disclaimer in the documentation and/or other materials provided
11 // with the distribution.
12 // * Neither the name of Google Inc. nor the names of its
13 // contributors may be used to endorse or promote products derived
14 // from this software without specific prior written permission.
15 //
16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
28 #include "v8.h"
29
30 #include "code-stubs.h"
31 #include "compilation-cache.h"
32 #include "deoptimizer.h"
33 #include "execution.h"
34 #include "gdb-jit.h"
35 #include "global-handles.h"
36 #include "heap-profiler.h"
37 #include "ic-inl.h"
38 #include "incremental-marking.h"
39 #include "liveobjectlist-inl.h"
40 #include "mark-compact.h"
41 #include "objects-visiting.h"
42 #include "objects-visiting-inl.h"
43 #include "stub-cache.h"
44
45 namespace v8 {
46 namespace internal {
47
48
49 const char* Marking::kWhiteBitPattern = "00";
50 const char* Marking::kBlackBitPattern = "10";
51 const char* Marking::kGreyBitPattern = "11";
52 const char* Marking::kImpossibleBitPattern = "01";
53
54
55 // -------------------------------------------------------------------------
56 // MarkCompactCollector
57
MarkCompactCollector()58 MarkCompactCollector::MarkCompactCollector() : // NOLINT
59 #ifdef DEBUG
60 state_(IDLE),
61 #endif
62 sweep_precisely_(false),
63 reduce_memory_footprint_(false),
64 abort_incremental_marking_(false),
65 compacting_(false),
66 was_marked_incrementally_(false),
67 collect_maps_(FLAG_collect_maps),
68 flush_monomorphic_ics_(false),
69 tracer_(NULL),
70 migration_slots_buffer_(NULL),
71 heap_(NULL),
72 code_flusher_(NULL),
73 encountered_weak_maps_(NULL) { }
74
75
76 #ifdef DEBUG
77 class VerifyMarkingVisitor: public ObjectVisitor {
78 public:
VisitPointers(Object ** start,Object ** end)79 void VisitPointers(Object** start, Object** end) {
80 for (Object** current = start; current < end; current++) {
81 if ((*current)->IsHeapObject()) {
82 HeapObject* object = HeapObject::cast(*current);
83 ASSERT(HEAP->mark_compact_collector()->IsMarked(object));
84 }
85 }
86 }
87 };
88
89
VerifyMarking(Address bottom,Address top)90 static void VerifyMarking(Address bottom, Address top) {
91 VerifyMarkingVisitor visitor;
92 HeapObject* object;
93 Address next_object_must_be_here_or_later = bottom;
94
95 for (Address current = bottom;
96 current < top;
97 current += kPointerSize) {
98 object = HeapObject::FromAddress(current);
99 if (MarkCompactCollector::IsMarked(object)) {
100 ASSERT(current >= next_object_must_be_here_or_later);
101 object->Iterate(&visitor);
102 next_object_must_be_here_or_later = current + object->Size();
103 }
104 }
105 }
106
107
VerifyMarking(NewSpace * space)108 static void VerifyMarking(NewSpace* space) {
109 Address end = space->top();
110 NewSpacePageIterator it(space->bottom(), end);
111 // The bottom position is at the start of its page. Allows us to use
112 // page->area_start() as start of range on all pages.
113 ASSERT_EQ(space->bottom(),
114 NewSpacePage::FromAddress(space->bottom())->area_start());
115 while (it.has_next()) {
116 NewSpacePage* page = it.next();
117 Address limit = it.has_next() ? page->area_end() : end;
118 ASSERT(limit == end || !page->Contains(end));
119 VerifyMarking(page->area_start(), limit);
120 }
121 }
122
123
VerifyMarking(PagedSpace * space)124 static void VerifyMarking(PagedSpace* space) {
125 PageIterator it(space);
126
127 while (it.has_next()) {
128 Page* p = it.next();
129 VerifyMarking(p->area_start(), p->area_end());
130 }
131 }
132
133
VerifyMarking(Heap * heap)134 static void VerifyMarking(Heap* heap) {
135 VerifyMarking(heap->old_pointer_space());
136 VerifyMarking(heap->old_data_space());
137 VerifyMarking(heap->code_space());
138 VerifyMarking(heap->cell_space());
139 VerifyMarking(heap->map_space());
140 VerifyMarking(heap->new_space());
141
142 VerifyMarkingVisitor visitor;
143
144 LargeObjectIterator it(heap->lo_space());
145 for (HeapObject* obj = it.Next(); obj != NULL; obj = it.Next()) {
146 if (MarkCompactCollector::IsMarked(obj)) {
147 obj->Iterate(&visitor);
148 }
149 }
150
151 heap->IterateStrongRoots(&visitor, VISIT_ONLY_STRONG);
152 }
153
154
155 class VerifyEvacuationVisitor: public ObjectVisitor {
156 public:
VisitPointers(Object ** start,Object ** end)157 void VisitPointers(Object** start, Object** end) {
158 for (Object** current = start; current < end; current++) {
159 if ((*current)->IsHeapObject()) {
160 HeapObject* object = HeapObject::cast(*current);
161 CHECK(!MarkCompactCollector::IsOnEvacuationCandidate(object));
162 }
163 }
164 }
165 };
166
167
VerifyEvacuation(Address bottom,Address top)168 static void VerifyEvacuation(Address bottom, Address top) {
169 VerifyEvacuationVisitor visitor;
170 HeapObject* object;
171 Address next_object_must_be_here_or_later = bottom;
172
173 for (Address current = bottom;
174 current < top;
175 current += kPointerSize) {
176 object = HeapObject::FromAddress(current);
177 if (MarkCompactCollector::IsMarked(object)) {
178 ASSERT(current >= next_object_must_be_here_or_later);
179 object->Iterate(&visitor);
180 next_object_must_be_here_or_later = current + object->Size();
181 }
182 }
183 }
184
185
VerifyEvacuation(NewSpace * space)186 static void VerifyEvacuation(NewSpace* space) {
187 NewSpacePageIterator it(space->bottom(), space->top());
188 VerifyEvacuationVisitor visitor;
189
190 while (it.has_next()) {
191 NewSpacePage* page = it.next();
192 Address current = page->area_start();
193 Address limit = it.has_next() ? page->area_end() : space->top();
194 ASSERT(limit == space->top() || !page->Contains(space->top()));
195 while (current < limit) {
196 HeapObject* object = HeapObject::FromAddress(current);
197 object->Iterate(&visitor);
198 current += object->Size();
199 }
200 }
201 }
202
203
VerifyEvacuation(PagedSpace * space)204 static void VerifyEvacuation(PagedSpace* space) {
205 PageIterator it(space);
206
207 while (it.has_next()) {
208 Page* p = it.next();
209 if (p->IsEvacuationCandidate()) continue;
210 VerifyEvacuation(p->area_start(), p->area_end());
211 }
212 }
213
214
VerifyEvacuation(Heap * heap)215 static void VerifyEvacuation(Heap* heap) {
216 VerifyEvacuation(heap->old_pointer_space());
217 VerifyEvacuation(heap->old_data_space());
218 VerifyEvacuation(heap->code_space());
219 VerifyEvacuation(heap->cell_space());
220 VerifyEvacuation(heap->map_space());
221 VerifyEvacuation(heap->new_space());
222
223 VerifyEvacuationVisitor visitor;
224 heap->IterateStrongRoots(&visitor, VISIT_ALL);
225 }
226 #endif
227
228
AddEvacuationCandidate(Page * p)229 void MarkCompactCollector::AddEvacuationCandidate(Page* p) {
230 p->MarkEvacuationCandidate();
231 evacuation_candidates_.Add(p);
232 }
233
234
TraceFragmentation(PagedSpace * space)235 static void TraceFragmentation(PagedSpace* space) {
236 int number_of_pages = space->CountTotalPages();
237 intptr_t reserved = (number_of_pages * space->AreaSize());
238 intptr_t free = reserved - space->SizeOfObjects();
239 PrintF("[%s]: %d pages, %d (%.1f%%) free\n",
240 AllocationSpaceName(space->identity()),
241 number_of_pages,
242 static_cast<int>(free),
243 static_cast<double>(free) * 100 / reserved);
244 }
245
246
StartCompaction(CompactionMode mode)247 bool MarkCompactCollector::StartCompaction(CompactionMode mode) {
248 if (!compacting_) {
249 ASSERT(evacuation_candidates_.length() == 0);
250
251 CollectEvacuationCandidates(heap()->old_pointer_space());
252 CollectEvacuationCandidates(heap()->old_data_space());
253
254 if (FLAG_compact_code_space && mode == NON_INCREMENTAL_COMPACTION) {
255 CollectEvacuationCandidates(heap()->code_space());
256 } else if (FLAG_trace_fragmentation) {
257 TraceFragmentation(heap()->code_space());
258 }
259
260 if (FLAG_trace_fragmentation) {
261 TraceFragmentation(heap()->map_space());
262 TraceFragmentation(heap()->cell_space());
263 }
264
265 heap()->old_pointer_space()->EvictEvacuationCandidatesFromFreeLists();
266 heap()->old_data_space()->EvictEvacuationCandidatesFromFreeLists();
267 heap()->code_space()->EvictEvacuationCandidatesFromFreeLists();
268
269 compacting_ = evacuation_candidates_.length() > 0;
270 }
271
272 return compacting_;
273 }
274
275
CollectGarbage()276 void MarkCompactCollector::CollectGarbage() {
277 // Make sure that Prepare() has been called. The individual steps below will
278 // update the state as they proceed.
279 ASSERT(state_ == PREPARE_GC);
280 ASSERT(encountered_weak_maps_ == Smi::FromInt(0));
281
282 MarkLiveObjects();
283 ASSERT(heap_->incremental_marking()->IsStopped());
284
285 if (collect_maps_) ClearNonLiveTransitions();
286
287 ClearWeakMaps();
288
289 #ifdef DEBUG
290 if (FLAG_verify_heap) {
291 VerifyMarking(heap_);
292 }
293 #endif
294
295 SweepSpaces();
296
297 if (!collect_maps_) ReattachInitialMaps();
298
299 heap_->isolate()->inner_pointer_to_code_cache()->Flush();
300
301 Finish();
302
303 tracer_ = NULL;
304 }
305
306
307 #ifdef DEBUG
VerifyMarkbitsAreClean(PagedSpace * space)308 void MarkCompactCollector::VerifyMarkbitsAreClean(PagedSpace* space) {
309 PageIterator it(space);
310
311 while (it.has_next()) {
312 Page* p = it.next();
313 CHECK(p->markbits()->IsClean());
314 CHECK_EQ(0, p->LiveBytes());
315 }
316 }
317
VerifyMarkbitsAreClean(NewSpace * space)318 void MarkCompactCollector::VerifyMarkbitsAreClean(NewSpace* space) {
319 NewSpacePageIterator it(space->bottom(), space->top());
320
321 while (it.has_next()) {
322 NewSpacePage* p = it.next();
323 CHECK(p->markbits()->IsClean());
324 CHECK_EQ(0, p->LiveBytes());
325 }
326 }
327
VerifyMarkbitsAreClean()328 void MarkCompactCollector::VerifyMarkbitsAreClean() {
329 VerifyMarkbitsAreClean(heap_->old_pointer_space());
330 VerifyMarkbitsAreClean(heap_->old_data_space());
331 VerifyMarkbitsAreClean(heap_->code_space());
332 VerifyMarkbitsAreClean(heap_->cell_space());
333 VerifyMarkbitsAreClean(heap_->map_space());
334 VerifyMarkbitsAreClean(heap_->new_space());
335
336 LargeObjectIterator it(heap_->lo_space());
337 for (HeapObject* obj = it.Next(); obj != NULL; obj = it.Next()) {
338 MarkBit mark_bit = Marking::MarkBitFrom(obj);
339 ASSERT(Marking::IsWhite(mark_bit));
340 }
341 }
342 #endif
343
344
ClearMarkbitsInPagedSpace(PagedSpace * space)345 static void ClearMarkbitsInPagedSpace(PagedSpace* space) {
346 PageIterator it(space);
347
348 while (it.has_next()) {
349 Bitmap::Clear(it.next());
350 }
351 }
352
353
ClearMarkbitsInNewSpace(NewSpace * space)354 static void ClearMarkbitsInNewSpace(NewSpace* space) {
355 NewSpacePageIterator it(space->ToSpaceStart(), space->ToSpaceEnd());
356
357 while (it.has_next()) {
358 Bitmap::Clear(it.next());
359 }
360 }
361
362
ClearMarkbits()363 void MarkCompactCollector::ClearMarkbits() {
364 ClearMarkbitsInPagedSpace(heap_->code_space());
365 ClearMarkbitsInPagedSpace(heap_->map_space());
366 ClearMarkbitsInPagedSpace(heap_->old_pointer_space());
367 ClearMarkbitsInPagedSpace(heap_->old_data_space());
368 ClearMarkbitsInPagedSpace(heap_->cell_space());
369 ClearMarkbitsInNewSpace(heap_->new_space());
370
371 LargeObjectIterator it(heap_->lo_space());
372 for (HeapObject* obj = it.Next(); obj != NULL; obj = it.Next()) {
373 MarkBit mark_bit = Marking::MarkBitFrom(obj);
374 mark_bit.Clear();
375 mark_bit.Next().Clear();
376 }
377 }
378
379
TransferMark(Address old_start,Address new_start)380 bool Marking::TransferMark(Address old_start, Address new_start) {
381 // This is only used when resizing an object.
382 ASSERT(MemoryChunk::FromAddress(old_start) ==
383 MemoryChunk::FromAddress(new_start));
384
385 // If the mark doesn't move, we don't check the color of the object.
386 // It doesn't matter whether the object is black, since it hasn't changed
387 // size, so the adjustment to the live data count will be zero anyway.
388 if (old_start == new_start) return false;
389
390 MarkBit new_mark_bit = MarkBitFrom(new_start);
391 MarkBit old_mark_bit = MarkBitFrom(old_start);
392
393 #ifdef DEBUG
394 ObjectColor old_color = Color(old_mark_bit);
395 #endif
396
397 if (Marking::IsBlack(old_mark_bit)) {
398 old_mark_bit.Clear();
399 ASSERT(IsWhite(old_mark_bit));
400 Marking::MarkBlack(new_mark_bit);
401 return true;
402 } else if (Marking::IsGrey(old_mark_bit)) {
403 ASSERT(heap_->incremental_marking()->IsMarking());
404 old_mark_bit.Clear();
405 old_mark_bit.Next().Clear();
406 ASSERT(IsWhite(old_mark_bit));
407 heap_->incremental_marking()->WhiteToGreyAndPush(
408 HeapObject::FromAddress(new_start), new_mark_bit);
409 heap_->incremental_marking()->RestartIfNotMarking();
410 }
411
412 #ifdef DEBUG
413 ObjectColor new_color = Color(new_mark_bit);
414 ASSERT(new_color == old_color);
415 #endif
416
417 return false;
418 }
419
420
AllocationSpaceName(AllocationSpace space)421 const char* AllocationSpaceName(AllocationSpace space) {
422 switch (space) {
423 case NEW_SPACE: return "NEW_SPACE";
424 case OLD_POINTER_SPACE: return "OLD_POINTER_SPACE";
425 case OLD_DATA_SPACE: return "OLD_DATA_SPACE";
426 case CODE_SPACE: return "CODE_SPACE";
427 case MAP_SPACE: return "MAP_SPACE";
428 case CELL_SPACE: return "CELL_SPACE";
429 case LO_SPACE: return "LO_SPACE";
430 default:
431 UNREACHABLE();
432 }
433
434 return NULL;
435 }
436
437
438 // Returns zero for pages that have so little fragmentation that it is not
439 // worth defragmenting them. Otherwise a positive integer that gives an
440 // estimate of fragmentation on an arbitrary scale.
FreeListFragmentation(PagedSpace * space,Page * p)441 static int FreeListFragmentation(PagedSpace* space, Page* p) {
442 // If page was not swept then there are no free list items on it.
443 if (!p->WasSwept()) {
444 if (FLAG_trace_fragmentation) {
445 PrintF("%p [%s]: %d bytes live (unswept)\n",
446 reinterpret_cast<void*>(p),
447 AllocationSpaceName(space->identity()),
448 p->LiveBytes());
449 }
450 return 0;
451 }
452
453 FreeList::SizeStats sizes;
454 space->CountFreeListItems(p, &sizes);
455
456 intptr_t ratio;
457 intptr_t ratio_threshold;
458 intptr_t area_size = space->AreaSize();
459 if (space->identity() == CODE_SPACE) {
460 ratio = (sizes.medium_size_ * 10 + sizes.large_size_ * 2) * 100 /
461 area_size;
462 ratio_threshold = 10;
463 } else {
464 ratio = (sizes.small_size_ * 5 + sizes.medium_size_) * 100 /
465 area_size;
466 ratio_threshold = 15;
467 }
468
469 if (FLAG_trace_fragmentation) {
470 PrintF("%p [%s]: %d (%.2f%%) %d (%.2f%%) %d (%.2f%%) %d (%.2f%%) %s\n",
471 reinterpret_cast<void*>(p),
472 AllocationSpaceName(space->identity()),
473 static_cast<int>(sizes.small_size_),
474 static_cast<double>(sizes.small_size_ * 100) /
475 area_size,
476 static_cast<int>(sizes.medium_size_),
477 static_cast<double>(sizes.medium_size_ * 100) /
478 area_size,
479 static_cast<int>(sizes.large_size_),
480 static_cast<double>(sizes.large_size_ * 100) /
481 area_size,
482 static_cast<int>(sizes.huge_size_),
483 static_cast<double>(sizes.huge_size_ * 100) /
484 area_size,
485 (ratio > ratio_threshold) ? "[fragmented]" : "");
486 }
487
488 if (FLAG_always_compact && sizes.Total() != area_size) {
489 return 1;
490 }
491
492 if (ratio <= ratio_threshold) return 0; // Not fragmented.
493
494 return static_cast<int>(ratio - ratio_threshold);
495 }
496
497
CollectEvacuationCandidates(PagedSpace * space)498 void MarkCompactCollector::CollectEvacuationCandidates(PagedSpace* space) {
499 ASSERT(space->identity() == OLD_POINTER_SPACE ||
500 space->identity() == OLD_DATA_SPACE ||
501 space->identity() == CODE_SPACE);
502
503 int number_of_pages = space->CountTotalPages();
504
505 const int kMaxMaxEvacuationCandidates = 1000;
506 int max_evacuation_candidates = Min(
507 kMaxMaxEvacuationCandidates,
508 static_cast<int>(sqrt(static_cast<double>(number_of_pages / 2)) + 1));
509
510 if (FLAG_stress_compaction || FLAG_always_compact) {
511 max_evacuation_candidates = kMaxMaxEvacuationCandidates;
512 }
513
514 class Candidate {
515 public:
516 Candidate() : fragmentation_(0), page_(NULL) { }
517 Candidate(int f, Page* p) : fragmentation_(f), page_(p) { }
518
519 int fragmentation() { return fragmentation_; }
520 Page* page() { return page_; }
521
522 private:
523 int fragmentation_;
524 Page* page_;
525 };
526
527 enum CompactionMode {
528 COMPACT_FREE_LISTS,
529 REDUCE_MEMORY_FOOTPRINT
530 };
531
532 CompactionMode mode = COMPACT_FREE_LISTS;
533
534 intptr_t reserved = number_of_pages * space->AreaSize();
535 intptr_t over_reserved = reserved - space->SizeOfObjects();
536 static const intptr_t kFreenessThreshold = 50;
537
538 if (over_reserved >= 2 * space->AreaSize() &&
539 reduce_memory_footprint_) {
540 mode = REDUCE_MEMORY_FOOTPRINT;
541
542 // We expect that empty pages are easier to compact so slightly bump the
543 // limit.
544 max_evacuation_candidates += 2;
545
546 if (FLAG_trace_fragmentation) {
547 PrintF("Estimated over reserved memory: %.1f MB (setting threshold %d)\n",
548 static_cast<double>(over_reserved) / MB,
549 static_cast<int>(kFreenessThreshold));
550 }
551 }
552
553 intptr_t estimated_release = 0;
554
555 Candidate candidates[kMaxMaxEvacuationCandidates];
556
557 int count = 0;
558 int fragmentation = 0;
559 Candidate* least = NULL;
560
561 PageIterator it(space);
562 if (it.has_next()) it.next(); // Never compact the first page.
563
564 while (it.has_next()) {
565 Page* p = it.next();
566 p->ClearEvacuationCandidate();
567
568 if (FLAG_stress_compaction) {
569 int counter = space->heap()->ms_count();
570 uintptr_t page_number = reinterpret_cast<uintptr_t>(p) >> kPageSizeBits;
571 if ((counter & 1) == (page_number & 1)) fragmentation = 1;
572 } else if (mode == REDUCE_MEMORY_FOOTPRINT) {
573 // Don't try to release too many pages.
