1 //===-- ARMBaseInstrInfo.cpp - ARM Instruction Information ----------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains the Base ARM implementation of the TargetInstrInfo class.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "ARMBaseInstrInfo.h"
15 #include "ARM.h"
16 #include "ARMBaseRegisterInfo.h"
17 #include "ARMConstantPoolValue.h"
18 #include "ARMHazardRecognizer.h"
19 #include "ARMMachineFunctionInfo.h"
20 #include "MCTargetDesc/ARMAddressingModes.h"
21 #include "llvm/Constants.h"
22 #include "llvm/Function.h"
23 #include "llvm/GlobalValue.h"
24 #include "llvm/CodeGen/LiveVariables.h"
25 #include "llvm/CodeGen/MachineConstantPool.h"
26 #include "llvm/CodeGen/MachineFrameInfo.h"
27 #include "llvm/CodeGen/MachineInstrBuilder.h"
28 #include "llvm/CodeGen/MachineJumpTableInfo.h"
29 #include "llvm/CodeGen/MachineMemOperand.h"
30 #include "llvm/CodeGen/MachineRegisterInfo.h"
31 #include "llvm/CodeGen/SelectionDAGNodes.h"
32 #include "llvm/MC/MCAsmInfo.h"
33 #include "llvm/Support/BranchProbability.h"
34 #include "llvm/Support/CommandLine.h"
35 #include "llvm/Support/Debug.h"
36 #include "llvm/Support/ErrorHandling.h"
37 #include "llvm/ADT/STLExtras.h"
38
39 #define GET_INSTRINFO_CTOR
40 #include "ARMGenInstrInfo.inc"
41
42 using namespace llvm;
43
44 static cl::opt<bool>
45 EnableARM3Addr("enable-arm-3-addr-conv", cl::Hidden,
46 cl::desc("Enable ARM 2-addr to 3-addr conv"));
47
48 static cl::opt<bool>
49 WidenVMOVS("widen-vmovs", cl::Hidden, cl::init(true),
50 cl::desc("Widen ARM vmovs to vmovd when possible"));
51
52 /// ARM_MLxEntry - Record information about MLA / MLS instructions.
53 struct ARM_MLxEntry {
54 uint16_t MLxOpc; // MLA / MLS opcode
55 uint16_t MulOpc; // Expanded multiplication opcode
56 uint16_t AddSubOpc; // Expanded add / sub opcode
57 bool NegAcc; // True if the acc is negated before the add / sub.
58 bool HasLane; // True if instruction has an extra "lane" operand.
59 };
60
61 static const ARM_MLxEntry ARM_MLxTable[] = {
62 // MLxOpc, MulOpc, AddSubOpc, NegAcc, HasLane
63 // fp scalar ops
64 { ARM::VMLAS, ARM::VMULS, ARM::VADDS, false, false },
65 { ARM::VMLSS, ARM::VMULS, ARM::VSUBS, false, false },
66 { ARM::VMLAD, ARM::VMULD, ARM::VADDD, false, false },
67 { ARM::VMLSD, ARM::VMULD, ARM::VSUBD, false, false },
68 { ARM::VNMLAS, ARM::VNMULS, ARM::VSUBS, true, false },
69 { ARM::VNMLSS, ARM::VMULS, ARM::VSUBS, true, false },
70 { ARM::VNMLAD, ARM::VNMULD, ARM::VSUBD, true, false },
71 { ARM::VNMLSD, ARM::VMULD, ARM::VSUBD, true, false },
72
73 // fp SIMD ops
74 { ARM::VMLAfd, ARM::VMULfd, ARM::VADDfd, false, false },
75 { ARM::VMLSfd, ARM::VMULfd, ARM::VSUBfd, false, false },
76 { ARM::VMLAfq, ARM::VMULfq, ARM::VADDfq, false, false },
77 { ARM::VMLSfq, ARM::VMULfq, ARM::VSUBfq, false, false },
78 { ARM::VMLAslfd, ARM::VMULslfd, ARM::VADDfd, false, true },
79 { ARM::VMLSslfd, ARM::VMULslfd, ARM::VSUBfd, false, true },
80 { ARM::VMLAslfq, ARM::VMULslfq, ARM::VADDfq, false, true },
81 { ARM::VMLSslfq, ARM::VMULslfq, ARM::VSUBfq, false, true },
82 };
83
ARMBaseInstrInfo(const ARMSubtarget & STI)84 ARMBaseInstrInfo::ARMBaseInstrInfo(const ARMSubtarget& STI)
85 : ARMGenInstrInfo(ARM::ADJCALLSTACKDOWN, ARM::ADJCALLSTACKUP),
86 Subtarget(STI) {
87 for (unsigned i = 0, e = array_lengthof(ARM_MLxTable); i != e; ++i) {
88 if (!MLxEntryMap.insert(std::make_pair(ARM_MLxTable[i].MLxOpc, i)).second)
89 assert(false && "Duplicated entries?");
90 MLxHazardOpcodes.insert(ARM_MLxTable[i].AddSubOpc);
91 MLxHazardOpcodes.insert(ARM_MLxTable[i].MulOpc);
92 }
93 }
94
95 // Use a ScoreboardHazardRecognizer for prepass ARM scheduling. TargetInstrImpl
96 // currently defaults to no prepass hazard recognizer.