574 if (estimated_release >= ((over_reserved * 3) / 4)) {
575 continue;
576 }
577
578 intptr_t free_bytes = 0;
579
580 if (!p->WasSwept()) {
581 free_bytes = (p->area_size() - p->LiveBytes());
582 } else {
583 FreeList::SizeStats sizes;
584 space->CountFreeListItems(p, &sizes);
585 free_bytes = sizes.Total();
586 }
587
588 int free_pct = static_cast<int>(free_bytes * 100) / p->area_size();
589
590 if (free_pct >= kFreenessThreshold) {
591 estimated_release += 2 * p->area_size() - free_bytes;
592 fragmentation = free_pct;
593 } else {
594 fragmentation = 0;
595 }
596
597 if (FLAG_trace_fragmentation) {
598 PrintF("%p [%s]: %d (%.2f%%) free %s\n",
599 reinterpret_cast<void*>(p),
600 AllocationSpaceName(space->identity()),
601 static_cast<int>(free_bytes),
602 static_cast<double>(free_bytes * 100) / p->area_size(),
603 (fragmentation > 0) ? "[fragmented]" : "");
604 }
605 } else {
606 fragmentation = FreeListFragmentation(space, p);
607 }
608
609 if (fragmentation != 0) {
610 if (count < max_evacuation_candidates) {
611 candidates[count++] = Candidate(fragmentation, p);
612 } else {
613 if (least == NULL) {
614 for (int i = 0; i < max_evacuation_candidates; i++) {
615 if (least == NULL ||
616 candidates[i].fragmentation() < least->fragmentation()) {
617 least = candidates + i;
618 }
619 }
620 }
621 if (least->fragmentation() < fragmentation) {
622 *least = Candidate(fragmentation, p);
623 least = NULL;
624 }
625 }
626 }
627 }
628
629 for (int i = 0; i < count; i++) {
630 AddEvacuationCandidate(candidates[i].page());
631 }
632
633 if (count > 0 && FLAG_trace_fragmentation) {
634 PrintF("Collected %d evacuation candidates for space %s\n",
635 count,
636 AllocationSpaceName(space->identity()));
637 }
638 }
639
640
AbortCompaction()641 void MarkCompactCollector::AbortCompaction() {
642 if (compacting_) {
643 int npages = evacuation_candidates_.length();
644 for (int i = 0; i < npages; i++) {
645 Page* p = evacuation_candidates_[i];
646 slots_buffer_allocator_.DeallocateChain(p->slots_buffer_address());
647 p->ClearEvacuationCandidate();
648 p->ClearFlag(MemoryChunk::RESCAN_ON_EVACUATION);
649 }
650 compacting_ = false;
651 evacuation_candidates_.Rewind(0);
652 invalidated_code_.Rewind(0);
653 }
654 ASSERT_EQ(0, evacuation_candidates_.length());
655 }
656
657
Prepare(GCTracer * tracer)658 void MarkCompactCollector::Prepare(GCTracer* tracer) {
659 was_marked_incrementally_ = heap()->incremental_marking()->IsMarking();
660
661 // Disable collection of maps if incremental marking is enabled.
662 // Map collection algorithm relies on a special map transition tree traversal
663 // order which is not implemented for incremental marking.
664 collect_maps_ = FLAG_collect_maps && !was_marked_incrementally_;
665
666 // Monomorphic ICs are preserved when possible, but need to be flushed
667 // when they might be keeping a Context alive, or when the heap is about
668 // to be serialized.
669 flush_monomorphic_ics_ =
670 heap()->isolate()->context_exit_happened() || Serializer::enabled();
671
672 // Rather than passing the tracer around we stash it in a static member
673 // variable.
674 tracer_ = tracer;
675
676 #ifdef DEBUG
677 ASSERT(state_ == IDLE);
678 state_ = PREPARE_GC;
679 #endif
680
681 ASSERT(!FLAG_never_compact || !FLAG_always_compact);
682
683 if (collect_maps_) CreateBackPointers();
684 #ifdef ENABLE_GDB_JIT_INTERFACE
685 if (FLAG_gdbjit) {
686 // If GDBJIT interface is active disable compaction.
687 compacting_collection_ = false;
688 }
689 #endif
690
691 // Clear marking bits if incremental marking is aborted.
692 if (was_marked_incrementally_ && abort_incremental_marking_) {
693 heap()->incremental_marking()->Abort();
694 ClearMarkbits();
695 AbortCompaction();
696 was_marked_incrementally_ = false;
697 }
698
699 // Don't start compaction if we are in the middle of incremental
700 // marking cycle. We did not collect any slots.
701 if (!FLAG_never_compact && !was_marked_incrementally_) {
702 StartCompaction(NON_INCREMENTAL_COMPACTION);
703 }
704
705 PagedSpaces spaces;
706 for (PagedSpace* space = spaces.next();
707 space != NULL;
708 space = spaces.next()) {
709 space->PrepareForMarkCompact();
710 }
711
712 #ifdef DEBUG
713 if (!was_marked_incrementally_ && FLAG_verify_heap) {
714 VerifyMarkbitsAreClean();
715 }
716 #endif
717 }
718
719
Finish()720 void MarkCompactCollector::Finish() {
721 #ifdef DEBUG
722 ASSERT(state_ == SWEEP_SPACES || state_ == RELOCATE_OBJECTS);
723 state_ = IDLE;
724 #endif
725 // The stub cache is not traversed during GC; clear the cache to
726 // force lazy re-initialization of it. This must be done after the
727 // GC, because it relies on the new address of certain old space
728 // objects (empty string, illegal builtin).
729 heap()->isolate()->stub_cache()->Clear();
730
731 heap()->external_string_table_.CleanUp();
732 }
733
734
735 // -------------------------------------------------------------------------
736 // Phase 1: tracing and marking live objects.
737 // before: all objects are in normal state.
738 // after: a live object's map pointer is marked as '00'.
739
740 // Marking all live objects in the heap as part of mark-sweep or mark-compact
741 // collection. Before marking, all objects are in their normal state. After
742 // marking, live objects' map pointers are marked indicating that the object
743 // has been found reachable.
744 //
745 // The marking algorithm is a (mostly) depth-first (because of possible stack
746 // overflow) traversal of the graph of objects reachable from the roots. It
747 // uses an explicit stack of pointers rather than recursion. The young
748 // generation's inactive ('from') space is used as a marking stack. The
749 // objects in the marking stack are the ones that have been reached and marked
750 // but their children have not yet been visited.
751 //
752 // The marking stack can overflow during traversal. In that case, we set an
753 // overflow flag. When the overflow flag is set, we continue marking objects
754 // reachable from the objects on the marking stack, but no longer push them on
755 // the marking stack. Instead, we mark them as both marked and overflowed.
756 // When the stack is in the overflowed state, objects marked as overflowed
757 // have been reached and marked but their children have not been visited yet.
758 // After emptying the marking stack, we clear the overflow flag and traverse
759 // the heap looking for objects marked as overflowed, push them on the stack,
760 // and continue with marking. This process repeats until all reachable
761 // objects have been marked.
762
763 class CodeFlusher {
764 public:
CodeFlusher(Isolate * isolate)765 explicit CodeFlusher(Isolate* isolate)
766 : isolate_(isolate),
767 jsfunction_candidates_head_(NULL),
768 shared_function_info_candidates_head_(NULL) {}
769
AddCandidate(SharedFunctionInfo * shared_info)770 void AddCandidate(SharedFunctionInfo* shared_info) {
771 SetNextCandidate(shared_info, shared_function_info_candidates_head_);
772 shared_function_info_candidates_head_ = shared_info;
773 }
774
AddCandidate(JSFunction * function)775 void AddCandidate(JSFunction* function) {
776 ASSERT(function->code() == function->shared()->code());
777
778 SetNextCandidate(function, jsfunction_candidates_head_);
779 jsfunction_candidates_head_ = function;
780 }
781
ProcessCandidates()782 void ProcessCandidates() {
783 ProcessSharedFunctionInfoCandidates();
784 ProcessJSFunctionCandidates();
785 }
786
787 private:
ProcessJSFunctionCandidates()788 void ProcessJSFunctionCandidates() {
789 Code* lazy_compile = isolate_->builtins()->builtin(Builtins::kLazyCompile);
790
791 JSFunction* candidate = jsfunction_candidates_head_;
792 JSFunction* next_candidate;
793 while (candidate != NULL) {
794 next_candidate = GetNextCandidate(candidate);
795
796 SharedFunctionInfo* shared = candidate->shared();
797
798 Code* code = shared->code();
799 MarkBit code_mark = Marking::MarkBitFrom(code);
800 if (!code_mark.Get()) {
801 shared->set_code(lazy_compile);
802 candidate->set_code(lazy_compile);
803 } else {
804 candidate->set_code(shared->code());
805 }
806
807 // We are in the middle of a GC cycle so the write barrier in the code
808 // setter did not record the slot update and we have to do that manually.
809 Address slot = candidate->address() + JSFunction::kCodeEntryOffset;
810 Code* target = Code::cast(Code::GetObjectFromEntryAddress(slot));
811 isolate_->heap()->mark_compact_collector()->
812 RecordCodeEntrySlot(slot, target);
813
814 RecordSharedFunctionInfoCodeSlot(shared);
815
816 candidate = next_candidate;
817 }
818
819 jsfunction_candidates_head_ = NULL;
820 }
821
822
ProcessSharedFunctionInfoCandidates()823 void ProcessSharedFunctionInfoCandidates() {
824 Code* lazy_compile = isolate_->builtins()->builtin(Builtins::kLazyCompile);
825
826 SharedFunctionInfo* candidate = shared_function_info_candidates_head_;
827 SharedFunctionInfo* next_candidate;
828 while (candidate != NULL) {
829 next_candidate = GetNextCandidate(candidate);
830 SetNextCandidate(candidate, NULL);
831
832 Code* code = candidate->code();
833 MarkBit code_mark = Marking::MarkBitFrom(code);
834 if (!code_mark.Get()) {
835 candidate->set_code(lazy_compile);
836 }
837
838 RecordSharedFunctionInfoCodeSlot(candidate);
839
840 candidate = next_candidate;
841 }
842
843 shared_function_info_candidates_head_ = NULL;
844 }
845
RecordSharedFunctionInfoCodeSlot(SharedFunctionInfo * shared)846 void RecordSharedFunctionInfoCodeSlot(SharedFunctionInfo* shared) {
847 Object** slot = HeapObject::RawField(shared,
848 SharedFunctionInfo::kCodeOffset);
849 isolate_->heap()->mark_compact_collector()->
850 RecordSlot(slot, slot, HeapObject::cast(*slot));
851 }
852
GetNextCandidateField(JSFunction * candidate)853 static JSFunction** GetNextCandidateField(JSFunction* candidate) {
854 return reinterpret_cast<JSFunction**>(
855 candidate->address() + JSFunction::kCodeEntryOffset);
856 }
857
GetNextCandidate(JSFunction * candidate)858 static JSFunction* GetNextCandidate(JSFunction* candidate) {
859 return *GetNextCandidateField(candidate);
860 }
861
SetNextCandidate(JSFunction * candidate,JSFunction * next_candidate)862 static void SetNextCandidate(JSFunction* candidate,
863 JSFunction* next_candidate) {
864 *GetNextCandidateField(candidate) = next_candidate;
865 }
866
GetNextCandidateField(SharedFunctionInfo * candidate)867 static SharedFunctionInfo** GetNextCandidateField(
868 SharedFunctionInfo* candidate) {
869 Code* code = candidate->code();
870 return reinterpret_cast<SharedFunctionInfo**>(
871 code->address() + Code::kGCMetadataOffset);
872 }
873
GetNextCandidate(SharedFunctionInfo * candidate)874 static SharedFunctionInfo* GetNextCandidate(SharedFunctionInfo* candidate) {
875 return reinterpret_cast<SharedFunctionInfo*>(
876 candidate->code()->gc_metadata());
877 }
878
SetNextCandidate(SharedFunctionInfo * candidate,SharedFunctionInfo * next_candidate)879 static void SetNextCandidate(SharedFunctionInfo* candidate,
880 SharedFunctionInfo* next_candidate) {
881 candidate->code()->set_gc_metadata(next_candidate);
882 }
883
884 Isolate* isolate_;
885 JSFunction* jsfunction_candidates_head_;
886 SharedFunctionInfo* shared_function_info_candidates_head_;
887
888 DISALLOW_COPY_AND_ASSIGN(CodeFlusher);
889 };
890
891
~MarkCompactCollector()892 MarkCompactCollector::~MarkCompactCollector() {
893 if (code_flusher_ != NULL) {
894 delete code_flusher_;
895 code_flusher_ = NULL;
896 }
897 }
898
899
ShortCircuitConsString(Object ** p)900 static inline HeapObject* ShortCircuitConsString(Object** p) {
901 // Optimization: If the heap object pointed to by p is a non-symbol
902 // cons string whose right substring is HEAP->empty_string, update
903 // it in place to its left substring. Return the updated value.
904 //
905 // Here we assume that if we change *p, we replace it with a heap object
906 // (i.e., the left substring of a cons string is always a heap object).
907 //
908 // The check performed is:
909 // object->IsConsString() && !object->IsSymbol() &&
910 // (ConsString::cast(object)->second() == HEAP->empty_string())
911 // except the maps for the object and its possible substrings might be
912 // marked.
913 HeapObject* object = HeapObject::cast(*p);
914 if (!FLAG_clever_optimizations) return object;
915 Map* map = object->map();
916 InstanceType type = map->instance_type();
917 if ((type & kShortcutTypeMask) != kShortcutTypeTag) return object;
918
919 Object* second = reinterpret_cast<ConsString*>(object)->unchecked_second();
920 Heap* heap = map->GetHeap();
921 if (second != heap->empty_string()) {
922 return object;
923 }
924
925 // Since we don't have the object's start, it is impossible to update the
926 // page dirty marks. Therefore, we only replace the string with its left
927 // substring when page dirty marks do not change.
928 Object* first = reinterpret_cast<ConsString*>(object)->unchecked_first();
929 if (!heap->InNewSpace(object) && heap->InNewSpace(first)) return object;
930
931 *p = first;
932 return HeapObject::cast(first);
933 }
934
935
936 class StaticMarkingVisitor : public StaticVisitorBase {
937 public:
IterateBody(Map * map,HeapObject * obj)938 static inline void IterateBody(Map* map, HeapObject* obj) {
939 table_.GetVisitor(map)(map, obj);
940 }
941
Initialize()942 static void Initialize() {
943 table_.Register(kVisitShortcutCandidate,
944 &FixedBodyVisitor<StaticMarkingVisitor,
945 ConsString::BodyDescriptor,
946 void>::Visit);
947
948 table_.Register(kVisitConsString,
949 &FixedBodyVisitor<StaticMarkingVisitor,
950 ConsString::BodyDescriptor,
951 void>::Visit);
952
953 table_.Register(kVisitSlicedString,
954 &FixedBodyVisitor<StaticMarkingVisitor,
955 SlicedString::BodyDescriptor,
956 void>::Visit);
957
958 table_.Register(kVisitFixedArray,
959 &FlexibleBodyVisitor<StaticMarkingVisitor,
960 FixedArray::BodyDescriptor,
961 void>::Visit);
962
963 table_.Register(kVisitGlobalContext, &VisitGlobalContext);
964
965 table_.Register(kVisitFixedDoubleArray, DataObjectVisitor::Visit);
966
967 table_.Register(kVisitByteArray, &DataObjectVisitor::Visit);
968 table_.Register(kVisitFreeSpace, &DataObjectVisitor::Visit);
969 table_.Register(kVisitSeqAsciiString, &DataObjectVisitor::Visit);
970 table_.Register(kVisitSeqTwoByteString, &DataObjectVisitor::Visit);
971
972 table_.Register(kVisitJSWeakMap, &VisitJSWeakMap);
973
974 table_.Register(kVisitOddball,
975 &FixedBodyVisitor<StaticMarkingVisitor,
976 Oddball::BodyDescriptor,
977 void>::Visit);
978 table_.Register(kVisitMap,
979 &FixedBodyVisitor<StaticMarkingVisitor,
980 Map::BodyDescriptor,
981 void>::Visit);
982
983 table_.Register(kVisitCode, &VisitCode);
984
985 table_.Register(kVisitSharedFunctionInfo,
986 &VisitSharedFunctionInfoAndFlushCode);
987
988 table_.Register(kVisitJSFunction,
989 &VisitJSFunctionAndFlushCode);
990
991 table_.Register(kVisitJSRegExp,
992 &VisitRegExpAndFlushCode);
993
994 table_.Register(kVisitPropertyCell,
995 &FixedBodyVisitor<StaticMarkingVisitor,
996 JSGlobalPropertyCell::BodyDescriptor,
997 void>::Visit);
998
999 table_.RegisterSpecializations<DataObjectVisitor,
1000 kVisitDataObject,
1001 kVisitDataObjectGeneric>();
1002
1003 table_.RegisterSpecializations<JSObjectVisitor,
1004 kVisitJSObject,
1005 kVisitJSObjectGeneric>();
1006
1007 table_.RegisterSpecializations<StructObjectVisitor,
1008 kVisitStruct,
1009 kVisitStructGeneric>();
1010 }
1011
INLINE(static void VisitPointer (Heap * heap,Object ** p))1012 INLINE(static void VisitPointer(Heap* heap, Object** p)) {
1013 MarkObjectByPointer(heap->mark_compact_collector(), p, p);
1014 }
1015
INLINE(static void VisitPointers (Heap * heap,Object ** start,Object ** end))1016 INLINE(static void VisitPointers(Heap* heap, Object** start, Object** end)) {
1017 // Mark all objects pointed to in [start, end).
1018 const int kMinRangeForMarkingRecursion = 64;
1019 if (end - start >= kMinRangeForMarkingRecursion) {
1020 if (VisitUnmarkedObjects(heap, start, end)) return;
1021 // We are close to a stack overflow, so just mark the objects.
1022 }
1023 MarkCompactCollector* collector = heap->mark_compact_collector();
1024 for (Object** p = start; p < end; p++) {
1025 MarkObjectByPointer(collector, start, p);
1026 }
1027 }
1028
VisitGlobalPropertyCell(Heap * heap,RelocInfo * rinfo)1029 static void VisitGlobalPropertyCell(Heap* heap, RelocInfo* rinfo) {
1030 ASSERT(rinfo->rmode() == RelocInfo::GLOBAL_PROPERTY_CELL);
1031 JSGlobalPropertyCell* cell =
1032 JSGlobalPropertyCell::cast(rinfo->target_cell());
1033 MarkBit mark = Marking::MarkBitFrom(cell);
1034 heap->mark_compact_collector()->MarkObject(cell, mark);
1035 }
1036
VisitEmbeddedPointer(Heap * heap,RelocInfo * rinfo)1037 static inline void VisitEmbeddedPointer(Heap* heap, RelocInfo* rinfo) {
1038 ASSERT(rinfo->rmode() == RelocInfo::EMBEDDED_OBJECT);
1039 // TODO(mstarzinger): We do not short-circuit cons strings here, verify
1040 // that there can be no such embedded pointers and add assertion here.
1041 HeapObject* object = HeapObject::cast(rinfo->target_object());
1042 heap->mark_compact_collector()->RecordRelocSlot(rinfo, object);
1043 MarkBit mark = Marking::MarkBitFrom(object);
1044 heap->mark_compact_collector()->MarkObject(object, mark);
1045 }
1046
VisitCodeTarget(Heap * heap,RelocInfo * rinfo)1047 static inline void VisitCodeTarget(Heap* heap, RelocInfo* rinfo) {
1048 ASSERT(RelocInfo::IsCodeTarget(rinfo->rmode()));
1049 Code* target = Code::GetCodeFromTargetAddress(rinfo->target_address());
1050 if (FLAG_cleanup_code_caches_at_gc && target->is_inline_cache_stub()
1051 && (target->ic_state() == MEGAMORPHIC ||
1052 heap->mark_compact_collector()->flush_monomorphic_ics_ ||
1053 target->ic_age() != heap->global_ic_age())) {
1054 IC::Clear(rinfo->pc());
1055 target = Code::GetCodeFromTargetAddress(rinfo->target_address());
1056 }
1057 MarkBit code_mark = Marking::MarkBitFrom(target);
1058 heap->mark_compact_collector()->MarkObject(target, code_mark);
1059 heap->mark_compact_collector()->RecordRelocSlot(rinfo, target);
1060 }
1061
VisitDebugTarget(Heap * heap,RelocInfo * rinfo)1062 static inline void VisitDebugTarget(Heap* heap, RelocInfo* rinfo) {
1063 ASSERT((RelocInfo::IsJSReturn(rinfo->rmode()) &&
1064 rinfo->IsPatchedReturnSequence()) ||
1065 (RelocInfo::IsDebugBreakSlot(rinfo->rmode()) &&
1066 rinfo->IsPatchedDebugBreakSlotSequence()));
1067 Code* target = Code::GetCodeFromTargetAddress(rinfo->call_address());
1068 MarkBit code_mark = Marking::MarkBitFrom(target);
1069 heap->mark_compact_collector()->MarkObject(target, code_mark);
1070 heap->mark_compact_collector()->RecordRelocSlot(rinfo, target);
1071 }
1072
1073 // Mark object pointed to by p.
INLINE(static void MarkObjectByPointer (MarkCompactCollector * collector,Object ** anchor_slot,Object ** p))1074 INLINE(static void MarkObjectByPointer(MarkCompactCollector* collector,
1075 Object** anchor_slot,
1076 Object** p)) {
1077 if (!(*p)->IsHeapObject()) return;
1078 HeapObject* object = ShortCircuitConsString(p);
1079 collector->RecordSlot(anchor_slot, p, object);
1080 MarkBit mark = Marking::MarkBitFrom(object);
1081 collector->MarkObject(object, mark);
1082 }
1083
1084
1085 // Visit an unmarked object.
INLINE(static void VisitUnmarkedObject (MarkCompactCollector * collector,HeapObject * obj))1086 INLINE(static void VisitUnmarkedObject(MarkCompactCollector* collector,
1087 HeapObject* obj)) {
1088 #ifdef DEBUG
1089 ASSERT(Isolate::Current()->heap()->Contains(obj));
1090 ASSERT(!HEAP->mark_compact_collector()->IsMarked(obj));
1091 #endif
1092 Map* map = obj->map();
1093 Heap* heap = obj->GetHeap();
1094 MarkBit mark = Marking::MarkBitFrom(obj);
1095 heap->mark_compact_collector()->SetMark(obj, mark);
1096 // Mark the map pointer and the body.
1097 MarkBit map_mark = Marking::MarkBitFrom(map);
1098 heap->mark_compact_collector()->MarkObject(map, map_mark);
1099 IterateBody(map, obj);
1100 }
1101
1102 // Visit all unmarked objects pointed to by [start, end).
1103 // Returns false if the operation fails (lack of stack space).
VisitUnmarkedObjects(Heap * heap,Object ** start,Object ** end)1104 static inline bool VisitUnmarkedObjects(Heap* heap,
1105 Object** start,
1106 Object** end) {
1107 // Return false is we are close to the stack limit.
1108 StackLimitCheck check(heap->isolate());
1109 if (check.HasOverflowed()) return false;
1110
1111 MarkCompactCollector* collector = heap->mark_compact_collector();
1112 // Visit the unmarked objects.