97 ScheduleHazardRecognizer *ARMBaseInstrInfo::
CreateTargetHazardRecognizer(const TargetMachine * TM,const ScheduleDAG * DAG) const98 CreateTargetHazardRecognizer(const TargetMachine *TM,
99 const ScheduleDAG *DAG) const {
100 if (usePreRAHazardRecognizer()) {
101 const InstrItineraryData *II = TM->getInstrItineraryData();
102 return new ScoreboardHazardRecognizer(II, DAG, "pre-RA-sched");
103 }
104 return TargetInstrInfoImpl::CreateTargetHazardRecognizer(TM, DAG);
105 }
106
107 ScheduleHazardRecognizer *ARMBaseInstrInfo::
CreateTargetPostRAHazardRecognizer(const InstrItineraryData * II,const ScheduleDAG * DAG) const108 CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II,
109 const ScheduleDAG *DAG) const {
110 if (Subtarget.isThumb2() || Subtarget.hasVFP2())
111 return (ScheduleHazardRecognizer *)
112 new ARMHazardRecognizer(II, *this, getRegisterInfo(), Subtarget, DAG);
113 return TargetInstrInfoImpl::CreateTargetPostRAHazardRecognizer(II, DAG);
114 }
115
116 MachineInstr *
convertToThreeAddress(MachineFunction::iterator & MFI,MachineBasicBlock::iterator & MBBI,LiveVariables * LV) const117 ARMBaseInstrInfo::convertToThreeAddress(MachineFunction::iterator &MFI,
118 MachineBasicBlock::iterator &MBBI,
119 LiveVariables *LV) const {
120 // FIXME: Thumb2 support.
121
122 if (!EnableARM3Addr)
123 return NULL;
124
125 MachineInstr *MI = MBBI;
126 MachineFunction &MF = *MI->getParent()->getParent();
127 uint64_t TSFlags = MI->getDesc().TSFlags;
128 bool isPre = false;
129 switch ((TSFlags & ARMII::IndexModeMask) >> ARMII::IndexModeShift) {
130 default: return NULL;
131 case ARMII::IndexModePre:
132 isPre = true;
133 break;
134 case ARMII::IndexModePost:
135 break;
136 }
137
138 // Try splitting an indexed load/store to an un-indexed one plus an add/sub
139 // operation.
140 unsigned MemOpc = getUnindexedOpcode(MI->getOpcode());
141 if (MemOpc == 0)
142 return NULL;
143
144 MachineInstr *UpdateMI = NULL;
145 MachineInstr *MemMI = NULL;
146 unsigned AddrMode = (TSFlags & ARMII::AddrModeMask);
147 const MCInstrDesc &MCID = MI->getDesc();
148 unsigned NumOps = MCID.getNumOperands();
149 bool isLoad = !MI->mayStore();
150 const MachineOperand &WB = isLoad ? MI->getOperand(1) : MI->getOperand(0);
151 const MachineOperand &Base = MI->getOperand(2);
152 const MachineOperand &Offset = MI->getOperand(NumOps-3);
153 unsigned WBReg = WB.getReg();
154 unsigned BaseReg = Base.getReg();
155 unsigned OffReg = Offset.getReg();
156 unsigned OffImm = MI->getOperand(NumOps-2).getImm();
157 ARMCC::CondCodes Pred = (ARMCC::CondCodes)MI->getOperand(NumOps-1).getImm();
158 switch (AddrMode) {
159 default: llvm_unreachable("Unknown indexed op!");
160 case ARMII::AddrMode2: {
161 bool isSub = ARM_AM::getAM2Op(OffImm) == ARM_AM::sub;
162 unsigned Amt = ARM_AM::getAM2Offset(OffImm);
163 if (OffReg == 0) {
164 if (ARM_AM::getSOImmVal(Amt) == -1)
165 // Can't encode it in a so_imm operand. This transformation will
166 // add more than 1 instruction. Abandon!
167 return NULL;
168 UpdateMI = BuildMI(MF, MI->getDebugLoc(),
169 get(isSub ? ARM::SUBri : ARM::ADDri), WBReg)
170 .addReg(BaseReg).addImm(Amt)
171 .addImm(Pred).addReg(0).addReg(0);
172 } else if (Amt != 0) {
173 ARM_AM::ShiftOpc ShOpc = ARM_AM::getAM2ShiftOpc(OffImm);
174 unsigned SOOpc = ARM_AM::getSORegOpc(ShOpc, Amt);
175 UpdateMI = BuildMI(MF, MI->getDebugLoc(),
176 get(isSub ? ARM::SUBrsi : ARM::ADDrsi), WBReg)
177 .addReg(BaseReg).addReg(OffReg).addReg(0).addImm(SOOpc)
178 .addImm(Pred).addReg(0).addReg(0);
179 } else
180 UpdateMI = BuildMI(MF, MI->getDebugLoc(),
181 get(isSub ? ARM::SUBrr : ARM::ADDrr), WBReg)
182 .addReg(BaseReg).addReg(OffReg)
183 .addImm(Pred).addReg(0).addReg(0);
184 break;
185 }
186 case ARMII::AddrMode3 : {
187 bool isSub = ARM_AM::getAM3Op(OffImm) == ARM_AM::sub;
188 unsigned Amt = ARM_AM::getAM3Offset(OffImm);
189 if (OffReg == 0)
190 // Immediate is 8-bits. It's guaranteed to fit in a so_imm operand.
191 UpdateMI = BuildMI(MF, MI->getDebugLoc(),
192 get(isSub ? ARM::SUBri : ARM::ADDri), WBReg)
193 .addReg(BaseReg).addImm(Amt)
194 .addImm(Pred).addReg(0).addReg(0);
195 else
196 UpdateMI = BuildMI(MF, MI->getDebugLoc(),
197 get(isSub ? ARM::SUBrr : ARM::ADDrr), WBReg)
198 .addReg(BaseReg).addReg(OffReg)
199 .addImm(Pred).addReg(0).addReg(0);
200 break;
201 }
202 }
203
204 std::vector<MachineInstr*> NewMIs;
205 if (isPre) {
206 if (isLoad)
207 MemMI = BuildMI(MF, MI->getDebugLoc(),
208 get(MemOpc), MI->getOperand(0).getReg())
209 .addReg(WBReg).addImm(0).addImm(Pred);
210 else
211 MemMI = BuildMI(MF, MI->getDebugLoc(),
212 get(MemOpc)).addReg(MI->getOperand(1).getReg())
213 .addReg(WBReg).addReg(0).addImm(0).addImm(Pred);
214 NewMIs.push_back(MemMI);
215 NewMIs.push_back(UpdateMI);
216 } else {
217 if (isLoad)
218 MemMI = BuildMI(MF, MI->getDebugLoc(),
219 get(MemOpc), MI->getOperand(0).getReg())
220 .addReg(BaseReg).addImm(0).addImm(Pred);
221 else
222 MemMI = BuildMI(MF, MI->getDebugLoc(),
223 get(MemOpc)).addReg(MI->getOperand(1).getReg())
224 .addReg(BaseReg).addReg(0).addImm(0).addImm(Pred);
225 if (WB.isDead())
226 UpdateMI->getOperand(0).setIsDead();
227 NewMIs.push_back(UpdateMI);
228 NewMIs.push_back(MemMI);
229 }
230
231 // Transfer LiveVariables states, kill / dead info.
232 if (LV) {
233 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
234 MachineOperand &MO = MI->getOperand(i);
235 if (MO.isReg() && TargetRegisterInfo::isVirtualRegister(MO.getReg())) {
236 unsigned Reg = MO.getReg();
237
238 LiveVariables::VarInfo &VI = LV->getVarInfo(Reg);
239 if (MO.isDef()) {
240 MachineInstr *NewMI = (Reg == WBReg) ? UpdateMI : MemMI;
241 if (MO.isDead())
242 LV->addVirtualRegisterDead(Reg, NewMI);
243 }
244 if (MO.isUse() && MO.isKill()) {
245 for (unsigned j = 0; j < 2; ++j) {
246 // Look at the two new MI's in reverse order.