1113 for (Object** p = start; p < end; p++) {
1114 Object* o = *p;
1115 if (!o->IsHeapObject()) continue;
1116 collector->RecordSlot(start, p, o);
1117 HeapObject* obj = HeapObject::cast(o);
1118 MarkBit mark = Marking::MarkBitFrom(obj);
1119 if (mark.Get()) continue;
1120 VisitUnmarkedObject(collector, obj);
1121 }
1122 return true;
1123 }
1124
VisitExternalReference(Address * p)1125 static inline void VisitExternalReference(Address* p) { }
VisitExternalReference(RelocInfo * rinfo)1126 static inline void VisitExternalReference(RelocInfo* rinfo) { }
VisitRuntimeEntry(RelocInfo * rinfo)1127 static inline void VisitRuntimeEntry(RelocInfo* rinfo) { }
1128
1129 private:
1130 class DataObjectVisitor {
1131 public:
1132 template<int size>
VisitSpecialized(Map * map,HeapObject * object)1133 static void VisitSpecialized(Map* map, HeapObject* object) {
1134 }
1135
Visit(Map * map,HeapObject * object)1136 static void Visit(Map* map, HeapObject* object) {
1137 }
1138 };
1139
1140 typedef FlexibleBodyVisitor<StaticMarkingVisitor,
1141 JSObject::BodyDescriptor,
1142 void> JSObjectVisitor;
1143
1144 typedef FlexibleBodyVisitor<StaticMarkingVisitor,
1145 StructBodyDescriptor,
1146 void> StructObjectVisitor;
1147
VisitJSWeakMap(Map * map,HeapObject * object)1148 static void VisitJSWeakMap(Map* map, HeapObject* object) {
1149 MarkCompactCollector* collector = map->GetHeap()->mark_compact_collector();
1150 JSWeakMap* weak_map = reinterpret_cast<JSWeakMap*>(object);
1151
1152 // Enqueue weak map in linked list of encountered weak maps.
1153 ASSERT(weak_map->next() == Smi::FromInt(0));
1154 weak_map->set_next(collector->encountered_weak_maps());
1155 collector->set_encountered_weak_maps(weak_map);
1156
1157 // Skip visiting the backing hash table containing the mappings.
1158 int object_size = JSWeakMap::BodyDescriptor::SizeOf(map, object);
1159 BodyVisitorBase<StaticMarkingVisitor>::IteratePointers(
1160 map->GetHeap(),
1161 object,
1162 JSWeakMap::BodyDescriptor::kStartOffset,
1163 JSWeakMap::kTableOffset);
1164 BodyVisitorBase<StaticMarkingVisitor>::IteratePointers(
1165 map->GetHeap(),
1166 object,
1167 JSWeakMap::kTableOffset + kPointerSize,
1168 object_size);
1169
1170 // Mark the backing hash table without pushing it on the marking stack.
1171 ObjectHashTable* table = ObjectHashTable::cast(weak_map->table());
1172 ASSERT(!MarkCompactCollector::IsMarked(table));
1173 collector->SetMark(table, Marking::MarkBitFrom(table));
1174 collector->MarkObject(table->map(), Marking::MarkBitFrom(table->map()));
1175 ASSERT(MarkCompactCollector::IsMarked(table->map()));
1176 }
1177
VisitCode(Map * map,HeapObject * object)1178 static void VisitCode(Map* map, HeapObject* object) {
1179 Heap* heap = map->GetHeap();
1180 Code* code = reinterpret_cast<Code*>(object);
1181 if (FLAG_cleanup_code_caches_at_gc) {
1182 Object* raw_info = code->type_feedback_info();
1183 if (raw_info->IsTypeFeedbackInfo()) {
1184 TypeFeedbackCells* type_feedback_cells =
1185 TypeFeedbackInfo::cast(raw_info)->type_feedback_cells();
1186 for (int i = 0; i < type_feedback_cells->CellCount(); i++) {
1187 ASSERT(type_feedback_cells->AstId(i)->IsSmi());
1188 JSGlobalPropertyCell* cell = type_feedback_cells->Cell(i);
1189 cell->set_value(TypeFeedbackCells::RawUninitializedSentinel(heap));
1190 }
1191 }
1192 }
1193 code->CodeIterateBody<StaticMarkingVisitor>(heap);
1194 }
1195
1196 // Code flushing support.
1197
1198 // How many collections newly compiled code object will survive before being
1199 // flushed.
1200 static const int kCodeAgeThreshold = 5;
1201
1202 static const int kRegExpCodeThreshold = 5;
1203
HasSourceCode(Heap * heap,SharedFunctionInfo * info)1204 inline static bool HasSourceCode(Heap* heap, SharedFunctionInfo* info) {
1205 Object* undefined = heap->undefined_value();
1206 return (info->script() != undefined) &&
1207 (reinterpret_cast<Script*>(info->script())->source() != undefined);
1208 }
1209
1210
IsCompiled(JSFunction * function)1211 inline static bool IsCompiled(JSFunction* function) {
1212 return function->code() !=
1213 function->GetIsolate()->builtins()->builtin(Builtins::kLazyCompile);
1214 }
1215
IsCompiled(SharedFunctionInfo * function)1216 inline static bool IsCompiled(SharedFunctionInfo* function) {
1217 return function->code() !=
1218 function->GetIsolate()->builtins()->builtin(Builtins::kLazyCompile);
1219 }
1220
IsFlushable(Heap * heap,JSFunction * function)1221 inline static bool IsFlushable(Heap* heap, JSFunction* function) {
1222 SharedFunctionInfo* shared_info = function->unchecked_shared();
1223
1224 // Code is either on stack, in compilation cache or referenced
1225 // by optimized version of function.
1226 MarkBit code_mark = Marking::MarkBitFrom(function->code());
1227 if (code_mark.Get()) {
1228 if (!Marking::MarkBitFrom(shared_info).Get()) {
1229 shared_info->set_code_age(0);
1230 }
1231 return false;
1232 }
1233
1234 // We do not flush code for optimized functions.
1235 if (function->code() != shared_info->code()) {
1236 return false;
1237 }
1238
1239 return IsFlushable(heap, shared_info);
1240 }
1241
IsFlushable(Heap * heap,SharedFunctionInfo * shared_info)1242 inline static bool IsFlushable(Heap* heap, SharedFunctionInfo* shared_info) {
1243 // Code is either on stack, in compilation cache or referenced
1244 // by optimized version of function.
1245 MarkBit code_mark =
1246 Marking::MarkBitFrom(shared_info->code());
1247 if (code_mark.Get()) {
1248 return false;
1249 }
1250
1251 // The function must be compiled and have the source code available,
1252 // to be able to recompile it in case we need the function again.
1253 if (!(shared_info->is_compiled() && HasSourceCode(heap, shared_info))) {
1254 return false;
1255 }
1256
1257 // We never flush code for Api functions.
1258 Object* function_data = shared_info->function_data();
1259 if (function_data->IsFunctionTemplateInfo()) {
1260 return false;
1261 }
1262
1263 // Only flush code for functions.
1264 if (shared_info->code()->kind() != Code::FUNCTION) {
1265 return false;
1266 }
1267
1268 // Function must be lazy compilable.
1269 if (!shared_info->allows_lazy_compilation()) {
1270 return false;
1271 }
1272
1273 // If this is a full script wrapped in a function we do no flush the code.
1274 if (shared_info->is_toplevel()) {
1275 return false;
1276 }
1277
1278 // Age this shared function info.
1279 if (shared_info->code_age() < kCodeAgeThreshold) {
1280 shared_info->set_code_age(shared_info->code_age() + 1);
1281 return false;
1282 }
1283
1284 return true;
1285 }
1286
1287
FlushCodeForFunction(Heap * heap,JSFunction * function)1288 static bool FlushCodeForFunction(Heap* heap, JSFunction* function) {
1289 if (!IsFlushable(heap, function)) return false;
1290
1291 // This function's code looks flushable. But we have to postpone the
1292 // decision until we see all functions that point to the same
1293 // SharedFunctionInfo because some of them might be optimized.
1294 // That would make the nonoptimized version of the code nonflushable,
1295 // because it is required for bailing out from optimized code.
1296 heap->mark_compact_collector()->code_flusher()->AddCandidate(function);
1297 return true;
1298 }
1299
IsValidNotBuiltinContext(Object * ctx)1300 static inline bool IsValidNotBuiltinContext(Object* ctx) {
1301 return ctx->IsContext() &&
1302 !Context::cast(ctx)->global()->IsJSBuiltinsObject();
1303 }
1304
1305
VisitSharedFunctionInfoGeneric(Map * map,HeapObject * object)1306 static void VisitSharedFunctionInfoGeneric(Map* map, HeapObject* object) {
1307 SharedFunctionInfo* shared = reinterpret_cast<SharedFunctionInfo*>(object);
1308
1309 if (shared->IsInobjectSlackTrackingInProgress()) shared->DetachInitialMap();
1310
1311 FixedBodyVisitor<StaticMarkingVisitor,
1312 SharedFunctionInfo::BodyDescriptor,
1313 void>::Visit(map, object);
1314 }
1315
1316
UpdateRegExpCodeAgeAndFlush(Heap * heap,JSRegExp * re,bool is_ascii)1317 static void UpdateRegExpCodeAgeAndFlush(Heap* heap,
1318 JSRegExp* re,
1319 bool is_ascii) {
1320 // Make sure that the fixed array is in fact initialized on the RegExp.
1321 // We could potentially trigger a GC when initializing the RegExp.
1322 if (HeapObject::cast(re->data())->map()->instance_type() !=
1323 FIXED_ARRAY_TYPE) return;
1324
1325 // Make sure this is a RegExp that actually contains code.
1326 if (re->TypeTagUnchecked() != JSRegExp::IRREGEXP) return;
1327
1328 Object* code = re->DataAtUnchecked(JSRegExp::code_index(is_ascii));
1329 if (!code->IsSmi() &&
1330 HeapObject::cast(code)->map()->instance_type() == CODE_TYPE) {
1331 // Save a copy that can be reinstated if we need the code again.
1332 re->SetDataAtUnchecked(JSRegExp::saved_code_index(is_ascii),
1333 code,
1334 heap);
1335
1336 // Saving a copy might create a pointer into compaction candidate
1337 // that was not observed by marker. This might happen if JSRegExp data
1338 // was marked through the compilation cache before marker reached JSRegExp
1339 // object.
1340 FixedArray* data = FixedArray::cast(re->data());
1341 Object** slot = data->data_start() + JSRegExp::saved_code_index(is_ascii);
1342 heap->mark_compact_collector()->
1343 RecordSlot(slot, slot, code);
1344
1345 // Set a number in the 0-255 range to guarantee no smi overflow.
1346 re->SetDataAtUnchecked(JSRegExp::code_index(is_ascii),
1347 Smi::FromInt(heap->sweep_generation() & 0xff),
1348 heap);
1349 } else if (code->IsSmi()) {
1350 int value = Smi::cast(code)->value();
1351 // The regexp has not been compiled yet or there was a compilation error.
1352 if (value == JSRegExp::kUninitializedValue ||
1353 value == JSRegExp::kCompilationErrorValue) {
1354 return;
1355 }
1356
1357 // Check if we should flush now.
1358 if (value == ((heap->sweep_generation() - kRegExpCodeThreshold) & 0xff)) {
1359 re->SetDataAtUnchecked(JSRegExp::code_index(is_ascii),
1360 Smi::FromInt(JSRegExp::kUninitializedValue),
1361 heap);
1362 re->SetDataAtUnchecked(JSRegExp::saved_code_index(is_ascii),
1363 Smi::FromInt(JSRegExp::kUninitializedValue),
1364 heap);
1365 }
1366 }
1367 }
1368
1369
1370 // Works by setting the current sweep_generation (as a smi) in the
1371 // code object place in the data array of the RegExp and keeps a copy
1372 // around that can be reinstated if we reuse the RegExp before flushing.
1373 // If we did not use the code for kRegExpCodeThreshold mark sweep GCs
1374 // we flush the code.
VisitRegExpAndFlushCode(Map * map,HeapObject * object)1375 static void VisitRegExpAndFlushCode(Map* map, HeapObject* object) {
1376 Heap* heap = map->GetHeap();
1377 MarkCompactCollector* collector = heap->mark_compact_collector();
1378 if (!collector->is_code_flushing_enabled()) {
1379 VisitJSRegExpFields(map, object);
1380 return;
1381 }
1382 JSRegExp* re = reinterpret_cast<JSRegExp*>(object);
1383 // Flush code or set age on both ASCII and two byte code.
1384 UpdateRegExpCodeAgeAndFlush(heap, re, true);
1385 UpdateRegExpCodeAgeAndFlush(heap, re, false);
1386 // Visit the fields of the RegExp, including the updated FixedArray.
1387 VisitJSRegExpFields(map, object);
1388 }
1389
1390
VisitSharedFunctionInfoAndFlushCode(Map * map,HeapObject * object)1391 static void VisitSharedFunctionInfoAndFlushCode(Map* map,
1392 HeapObject* object) {
1393 MarkCompactCollector* collector = map->GetHeap()->mark_compact_collector();
1394 if (!collector->is_code_flushing_enabled()) {
1395 VisitSharedFunctionInfoGeneric(map, object);
1396 return;
1397 }
1398 VisitSharedFunctionInfoAndFlushCodeGeneric(map, object, false);
1399 }
1400
1401
VisitSharedFunctionInfoAndFlushCodeGeneric(Map * map,HeapObject * object,bool known_flush_code_candidate)1402 static void VisitSharedFunctionInfoAndFlushCodeGeneric(
1403 Map* map, HeapObject* object, bool known_flush_code_candidate) {
1404 Heap* heap = map->GetHeap();
1405 SharedFunctionInfo* shared = reinterpret_cast<SharedFunctionInfo*>(object);
1406
1407 if (shared->IsInobjectSlackTrackingInProgress()) shared->DetachInitialMap();
1408
1409 if (shared->ic_age() != heap->global_ic_age()) {
1410 shared->ResetForNewContext(heap->global_ic_age());
1411 }
1412
1413 if (!known_flush_code_candidate) {
1414 known_flush_code_candidate = IsFlushable(heap, shared);
1415 if (known_flush_code_candidate) {
1416 heap->mark_compact_collector()->code_flusher()->AddCandidate(shared);
1417 }
1418 }
1419
1420 VisitSharedFunctionInfoFields(heap, object, known_flush_code_candidate);
1421 }
1422
1423
VisitCodeEntry(Heap * heap,Address entry_address)1424 static void VisitCodeEntry(Heap* heap, Address entry_address) {
1425 Code* code = Code::cast(Code::GetObjectFromEntryAddress(entry_address));
1426 MarkBit mark = Marking::MarkBitFrom(code);
1427 heap->mark_compact_collector()->MarkObject(code, mark);
1428 heap->mark_compact_collector()->
1429 RecordCodeEntrySlot(entry_address, code);
1430 }
1431
VisitGlobalContext(Map * map,HeapObject * object)1432 static void VisitGlobalContext(Map* map, HeapObject* object) {
1433 FixedBodyVisitor<StaticMarkingVisitor,
1434 Context::MarkCompactBodyDescriptor,
1435 void>::Visit(map, object);
1436
1437 MarkCompactCollector* collector = map->GetHeap()->mark_compact_collector();
1438 for (int idx = Context::FIRST_WEAK_SLOT;
1439 idx < Context::GLOBAL_CONTEXT_SLOTS;
1440 ++idx) {
1441 Object** slot =
1442 HeapObject::RawField(object, FixedArray::OffsetOfElementAt(idx));
1443 collector->RecordSlot(slot, slot, *slot);
1444 }
1445 }
1446
VisitJSFunctionAndFlushCode(Map * map,HeapObject * object)1447 static void VisitJSFunctionAndFlushCode(Map* map, HeapObject* object) {
1448 Heap* heap = map->GetHeap();
1449 MarkCompactCollector* collector = heap->mark_compact_collector();
1450 if (!collector->is_code_flushing_enabled()) {
1451 VisitJSFunction(map, object);
1452 return;
1453 }
1454
1455 JSFunction* jsfunction = reinterpret_cast<JSFunction*>(object);
1456 // The function must have a valid context and not be a builtin.
1457 bool flush_code_candidate = false;
1458 if (IsValidNotBuiltinContext(jsfunction->unchecked_context())) {
1459 flush_code_candidate = FlushCodeForFunction(heap, jsfunction);
1460 }
1461
1462 if (!flush_code_candidate) {
1463 Code* code = jsfunction->shared()->code();
1464 MarkBit code_mark = Marking::MarkBitFrom(code);
1465 collector->MarkObject(code, code_mark);
1466
1467 if (jsfunction->code()->kind() == Code::OPTIMIZED_FUNCTION) {
1468 collector->MarkInlinedFunctionsCode(jsfunction->code());
1469 }
1470 }
1471
1472 VisitJSFunctionFields(map,
1473 reinterpret_cast<JSFunction*>(object),
1474 flush_code_candidate);
1475 }
1476
1477
VisitJSFunction(Map * map,HeapObject * object)1478 static void VisitJSFunction(Map* map, HeapObject* object) {
1479 VisitJSFunctionFields(map,
1480 reinterpret_cast<JSFunction*>(object),
1481 false);
1482 }
1483
1484
1485 #define SLOT_ADDR(obj, offset) \
1486 reinterpret_cast<Object**>((obj)->address() + offset)
1487
1488
VisitJSFunctionFields(Map * map,JSFunction * object,bool flush_code_candidate)1489 static inline void VisitJSFunctionFields(Map* map,
1490 JSFunction* object,
1491 bool flush_code_candidate) {
1492 Heap* heap = map->GetHeap();
1493
1494 VisitPointers(heap,
1495 HeapObject::RawField(object, JSFunction::kPropertiesOffset),
1496 HeapObject::RawField(object, JSFunction::kCodeEntryOffset));
1497
1498 if (!flush_code_candidate) {
1499 VisitCodeEntry(heap, object->address() + JSFunction::kCodeEntryOffset);
1500 } else {
1501 // Don't visit code object.
1502
1503 // Visit shared function info to avoid double checking of it's
1504 // flushability.
1505 SharedFunctionInfo* shared_info = object->unchecked_shared();
1506 MarkBit shared_info_mark = Marking::MarkBitFrom(shared_info);
1507 if (!shared_info_mark.Get()) {
1508 Map* shared_info_map = shared_info->map();
1509 MarkBit shared_info_map_mark =
1510 Marking::MarkBitFrom(shared_info_map);
1511 heap->mark_compact_collector()->SetMark(shared_info, shared_info_mark);
1512 heap->mark_compact_collector()->MarkObject(shared_info_map,
1513 shared_info_map_mark);
1514 VisitSharedFunctionInfoAndFlushCodeGeneric(shared_info_map,
1515 shared_info,
1516 true);
1517 }
1518 }
1519
1520 VisitPointers(
1521 heap,
1522 HeapObject::RawField(object,
1523 JSFunction::kCodeEntryOffset + kPointerSize),
1524 HeapObject::RawField(object,
1525 JSFunction::kNonWeakFieldsEndOffset));
1526
1527 // Don't visit the next function list field as it is a weak reference.
1528 Object** next_function =
1529 HeapObject::RawField(object, JSFunction::kNextFunctionLinkOffset);
1530 heap->mark_compact_collector()->RecordSlot(
1531 next_function, next_function, *next_function);
1532 }
1533
VisitJSRegExpFields(Map * map,HeapObject * object)1534 static inline void VisitJSRegExpFields(Map* map,
1535 HeapObject* object) {
1536 int last_property_offset =
1537 JSRegExp::kSize + kPointerSize * map->inobject_properties();
1538 VisitPointers(map->GetHeap(),
1539 SLOT_ADDR(object, JSRegExp::kPropertiesOffset),
1540 SLOT_ADDR(object, last_property_offset));
1541 }
1542
1543
VisitSharedFunctionInfoFields(Heap * heap,HeapObject * object,bool flush_code_candidate)1544 static void VisitSharedFunctionInfoFields(Heap* heap,
1545 HeapObject* object,
1546 bool flush_code_candidate) {
1547 VisitPointer(heap, SLOT_ADDR(object, SharedFunctionInfo::kNameOffset));
1548
1549 if (!flush_code_candidate) {
1550 VisitPointer(heap, SLOT_ADDR(object, SharedFunctionInfo::kCodeOffset));
1551 }
1552
1553 VisitPointers(heap,
1554 SLOT_ADDR(object, SharedFunctionInfo::kScopeInfoOffset),
1555 SLOT_ADDR(object, SharedFunctionInfo::kSize));
1556 }
1557
1558 #undef SLOT_ADDR
1559
1560 typedef void (*Callback)(Map* map, HeapObject* object);
1561
1562 static VisitorDispatchTable<Callback> table_;
1563 };
1564
1565
1566 VisitorDispatchTable<StaticMarkingVisitor::Callback>
1567 StaticMarkingVisitor::table_;
1568
1569
1570 class MarkingVisitor : public ObjectVisitor {
1571 public:
MarkingVisitor(Heap * heap)1572 explicit MarkingVisitor(Heap* heap) : heap_(heap) { }
1573
VisitPointer(Object ** p)1574 void VisitPointer(Object** p) {
1575 StaticMarkingVisitor::VisitPointer(heap_, p);
1576 }
1577
VisitPointers(Object ** start,Object ** end)1578 void VisitPointers(Object** start, Object** end) {
1579 StaticMarkingVisitor::VisitPointers(heap_, start, end);
1580 }
1581
1582 private:
1583 Heap* heap_;
1584 };
1585
1586
1587 class CodeMarkingVisitor : public ThreadVisitor {
1588 public:
CodeMarkingVisitor(MarkCompactCollector * collector)1589 explicit CodeMarkingVisitor(MarkCompactCollector* collector)
1590 : collector_(collector) {}
1591
VisitThread(Isolate * isolate,ThreadLocalTop * top)1592 void VisitThread(Isolate* isolate, ThreadLocalTop* top) {
1593 collector_->PrepareThreadForCodeFlushing(isolate, top);
1594 }
1595
1596 private:
1597 MarkCompactCollector* collector_;
1598 };
1599
1600
1601 class SharedFunctionInfoMarkingVisitor : public ObjectVisitor {
1602 public:
SharedFunctionInfoMarkingVisitor(MarkCompactCollector * collector)1603 explicit SharedFunctionInfoMarkingVisitor(MarkCompactCollector* collector)
1604 : collector_(collector) {}
1605
VisitPointers(Object ** start,Object ** end)1606 void VisitPointers(Object** start, Object** end) {
1607 for (Object** p = start; p < end; p++) VisitPointer(p);
1608 }
1609
VisitPointer(Object ** slot)1610 void VisitPointer(Object** slot) {
1611 Object* obj = *slot;
1612 if (obj->IsSharedFunctionInfo()) {
1613 SharedFunctionInfo* shared = reinterpret_cast<SharedFunctionInfo*>(obj);
1614 MarkBit shared_mark = Marking::MarkBitFrom(shared);
1615 MarkBit code_mark = Marking::MarkBitFrom(shared->code());
1616 collector_->MarkObject(shared->code(), code_mark);
1617 collector_->MarkObject(shared, shared_mark);
1618 }
1619 }
1620
1621 private:
1622 MarkCompactCollector* collector_;
1623 };
1624
1625
MarkInlinedFunctionsCode(Code * code)1626 void MarkCompactCollector::MarkInlinedFunctionsCode(Code* code) {
1627 // For optimized functions we should retain both non-optimized version
1628 // of it's code and non-optimized version of all inlined functions.