247 MachineInstr *NewMI = NewMIs[j];
248 if (!NewMI->readsRegister(Reg))
249 continue;
250 LV->addVirtualRegisterKilled(Reg, NewMI);
251 if (VI.removeKill(MI))
252 VI.Kills.push_back(NewMI);
253 break;
254 }
255 }
256 }
257 }
258 }
259
260 MFI->insert(MBBI, NewMIs[1]);
261 MFI->insert(MBBI, NewMIs[0]);
262 return NewMIs[0];
263 }
264
265 // Branch analysis.
266 bool
AnalyzeBranch(MachineBasicBlock & MBB,MachineBasicBlock * & TBB,MachineBasicBlock * & FBB,SmallVectorImpl<MachineOperand> & Cond,bool AllowModify) const267 ARMBaseInstrInfo::AnalyzeBranch(MachineBasicBlock &MBB,MachineBasicBlock *&TBB,
268 MachineBasicBlock *&FBB,
269 SmallVectorImpl<MachineOperand> &Cond,
270 bool AllowModify) const {
271 // If the block has no terminators, it just falls into the block after it.
272 MachineBasicBlock::iterator I = MBB.end();
273 if (I == MBB.begin())
274 return false;
275 --I;
276 while (I->isDebugValue()) {
277 if (I == MBB.begin())
278 return false;
279 --I;
280 }
281 if (!isUnpredicatedTerminator(I))
282 return false;
283
284 // Get the last instruction in the block.
285 MachineInstr *LastInst = I;
286
287 // If there is only one terminator instruction, process it.
288 unsigned LastOpc = LastInst->getOpcode();
289 if (I == MBB.begin() || !isUnpredicatedTerminator(--I)) {
290 if (isUncondBranchOpcode(LastOpc)) {
291 TBB = LastInst->getOperand(0).getMBB();
292 return false;
293 }
294 if (isCondBranchOpcode(LastOpc)) {
295 // Block ends with fall-through condbranch.
296 TBB = LastInst->getOperand(0).getMBB();
297 Cond.push_back(LastInst->getOperand(1));
298 Cond.push_back(LastInst->getOperand(2));
299 return false;
300 }
301 return true; // Can't handle indirect branch.
302 }
303
304 // Get the instruction before it if it is a terminator.
305 MachineInstr *SecondLastInst = I;
306 unsigned SecondLastOpc = SecondLastInst->getOpcode();
307
308 // If AllowModify is true and the block ends with two or more unconditional
309 // branches, delete all but the first unconditional branch.
310 if (AllowModify && isUncondBranchOpcode(LastOpc)) {
311 while (isUncondBranchOpcode(SecondLastOpc)) {
312 LastInst->eraseFromParent();
313 LastInst = SecondLastInst;
314 LastOpc = LastInst->getOpcode();
315 if (I == MBB.begin() || !isUnpredicatedTerminator(--I)) {
316 // Return now the only terminator is an unconditional branch.
317 TBB = LastInst->getOperand(0).getMBB();
318 return false;
319 } else {
320 SecondLastInst = I;
321 SecondLastOpc = SecondLastInst->getOpcode();
322 }
323 }
324 }
325
326 // If there are three terminators, we don't know what sort of block this is.
327 if (SecondLastInst && I != MBB.begin() && isUnpredicatedTerminator(--I))
328 return true;
329
330 // If the block ends with a B and a Bcc, handle it.
331 if (isCondBranchOpcode(SecondLastOpc) && isUncondBranchOpcode(LastOpc)) {
332 TBB = SecondLastInst->getOperand(0).getMBB();
333 Cond.push_back(SecondLastInst->getOperand(1));
334 Cond.push_back(SecondLastInst->getOperand(2));
335 FBB = LastInst->getOperand(0).getMBB();
336 return false;
337 }
338
339 // If the block ends with two unconditional branches, handle it. The second
340 // one is not executed, so remove it.
341 if (isUncondBranchOpcode(SecondLastOpc) && isUncondBranchOpcode(LastOpc)) {
342 TBB = SecondLastInst->getOperand(0).getMBB();
343 I = LastInst;
344 if (AllowModify)
345 I->eraseFromParent();
346 return false;
347 }
348
349 // ...likewise if it ends with a branch table followed by an unconditional
350 // branch. The branch folder can create these, and we must get rid of them for
351 // correctness of Thumb constant islands.
352 if ((isJumpTableBranchOpcode(SecondLastOpc) ||
353 isIndirectBranchOpcode(SecondLastOpc)) &&
354 isUncondBranchOpcode(LastOpc)) {
355 I = LastInst;
356 if (AllowModify)
357 I->eraseFromParent();
358 return true;
359 }
360
361 // Otherwise, can't handle this.