1629 // This is required to support bailing out from inlined code.
1630 DeoptimizationInputData* data =
1631 DeoptimizationInputData::cast(code->deoptimization_data());
1632
1633 FixedArray* literals = data->LiteralArray();
1634
1635 for (int i = 0, count = data->InlinedFunctionCount()->value();
1636 i < count;
1637 i++) {
1638 JSFunction* inlined = JSFunction::cast(literals->get(i));
1639 Code* inlined_code = inlined->shared()->code();
1640 MarkBit inlined_code_mark = Marking::MarkBitFrom(inlined_code);
1641 MarkObject(inlined_code, inlined_code_mark);
1642 }
1643 }
1644
1645
PrepareThreadForCodeFlushing(Isolate * isolate,ThreadLocalTop * top)1646 void MarkCompactCollector::PrepareThreadForCodeFlushing(Isolate* isolate,
1647 ThreadLocalTop* top) {
1648 for (StackFrameIterator it(isolate, top); !it.done(); it.Advance()) {
1649 // Note: for the frame that has a pending lazy deoptimization
1650 // StackFrame::unchecked_code will return a non-optimized code object for
1651 // the outermost function and StackFrame::LookupCode will return
1652 // actual optimized code object.
1653 StackFrame* frame = it.frame();
1654 Code* code = frame->unchecked_code();
1655 MarkBit code_mark = Marking::MarkBitFrom(code);
1656 MarkObject(code, code_mark);
1657 if (frame->is_optimized()) {
1658 MarkInlinedFunctionsCode(frame->LookupCode());
1659 }
1660 }
1661 }
1662
1663
PrepareForCodeFlushing()1664 void MarkCompactCollector::PrepareForCodeFlushing() {
1665 ASSERT(heap() == Isolate::Current()->heap());
1666
1667 // TODO(1609) Currently incremental marker does not support code flushing.
1668 if (!FLAG_flush_code || was_marked_incrementally_) {
1669 EnableCodeFlushing(false);
1670 return;
1671 }
1672
1673 #ifdef ENABLE_DEBUGGER_SUPPORT
1674 if (heap()->isolate()->debug()->IsLoaded() ||
1675 heap()->isolate()->debug()->has_break_points()) {
1676 EnableCodeFlushing(false);
1677 return;
1678 }
1679 #endif
1680
1681 EnableCodeFlushing(true);
1682
1683 // Ensure that empty descriptor array is marked. Method MarkDescriptorArray
1684 // relies on it being marked before any other descriptor array.
1685 HeapObject* descriptor_array = heap()->empty_descriptor_array();
1686 MarkBit descriptor_array_mark = Marking::MarkBitFrom(descriptor_array);
1687 MarkObject(descriptor_array, descriptor_array_mark);
1688
1689 // Make sure we are not referencing the code from the stack.
1690 ASSERT(this == heap()->mark_compact_collector());
1691 PrepareThreadForCodeFlushing(heap()->isolate(),
1692 heap()->isolate()->thread_local_top());
1693
1694 // Iterate the archived stacks in all threads to check if
1695 // the code is referenced.
1696 CodeMarkingVisitor code_marking_visitor(this);
1697 heap()->isolate()->thread_manager()->IterateArchivedThreads(
1698 &code_marking_visitor);
1699
1700 SharedFunctionInfoMarkingVisitor visitor(this);
1701 heap()->isolate()->compilation_cache()->IterateFunctions(&visitor);
1702 heap()->isolate()->handle_scope_implementer()->Iterate(&visitor);
1703
1704 ProcessMarkingDeque();
1705 }
1706
1707
1708 // Visitor class for marking heap roots.
1709 class RootMarkingVisitor : public ObjectVisitor {
1710 public:
RootMarkingVisitor(Heap * heap)1711 explicit RootMarkingVisitor(Heap* heap)
1712 : collector_(heap->mark_compact_collector()) { }
1713
VisitPointer(Object ** p)1714 void VisitPointer(Object** p) {
1715 MarkObjectByPointer(p);
1716 }
1717
VisitPointers(Object ** start,Object ** end)1718 void VisitPointers(Object** start, Object** end) {
1719 for (Object** p = start; p < end; p++) MarkObjectByPointer(p);
1720 }
1721
1722 private:
MarkObjectByPointer(Object ** p)1723 void MarkObjectByPointer(Object** p) {
1724 if (!(*p)->IsHeapObject()) return;
1725
1726 // Replace flat cons strings in place.
1727 HeapObject* object = ShortCircuitConsString(p);
1728 MarkBit mark_bit = Marking::MarkBitFrom(object);
1729 if (mark_bit.Get()) return;
1730
1731 Map* map = object->map();
1732 // Mark the object.
1733 collector_->SetMark(object, mark_bit);
1734
1735 // Mark the map pointer and body, and push them on the marking stack.
1736 MarkBit map_mark = Marking::MarkBitFrom(map);
1737 collector_->MarkObject(map, map_mark);
1738 StaticMarkingVisitor::IterateBody(map, object);
1739
1740 // Mark all the objects reachable from the map and body. May leave
1741 // overflowed objects in the heap.
1742 collector_->EmptyMarkingDeque();
1743 }
1744
1745 MarkCompactCollector* collector_;
1746 };
1747
1748
1749 // Helper class for pruning the symbol table.
1750 class SymbolTableCleaner : public ObjectVisitor {
1751 public:
SymbolTableCleaner(Heap * heap)1752 explicit SymbolTableCleaner(Heap* heap)
1753 : heap_(heap), pointers_removed_(0) { }
1754
VisitPointers(Object ** start,Object ** end)1755 virtual void VisitPointers(Object** start, Object** end) {
1756 // Visit all HeapObject pointers in [start, end).
1757 for (Object** p = start; p < end; p++) {
1758 Object* o = *p;
1759 if (o->IsHeapObject() &&
1760 !Marking::MarkBitFrom(HeapObject::cast(o)).Get()) {
1761 // Check if the symbol being pruned is an external symbol. We need to
1762 // delete the associated external data as this symbol is going away.
1763
1764 // Since no objects have yet been moved we can safely access the map of
1765 // the object.
1766 if (o->IsExternalString()) {
1767 heap_->FinalizeExternalString(String::cast(*p));
1768 }
1769 // Set the entry to the_hole_value (as deleted).
1770 *p = heap_->the_hole_value();
1771 pointers_removed_++;
1772 }
1773 }
1774 }
1775
PointersRemoved()1776 int PointersRemoved() {
1777 return pointers_removed_;
1778 }
1779
1780 private:
1781 Heap* heap_;
1782 int pointers_removed_;
1783 };
1784
1785
1786 // Implementation of WeakObjectRetainer for mark compact GCs. All marked objects
1787 // are retained.
1788 class MarkCompactWeakObjectRetainer : public WeakObjectRetainer {
1789 public:
RetainAs(Object * object)1790 virtual Object* RetainAs(Object* object) {
1791 if (Marking::MarkBitFrom(HeapObject::cast(object)).Get()) {
1792 return object;
1793 } else {
1794 return NULL;
1795 }
1796 }
1797 };
1798
1799
ProcessNewlyMarkedObject(HeapObject * object)1800 void MarkCompactCollector::ProcessNewlyMarkedObject(HeapObject* object) {
1801 ASSERT(IsMarked(object));
1802 ASSERT(HEAP->Contains(object));
1803 if (object->IsMap()) {
1804 Map* map = Map::cast(object);
1805 heap_->ClearCacheOnMap(map);
1806
1807 // When map collection is enabled we have to mark through map's transitions
1808 // in a special way to make transition links weak.
1809 // Only maps for subclasses of JSReceiver can have transitions.
1810 STATIC_ASSERT(LAST_TYPE == LAST_JS_RECEIVER_TYPE);
1811 if (collect_maps_ && map->instance_type() >= FIRST_JS_RECEIVER_TYPE) {
1812 MarkMapContents(map);
1813 } else {
1814 marking_deque_.PushBlack(map);
1815 }
1816 } else {
1817 marking_deque_.PushBlack(object);
1818 }
1819 }
1820
1821
MarkMapContents(Map * map)1822 void MarkCompactCollector::MarkMapContents(Map* map) {
1823 // Mark prototype transitions array but don't push it into marking stack.
1824 // This will make references from it weak. We will clean dead prototype
1825 // transitions in ClearNonLiveTransitions.
1826 FixedArray* prototype_transitions = map->prototype_transitions();
1827 MarkBit mark = Marking::MarkBitFrom(prototype_transitions);
1828 if (!mark.Get()) {
1829 mark.Set();
1830 MemoryChunk::IncrementLiveBytesFromGC(prototype_transitions->address(),
1831 prototype_transitions->Size());
1832 }
1833
1834 Object** raw_descriptor_array_slot =
1835 HeapObject::RawField(map, Map::kInstanceDescriptorsOrBitField3Offset);
1836 Object* raw_descriptor_array = *raw_descriptor_array_slot;
1837 if (!raw_descriptor_array->IsSmi()) {
1838 MarkDescriptorArray(
1839 reinterpret_cast<DescriptorArray*>(raw_descriptor_array));
1840 }
1841
1842 // Mark the Object* fields of the Map.
1843 // Since the descriptor array has been marked already, it is fine
1844 // that one of these fields contains a pointer to it.
1845 Object** start_slot = HeapObject::RawField(map,
1846 Map::kPointerFieldsBeginOffset);
1847
1848 Object** end_slot = HeapObject::RawField(map, Map::kPointerFieldsEndOffset);
1849
1850 StaticMarkingVisitor::VisitPointers(map->GetHeap(), start_slot, end_slot);
1851 }
1852
1853
MarkAccessorPairSlot(HeapObject * accessors,int offset)1854 void MarkCompactCollector::MarkAccessorPairSlot(HeapObject* accessors,
1855 int offset) {
1856 Object** slot = HeapObject::RawField(accessors, offset);
1857 HeapObject* accessor = HeapObject::cast(*slot);
1858 if (accessor->IsMap()) return;
1859 RecordSlot(slot, slot, accessor);
1860 MarkObjectAndPush(accessor);
1861 }
1862
1863
MarkDescriptorArray(DescriptorArray * descriptors)1864 void MarkCompactCollector::MarkDescriptorArray(
1865 DescriptorArray* descriptors) {
1866 MarkBit descriptors_mark = Marking::MarkBitFrom(descriptors);
1867 if (descriptors_mark.Get()) return;
1868 // Empty descriptor array is marked as a root before any maps are marked.
1869 ASSERT(descriptors != heap()->empty_descriptor_array());
1870 SetMark(descriptors, descriptors_mark);
1871
1872 FixedArray* contents = reinterpret_cast<FixedArray*>(
1873 descriptors->get(DescriptorArray::kContentArrayIndex));
1874 ASSERT(contents->IsHeapObject());
1875 ASSERT(!IsMarked(contents));
1876 ASSERT(contents->IsFixedArray());
1877 ASSERT(contents->length() >= 2);
1878 MarkBit contents_mark = Marking::MarkBitFrom(contents);
1879 SetMark(contents, contents_mark);
1880 // Contents contains (value, details) pairs. If the details say that the type
1881 // of descriptor is MAP_TRANSITION, CONSTANT_TRANSITION,
1882 // EXTERNAL_ARRAY_TRANSITION or NULL_DESCRIPTOR, we don't mark the value as
1883 // live. Only for MAP_TRANSITION, EXTERNAL_ARRAY_TRANSITION and
1884 // CONSTANT_TRANSITION is the value an Object* (a Map*).
1885 for (int i = 0; i < contents->length(); i += 2) {
1886 // If the pair (value, details) at index i, i+1 is not
1887 // a transition or null descriptor, mark the value.
1888 PropertyDetails details(Smi::cast(contents->get(i + 1)));
1889
1890 Object** slot = contents->data_start() + i;
1891 if (!(*slot)->IsHeapObject()) continue;
1892 HeapObject* value = HeapObject::cast(*slot);
1893
1894 RecordSlot(slot, slot, *slot);
1895
1896 switch (details.type()) {
1897 case NORMAL:
1898 case FIELD:
1899 case CONSTANT_FUNCTION:
1900 case HANDLER:
1901 case INTERCEPTOR:
1902 MarkObjectAndPush(value);
1903 break;
1904 case CALLBACKS:
1905 if (!value->IsAccessorPair()) {
1906 MarkObjectAndPush(value);
1907 } else if (!MarkObjectWithoutPush(value)) {
1908 MarkAccessorPairSlot(value, AccessorPair::kGetterOffset);
1909 MarkAccessorPairSlot(value, AccessorPair::kSetterOffset);
1910 }
1911 break;
1912 case ELEMENTS_TRANSITION:
1913 // For maps with multiple elements transitions, the transition maps are
1914 // stored in a FixedArray. Keep the fixed array alive but not the maps
1915 // that it refers to.
1916 if (value->IsFixedArray()) MarkObjectWithoutPush(value);
1917 break;
1918 case MAP_TRANSITION:
1919 case CONSTANT_TRANSITION:
1920 case NULL_DESCRIPTOR:
1921 break;
1922 }
1923 }
1924 // The DescriptorArray descriptors contains a pointer to its contents array,
1925 // but the contents array is already marked.
1926 marking_deque_.PushBlack(descriptors);
1927 }
1928
1929
CreateBackPointers()1930 void MarkCompactCollector::CreateBackPointers() {
1931 HeapObjectIterator iterator(heap()->map_space());
1932 for (HeapObject* next_object = iterator.Next();
1933 next_object != NULL; next_object = iterator.Next()) {
1934 if (next_object->IsMap()) { // Could also be FreeSpace object on free list.
1935 Map* map = Map::cast(next_object);
1936 STATIC_ASSERT(LAST_TYPE == LAST_JS_RECEIVER_TYPE);
1937 if (map->instance_type() >= FIRST_JS_RECEIVER_TYPE) {
1938 map->CreateBackPointers();
1939 } else {
1940 ASSERT(map->instance_descriptors() == heap()->empty_descriptor_array());
1941 }
1942 }
1943 }
1944 }
1945
1946
1947 // Fill the marking stack with overflowed objects returned by the given
1948 // iterator. Stop when the marking stack is filled or the end of the space
1949 // is reached, whichever comes first.
1950 template<class T>
DiscoverGreyObjectsWithIterator(Heap * heap,MarkingDeque * marking_deque,T * it)1951 static void DiscoverGreyObjectsWithIterator(Heap* heap,
1952 MarkingDeque* marking_deque,
1953 T* it) {
1954 // The caller should ensure that the marking stack is initially not full,
1955 // so that we don't waste effort pointlessly scanning for objects.
1956 ASSERT(!marking_deque->IsFull());
1957
1958 Map* filler_map = heap->one_pointer_filler_map();
1959 for (HeapObject* object = it->Next();
1960 object != NULL;
1961 object = it->Next()) {
1962 MarkBit markbit = Marking::MarkBitFrom(object);
1963 if ((object->map() != filler_map) && Marking::IsGrey(markbit)) {
1964 Marking::GreyToBlack(markbit);
1965 MemoryChunk::IncrementLiveBytesFromGC(object->address(), object->Size());
1966 marking_deque->PushBlack(object);
1967 if (marking_deque->IsFull()) return;
1968 }
1969 }
1970 }
1971
1972
1973 static inline int MarkWordToObjectStarts(uint32_t mark_bits, int* starts);
1974
1975
DiscoverGreyObjectsOnPage(MarkingDeque * marking_deque,Page * p)1976 static void DiscoverGreyObjectsOnPage(MarkingDeque* marking_deque, Page* p) {
1977 ASSERT(strcmp(Marking::kWhiteBitPattern, "00") == 0);
1978 ASSERT(strcmp(Marking::kBlackBitPattern, "10") == 0);
1979 ASSERT(strcmp(Marking::kGreyBitPattern, "11") == 0);
1980 ASSERT(strcmp(Marking::kImpossibleBitPattern, "01") == 0);
1981
1982 MarkBit::CellType* cells = p->markbits()->cells();
1983
1984 int last_cell_index =
1985 Bitmap::IndexToCell(
1986 Bitmap::CellAlignIndex(
1987 p->AddressToMarkbitIndex(p->area_end())));
1988
1989 Address cell_base = p->area_start();
1990 int cell_index = Bitmap::IndexToCell(
1991 Bitmap::CellAlignIndex(
1992 p->AddressToMarkbitIndex(cell_base)));
1993
1994
1995 for (;
1996 cell_index < last_cell_index;
1997 cell_index++, cell_base += 32 * kPointerSize) {
1998 ASSERT((unsigned)cell_index ==
1999 Bitmap::IndexToCell(
2000 Bitmap::CellAlignIndex(
2001 p->AddressToMarkbitIndex(cell_base))));
2002
2003 const MarkBit::CellType current_cell = cells[cell_index];
2004 if (current_cell == 0) continue;
2005
2006 const MarkBit::CellType next_cell = cells[cell_index + 1];
2007 MarkBit::CellType grey_objects = current_cell &
2008 ((current_cell >> 1) | (next_cell << (Bitmap::kBitsPerCell - 1)));
2009
2010 int offset = 0;
2011 while (grey_objects != 0) {
2012 int trailing_zeros = CompilerIntrinsics::CountTrailingZeros(grey_objects);
2013 grey_objects >>= trailing_zeros;
2014 offset += trailing_zeros;
2015 MarkBit markbit(&cells[cell_index], 1 << offset, false);
2016 ASSERT(Marking::IsGrey(markbit));
2017 Marking::GreyToBlack(markbit);
2018 Address addr = cell_base + offset * kPointerSize;
2019 HeapObject* object = HeapObject::FromAddress(addr);
2020 MemoryChunk::IncrementLiveBytesFromGC(object->address(), object->Size());
2021 marking_deque->PushBlack(object);
2022 if (marking_deque->IsFull()) return;
2023 offset += 2;
2024 grey_objects >>= 2;
2025 }
2026
2027 grey_objects >>= (Bitmap::kBitsPerCell - 1);
2028 }
2029 }
2030
2031
DiscoverGreyObjectsInSpace(Heap * heap,MarkingDeque * marking_deque,PagedSpace * space)2032 static void DiscoverGreyObjectsInSpace(Heap* heap,
2033 MarkingDeque* marking_deque,
2034 PagedSpace* space) {
2035 if (!space->was_swept_conservatively()) {
2036 HeapObjectIterator it(space);
2037 DiscoverGreyObjectsWithIterator(heap, marking_deque, &it);
2038 } else {
2039 PageIterator it(space);
2040 while (it.has_next()) {
2041 Page* p = it.next();
2042 DiscoverGreyObjectsOnPage(marking_deque, p);
2043 if (marking_deque->IsFull()) return;
2044 }
2045 }
2046 }
2047
2048
IsUnmarkedHeapObject(Object ** p)2049 bool MarkCompactCollector::IsUnmarkedHeapObject(Object** p) {
2050 Object* o = *p;
2051 if (!o->IsHeapObject()) return false;
2052 HeapObject* heap_object = HeapObject::cast(o);
2053 MarkBit mark = Marking::MarkBitFrom(heap_object);
2054 return !mark.Get();
2055 }
2056
2057
MarkSymbolTable()2058 void MarkCompactCollector::MarkSymbolTable() {
2059 SymbolTable* symbol_table = heap()->symbol_table();
2060 // Mark the symbol table itself.
2061 MarkBit symbol_table_mark = Marking::MarkBitFrom(symbol_table);
2062 SetMark(symbol_table, symbol_table_mark);
2063 // Explicitly mark the prefix.
2064 MarkingVisitor marker(heap());
2065 symbol_table->IteratePrefix(&marker);
2066 ProcessMarkingDeque();
2067 }
2068
2069
MarkRoots(RootMarkingVisitor * visitor)2070 void MarkCompactCollector::MarkRoots(RootMarkingVisitor* visitor) {
2071 // Mark the heap roots including global variables, stack variables,
2072 // etc., and all objects reachable from them.
2073 heap()->IterateStrongRoots(visitor, VISIT_ONLY_STRONG);
2074
2075 // Handle the symbol table specially.
2076 MarkSymbolTable();
2077
2078 // There may be overflowed objects in the heap. Visit them now.
2079 while (marking_deque_.overflowed()) {
2080 RefillMarkingDeque();
2081 EmptyMarkingDeque();
2082 }
2083 }
2084
2085
MarkObjectGroups()2086 void MarkCompactCollector::MarkObjectGroups() {
2087 List<ObjectGroup*>* object_groups =
2088 heap()->isolate()->global_handles()->object_groups();
2089
2090 int last = 0;
2091 for (int i = 0; i < object_groups->length(); i++) {
2092 ObjectGroup* entry = object_groups->at(i);
2093 ASSERT(entry != NULL);
2094
2095 Object*** objects = entry->objects_;
2096 bool group_marked = false;
2097 for (size_t j = 0; j < entry->length_; j++) {
2098 Object* object = *objects[j];
2099 if (object->IsHeapObject()) {
2100 HeapObject* heap_object = HeapObject::cast(object);
2101 MarkBit mark = Marking::MarkBitFrom(heap_object);
2102 if (mark.Get()) {
2103 group_marked = true;
2104 break;
2105 }
2106 }
2107 }
2108
2109 if (!group_marked) {
2110 (*object_groups)[last++] = entry;
2111 continue;
2112 }
2113
2114 // An object in the group is marked, so mark as grey all white heap
2115 // objects in the group.
2116 for (size_t j = 0; j < entry->length_; ++j) {
2117 Object* object = *objects[j];
2118 if (object->IsHeapObject()) {
2119 HeapObject* heap_object = HeapObject::cast(object);
2120 MarkBit mark = Marking::MarkBitFrom(heap_object);
2121 MarkObject(heap_object, mark);
2122 }
2123 }
2124
2125 // Once the entire group has been colored grey, set the object group
2126 // to NULL so it won't be processed again.
2127 entry->Dispose();
2128 object_groups->at(i) = NULL;
2129 }
2130 object_groups->Rewind(last);
2131 }
2132
2133
MarkImplicitRefGroups()2134 void MarkCompactCollector::MarkImplicitRefGroups() {
2135 List<ImplicitRefGroup*>* ref_groups =
2136 heap()->isolate()->global_handles()->implicit_ref_groups();
2137
2138 int last = 0;
2139 for (int i = 0; i < ref_groups->length(); i++) {
2140 ImplicitRefGroup* entry = ref_groups->at(i);
2141 ASSERT(entry != NULL);
2142
2143 if (!IsMarked(*entry->parent_)) {
2144 (*ref_groups)[last++] = entry;
2145 continue;
2146 }
2147
2148 Object*** children = entry->children_;
2149 // A parent object is marked, so mark all child heap objects.
2150 for (size_t j = 0; j < entry->length_; ++j) {
2151 if ((*children[j])->IsHeapObject()) {
2152 HeapObject* child = HeapObject::cast(*children[j]);
2153 MarkBit mark = Marking::MarkBitFrom(child);
2154 MarkObject(child, mark);
2155 }
2156 }
2157
2158 // Once the entire group has been marked, dispose it because it's
2159 // not needed anymore.
2160 entry->Dispose();
2161 }
2162 ref_groups->Rewind(last);
2163 }
2164
2165
2166 // Mark all objects reachable from the objects on the marking stack.
2167 // Before: the marking stack contains zero or more heap object pointers.
2168 // After: the marking stack is empty, and all objects reachable from the
2169 // marking stack have been marked, or are overflowed in the heap.
EmptyMarkingDeque()2170 void MarkCompactCollector::EmptyMarkingDeque() {
2171 while (!marking_deque_.IsEmpty()) {
2172 while (!marking_deque_.IsEmpty()) {
2173 HeapObject* object = marking_deque_.Pop();
2174 ASSERT(object->IsHeapObject());
2175 ASSERT(heap()->Contains(object));
2176 ASSERT(Marking::IsBlack(Marking::MarkBitFrom(object)));
2177
2178 Map* map = object->map();
2179 MarkBit map_mark = Marking::MarkBitFrom(map);
2180 MarkObject(map, map_mark);
2181
2182 StaticMarkingVisitor::IterateBody(map, object);
2183 }
2184
2185 // Process encountered weak maps, mark objects only reachable by those
2186 // weak maps and repeat until fix-point is reached.
2187 ProcessWeakMaps();
2188 }
2189 }
2190
2191
2192 // Sweep the heap for overflowed objects, clear their overflow bits, and
2193 // push them on the marking stack. Stop early if the marking stack fills
2194 // before sweeping completes. If sweeping completes, there are no remaining
2195 // overflowed objects in the heap so the overflow flag on the markings stack
2196 // is cleared.
RefillMarkingDeque()2197 void MarkCompactCollector::RefillMarkingDeque() {
2198 ASSERT(marking_deque_.overflowed());
2199
2200 SemiSpaceIterator new_it(heap()->new_space());
2201 DiscoverGreyObjectsWithIterator(heap(), &marking_deque_, &new_it);
2202 if (marking_deque_.IsFull()) return;
2203
2204 DiscoverGreyObjectsInSpace(heap(),
2205 &marking_deque_,
2206 heap()->old_pointer_space());
2207 if (marking_deque_.IsFull()) return;
2208
2209 DiscoverGreyObjectsInSpace(heap(),
2210 &marking_deque_,
2211 heap()->old_data_space());
2212 if (marking_deque_.IsFull()) return;
2213
2214 DiscoverGreyObjectsInSpace(heap(),
2215 &marking_deque_,
2216 heap()->code_space());
2217 if (marking_deque_.IsFull()) return;
2218
2219 DiscoverGreyObjectsInSpace(heap(),
2220 &marking_deque_,
2221 heap()->map_space());
2222 if (marking_deque_.IsFull()) return;
2223
2224 DiscoverGreyObjectsInSpace(heap(),
2225 &marking_deque_,
2226 heap()->cell_space());
2227 if (marking_deque_.IsFull()) return;
2228
2229 LargeObjectIterator lo_it(heap()->lo_space());
2230 DiscoverGreyObjectsWithIterator(heap(),
2231 &marking_deque_,
2232 &lo_it);
2233 if (marking_deque_.IsFull()) return;
2234
2235 marking_deque_.ClearOverflowed();
2236 }
2237
2238
2239 // Mark all objects reachable (transitively) from objects on the marking
2240 // stack. Before: the marking stack contains zero or more heap object
2241 // pointers. After: the marking stack is empty and there are no overflowed
2242 // objects in the heap.
ProcessMarkingDeque()2243 void MarkCompactCollector::ProcessMarkingDeque() {
2244 EmptyMarkingDeque();
2245 while (marking_deque_.overflowed()) {
2246 RefillMarkingDeque();
2247 EmptyMarkingDeque();
2248 }
2249 }
2250
2251
ProcessExternalMarking()2252 void MarkCompactCollector::ProcessExternalMarking() {
2253 bool work_to_do = true;
2254 ASSERT(marking_deque_.IsEmpty());
2255 while (work_to_do) {
2256 MarkObjectGroups();
2257 MarkImplicitRefGroups();
2258 work_to_do = !marking_deque_.IsEmpty();
2259 ProcessMarkingDeque();
2260 }
2261 }
2262
2263
MarkLiveObjects()2264 void MarkCompactCollector::MarkLiveObjects() {
2265 GCTracer::Scope gc_scope(tracer_, GCTracer::Scope::MC_MARK);
2266 // The recursive GC marker detects when it is nearing stack overflow,
2267 // and switches to a different marking system. JS interrupts interfere
2268 // with the C stack limit check.
2269 PostponeInterruptsScope postpone(heap()->isolate());
2270
2271 bool incremental_marking_overflowed = false;
2272 IncrementalMarking* incremental_marking = heap_->incremental_marking();
2273 if (was_marked_incrementally_) {
2274 // Finalize the incremental marking and check whether we had an overflow.
2275 // Both markers use grey color to mark overflowed objects so
2276 // non-incremental marker can deal with them as if overflow
2277 // occured during normal marking.
2278 // But incremental marker uses a separate marking deque
2279 // so we have to explicitly copy it's overflow state.
2280 incremental_marking->Finalize();
2281 incremental_marking_overflowed =
2282 incremental_marking->marking_deque()->overflowed();
2283 incremental_marking->marking_deque()->ClearOverflowed();
2284 } else {
2285 // Abort any pending incremental activities e.g. incremental sweeping.
2286 incremental_marking->Abort();
2287 }
2288
2289 #ifdef DEBUG
2290 ASSERT(state_ == PREPARE_GC);
2291 state_ = MARK_LIVE_OBJECTS;
2292 #endif
2293 // The to space contains live objects, a page in from space is used as a
2294 // marking stack.
2295 Address marking_deque_start = heap()->new_space()->FromSpacePageLow();
2296 Address marking_deque_end = heap()->new_space()->FromSpacePageHigh();
2297 if (FLAG_force_marking_deque_overflows) {
2298 marking_deque_end = marking_deque_start + 64 * kPointerSize;
2299 }
2300 marking_deque_.Initialize(marking_deque_start,
2301 marking_deque_end);
2302 ASSERT(!marking_deque_.overflowed());
2303
2304 if (incremental_marking_overflowed) {
2305 // There are overflowed objects left in the heap after incremental marking.
2306 marking_deque_.SetOverflowed();
2307 }
2308
2309 PrepareForCodeFlushing();
2310
2311 if (was_marked_incrementally_) {
2312 // There is no write barrier on cells so we have to scan them now at the end
2313 // of the incremental marking.
2314 {
2315 HeapObjectIterator cell_iterator(heap()->cell_space());
2316 HeapObject* cell;
2317 while ((cell = cell_iterator.Next()) != NULL) {
2318 ASSERT(cell->IsJSGlobalPropertyCell());
2319 if (IsMarked(cell)) {
2320 int offset = JSGlobalPropertyCell::kValueOffset;
2321 StaticMarkingVisitor::VisitPointer(
2322 heap(),
2323 reinterpret_cast<Object**>(cell->address() + offset));
2324 }
2325 }
2326 }
2327 }
2328
2329 RootMarkingVisitor root_visitor(heap());
2330 MarkRoots(&root_visitor);
2331
2332 // The objects reachable from the roots are marked, yet unreachable
2333 // objects are unmarked. Mark objects reachable due to host
2334 // application specific logic.
2335 ProcessExternalMarking();
2336
2337 // The objects reachable from the roots or object groups are marked,
2338 // yet unreachable objects are unmarked. Mark objects reachable
2339 // only from weak global handles.
2340 //
2341 // First we identify nonlive weak handles and mark them as pending
2342 // destruction.
2343 heap()->isolate()->global_handles()->IdentifyWeakHandles(
2344 &IsUnmarkedHeapObject);
2345 // Then we mark the objects and process the transitive closure.
2346 heap()->isolate()->global_handles()->IterateWeakRoots(&root_visitor);
2347 while (marking_deque_.overflowed()) {
2348 RefillMarkingDeque();
2349 EmptyMarkingDeque();
2350 }
2351
2352 // Repeat host application specific marking to mark unmarked objects
2353 // reachable from the weak roots.
2354 ProcessExternalMarking();
2355
2356 AfterMarking();
2357 }
2358
2359
AfterMarking()2360 void MarkCompactCollector::AfterMarking() {
2361 // Object literal map caches reference symbols (cache keys) and maps
2362 // (cache values). At this point still useful maps have already been
2363 // marked. Mark the keys for the alive values before we process the
2364 // symbol table.
2365 ProcessMapCaches();
2366
2367 // Prune the symbol table removing all symbols only pointed to by the
2368 // symbol table. Cannot use symbol_table() here because the symbol
2369 // table is marked.
2370 SymbolTable* symbol_table = heap()->symbol_table();
2371 SymbolTableCleaner v(heap());
2372 symbol_table->IterateElements(&v);
2373 symbol_table->ElementsRemoved(v.PointersRemoved());
2374 heap()->external_string_table_.Iterate(&v);
2375 heap()->external_string_table_.CleanUp();
2376
2377 // Process the weak references.
2378 MarkCompactWeakObjectRetainer mark_compact_object_retainer;
2379 heap()->ProcessWeakReferences(&mark_compact_object_retainer);
2380
2381 // Remove object groups after marking phase.
2382 heap()->isolate()->global_handles()->RemoveObjectGroups();
2383 heap()->isolate()->global_handles()->RemoveImplicitRefGroups();
2384
2385 // Flush code from collected candidates.
2386 if (is_code_flushing_enabled()) {
2387 code_flusher_->ProcessCandidates();
2388 }
2389
2390 if (!FLAG_watch_ic_patching) {
2391 // Clean up dead objects from the runtime profiler.
2392 heap()->isolate()->runtime_profiler()->RemoveDeadSamples();
2393 }
2394 }
2395
2396
ProcessMapCaches()2397 void MarkCompactCollector::ProcessMapCaches() {
2398 Object* raw_context = heap()->global_contexts_list_;
2399 while (raw_context != heap()->undefined_value()) {
2400 Context* context = reinterpret_cast<Context*>(raw_context);
2401 if (IsMarked(context)) {
2402 HeapObject* raw_map_cache =
2403 HeapObject::cast(context->get(Context::MAP_CACHE_INDEX));
2404 // A map cache may be reachable from the stack. In this case
2405 // it's already transitively marked and it's too late to clean
2406 // up its parts.
2407 if (!IsMarked(raw_map_cache) &&
2408 raw_map_cache != heap()->undefined_value()) {
2409 MapCache* map_cache = reinterpret_cast<MapCache*>(raw_map_cache);
2410 int existing_elements = map_cache->NumberOfElements();
2411 int used_elements = 0;
2412 for (int i = MapCache::kElementsStartIndex;
2413 i < map_cache->length();
2414 i += MapCache::kEntrySize) {
2415 Object* raw_key = map_cache->get(i);
2416 if (raw_key == heap()->undefined_value() ||
2417 raw_key == heap()->the_hole_value()) continue;
2418 STATIC_ASSERT(MapCache::kEntrySize == 2);
2419 Object* raw_map = map_cache->get(i + 1);
2420 if (raw_map->IsHeapObject() && IsMarked(raw_map)) {
2421 ++used_elements;
2422 } else {
2423 // Delete useless entries with unmarked maps.
2424 ASSERT(raw_map->IsMap());
2425 map_cache->set_the_hole(i);
2426 map_cache->set_the_hole(i + 1);
2427 }
2428 }
2429 if (used_elements == 0) {
2430 context->set(Context::MAP_CACHE_INDEX, heap()->undefined_value());
2431 } else {
2432 // Note: we don't actually shrink the cache here to avoid
2433 // extra complexity during GC. We rely on subsequent cache
2434 // usages (EnsureCapacity) to do this.
2435 map_cache->ElementsRemoved(existing_elements - used_elements);
2436 MarkBit map_cache_markbit = Marking::MarkBitFrom(map_cache);
2437 MarkObject(map_cache, map_cache_markbit);
2438 }
2439 }
2440 }
2441 // Move to next element in the list.
2442 raw_context = context->get(Context::NEXT_CONTEXT_LINK);
2443 }
2444 ProcessMarkingDeque();
2445 }
2446
2447
ReattachInitialMaps()2448 void MarkCompactCollector::ReattachInitialMaps() {
2449 HeapObjectIterator map_iterator(heap()->map_space());
2450 for (HeapObject* obj = map_iterator.Next();
2451 obj != NULL;
2452 obj = map_iterator.Next()) {
2453 if (obj->IsFreeSpace()) continue;
2454 Map* map = Map::cast(obj);
2455
2456 STATIC_ASSERT(LAST_TYPE == LAST_JS_RECEIVER_TYPE);
2457 if (map->instance_type() < FIRST_JS_RECEIVER_TYPE) continue;
2458
2459 if (map->attached_to_shared_function_info()) {
2460 JSFunction::cast(map->constructor())->shared()->AttachInitialMap(map);
2461 }
2462 }
2463 }
2464
2465
ClearNonLiveTransitions()2466 void MarkCompactCollector::ClearNonLiveTransitions() {
2467 HeapObjectIterator map_iterator(heap()->map_space());
2468 // Iterate over the map space, setting map transitions that go from
2469 // a marked map to an unmarked map to null transitions. At the same time,
2470 // set all the prototype fields of maps back to their original value,
2471 // dropping the back pointers temporarily stored in the prototype field.
2472 // Setting the prototype field requires following the linked list of
2473 // back pointers, reversing them all at once. This allows us to find
2474 // those maps with map transitions that need to be nulled, and only
2475 // scan the descriptor arrays of those maps, not all maps.
2476 // All of these actions are carried out only on maps of JSObjects
2477 // and related subtypes.
2478 for (HeapObject* obj = map_iterator.Next();
2479 obj != NULL; obj = map_iterator.Next()) {
2480 Map* map = reinterpret_cast<Map*>(obj);
2481 MarkBit map_mark = Marking::MarkBitFrom(map);
2482 if (map->IsFreeSpace()) continue;
2483
2484 ASSERT(map->IsMap());
2485 // Only JSObject and subtypes have map transitions and back pointers.
2486 STATIC_ASSERT(LAST_TYPE == LAST_JS_OBJECT_TYPE);
2487 if (map->instance_type() < FIRST_JS_OBJECT_TYPE) continue;
2488
2489 if (map_mark.Get() &&
2490 map->attached_to_shared_function_info()) {
2491 // This map is used for inobject slack tracking and has been detached
2492 // from SharedFunctionInfo during the mark phase.
2493 // Since it survived the GC, reattach it now.
2494 map->unchecked_constructor()->unchecked_shared()->AttachInitialMap(map);
2495 }
2496
2497 ClearNonLivePrototypeTransitions(map);
2498 ClearNonLiveMapTransitions(map, map_mark);
2499 }
2500 }
2501
2502
ClearNonLivePrototypeTransitions(Map * map)2503 void MarkCompactCollector::ClearNonLivePrototypeTransitions(Map* map) {
2504 int number_of_transitions = map->NumberOfProtoTransitions();
2505 FixedArray* prototype_transitions = map->prototype_transitions();
2506
2507 int new_number_of_transitions = 0;
2508 const int header = Map::kProtoTransitionHeaderSize;
2509 const int proto_offset = header + Map::kProtoTransitionPrototypeOffset;
2510 const int map_offset = header + Map::kProtoTransitionMapOffset;
2511 const int step = Map::kProtoTransitionElementsPerEntry;
2512 for (int i = 0; i < number_of_transitions; i++) {
2513 Object* prototype = prototype_transitions->get(proto_offset + i * step);
2514 Object* cached_map = prototype_transitions->get(map_offset + i * step);
2515 if (IsMarked(prototype) && IsMarked(cached_map)) {
2516 int proto_index = proto_offset + new_number_of_transitions * step;
2517 int map_index = map_offset + new_number_of_transitions * step;
2518 if (new_number_of_transitions != i) {
2519 prototype_transitions->set_unchecked(
2520 heap_,
2521 proto_index,
2522 prototype,
2523 UPDATE_WRITE_BARRIER);
2524 prototype_transitions->set_unchecked(
2525 heap_,
2526 map_index,
2527 cached_map,
2528 SKIP_WRITE_BARRIER);
2529 }
2530 Object** slot =
2531 HeapObject::RawField(prototype_transitions,
2532 FixedArray::OffsetOfElementAt(proto_index));
2533 RecordSlot(slot, slot, prototype);
2534 new_number_of_transitions++;
2535 }
2536 }
2537
2538 if (new_number_of_transitions != number_of_transitions) {
2539 map->SetNumberOfProtoTransitions(new_number_of_transitions);
2540 }
2541
2542 // Fill slots that became free with undefined value.
2543 for (int i = new_number_of_transitions * step;
2544 i < number_of_transitions * step;
2545 i++) {
2546 prototype_transitions->set_undefined(heap_, header + i);
2547 }
2548 }
2549
2550
ClearNonLiveMapTransitions(Map * map,MarkBit map_mark)2551 void MarkCompactCollector::ClearNonLiveMapTransitions(Map* map,
2552 MarkBit map_mark) {
2553 // Follow the chain of back pointers to find the prototype.
2554 Object* real_prototype = map;
2555 while (real_prototype->IsMap()) {
2556 real_prototype = Map::cast(real_prototype)->prototype();
2557 ASSERT(real_prototype->IsHeapObject());
2558 }
2559
2560 // Follow back pointers, setting them to prototype, clearing map transitions
2561 // when necessary.
2562 Map* current = map;
2563 bool current_is_alive = map_mark.Get();
2564 bool on_dead_path = !current_is_alive;
2565 while (current->IsMap()) {
2566 Object* next = current->prototype();
2567 // There should never be a dead map above a live map.
2568 ASSERT(on_dead_path || current_is_alive);
2569
2570 // A live map above a dead map indicates a dead transition. This test will
2571 // always be false on the first iteration.
2572 if (on_dead_path && current_is_alive) {
2573 on_dead_path = false;
2574 current->ClearNonLiveTransitions(heap(), real_prototype);
2575 }
2576
2577 Object** slot = HeapObject::RawField(current, Map::kPrototypeOffset);
2578 *slot = real_prototype;
2579 if (current_is_alive) RecordSlot(slot, slot, real_prototype);
2580
2581 current = reinterpret_cast<Map*>(next);
2582 current_is_alive = Marking::MarkBitFrom(current).Get();
2583 }
2584 }
2585
2586
ProcessWeakMaps()2587 void MarkCompactCollector::ProcessWeakMaps() {
2588 Object* weak_map_obj = encountered_weak_maps();
2589 while (weak_map_obj != Smi::FromInt(0)) {
2590 ASSERT(MarkCompactCollector::IsMarked(HeapObject::cast(weak_map_obj)));
2591 JSWeakMap* weak_map = reinterpret_cast<JSWeakMap*>(weak_map_obj);
2592 ObjectHashTable* table = ObjectHashTable::cast(weak_map->table());
2593 for (int i = 0; i < table->Capacity(); i++) {
2594 if (MarkCompactCollector::IsMarked(HeapObject::cast(table->KeyAt(i)))) {
2595 Object* value = table->get(table->EntryToValueIndex(i));
2596 StaticMarkingVisitor::VisitPointer(heap(), &value);
2597 table->set_unchecked(heap(),
2598 table->EntryToValueIndex(i),
2599 value,
2600 UPDATE_WRITE_BARRIER);
2601 }
2602 }
2603 weak_map_obj = weak_map->next();
2604 }
2605 }
2606
2607
ClearWeakMaps()2608 void MarkCompactCollector::ClearWeakMaps() {
2609 Object* weak_map_obj = encountered_weak_maps();
2610 while (weak_map_obj != Smi::FromInt(0)) {
2611 ASSERT(MarkCompactCollector::IsMarked(HeapObject::cast(weak_map_obj)));
2612 JSWeakMap* weak_map = reinterpret_cast<JSWeakMap*>(weak_map_obj);
2613 ObjectHashTable* table = ObjectHashTable::cast(weak_map->table());
2614 for (int i = 0; i < table->Capacity(); i++) {
2615 if (!MarkCompactCollector::IsMarked(HeapObject::cast(table->KeyAt(i)))) {
2616 table->RemoveEntry(i);
2617 }
2618 }
2619 weak_map_obj = weak_map->next();
2620 weak_map->set_next(Smi::FromInt(0));
2621 }
2622 set_encountered_weak_maps(Smi::FromInt(0));
2623 }
2624
2625
2626 // We scavange new space simultaneously with sweeping. This is done in two
2627 // passes.