362 return true;
363 }
364
365
RemoveBranch(MachineBasicBlock & MBB) const366 unsigned ARMBaseInstrInfo::RemoveBranch(MachineBasicBlock &MBB) const {
367 MachineBasicBlock::iterator I = MBB.end();
368 if (I == MBB.begin()) return 0;
369 --I;
370 while (I->isDebugValue()) {
371 if (I == MBB.begin())
372 return 0;
373 --I;
374 }
375 if (!isUncondBranchOpcode(I->getOpcode()) &&
376 !isCondBranchOpcode(I->getOpcode()))
377 return 0;
378
379 // Remove the branch.
380 I->eraseFromParent();
381
382 I = MBB.end();
383
384 if (I == MBB.begin()) return 1;
385 --I;
386 if (!isCondBranchOpcode(I->getOpcode()))
387 return 1;
388
389 // Remove the branch.
390 I->eraseFromParent();
391 return 2;
392 }
393
394 unsigned
InsertBranch(MachineBasicBlock & MBB,MachineBasicBlock * TBB,MachineBasicBlock * FBB,const SmallVectorImpl<MachineOperand> & Cond,DebugLoc DL) const395 ARMBaseInstrInfo::InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
396 MachineBasicBlock *FBB,
397 const SmallVectorImpl<MachineOperand> &Cond,
398 DebugLoc DL) const {
399 ARMFunctionInfo *AFI = MBB.getParent()->getInfo<ARMFunctionInfo>();
400 int BOpc = !AFI->isThumbFunction()
401 ? ARM::B : (AFI->isThumb2Function() ? ARM::t2B : ARM::tB);
402 int BccOpc = !AFI->isThumbFunction()
403 ? ARM::Bcc : (AFI->isThumb2Function() ? ARM::t2Bcc : ARM::tBcc);
404 bool isThumb = AFI->isThumbFunction() || AFI->isThumb2Function();
405
406 // Shouldn't be a fall through.
407 assert(TBB && "InsertBranch must not be told to insert a fallthrough");
408 assert((Cond.size() == 2 || Cond.size() == 0) &&
409 "ARM branch conditions have two components!");
410
411 if (FBB == 0) {
412 if (Cond.empty()) { // Unconditional branch?
413 if (isThumb)
414 BuildMI(&MBB, DL, get(BOpc)).addMBB(TBB).addImm(ARMCC::AL).addReg(0);
415 else
416 BuildMI(&MBB, DL, get(BOpc)).addMBB(TBB);
417 } else
418 BuildMI(&MBB, DL, get(BccOpc)).addMBB(TBB)
419 .addImm(Cond[0].getImm()).addReg(Cond[1].getReg());
420 return 1;
421 }
422
423 // Two-way conditional branch.
424 BuildMI(&MBB, DL, get(BccOpc)).addMBB(TBB)
425 .addImm(Cond[0].getImm()).addReg(Cond[1].getReg());
426 if (isThumb)
427 BuildMI(&MBB, DL, get(BOpc)).addMBB(FBB).addImm(ARMCC::AL).addReg(0);
428 else
429 BuildMI(&MBB, DL, get(BOpc)).addMBB(FBB);
430 return 2;
431 }
432
433 bool ARMBaseInstrInfo::
ReverseBranchCondition(SmallVectorImpl<MachineOperand> & Cond) const434 ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
435 ARMCC::CondCodes CC = (ARMCC::CondCodes)(int)Cond[0].getImm();
436 Cond[0].setImm(ARMCC::getOppositeCondition(CC));
437 return false;
438 }
439
isPredicated(const MachineInstr * MI) const440 bool ARMBaseInstrInfo::isPredicated(const MachineInstr *MI) const {
441 if (MI->isBundle()) {
442 MachineBasicBlock::const_instr_iterator I = MI;
443 MachineBasicBlock::const_instr_iterator E = MI->getParent()->instr_end();
444 while (++I != E && I->isInsideBundle()) {
445 int PIdx = I->findFirstPredOperandIdx();
446 if (PIdx != -1 && I->getOperand(PIdx).getImm() != ARMCC::AL)
447 return true;
448 }
449 return false;
450 }
451
452 int PIdx = MI->findFirstPredOperandIdx();
453 return PIdx != -1 && MI->getOperand(PIdx).getImm() != ARMCC::AL;
454 }
455
456 bool ARMBaseInstrInfo::
PredicateInstruction(MachineInstr * MI,const SmallVectorImpl<MachineOperand> & Pred) const457 PredicateInstruction(MachineInstr *MI,
458 const SmallVectorImpl<MachineOperand> &Pred) const {
459 unsigned Opc = MI->getOpcode();
460 if (isUncondBranchOpcode(Opc)) {
461 MI->setDesc(get(getMatchingCondBranchOpcode(Opc)));
462 MI->addOperand(MachineOperand::CreateImm(Pred[0].getImm()));
463 MI->addOperand(MachineOperand::CreateReg(Pred[1].getReg(), false));
464 return true;
465 }
466
467 int PIdx = MI->findFirstPredOperandIdx();
468 if (PIdx != -1) {
469 MachineOperand &PMO = MI->getOperand(PIdx);
470 PMO.setImm(Pred[0].getImm());
471 MI->getOperand(PIdx+1).setReg(Pred[1].getReg());
472 return true;
473 }
474 return false;
475 }
476
477 bool ARMBaseInstrInfo::
SubsumesPredicate(const SmallVectorImpl<MachineOperand> & Pred1,const SmallVectorImpl<MachineOperand> & Pred2) const478 SubsumesPredicate(const SmallVectorImpl<MachineOperand> &Pred1,
479 const SmallVectorImpl<MachineOperand> &Pred2) const {
480 if (Pred1.size() > 2 || Pred2.size() > 2)
481 return false;
482
483 ARMCC::CondCodes CC1 = (ARMCC::CondCodes)Pred1[0].getImm();
484 ARMCC::CondCodes CC2 = (ARMCC::CondCodes)Pred2[0].getImm();
485 if (CC1 == CC2)
486 return true;
487
488 switch (CC1) {
489 default:
490 return false;
491 case ARMCC::AL:
492 return true;
493 case ARMCC::HS:
494 return CC2 == ARMCC::HI;
495 case ARMCC::LS:
496 return CC2 == ARMCC::LO || CC2 == ARMCC::EQ;
497 case ARMCC::GE:
498 return CC2 == ARMCC::GT;
499 case ARMCC::LE:
500 return CC2 == ARMCC::LT;
501 }
502 }
503
DefinesPredicate(MachineInstr * MI,std::vector<MachineOperand> & Pred) const504 bool ARMBaseInstrInfo::DefinesPredicate(MachineInstr *MI,
505 std::vector<MachineOperand> &Pred) const {
506 bool Found = false;
507 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
508 const MachineOperand &MO = MI->getOperand(i);
509 if ((MO.isRegMask() && MO.clobbersPhysReg(ARM::CPSR)) ||
510 (MO.isReg() && MO.isDef() && MO.getReg() == ARM::CPSR)) {
511 Pred.push_back(MO);
512 Found = true;
513 }
514 }
515
516 return Found;
517 }
518
519 /// isPredicable - Return true if the specified instruction can be predicated.
520 /// By default, this returns true for every instruction with a
521 /// PredicateOperand.
isPredicable(MachineInstr * MI) const522 bool ARMBaseInstrInfo::isPredicable(MachineInstr *MI) const {
523 if (!MI->isPredicable())
524 return false;
525
526 if ((MI->getDesc().TSFlags & ARMII::DomainMask) == ARMII::DomainNEON) {
527 ARMFunctionInfo *AFI =
528 MI->getParent()->getParent()->getInfo<ARMFunctionInfo>();
529 return AFI->isThumb2Function();
530 }
531 return true;
532 }
533
534 /// FIXME: Works around a gcc miscompilation with -fstrict-aliasing.
535 LLVM_ATTRIBUTE_NOINLINE
536 static unsigned getNumJTEntries(const std::vector<MachineJumpTableEntry> &JT,
537 unsigned JTI);
getNumJTEntries(const std::vector<MachineJumpTableEntry> & JT,unsigned JTI)538 static unsigned getNumJTEntries(const std::vector<MachineJumpTableEntry> &JT,
539 unsigned JTI) {
540 assert(JTI < JT.size());
541 return JT[JTI].MBBs.size();
542 }
543
544 /// GetInstSize - Return the size of the specified MachineInstr.
545 ///
GetInstSizeInBytes(const MachineInstr * MI) const546 unsigned ARMBaseInstrInfo::GetInstSizeInBytes(const MachineInstr *MI) const {
547 const MachineBasicBlock &MBB = *MI->getParent();
548 const MachineFunction *MF = MBB.getParent();
549 const MCAsmInfo *MAI = MF->getTarget().getMCAsmInfo();
550
551 const MCInstrDesc &MCID = MI->getDesc();
552 if (MCID.getSize())
553 return MCID.getSize();
554
555 // If this machine instr is an inline asm, measure it.