2628 //
2629 // The first pass migrates all alive objects from one semispace to another or
2630 // promotes them to old space. Forwarding address is written directly into
2631 // first word of object without any encoding. If object is dead we write
2632 // NULL as a forwarding address.
2633 //
2634 // The second pass updates pointers to new space in all spaces. It is possible
2635 // to encounter pointers to dead new space objects during traversal of pointers
2636 // to new space. We should clear them to avoid encountering them during next
2637 // pointer iteration. This is an issue if the store buffer overflows and we
2638 // have to scan the entire old space, including dead objects, looking for
2639 // pointers to new space.
MigrateObject(Address dst,Address src,int size,AllocationSpace dest)2640 void MarkCompactCollector::MigrateObject(Address dst,
2641 Address src,
2642 int size,
2643 AllocationSpace dest) {
2644 HEAP_PROFILE(heap(), ObjectMoveEvent(src, dst));
2645 if (dest == OLD_POINTER_SPACE || dest == LO_SPACE) {
2646 Address src_slot = src;
2647 Address dst_slot = dst;
2648 ASSERT(IsAligned(size, kPointerSize));
2649
2650 for (int remaining = size / kPointerSize; remaining > 0; remaining--) {
2651 Object* value = Memory::Object_at(src_slot);
2652
2653 Memory::Object_at(dst_slot) = value;
2654
2655 if (heap_->InNewSpace(value)) {
2656 heap_->store_buffer()->Mark(dst_slot);
2657 } else if (value->IsHeapObject() && IsOnEvacuationCandidate(value)) {
2658 SlotsBuffer::AddTo(&slots_buffer_allocator_,
2659 &migration_slots_buffer_,
2660 reinterpret_cast<Object**>(dst_slot),
2661 SlotsBuffer::IGNORE_OVERFLOW);
2662 }
2663
2664 src_slot += kPointerSize;
2665 dst_slot += kPointerSize;
2666 }
2667
2668 if (compacting_ && HeapObject::FromAddress(dst)->IsJSFunction()) {
2669 Address code_entry_slot = dst + JSFunction::kCodeEntryOffset;
2670 Address code_entry = Memory::Address_at(code_entry_slot);
2671
2672 if (Page::FromAddress(code_entry)->IsEvacuationCandidate()) {
2673 SlotsBuffer::AddTo(&slots_buffer_allocator_,
2674 &migration_slots_buffer_,
2675 SlotsBuffer::CODE_ENTRY_SLOT,
2676 code_entry_slot,
2677 SlotsBuffer::IGNORE_OVERFLOW);
2678 }
2679 }
2680 } else if (dest == CODE_SPACE) {
2681 PROFILE(heap()->isolate(), CodeMoveEvent(src, dst));
2682 heap()->MoveBlock(dst, src, size);
2683 SlotsBuffer::AddTo(&slots_buffer_allocator_,
2684 &migration_slots_buffer_,
2685 SlotsBuffer::RELOCATED_CODE_OBJECT,
2686 dst,
2687 SlotsBuffer::IGNORE_OVERFLOW);
2688 Code::cast(HeapObject::FromAddress(dst))->Relocate(dst - src);
2689 } else {
2690 ASSERT(dest == OLD_DATA_SPACE || dest == NEW_SPACE);
2691 heap()->MoveBlock(dst, src, size);
2692 }
2693 Memory::Address_at(src) = dst;
2694 }
2695
2696
2697 // Visitor for updating pointers from live objects in old spaces to new space.
2698 // It does not expect to encounter pointers to dead objects.
2699 class PointersUpdatingVisitor: public ObjectVisitor {
2700 public:
PointersUpdatingVisitor(Heap * heap)2701 explicit PointersUpdatingVisitor(Heap* heap) : heap_(heap) { }
2702
VisitPointer(Object ** p)2703 void VisitPointer(Object** p) {
2704 UpdatePointer(p);
2705 }
2706
VisitPointers(Object ** start,Object ** end)2707 void VisitPointers(Object** start, Object** end) {
2708 for (Object** p = start; p < end; p++) UpdatePointer(p);
2709 }
2710
VisitEmbeddedPointer(RelocInfo * rinfo)2711 void VisitEmbeddedPointer(RelocInfo* rinfo) {
2712 ASSERT(rinfo->rmode() == RelocInfo::EMBEDDED_OBJECT);
2713 Object* target = rinfo->target_object();
2714 VisitPointer(&target);
2715 rinfo->set_target_object(target);
2716 }
2717
VisitCodeTarget(RelocInfo * rinfo)2718 void VisitCodeTarget(RelocInfo* rinfo) {
2719 ASSERT(RelocInfo::IsCodeTarget(rinfo->rmode()));
2720 Object* target = Code::GetCodeFromTargetAddress(rinfo->target_address());
2721 VisitPointer(&target);
2722 rinfo->set_target_address(Code::cast(target)->instruction_start());
2723 }
2724
VisitDebugTarget(RelocInfo * rinfo)2725 void VisitDebugTarget(RelocInfo* rinfo) {
2726 ASSERT((RelocInfo::IsJSReturn(rinfo->rmode()) &&
2727 rinfo->IsPatchedReturnSequence()) ||
2728 (RelocInfo::IsDebugBreakSlot(rinfo->rmode()) &&
2729 rinfo->IsPatchedDebugBreakSlotSequence()));
2730 Object* target = Code::GetCodeFromTargetAddress(rinfo->call_address());
2731 VisitPointer(&target);
2732 rinfo->set_call_address(Code::cast(target)->instruction_start());
2733 }
2734
UpdateSlot(Heap * heap,Object ** slot)2735 static inline void UpdateSlot(Heap* heap, Object** slot) {
2736 Object* obj = *slot;
2737
2738 if (!obj->IsHeapObject()) return;
2739
2740 HeapObject* heap_obj = HeapObject::cast(obj);
2741
2742 MapWord map_word = heap_obj->map_word();
2743 if (map_word.IsForwardingAddress()) {
2744 ASSERT(heap->InFromSpace(heap_obj) ||
2745 MarkCompactCollector::IsOnEvacuationCandidate(heap_obj));
2746 HeapObject* target = map_word.ToForwardingAddress();
2747 *slot = target;
2748 ASSERT(!heap->InFromSpace(target) &&
2749 !MarkCompactCollector::IsOnEvacuationCandidate(target));
2750 }
2751 }
2752
2753 private:
UpdatePointer(Object ** p)2754 inline void UpdatePointer(Object** p) {
2755 UpdateSlot(heap_, p);
2756 }
2757
2758 Heap* heap_;
2759 };
2760
2761
UpdatePointer(HeapObject ** p,HeapObject * object)2762 static void UpdatePointer(HeapObject** p, HeapObject* object) {
2763 ASSERT(*p == object);
2764
2765 Address old_addr = object->address();
2766
2767 Address new_addr = Memory::Address_at(old_addr);
2768
2769 // The new space sweep will overwrite the map word of dead objects
2770 // with NULL. In this case we do not need to transfer this entry to
2771 // the store buffer which we are rebuilding.
2772 if (new_addr != NULL) {
2773 *p = HeapObject::FromAddress(new_addr);
2774 } else {
2775 // We have to zap this pointer, because the store buffer may overflow later,
2776 // and then we have to scan the entire heap and we don't want to find
2777 // spurious newspace pointers in the old space.
2778 *p = reinterpret_cast<HeapObject*>(Smi::FromInt(0));
2779 }
2780 }
2781
2782
UpdateReferenceInExternalStringTableEntry(Heap * heap,Object ** p)2783 static String* UpdateReferenceInExternalStringTableEntry(Heap* heap,
2784 Object** p) {
2785 MapWord map_word = HeapObject::cast(*p)->map_word();
2786
2787 if (map_word.IsForwardingAddress()) {
2788 return String::cast(map_word.ToForwardingAddress());
2789 }
2790
2791 return String::cast(*p);
2792 }
2793
2794
TryPromoteObject(HeapObject * object,int object_size)2795 bool MarkCompactCollector::TryPromoteObject(HeapObject* object,
2796 int object_size) {
2797 Object* result;
2798
2799 if (object_size > Page::kMaxNonCodeHeapObjectSize) {
2800 MaybeObject* maybe_result =
2801 heap()->lo_space()->AllocateRaw(object_size, NOT_EXECUTABLE);
2802 if (maybe_result->ToObject(&result)) {
2803 HeapObject* target = HeapObject::cast(result);
2804 MigrateObject(target->address(),
2805 object->address(),
2806 object_size,
2807 LO_SPACE);
2808 heap()->mark_compact_collector()->tracer()->
2809 increment_promoted_objects_size(object_size);
2810 return true;
2811 }
2812 } else {
2813 OldSpace* target_space = heap()->TargetSpace(object);
2814
2815 ASSERT(target_space == heap()->old_pointer_space() ||
2816 target_space == heap()->old_data_space());
2817 MaybeObject* maybe_result = target_space->AllocateRaw(object_size);
2818 if (maybe_result->ToObject(&result)) {
2819 HeapObject* target = HeapObject::cast(result);
2820 MigrateObject(target->address(),
2821 object->address(),
2822 object_size,
2823 target_space->identity());
2824 heap()->mark_compact_collector()->tracer()->
2825 increment_promoted_objects_size(object_size);
2826 return true;
2827 }
2828 }
2829
2830 return false;
2831 }
2832
2833
EvacuateNewSpace()2834 void MarkCompactCollector::EvacuateNewSpace() {
2835 // There are soft limits in the allocation code, designed trigger a mark
2836 // sweep collection by failing allocations. But since we are already in
2837 // a mark-sweep allocation, there is no sense in trying to trigger one.
2838 AlwaysAllocateScope scope;
2839 heap()->CheckNewSpaceExpansionCriteria();
2840
2841 NewSpace* new_space = heap()->new_space();
2842
2843 // Store allocation range before flipping semispaces.
2844 Address from_bottom = new_space->bottom();
2845 Address from_top = new_space->top();
2846
2847 // Flip the semispaces. After flipping, to space is empty, from space has
2848 // live objects.
2849 new_space->Flip();
2850 new_space->ResetAllocationInfo();
2851
2852 int survivors_size = 0;
2853
2854 // First pass: traverse all objects in inactive semispace, remove marks,
2855 // migrate live objects and write forwarding addresses. This stage puts
2856 // new entries in the store buffer and may cause some pages to be marked
2857 // scan-on-scavenge.
2858 SemiSpaceIterator from_it(from_bottom, from_top);
2859 for (HeapObject* object = from_it.Next();
2860 object != NULL;
2861 object = from_it.Next()) {
2862 MarkBit mark_bit = Marking::MarkBitFrom(object);
2863 if (mark_bit.Get()) {
2864 mark_bit.Clear();
2865 // Don't bother decrementing live bytes count. We'll discard the
2866 // entire page at the end.
2867 int size = object->Size();
2868 survivors_size += size;
2869
2870 // Aggressively promote young survivors to the old space.
2871 if (TryPromoteObject(object, size)) {
2872 continue;
2873 }
2874
2875 // Promotion failed. Just migrate object to another semispace.
2876 MaybeObject* allocation = new_space->AllocateRaw(size);
2877 if (allocation->IsFailure()) {
2878 if (!new_space->AddFreshPage()) {
2879 // Shouldn't happen. We are sweeping linearly, and to-space
2880 // has the same number of pages as from-space, so there is
2881 // always room.
2882 UNREACHABLE();
2883 }
2884 allocation = new_space->AllocateRaw(size);
2885 ASSERT(!allocation->IsFailure());
2886 }
2887 Object* target = allocation->ToObjectUnchecked();
2888
2889 MigrateObject(HeapObject::cast(target)->address(),
2890 object->address(),
2891 size,
2892 NEW_SPACE);
2893 } else {
2894 // Process the dead object before we write a NULL into its header.
2895 LiveObjectList::ProcessNonLive(object);
2896
2897 // Mark dead objects in the new space with null in their map field.
2898 Memory::Address_at(object->address()) = NULL;
2899 }
2900 }
2901
2902 heap_->IncrementYoungSurvivorsCounter(survivors_size);
2903 new_space->set_age_mark(new_space->top());
2904 }
2905
2906
EvacuateLiveObjectsFromPage(Page * p)2907 void MarkCompactCollector::EvacuateLiveObjectsFromPage(Page* p) {
2908 AlwaysAllocateScope always_allocate;
2909 PagedSpace* space = static_cast<PagedSpace*>(p->owner());
2910 ASSERT(p->IsEvacuationCandidate() && !p->WasSwept());
2911 MarkBit::CellType* cells = p->markbits()->cells();
2912 p->MarkSweptPrecisely();
2913
2914 int last_cell_index =
2915 Bitmap::IndexToCell(
2916 Bitmap::CellAlignIndex(
2917 p->AddressToMarkbitIndex(p->area_end())));
2918
2919 Address cell_base = p->area_start();
2920 int cell_index = Bitmap::IndexToCell(
2921 Bitmap::CellAlignIndex(
2922 p->AddressToMarkbitIndex(cell_base)));
2923
2924 int offsets[16];
2925
2926 for (;
2927 cell_index < last_cell_index;
2928 cell_index++, cell_base += 32 * kPointerSize) {
2929 ASSERT((unsigned)cell_index ==
2930 Bitmap::IndexToCell(
2931 Bitmap::CellAlignIndex(
2932 p->AddressToMarkbitIndex(cell_base))));
2933 if (cells[cell_index] == 0) continue;
2934
2935 int live_objects = MarkWordToObjectStarts(cells[cell_index], offsets);
2936 for (int i = 0; i < live_objects; i++) {
2937 Address object_addr = cell_base + offsets[i] * kPointerSize;
2938 HeapObject* object = HeapObject::FromAddress(object_addr);
2939 ASSERT(Marking::IsBlack(Marking::MarkBitFrom(object)));
2940
2941 int size = object->Size();
2942
2943 MaybeObject* target = space->AllocateRaw(size);
2944 if (target->IsFailure()) {
2945 // OS refused to give us memory.
2946 V8::FatalProcessOutOfMemory("Evacuation");
2947 return;
2948 }
2949
2950 Object* target_object = target->ToObjectUnchecked();
2951
2952 MigrateObject(HeapObject::cast(target_object)->address(),
2953 object_addr,
2954 size,
2955 space->identity());
2956 ASSERT(object->map_word().IsForwardingAddress());
2957 }
2958
2959 // Clear marking bits for current cell.
2960 cells[cell_index] = 0;
2961 }
2962 p->ResetLiveBytes();
2963 }
2964
2965
EvacuatePages()2966 void MarkCompactCollector::EvacuatePages() {
2967 int npages = evacuation_candidates_.length();
2968 for (int i = 0; i < npages; i++) {
2969 Page* p = evacuation_candidates_[i];
2970 ASSERT(p->IsEvacuationCandidate() ||
2971 p->IsFlagSet(Page::RESCAN_ON_EVACUATION));
2972 if (p->IsEvacuationCandidate()) {
2973 // During compaction we might have to request a new page.
2974 // Check that space still have room for that.
2975 if (static_cast<PagedSpace*>(p->owner())->CanExpand()) {
2976 EvacuateLiveObjectsFromPage(p);
2977 } else {
2978 // Without room for expansion evacuation is not guaranteed to succeed.
2979 // Pessimistically abandon unevacuated pages.
2980 for (int j = i; j < npages; j++) {
2981 Page* page = evacuation_candidates_[j];
2982 slots_buffer_allocator_.DeallocateChain(page->slots_buffer_address());
2983 page->ClearEvacuationCandidate();
2984 page->SetFlag(Page::RESCAN_ON_EVACUATION);
2985 }
2986 return;
2987 }
2988 }
2989 }
2990 }
2991
2992
2993 class EvacuationWeakObjectRetainer : public WeakObjectRetainer {
2994 public:
RetainAs(Object * object)2995 virtual Object* RetainAs(Object* object) {
2996 if (object->IsHeapObject()) {
2997 HeapObject* heap_object = HeapObject::cast(object);
2998 MapWord map_word = heap_object->map_word();
2999 if (map_word.IsForwardingAddress()) {
3000 return map_word.ToForwardingAddress();
3001 }
3002 }
3003 return object;
3004 }
3005 };
3006
3007
UpdateSlot(ObjectVisitor * v,SlotsBuffer::SlotType slot_type,Address addr)3008 static inline void UpdateSlot(ObjectVisitor* v,
3009 SlotsBuffer::SlotType slot_type,
3010 Address addr) {
3011 switch (slot_type) {
3012 case SlotsBuffer::CODE_TARGET_SLOT: {
3013 RelocInfo rinfo(addr, RelocInfo::CODE_TARGET, 0, NULL);
3014 rinfo.Visit(v);
3015 break;
3016 }
3017 case SlotsBuffer::CODE_ENTRY_SLOT: {
3018 v->VisitCodeEntry(addr);
3019 break;
3020 }
3021 case SlotsBuffer::RELOCATED_CODE_OBJECT: {
3022 HeapObject* obj = HeapObject::FromAddress(addr);
3023 Code::cast(obj)->CodeIterateBody(v);
3024 break;
3025 }
3026 case SlotsBuffer::DEBUG_TARGET_SLOT: {
3027 RelocInfo rinfo(addr, RelocInfo::DEBUG_BREAK_SLOT, 0, NULL);
3028 if (rinfo.IsPatchedDebugBreakSlotSequence()) rinfo.Visit(v);
3029 break;
3030 }
3031 case SlotsBuffer::JS_RETURN_SLOT: {
3032 RelocInfo rinfo(addr, RelocInfo::JS_RETURN, 0, NULL);
3033 if (rinfo.IsPatchedReturnSequence()) rinfo.Visit(v);
3034 break;
3035 }
3036 case SlotsBuffer::EMBEDDED_OBJECT_SLOT: {
3037 RelocInfo rinfo(addr, RelocInfo::EMBEDDED_OBJECT, 0, NULL);
3038 rinfo.Visit(v);
3039 break;
3040 }
3041 default:
3042 UNREACHABLE();
3043 break;
3044 }
3045 }
3046
3047
3048 enum SweepingMode {
3049 SWEEP_ONLY,
3050 SWEEP_AND_VISIT_LIVE_OBJECTS
3051 };
3052
3053
3054 enum SkipListRebuildingMode {
3055 REBUILD_SKIP_LIST,
3056 IGNORE_SKIP_LIST
3057 };
3058
3059
3060 // Sweep a space precisely. After this has been done the space can
3061 // be iterated precisely, hitting only the live objects. Code space
3062 // is always swept precisely because we want to be able to iterate
3063 // over it. Map space is swept precisely, because it is not compacted.
3064 // Slots in live objects pointing into evacuation candidates are updated
3065 // if requested.
3066 template<SweepingMode sweeping_mode, SkipListRebuildingMode skip_list_mode>
SweepPrecisely(PagedSpace * space,Page * p,ObjectVisitor * v)3067 static void SweepPrecisely(PagedSpace* space,
3068 Page* p,
3069 ObjectVisitor* v) {
3070 ASSERT(!p->IsEvacuationCandidate() && !p->WasSwept());
3071 ASSERT_EQ(skip_list_mode == REBUILD_SKIP_LIST,
3072 space->identity() == CODE_SPACE);
3073 ASSERT((p->skip_list() == NULL) || (skip_list_mode == REBUILD_SKIP_LIST));
3074
3075 MarkBit::CellType* cells = p->markbits()->cells();
3076 p->MarkSweptPrecisely();
3077
3078 int last_cell_index =
3079 Bitmap::IndexToCell(
3080 Bitmap::CellAlignIndex(
3081 p->AddressToMarkbitIndex(p->area_end())));
3082
3083 Address free_start = p->area_start();
3084 int cell_index =
3085 Bitmap::IndexToCell(
3086 Bitmap::CellAlignIndex(
3087 p->AddressToMarkbitIndex(free_start)));
3088
3089 ASSERT(reinterpret_cast<intptr_t>(free_start) % (32 * kPointerSize) == 0);
3090 Address object_address = free_start;
3091 int offsets[16];
3092
3093 SkipList* skip_list = p->skip_list();
3094 int curr_region = -1;
3095 if ((skip_list_mode == REBUILD_SKIP_LIST) && skip_list) {
3096 skip_list->Clear();
3097 }
3098
3099 for (;
3100 cell_index < last_cell_index;
3101 cell_index++, object_address += 32 * kPointerSize) {
3102 ASSERT((unsigned)cell_index ==
3103 Bitmap::IndexToCell(
3104 Bitmap::CellAlignIndex(
3105 p->AddressToMarkbitIndex(object_address))));
3106 int live_objects = MarkWordToObjectStarts(cells[cell_index], offsets);
3107 int live_index = 0;
3108 for ( ; live_objects != 0; live_objects--) {
3109 Address free_end = object_address + offsets[live_index++] * kPointerSize;
3110 if (free_end != free_start) {
3111 space->Free(free_start, static_cast<int>(free_end - free_start));
3112 }
3113 HeapObject* live_object = HeapObject::FromAddress(free_end);
3114 ASSERT(Marking::IsBlack(Marking::MarkBitFrom(live_object)));
3115 Map* map = live_object->map();
3116 int size = live_object->SizeFromMap(map);
3117 if (sweeping_mode == SWEEP_AND_VISIT_LIVE_OBJECTS) {
3118 live_object->IterateBody(map->instance_type(), size, v);
3119 }
3120 if ((skip_list_mode == REBUILD_SKIP_LIST) && skip_list != NULL) {
3121 int new_region_start =
3122 SkipList::RegionNumber(free_end);
3123 int new_region_end =
3124 SkipList::RegionNumber(free_end + size - kPointerSize);
3125 if (new_region_start != curr_region ||
3126 new_region_end != curr_region) {
3127 skip_list->AddObject(free_end, size);
3128 curr_region = new_region_end;
3129 }
3130 }
3131 free_start = free_end + size;
3132 }
3133 // Clear marking bits for current cell.