556 if (MI->getOpcode() == ARM::INLINEASM)
557 return getInlineAsmLength(MI->getOperand(0).getSymbolName(), *MAI);
558 if (MI->isLabel())
559 return 0;
560 unsigned Opc = MI->getOpcode();
561 switch (Opc) {
562 case TargetOpcode::IMPLICIT_DEF:
563 case TargetOpcode::KILL:
564 case TargetOpcode::PROLOG_LABEL:
565 case TargetOpcode::EH_LABEL:
566 case TargetOpcode::DBG_VALUE:
567 return 0;
568 case TargetOpcode::BUNDLE:
569 return getInstBundleLength(MI);
570 case ARM::MOVi16_ga_pcrel:
571 case ARM::MOVTi16_ga_pcrel:
572 case ARM::t2MOVi16_ga_pcrel:
573 case ARM::t2MOVTi16_ga_pcrel:
574 return 4;
575 case ARM::MOVi32imm:
576 case ARM::t2MOVi32imm:
577 return 8;
578 case ARM::CONSTPOOL_ENTRY:
579 // If this machine instr is a constant pool entry, its size is recorded as
580 // operand #2.
581 return MI->getOperand(2).getImm();
582 case ARM::Int_eh_sjlj_longjmp:
583 return 16;
584 case ARM::tInt_eh_sjlj_longjmp:
585 return 10;
586 case ARM::Int_eh_sjlj_setjmp:
587 case ARM::Int_eh_sjlj_setjmp_nofp:
588 return 20;
589 case ARM::tInt_eh_sjlj_setjmp:
590 case ARM::t2Int_eh_sjlj_setjmp:
591 case ARM::t2Int_eh_sjlj_setjmp_nofp:
592 return 12;
593 case ARM::BR_JTr:
594 case ARM::BR_JTm:
595 case ARM::BR_JTadd:
596 case ARM::tBR_JTr:
597 case ARM::t2BR_JT:
598 case ARM::t2TBB_JT:
599 case ARM::t2TBH_JT: {
600 // These are jumptable branches, i.e. a branch followed by an inlined
601 // jumptable. The size is 4 + 4 * number of entries. For TBB, each
602 // entry is one byte; TBH two byte each.
603 unsigned EntrySize = (Opc == ARM::t2TBB_JT)
604 ? 1 : ((Opc == ARM::t2TBH_JT) ? 2 : 4);
605 unsigned NumOps = MCID.getNumOperands();
606 MachineOperand JTOP =
607 MI->getOperand(NumOps - (MI->isPredicable() ? 3 : 2));
608 unsigned JTI = JTOP.getIndex();
609 const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo();
610 assert(MJTI != 0);
611 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
612 assert(JTI < JT.size());
613 // Thumb instructions are 2 byte aligned, but JT entries are 4 byte
614 // 4 aligned. The assembler / linker may add 2 byte padding just before
615 // the JT entries. The size does not include this padding; the
616 // constant islands pass does separate bookkeeping for it.
617 // FIXME: If we know the size of the function is less than (1 << 16) *2
618 // bytes, we can use 16-bit entries instead. Then there won't be an
619 // alignment issue.
620 unsigned InstSize = (Opc == ARM::tBR_JTr || Opc == ARM::t2BR_JT) ? 2 : 4;
621 unsigned NumEntries = getNumJTEntries(JT, JTI);
622 if (Opc == ARM::t2TBB_JT && (NumEntries & 1))
623 // Make sure the instruction that follows TBB is 2-byte aligned.
624 // FIXME: Constant island pass should insert an "ALIGN" instruction
625 // instead.
626 ++NumEntries;
627 return NumEntries * EntrySize + InstSize;
628 }
629 default:
630 // Otherwise, pseudo-instruction sizes are zero.