3134 cells[cell_index] = 0;
3135 }
3136 if (free_start != p->area_end()) {
3137 space->Free(free_start, static_cast<int>(p->area_end() - free_start));
3138 }
3139 p->ResetLiveBytes();
3140 }
3141
3142
SetMarkBitsUnderInvalidatedCode(Code * code,bool value)3143 static bool SetMarkBitsUnderInvalidatedCode(Code* code, bool value) {
3144 Page* p = Page::FromAddress(code->address());
3145
3146 if (p->IsEvacuationCandidate() ||
3147 p->IsFlagSet(Page::RESCAN_ON_EVACUATION)) {
3148 return false;
3149 }
3150
3151 Address code_start = code->address();
3152 Address code_end = code_start + code->Size();
3153
3154 uint32_t start_index = MemoryChunk::FastAddressToMarkbitIndex(code_start);
3155 uint32_t end_index =
3156 MemoryChunk::FastAddressToMarkbitIndex(code_end - kPointerSize);
3157
3158 Bitmap* b = p->markbits();
3159
3160 MarkBit start_mark_bit = b->MarkBitFromIndex(start_index);
3161 MarkBit end_mark_bit = b->MarkBitFromIndex(end_index);
3162
3163 MarkBit::CellType* start_cell = start_mark_bit.cell();
3164 MarkBit::CellType* end_cell = end_mark_bit.cell();
3165
3166 if (value) {
3167 MarkBit::CellType start_mask = ~(start_mark_bit.mask() - 1);
3168 MarkBit::CellType end_mask = (end_mark_bit.mask() << 1) - 1;
3169
3170 if (start_cell == end_cell) {
3171 *start_cell |= start_mask & end_mask;
3172 } else {
3173 *start_cell |= start_mask;
3174 for (MarkBit::CellType* cell = start_cell + 1; cell < end_cell; cell++) {
3175 *cell = ~0;
3176 }
3177 *end_cell |= end_mask;
3178 }
3179 } else {
3180 for (MarkBit::CellType* cell = start_cell ; cell <= end_cell; cell++) {
3181 *cell = 0;
3182 }
3183 }
3184
3185 return true;
3186 }
3187
3188
IsOnInvalidatedCodeObject(Address addr)3189 static bool IsOnInvalidatedCodeObject(Address addr) {
3190 // We did not record any slots in large objects thus
3191 // we can safely go to the page from the slot address.
3192 Page* p = Page::FromAddress(addr);
3193
3194 // First check owner's identity because old pointer and old data spaces
3195 // are swept lazily and might still have non-zero mark-bits on some
3196 // pages.
3197 if (p->owner()->identity() != CODE_SPACE) return false;
3198
3199 // In code space only bits on evacuation candidates (but we don't record
3200 // any slots on them) and under invalidated code objects are non-zero.
3201 MarkBit mark_bit =
3202 p->markbits()->MarkBitFromIndex(Page::FastAddressToMarkbitIndex(addr));
3203
3204 return mark_bit.Get();
3205 }
3206
3207
InvalidateCode(Code * code)3208 void MarkCompactCollector::InvalidateCode(Code* code) {
3209 if (heap_->incremental_marking()->IsCompacting() &&
3210 !ShouldSkipEvacuationSlotRecording(code)) {
3211 ASSERT(compacting_);
3212
3213 // If the object is white than no slots were recorded on it yet.
3214 MarkBit mark_bit = Marking::MarkBitFrom(code);
3215 if (Marking::IsWhite(mark_bit)) return;
3216
3217 invalidated_code_.Add(code);
3218 }
3219 }
3220
3221
MarkInvalidatedCode()3222 bool MarkCompactCollector::MarkInvalidatedCode() {
3223 bool code_marked = false;
3224
3225 int length = invalidated_code_.length();
3226 for (int i = 0; i < length; i++) {
3227 Code* code = invalidated_code_[i];
3228
3229 if (SetMarkBitsUnderInvalidatedCode(code, true)) {
3230 code_marked = true;
3231 }
3232 }
3233
3234 return code_marked;
3235 }
3236
3237
RemoveDeadInvalidatedCode()3238 void MarkCompactCollector::RemoveDeadInvalidatedCode() {
3239 int length = invalidated_code_.length();
3240 for (int i = 0; i < length; i++) {
3241 if (!IsMarked(invalidated_code_[i])) invalidated_code_[i] = NULL;
3242 }
3243 }
3244
3245
ProcessInvalidatedCode(ObjectVisitor * visitor)3246 void MarkCompactCollector::ProcessInvalidatedCode(ObjectVisitor* visitor) {
3247 int length = invalidated_code_.length();
3248 for (int i = 0; i < length; i++) {
3249 Code* code = invalidated_code_[i];
3250 if (code != NULL) {
3251 code->Iterate(visitor);
3252 SetMarkBitsUnderInvalidatedCode(code, false);
3253 }
3254 }
3255 invalidated_code_.Rewind(0);
3256 }
3257
3258
EvacuateNewSpaceAndCandidates()3259 void MarkCompactCollector::EvacuateNewSpaceAndCandidates() {
3260 bool code_slots_filtering_required;
3261 { GCTracer::Scope gc_scope(tracer_, GCTracer::Scope::MC_SWEEP_NEWSPACE);
3262 code_slots_filtering_required = MarkInvalidatedCode();
3263
3264 EvacuateNewSpace();
3265 }
3266
3267
3268 { GCTracer::Scope gc_scope(tracer_, GCTracer::Scope::MC_EVACUATE_PAGES);
3269 EvacuatePages();
3270 }
3271
3272 // Second pass: find pointers to new space and update them.
3273 PointersUpdatingVisitor updating_visitor(heap());
3274
3275 { GCTracer::Scope gc_scope(tracer_,
3276 GCTracer::Scope::MC_UPDATE_NEW_TO_NEW_POINTERS);
3277 // Update pointers in to space.
3278 SemiSpaceIterator to_it(heap()->new_space()->bottom(),
3279 heap()->new_space()->top());
3280 for (HeapObject* object = to_it.Next();
3281 object != NULL;
3282 object = to_it.Next()) {
3283 Map* map = object->map();
3284 object->IterateBody(map->instance_type(),
3285 object->SizeFromMap(map),
3286 &updating_visitor);
3287 }
3288 }
3289
3290 { GCTracer::Scope gc_scope(tracer_,
3291 GCTracer::Scope::MC_UPDATE_ROOT_TO_NEW_POINTERS);
3292 // Update roots.
3293 heap_->IterateRoots(&updating_visitor, VISIT_ALL_IN_SWEEP_NEWSPACE);
3294 LiveObjectList::IterateElements(&updating_visitor);
3295 }
3296
3297 { GCTracer::Scope gc_scope(tracer_,
3298 GCTracer::Scope::MC_UPDATE_OLD_TO_NEW_POINTERS);
3299 StoreBufferRebuildScope scope(heap_,
3300 heap_->store_buffer(),
3301 &Heap::ScavengeStoreBufferCallback);
3302 heap_->store_buffer()->IteratePointersToNewSpace(&UpdatePointer);
3303 }
3304
3305 { GCTracer::Scope gc_scope(tracer_,
3306 GCTracer::Scope::MC_UPDATE_POINTERS_TO_EVACUATED);
3307 SlotsBuffer::UpdateSlotsRecordedIn(heap_,
3308 migration_slots_buffer_,
3309 code_slots_filtering_required);
3310 if (FLAG_trace_fragmentation) {
3311 PrintF(" migration slots buffer: %d\n",
3312 SlotsBuffer::SizeOfChain(migration_slots_buffer_));
3313 }
3314
3315 if (compacting_ && was_marked_incrementally_) {
3316 // It's difficult to filter out slots recorded for large objects.
3317 LargeObjectIterator it(heap_->lo_space());
3318 for (HeapObject* obj = it.Next(); obj != NULL; obj = it.Next()) {
3319 // LargeObjectSpace is not swept yet thus we have to skip
3320 // dead objects explicitly.
3321 if (!IsMarked(obj)) continue;
3322
3323 Page* p = Page::FromAddress(obj->address());
3324 if (p->IsFlagSet(Page::RESCAN_ON_EVACUATION)) {
3325 obj->Iterate(&updating_visitor);
3326 p->ClearFlag(Page::RESCAN_ON_EVACUATION);
3327 }
3328 }
3329 }
3330 }
3331
3332 int npages = evacuation_candidates_.length();
3333 { GCTracer::Scope gc_scope(
3334 tracer_, GCTracer::Scope::MC_UPDATE_POINTERS_BETWEEN_EVACUATED);
3335 for (int i = 0; i < npages; i++) {
3336 Page* p = evacuation_candidates_[i];
3337 ASSERT(p->IsEvacuationCandidate() ||
3338 p->IsFlagSet(Page::RESCAN_ON_EVACUATION));
3339
3340 if (p->IsEvacuationCandidate()) {
3341 SlotsBuffer::UpdateSlotsRecordedIn(heap_,
3342 p->slots_buffer(),
3343 code_slots_filtering_required);
3344 if (FLAG_trace_fragmentation) {
3345 PrintF(" page %p slots buffer: %d\n",
3346 reinterpret_cast<void*>(p),
3347 SlotsBuffer::SizeOfChain(p->slots_buffer()));
3348 }
3349
3350 // Important: skip list should be cleared only after roots were updated
3351 // because root iteration traverses the stack and might have to find
3352 // code objects from non-updated pc pointing into evacuation candidate.
3353 SkipList* list = p->skip_list();
3354 if (list != NULL) list->Clear();
3355 } else {
3356 if (FLAG_gc_verbose) {
3357 PrintF("Sweeping 0x%" V8PRIxPTR " during evacuation.\n",
3358 reinterpret_cast<intptr_t>(p));
3359 }
3360 PagedSpace* space = static_cast<PagedSpace*>(p->owner());
3361 p->ClearFlag(MemoryChunk::RESCAN_ON_EVACUATION);
3362
3363 switch (space->identity()) {
3364 case OLD_DATA_SPACE:
3365 SweepConservatively(space, p);
3366 break;
3367 case OLD_POINTER_SPACE:
3368 SweepPrecisely<SWEEP_AND_VISIT_LIVE_OBJECTS, IGNORE_SKIP_LIST>(
3369 space, p, &updating_visitor);
3370 break;
3371 case CODE_SPACE:
3372 SweepPrecisely<SWEEP_AND_VISIT_LIVE_OBJECTS, REBUILD_SKIP_LIST>(
3373 space, p, &updating_visitor);
3374 break;
3375 default:
3376 UNREACHABLE();
3377 break;
3378 }
3379 }
3380 }
3381 }
3382
3383 GCTracer::Scope gc_scope(tracer_, GCTracer::Scope::MC_UPDATE_MISC_POINTERS);
3384
3385 // Update pointers from cells.
3386 HeapObjectIterator cell_iterator(heap_->cell_space());
3387 for (HeapObject* cell = cell_iterator.Next();
3388 cell != NULL;
3389 cell = cell_iterator.Next()) {
3390 if (cell->IsJSGlobalPropertyCell()) {
3391 Address value_address =
3392 reinterpret_cast<Address>(cell) +
3393 (JSGlobalPropertyCell::kValueOffset - kHeapObjectTag);
3394 updating_visitor.VisitPointer(reinterpret_cast<Object**>(value_address));
3395 }
3396 }
3397
3398 // Update pointer from the global contexts list.
3399 updating_visitor.VisitPointer(heap_->global_contexts_list_address());
3400
3401 heap_->symbol_table()->Iterate(&updating_visitor);
3402
3403 // Update pointers from external string table.
3404 heap_->UpdateReferencesInExternalStringTable(
3405 &UpdateReferenceInExternalStringTableEntry);
3406
3407 if (!FLAG_watch_ic_patching) {
3408 // Update JSFunction pointers from the runtime profiler.
3409 heap()->isolate()->runtime_profiler()->UpdateSamplesAfterCompact(
3410 &updating_visitor);
3411 }
3412
3413 EvacuationWeakObjectRetainer evacuation_object_retainer;
3414 heap()->ProcessWeakReferences(&evacuation_object_retainer);
3415
3416 // Visit invalidated code (we ignored all slots on it) and clear mark-bits
3417 // under it.
3418 ProcessInvalidatedCode(&updating_visitor);
3419
3420 #ifdef DEBUG
3421 if (FLAG_verify_heap) {
3422 VerifyEvacuation(heap_);
3423 }
3424 #endif
3425
3426 slots_buffer_allocator_.DeallocateChain(&migration_slots_buffer_);
3427 ASSERT(migration_slots_buffer_ == NULL);
3428 for (int i = 0; i < npages; i++) {
3429 Page* p = evacuation_candidates_[i];
3430 if (!p->IsEvacuationCandidate()) continue;
3431 PagedSpace* space = static_cast<PagedSpace*>(p->owner());
3432 space->Free(p->area_start(), p->area_size());
3433 p->set_scan_on_scavenge(false);
3434 slots_buffer_allocator_.DeallocateChain(p->slots_buffer_address());
3435 p->ResetLiveBytes();
3436 space->ReleasePage(p);
3437 }
3438 evacuation_candidates_.Rewind(0);
3439 compacting_ = false;
3440 }
3441
3442
3443 static const int kStartTableEntriesPerLine = 5;
3444 static const int kStartTableLines = 171;
3445 static const int kStartTableInvalidLine = 127;
3446 static const int kStartTableUnusedEntry = 126;
3447
3448 #define _ kStartTableUnusedEntry
3449 #define X kStartTableInvalidLine
3450 // Mark-bit to object start offset table.
3451 //
3452 // The line is indexed by the mark bits in a byte. The first number on
3453 // the line describes the number of live object starts for the line and the
3454 // other numbers on the line describe the offsets (in words) of the object
3455 // starts.
3456 //
3457 // Since objects are at least 2 words large we don't have entries for two
3458 // consecutive 1 bits. All entries after 170 have at least 2 consecutive bits.
3459 char kStartTable[kStartTableLines * kStartTableEntriesPerLine] = {
3460 0, _, _, _, _, // 0
3461 1, 0, _, _, _, // 1
3462 1, 1, _, _, _, // 2
3463 X, _, _, _, _, // 3
3464 1, 2, _, _, _, // 4
3465 2, 0, 2, _, _, // 5
3466 X, _, _, _, _, // 6
3467 X, _, _, _, _, // 7
3468 1, 3, _, _, _, // 8
3469 2, 0, 3, _, _, // 9
3470 2, 1, 3, _, _, // 10
3471 X, _, _, _, _, // 11
3472 X, _, _, _, _, // 12
3473 X, _, _, _, _, // 13
3474 X, _, _, _, _, // 14
3475 X, _, _, _, _, // 15
3476 1, 4, _, _, _, // 16
3477 2, 0, 4, _, _, // 17
3478 2, 1, 4, _, _, // 18
3479 X, _, _, _, _, // 19
3480 2, 2, 4, _, _, // 20
3481 3, 0, 2, 4, _, // 21
3482 X, _, _, _, _, // 22
3483 X, _, _, _, _, // 23
3484 X, _, _, _, _, // 24
3485 X, _, _, _, _, // 25
3486 X, _, _, _, _, // 26
3487 X, _, _, _, _, // 27
3488 X, _, _, _, _, // 28
3489 X, _, _, _, _, // 29
3490 X, _, _, _, _, // 30
3491 X, _, _, _, _, // 31
3492 1, 5, _, _, _, // 32
3493 2, 0, 5, _, _, // 33
3494 2, 1, 5, _, _, // 34
3495 X, _, _, _, _, // 35
3496 2, 2, 5, _, _, // 36
3497 3, 0, 2, 5, _, // 37
3498 X, _, _, _, _, // 38
3499 X, _, _, _, _, // 39
3500 2, 3, 5, _, _, // 40
3501 3, 0, 3, 5, _, // 41
3502 3, 1, 3, 5, _, // 42
3503 X, _, _, _, _, // 43
3504 X, _, _, _, _, // 44
3505 X, _, _, _, _, // 45
3506 X, _, _, _, _, // 46
3507 X, _, _, _, _, // 47
3508 X, _, _, _, _, // 48
3509 X, _, _, _, _, // 49
3510 X, _, _, _, _, // 50
3511 X, _, _, _, _, // 51
3512 X, _, _, _, _, // 52
3513 X, _, _, _, _, // 53
3514 X, _, _, _, _, // 54
3515 X, _, _, _, _, // 55
3516 X, _, _, _, _, // 56
3517 X, _, _, _, _, // 57
3518 X, _, _, _, _, // 58
3519 X, _, _, _, _, // 59
3520 X, _, _, _, _, // 60
3521 X, _, _, _, _, // 61
3522 X, _, _, _, _, // 62
3523 X, _, _, _, _, // 63
3524 1, 6, _, _, _, // 64
3525 2, 0, 6, _, _, // 65
3526 2, 1, 6, _, _, // 66
3527 X, _, _, _, _, // 67
3528 2, 2, 6, _, _, // 68
3529 3, 0, 2, 6, _, // 69
3530 X, _, _, _, _, // 70
3531 X, _, _, _, _, // 71
3532 2, 3, 6, _, _, // 72
3533 3, 0, 3, 6, _, // 73
3534 3, 1, 3, 6, _, // 74
3535 X, _, _, _, _, // 75
3536 X, _, _, _, _, // 76
3537 X, _, _, _, _, // 77
3538 X, _, _, _, _, // 78
3539 X, _, _, _, _, // 79
3540 2, 4, 6, _, _, // 80
3541 3, 0, 4, 6, _, // 81
3542 3, 1, 4, 6, _, // 82
3543 X, _, _, _, _, // 83
3544 3, 2, 4, 6, _, // 84
3545 4, 0, 2, 4, 6, // 85
3546 X, _, _, _, _, // 86
3547 X, _, _, _, _, // 87
3548 X, _, _, _, _, // 88
3549 X, _, _, _, _, // 89
3550 X, _, _, _, _, // 90
3551 X, _, _, _, _, // 91
3552 X, _, _, _, _, // 92
3553 X, _, _, _, _, // 93
3554 X, _, _, _, _, // 94
3555 X, _, _, _, _, // 95
3556 X, _, _, _, _, // 96
3557 X, _, _, _, _, // 97
3558 X, _, _, _, _, // 98
3559 X, _, _, _, _, // 99
3560 X, _, _, _, _, // 100
3561 X, _, _, _, _, // 101
3562 X, _, _, _, _, // 102
3563 X, _, _, _, _, // 103
3564 X, _, _, _, _, // 104
3565 X, _, _, _, _, // 105
3566 X, _, _, _, _, // 106
3567 X, _, _, _, _, // 107
3568 X, _, _, _, _, // 108
3569 X, _, _, _, _, // 109
3570 X, _, _, _, _, // 110
3571 X, _, _, _, _, // 111
3572 X, _, _, _, _, // 112
3573 X, _, _, _, _, // 113
3574 X, _, _, _, _, // 114
3575 X, _, _, _, _, // 115
3576 X, _, _, _, _, // 116
3577 X, _, _, _, _, // 117
3578 X, _, _, _, _, // 118
3579 X, _, _, _, _, // 119
3580 X, _, _, _, _, // 120
3581 X, _, _, _, _, // 121
3582 X, _, _, _, _, // 122
3583 X, _, _, _, _, // 123
3584 X, _, _, _, _, // 124
3585 X, _, _, _, _, // 125
3586 X, _, _, _, _, // 126
3587 X, _, _, _, _, // 127
3588 1, 7, _, _, _, // 128
3589 2, 0, 7, _, _, // 129
3590 2, 1, 7, _, _, // 130
3591 X, _, _, _, _, // 131
3592 2, 2, 7, _, _, // 132
3593 3, 0, 2, 7, _, // 133
3594 X, _, _, _, _, // 134
3595 X, _, _, _, _, // 135
3596 2, 3, 7, _, _, // 136
3597 3, 0, 3, 7, _, // 137
3598 3, 1, 3, 7, _, // 138
3599 X, _, _, _, _, // 139
3600 X, _, _, _, _, // 140
3601 X, _, _, _, _, // 141
3602 X, _, _, _, _, // 142
3603 X, _, _, _, _, // 143
3604 2, 4, 7, _, _, // 144
3605 3, 0, 4, 7, _, // 145
3606 3, 1, 4, 7, _, // 146
3607 X, _, _, _, _, // 147
3608 3, 2, 4, 7, _, // 148
3609 4, 0, 2, 4, 7, // 149
3610 X, _, _, _, _, // 150
3611 X, _, _, _, _, // 151
3612 X, _, _, _, _, // 152
3613 X, _, _, _, _, // 153
3614 X, _, _, _, _, // 154
3615 X, _, _, _, _, // 155
3616 X, _, _, _, _, // 156
3617 X, _, _, _, _, // 157
3618 X, _, _, _, _, // 158
3619 X, _, _, _, _, // 159
3620 2, 5, 7, _, _, // 160
3621 3, 0, 5, 7, _, // 161
3622 3, 1, 5, 7, _, // 162
3623 X, _, _, _, _, // 163
3624 3, 2, 5, 7, _, // 164
3625 4, 0, 2, 5, 7, // 165
3626 X, _, _, _, _, // 166
3627 X, _, _, _, _, // 167
3628 3, 3, 5, 7, _, // 168
3629 4, 0, 3, 5, 7, // 169
3630 4, 1, 3, 5, 7 // 170
3631 };
3632 #undef _
3633 #undef X
3634
3635
3636 // Takes a word of mark bits. Returns the number of objects that start in the
3637 // range. Puts the offsets of the words in the supplied array.
MarkWordToObjectStarts(uint32_t mark_bits,int * starts)3638 static inline int MarkWordToObjectStarts(uint32_t mark_bits, int* starts) {
3639 int objects = 0;
3640 int offset = 0;
3641
3642 // No consecutive 1 bits.
3643 ASSERT((mark_bits & 0x180) != 0x180);
3644 ASSERT((mark_bits & 0x18000) != 0x18000);
3645 ASSERT((mark_bits & 0x1800000) != 0x1800000);
3646
3647 while (mark_bits != 0) {
3648 int byte = (mark_bits & 0xff);
3649 mark_bits >>= 8;
3650 if (byte != 0) {
3651 ASSERT(byte < kStartTableLines); // No consecutive 1 bits.
3652 char* table = kStartTable + byte * kStartTableEntriesPerLine;
3653 int objects_in_these_8_words = table[0];
3654 ASSERT(objects_in_these_8_words != kStartTableInvalidLine);
3655 ASSERT(objects_in_these_8_words < kStartTableEntriesPerLine);
3656 for (int i = 0; i < objects_in_these_8_words; i++) {
3657 starts[objects++] = offset + table[1 + i];
3658 }
3659 }
3660 offset += 8;
3661 }
3662 return objects;
3663 }
3664
3665
DigestFreeStart(Address approximate_free_start,uint32_t free_start_cell)3666 static inline Address DigestFreeStart(Address approximate_free_start,
3667 uint32_t free_start_cell) {
3668 ASSERT(free_start_cell != 0);
3669
3670 // No consecutive 1 bits.
3671 ASSERT((free_start_cell & (free_start_cell << 1)) == 0);
3672
3673 int offsets[16];
3674 uint32_t cell = free_start_cell;
3675 int offset_of_last_live;
3676 if ((cell & 0x80000000u) != 0) {
3677 // This case would overflow below.
3678 offset_of_last_live = 31;
3679 } else {
3680 // Remove all but one bit, the most significant. This is an optimization
3681 // that may or may not be worthwhile.
3682 cell |= cell >> 16;
3683 cell |= cell >> 8;
3684 cell |= cell >> 4;
3685 cell |= cell >> 2;
3686 cell |= cell >> 1;
3687 cell = (cell + 1) >> 1;
3688 int live_objects = MarkWordToObjectStarts(cell, offsets);
3689 ASSERT(live_objects == 1);
3690 offset_of_last_live = offsets[live_objects - 1];
3691 }
3692 Address last_live_start =
3693 approximate_free_start + offset_of_last_live * kPointerSize;
3694 HeapObject* last_live = HeapObject::FromAddress(last_live_start);
3695 Address free_start = last_live_start + last_live->Size();
3696 return free_start;
3697 }
3698
3699
StartOfLiveObject(Address block_address,uint32_t cell)3700 static inline Address StartOfLiveObject(Address block_address, uint32_t cell) {
3701 ASSERT(cell != 0);
3702
3703 // No consecutive 1 bits.
3704 ASSERT((cell & (cell << 1)) == 0);
3705
3706 int offsets[16];
3707 if (cell == 0x80000000u) { // Avoid overflow below.
3708 return block_address + 31 * kPointerSize;
3709 }
3710 uint32_t first_set_bit = ((cell ^ (cell - 1)) + 1) >> 1;
3711 ASSERT((first_set_bit & cell) == first_set_bit);
3712 int live_objects = MarkWordToObjectStarts(first_set_bit, offsets);
3713 ASSERT(live_objects == 1);
3714 USE(live_objects);
3715 return block_address + offsets[0] * kPointerSize;
3716 }
3717
3718
3719 // Sweeps a space conservatively. After this has been done the larger free
3720 // spaces have been put on the free list and the smaller ones have been
3721 // ignored and left untouched. A free space is always either ignored or put
3722 // on the free list, never split up into two parts. This is important
3723 // because it means that any FreeSpace maps left actually describe a region of
3724 // memory that can be ignored when scanning. Dead objects other than free
3725 // spaces will not contain the free space map.
SweepConservatively(PagedSpace * space,Page * p)3726 intptr_t MarkCompactCollector::SweepConservatively(PagedSpace* space, Page* p) {
3727 ASSERT(!p->IsEvacuationCandidate() && !p->WasSwept());
3728 MarkBit::CellType* cells = p->markbits()->cells();
3729 p->MarkSweptConservatively();
3730
3731 int last_cell_index =
3732 Bitmap::IndexToCell(
3733 Bitmap::CellAlignIndex(
3734 p->AddressToMarkbitIndex(p->area_end())));
3735
3736 int cell_index =
3737 Bitmap::IndexToCell(
3738 Bitmap::CellAlignIndex(
3739 p->AddressToMarkbitIndex(p->area_start())));
3740
3741 intptr_t freed_bytes = 0;
3742
3743 // This is the start of the 32 word block that we are currently looking at.
3744 Address block_address = p->area_start();
3745
3746 // Skip over all the dead objects at the start of the page and mark them free.
3747 for (;
3748 cell_index < last_cell_index;
3749 cell_index++, block_address += 32 * kPointerSize) {
3750 if (cells[cell_index] != 0) break;
3751 }
3752 size_t size = block_address - p->area_start();
3753 if (cell_index == last_cell_index) {
3754 freed_bytes += static_cast<int>(space->Free(p->area_start(),
3755 static_cast<int>(size)));
3756 ASSERT_EQ(0, p->LiveBytes());
3757 return freed_bytes;
3758 }
3759 // Grow the size of the start-of-page free space a little to get up to the
3760 // first live object.
3761 Address free_end = StartOfLiveObject(block_address, cells[cell_index]);
3762 // Free the first free space.
3763 size = free_end - p->area_start();
3764 freed_bytes += space->Free(p->area_start(),
3765 static_cast<int>(size));
3766 // The start of the current free area is represented in undigested form by
3767 // the address of the last 32-word section that contained a live object and
3768 // the marking bitmap for that cell, which describes where the live object
3769 // started. Unless we find a large free space in the bitmap we will not
3770 // digest this pair into a real address. We start the iteration here at the
3771 // first word in the marking bit map that indicates a live object.
3772 Address free_start = block_address;
3773 uint32_t free_start_cell = cells[cell_index];
3774
3775 for ( ;
3776 cell_index < last_cell_index;
3777 cell_index++, block_address += 32 * kPointerSize) {
3778 ASSERT((unsigned)cell_index ==
3779 Bitmap::IndexToCell(
3780 Bitmap::CellAlignIndex(
3781 p->AddressToMarkbitIndex(block_address))));
3782 uint32_t cell = cells[cell_index];
3783 if (cell != 0) {
3784 // We have a live object. Check approximately whether it is more than 32
3785 // words since the last live object.
3786 if (block_address - free_start > 32 * kPointerSize) {
3787 free_start = DigestFreeStart(free_start, free_start_cell);
3788 if (block_address - free_start > 32 * kPointerSize) {
3789 // Now that we know the exact start of the free space it still looks
3790 // like we have a large enough free space to be worth bothering with.
3791 // so now we need to find the start of the first live object at the
3792 // end of the free space.
3793 free_end = StartOfLiveObject(block_address, cell);
3794 freed_bytes += space->Free(free_start,
3795 static_cast<int>(free_end - free_start));
3796 }
3797 }
3798 // Update our undigested record of where the current free area started.
3799 free_start = block_address;
3800 free_start_cell = cell;
3801 // Clear marking bits for current cell.
3802 cells[cell_index] = 0;
3803 }
3804 }
3805
3806 // Handle the free space at the end of the page.
3807 if (block_address - free_start > 32 * kPointerSize) {
3808 free_start = DigestFreeStart(free_start, free_start_cell);
3809 freed_bytes += space->Free(free_start,
3810 static_cast<int>(block_address - free_start));
3811 }
3812
3813 p->ResetLiveBytes();
3814 return freed_bytes;
3815 }
3816
3817
SweepSpace(PagedSpace * space,SweeperType sweeper)3818 void MarkCompactCollector::SweepSpace(PagedSpace* space, SweeperType sweeper) {
3819 space->set_was_swept_conservatively(sweeper == CONSERVATIVE ||
3820 sweeper == LAZY_CONSERVATIVE);
3821
3822 space->ClearStats();
3823
3824 PageIterator it(space);
3825
3826 intptr_t freed_bytes = 0;
3827 int pages_swept = 0;
3828 intptr_t newspace_size = space->heap()->new_space()->Size();
3829 bool lazy_sweeping_active = false;
3830 bool unused_page_present = false;
3831
3832 intptr_t old_space_size = heap()->PromotedSpaceSize();
3833 intptr_t space_left =
3834 Min(heap()->OldGenPromotionLimit(old_space_size),
3835 heap()->OldGenAllocationLimit(old_space_size)) - old_space_size;
3836
3837 while (it.has_next()) {
3838 Page* p = it.next();
3839
3840 // Clear sweeping flags indicating that marking bits are still intact.
3841 p->ClearSweptPrecisely();
3842 p->ClearSweptConservatively();
3843
3844 if (p->IsEvacuationCandidate()) {
3845 ASSERT(evacuation_candidates_.length() > 0);
3846 continue;
3847 }
3848
3849 if (p->IsFlagSet(Page::RESCAN_ON_EVACUATION)) {
3850 // Will be processed in EvacuateNewSpaceAndCandidates.
3851 continue;
3852 }
3853
3854 // One unused page is kept, all further are released before sweeping them.
3855 if (p->LiveBytes() == 0) {
3856 if (unused_page_present) {
3857 if (FLAG_gc_verbose) {
3858 PrintF("Sweeping 0x%" V8PRIxPTR " released page.\n",
3859 reinterpret_cast<intptr_t>(p));
3860 }
3861 // Adjust unswept free bytes because releasing a page expects said
3862 // counter to be accurate for unswept pages.
3863 space->IncreaseUnsweptFreeBytes(p);
3864 space->ReleasePage(p);
3865 continue;
3866 }
3867 unused_page_present = true;
3868 }
3869
3870 if (lazy_sweeping_active) {
3871 if (FLAG_gc_verbose) {
3872 PrintF("Sweeping 0x%" V8PRIxPTR " lazily postponed.\n",
3873 reinterpret_cast<intptr_t>(p));
3874 }
3875 space->IncreaseUnsweptFreeBytes(p);
3876 continue;
3877 }
3878
3879 switch (sweeper) {
3880 case CONSERVATIVE: {
3881 if (FLAG_gc_verbose) {
3882 PrintF("Sweeping 0x%" V8PRIxPTR " conservatively.\n",
3883 reinterpret_cast<intptr_t>(p));
3884 }
3885 SweepConservatively(space, p);
3886 pages_swept++;
3887 break;
3888 }
3889 case LAZY_CONSERVATIVE: {
3890 if (FLAG_gc_verbose) {
3891 PrintF("Sweeping 0x%" V8PRIxPTR " conservatively as needed.\n",
3892 reinterpret_cast<intptr_t>(p));
3893 }
3894 freed_bytes += SweepConservatively(space, p);
3895 pages_swept++;
3896 if (space_left + freed_bytes > newspace_size) {
3897 space->SetPagesToSweep(p->next_page());
3898 lazy_sweeping_active = true;
3899 } else {
3900 if (FLAG_gc_verbose) {
3901 PrintF("Only %" V8PRIdPTR " bytes freed. Still sweeping.\n",
3902 freed_bytes);
3903 }
3904 }
3905 break;
3906 }
3907 case PRECISE: {
3908 if (FLAG_gc_verbose) {
3909 PrintF("Sweeping 0x%" V8PRIxPTR " precisely.\n",
3910 reinterpret_cast<intptr_t>(p));
3911 }
3912 if (space->identity() == CODE_SPACE) {
3913 SweepPrecisely<SWEEP_ONLY, REBUILD_SKIP_LIST>(space, p, NULL);
3914 } else {
3915 SweepPrecisely<SWEEP_ONLY, IGNORE_SKIP_LIST>(space, p, NULL);
3916 }
3917 pages_swept++;
3918 break;
3919 }
3920 default: {
3921 UNREACHABLE();
3922 }
3923 }
3924 }
3925
3926 if (FLAG_gc_verbose) {
3927 PrintF("SweepSpace: %s (%d pages swept)\n",
3928 AllocationSpaceName(space->identity()),
3929 pages_swept);
3930 }
3931
3932 // Give pages that are queued to be freed back to the OS.
3933 heap()->FreeQueuedChunks();
3934 }
3935
3936
SweepSpaces()3937 void MarkCompactCollector::SweepSpaces() {
3938 GCTracer::Scope gc_scope(tracer_, GCTracer::Scope::MC_SWEEP);
3939 #ifdef DEBUG
3940 state_ = SWEEP_SPACES;
3941 #endif
3942 SweeperType how_to_sweep =
3943 FLAG_lazy_sweeping ? LAZY_CONSERVATIVE : CONSERVATIVE;
3944 if (FLAG_expose_gc) how_to_sweep = CONSERVATIVE;
3945 if (sweep_precisely_) how_to_sweep = PRECISE;
3946 // Noncompacting collections simply sweep the spaces to clear the mark
3947 // bits and free the nonlive blocks (for old and map spaces). We sweep
3948 // the map space last because freeing non-live maps overwrites them and
3949 // the other spaces rely on possibly non-live maps to get the sizes for
3950 // non-live objects.
3951 SweepSpace(heap()->old_pointer_space(), how_to_sweep);
3952 SweepSpace(heap()->old_data_space(), how_to_sweep);
3953
3954 RemoveDeadInvalidatedCode();
3955 SweepSpace(heap()->code_space(), PRECISE);
3956
3957 SweepSpace(heap()->cell_space(), PRECISE);
3958
3959 EvacuateNewSpaceAndCandidates();
3960
3961 // ClearNonLiveTransitions depends on precise sweeping of map space to
3962 // detect whether unmarked map became dead in this collection or in one
3963 // of the previous ones.
3964 SweepSpace(heap()->map_space(), PRECISE);
3965
3966 // Deallocate unmarked objects and clear marked bits for marked objects.
3967 heap_->lo_space()->FreeUnmarkedObjects();
3968 }
3969
3970
EnableCodeFlushing(bool enable)3971 void MarkCompactCollector::EnableCodeFlushing(bool enable) {
3972 if (enable) {
3973 if (code_flusher_ != NULL) return;
3974 code_flusher_ = new CodeFlusher(heap()->isolate());
3975 } else {
3976 if (code_flusher_ == NULL) return;
3977 delete code_flusher_;
3978 code_flusher_ = NULL;
3979 }
3980 }
3981
3982
3983 // TODO(1466) ReportDeleteIfNeeded is not called currently.
3984 // Our profiling tools do not expect intersections between
3985 // code objects. We should either reenable it or change our tools.
ReportDeleteIfNeeded(HeapObject * obj,Isolate * isolate)3986 void MarkCompactCollector::ReportDeleteIfNeeded(HeapObject* obj,
3987 Isolate* isolate) {
3988 #ifdef ENABLE_GDB_JIT_INTERFACE
3989 if (obj->IsCode()) {
3990 GDBJITInterface::RemoveCode(reinterpret_cast<Code*>(obj));
3991 }
3992 #endif
3993 if (obj->IsCode()) {
3994 PROFILE(isolate, CodeDeleteEvent(obj->address()));
3995 }
3996 }
3997
3998
Initialize()3999 void MarkCompactCollector::Initialize() {
4000 StaticMarkingVisitor::Initialize();
4001 }
4002
4003
IsTypedSlot(ObjectSlot slot)4004 bool SlotsBuffer::IsTypedSlot(ObjectSlot slot) {
4005 return reinterpret_cast<uintptr_t>(slot) < NUMBER_OF_SLOT_TYPES;
4006 }
4007
4008
AddTo(SlotsBufferAllocator * allocator,SlotsBuffer ** buffer_address,SlotType type,Address addr,AdditionMode mode)4009 bool SlotsBuffer::AddTo(SlotsBufferAllocator* allocator,
4010 SlotsBuffer** buffer_address,
4011 SlotType type,
4012 Address addr,
4013 AdditionMode mode) {
4014 SlotsBuffer* buffer = *buffer_address;
4015 if (buffer == NULL || !buffer->HasSpaceForTypedSlot()) {
4016 if (mode == FAIL_ON_OVERFLOW && ChainLengthThresholdReached(buffer)) {
4017 allocator->DeallocateChain(buffer_address);
4018 return false;
4019 }
4020 buffer = allocator->AllocateBuffer(buffer);
4021 *buffer_address = buffer;
4022 }
4023 ASSERT(buffer->HasSpaceForTypedSlot());
4024 buffer->Add(reinterpret_cast<ObjectSlot>(type));
4025 buffer->Add(reinterpret_cast<ObjectSlot>(addr));
4026 return true;
4027 }
4028
4029
SlotTypeForRMode(RelocInfo::Mode rmode)4030 static inline SlotsBuffer::SlotType SlotTypeForRMode(RelocInfo::Mode rmode) {
4031 if (RelocInfo::IsCodeTarget(rmode)) {
4032 return SlotsBuffer::CODE_TARGET_SLOT;
4033 } else if (RelocInfo::IsEmbeddedObject(rmode)) {
4034 return SlotsBuffer::EMBEDDED_OBJECT_SLOT;
4035 } else if (RelocInfo::IsDebugBreakSlot(rmode)) {
4036 return SlotsBuffer::DEBUG_TARGET_SLOT;
4037 } else if (RelocInfo::IsJSReturn(rmode)) {
4038 return SlotsBuffer::JS_RETURN_SLOT;
4039 }
4040 UNREACHABLE();
4041 return SlotsBuffer::NUMBER_OF_SLOT_TYPES;
4042 }
4043
4044
RecordRelocSlot(RelocInfo * rinfo,Object * target)4045 void MarkCompactCollector::RecordRelocSlot(RelocInfo* rinfo, Object* target) {
4046 Page* target_page = Page::FromAddress(reinterpret_cast<Address>(target));
4047 if (target_page->IsEvacuationCandidate() &&
4048 (rinfo->host() == NULL ||
4049 !ShouldSkipEvacuationSlotRecording(rinfo->host()))) {
4050 if (!SlotsBuffer::AddTo(&slots_buffer_allocator_,
4051 target_page->slots_buffer_address(),
4052 SlotTypeForRMode(rinfo->rmode()),
4053 rinfo->pc(),
4054 SlotsBuffer::FAIL_ON_OVERFLOW)) {
4055 EvictEvacuationCandidate(target_page);
4056 }
4057 }
4058 }
4059
4060
RecordCodeEntrySlot(Address slot,Code * target)4061 void MarkCompactCollector::RecordCodeEntrySlot(Address slot, Code* target) {
4062 Page* target_page = Page::FromAddress(reinterpret_cast<Address>(target));
4063 if (target_page->IsEvacuationCandidate() &&
4064 !ShouldSkipEvacuationSlotRecording(reinterpret_cast<Object**>(slot))) {
4065 if (!SlotsBuffer::AddTo(&slots_buffer_allocator_,
4066 target_page->slots_buffer_address(),
4067 SlotsBuffer::CODE_ENTRY_SLOT,
4068 slot,
4069 SlotsBuffer::FAIL_ON_OVERFLOW)) {
4070 EvictEvacuationCandidate(target_page);
4071 }
4072 }
4073 }
4074
4075
DecodeSlotType(SlotsBuffer::ObjectSlot slot)4076 static inline SlotsBuffer::SlotType DecodeSlotType(
4077 SlotsBuffer::ObjectSlot slot) {
4078 return static_cast<SlotsBuffer::SlotType>(reinterpret_cast<intptr_t>(slot));
4079 }
4080
4081
UpdateSlots(Heap * heap)4082 void SlotsBuffer::UpdateSlots(Heap* heap) {
4083 PointersUpdatingVisitor v(heap);
4084
4085 for (int slot_idx = 0; slot_idx < idx_; ++slot_idx) {
4086 ObjectSlot slot = slots_[slot_idx];
4087 if (!IsTypedSlot(slot)) {
4088 PointersUpdatingVisitor::UpdateSlot(heap, slot);
4089 } else {
4090 ++slot_idx;
4091 ASSERT(slot_idx < idx_);
4092 UpdateSlot(&v,
4093 DecodeSlotType(slot),
4094 reinterpret_cast<Address>(slots_[slot_idx]));
4095 }
4096 }
4097 }
4098
4099
UpdateSlotsWithFilter(Heap * heap)4100 void SlotsBuffer::UpdateSlotsWithFilter(Heap* heap) {
4101 PointersUpdatingVisitor v(heap);
4102
4103 for (int slot_idx = 0; slot_idx < idx_; ++slot_idx) {
4104 ObjectSlot slot = slots_[slot_idx];
4105 if (!IsTypedSlot(slot)) {
4106 if (!IsOnInvalidatedCodeObject(reinterpret_cast<Address>(slot))) {
4107 PointersUpdatingVisitor::UpdateSlot(heap, slot);
4108 }
4109 } else {
4110 ++slot_idx;
4111 ASSERT(slot_idx < idx_);
4112 Address pc = reinterpret_cast<Address>(slots_[slot_idx]);
4113 if (!IsOnInvalidatedCodeObject(pc)) {
4114 UpdateSlot(&v,
4115 DecodeSlotType(slot),
4116 reinterpret_cast<Address>(slots_[slot_idx]));
4117 }
4118 }
4119 }
4120 }
4121
4122
AllocateBuffer(SlotsBuffer * next_buffer)4123 SlotsBuffer* SlotsBufferAllocator::AllocateBuffer(SlotsBuffer* next_buffer) {
4124 return new SlotsBuffer(next_buffer);
4125 }
4126
4127
DeallocateBuffer(SlotsBuffer * buffer)4128 void SlotsBufferAllocator::DeallocateBuffer(SlotsBuffer* buffer) {
4129 delete buffer;
4130 }
4131
4132
DeallocateChain(SlotsBuffer ** buffer_address)4133 void SlotsBufferAllocator::DeallocateChain(SlotsBuffer** buffer_address) {
4134 SlotsBuffer* buffer = *buffer_address;
4135 while (buffer != NULL) {
4136 SlotsBuffer* next_buffer = buffer->next();
4137 DeallocateBuffer(buffer);
4138 buffer = next_buffer;
4139 }
4140 *buffer_address = NULL;
4141 }
4142
4143
4144 } } // namespace v8::internal
4145