631 return 0;
632 }
633 }
634
getInstBundleLength(const MachineInstr * MI) const635 unsigned ARMBaseInstrInfo::getInstBundleLength(const MachineInstr *MI) const {
636 unsigned Size = 0;
637 MachineBasicBlock::const_instr_iterator I = MI;
638 MachineBasicBlock::const_instr_iterator E = MI->getParent()->instr_end();
639 while (++I != E && I->isInsideBundle()) {
640 assert(!I->isBundle() && "No nested bundle!");
641 Size += GetInstSizeInBytes(&*I);
642 }
643 return Size;
644 }
645
copyPhysReg(MachineBasicBlock & MBB,MachineBasicBlock::iterator I,DebugLoc DL,unsigned DestReg,unsigned SrcReg,bool KillSrc) const646 void ARMBaseInstrInfo::copyPhysReg(MachineBasicBlock &MBB,
647 MachineBasicBlock::iterator I, DebugLoc DL,
648 unsigned DestReg, unsigned SrcReg,
649 bool KillSrc) const {
650 bool GPRDest = ARM::GPRRegClass.contains(DestReg);
651 bool GPRSrc = ARM::GPRRegClass.contains(SrcReg);
652
653 if (GPRDest && GPRSrc) {
654 AddDefaultCC(AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::MOVr), DestReg)
655 .addReg(SrcReg, getKillRegState(KillSrc))));
656 return;
657 }
658
659 bool SPRDest = ARM::SPRRegClass.contains(DestReg);
660 bool SPRSrc = ARM::SPRRegClass.contains(SrcReg);
661
662 unsigned Opc = 0;
663 if (SPRDest && SPRSrc)
664 Opc = ARM::VMOVS;
665 else if (GPRDest && SPRSrc)
666 Opc = ARM::VMOVRS;
667 else if (SPRDest && GPRSrc)
668 Opc = ARM::VMOVSR;
669 else if (ARM::DPRRegClass.contains(DestReg, SrcReg))
670 Opc = ARM::VMOVD;
671 else if (ARM::QPRRegClass.contains(DestReg, SrcReg))
672 Opc = ARM::VORRq;
673
674 if (Opc) {
675 MachineInstrBuilder MIB = BuildMI(MBB, I, DL, get(Opc), DestReg);
676 MIB.addReg(SrcReg, getKillRegState(KillSrc));
677 if (Opc == ARM::VORRq)
678 MIB.addReg(SrcReg, getKillRegState(KillSrc));
679 AddDefaultPred(MIB);
680 return;
681 }
682
683 // Handle register classes that require multiple instructions.
684 unsigned BeginIdx = 0;
685 unsigned SubRegs = 0;
686 int Spacing = 1;
687
688 // Use VORRq when possible.
689 if (ARM::QQPRRegClass.contains(DestReg, SrcReg))
690 Opc = ARM::VORRq, BeginIdx = ARM::qsub_0, SubRegs = 2;
691 else if (ARM::QQQQPRRegClass.contains(DestReg, SrcReg))
692 Opc = ARM::VORRq, BeginIdx = ARM::qsub_0, SubRegs = 4;
693 // Fall back to VMOVD.
694 else if (ARM::DPairRegClass.contains(DestReg, SrcReg))
695 Opc = ARM::VMOVD, BeginIdx = ARM::dsub_0, SubRegs = 2;
696 else if (ARM::DTripleRegClass.contains(DestReg, SrcReg))
697 Opc = ARM::VMOVD, BeginIdx = ARM::dsub_0, SubRegs = 3;
698 else if (ARM::DQuadRegClass.contains(DestReg, SrcReg))
699 Opc = ARM::VMOVD, BeginIdx = ARM::dsub_0, SubRegs = 4;
700
701 else if (ARM::DPairSpcRegClass.contains(DestReg, SrcReg))
702 Opc = ARM::VMOVD, BeginIdx = ARM::dsub_0, SubRegs = 2, Spacing = 2;
703 else if (ARM::DTripleSpcRegClass.contains(DestReg, SrcReg))
704 Opc = ARM::VMOVD, BeginIdx = ARM::dsub_0, SubRegs = 3, Spacing = 2;
705 else if (ARM::DQuadSpcRegClass.contains(DestReg, SrcReg))
706 Opc = ARM::VMOVD, BeginIdx = ARM::dsub_0, SubRegs = 4, Spacing = 2;
707
708 assert(Opc && "Impossible reg-to-reg copy");
709
710 const TargetRegisterInfo *TRI = &getRegisterInfo();
711 MachineInstrBuilder Mov;
712
713 // Copy register tuples backward when the first Dest reg overlaps with SrcReg.
714 if (TRI->regsOverlap(SrcReg, TRI->getSubReg(DestReg, BeginIdx))) {
715 BeginIdx = BeginIdx + ((SubRegs-1)*Spacing);
716 Spacing = -Spacing;
717 }
718 #ifndef NDEBUG
719 SmallSet<unsigned, 4> DstRegs;
720 #endif
721 for (unsigned i = 0; i != SubRegs; ++i) {
722 unsigned Dst = TRI->getSubReg(DestReg, BeginIdx + i*Spacing);
723 unsigned Src = TRI->getSubReg(SrcReg, BeginIdx + i*Spacing);
724 assert(Dst && Src && "Bad sub-register");
725 #ifndef NDEBUG
726 assert(!DstRegs.count(Src) && "destructive vector copy");
727 DstRegs.insert(Dst);
728 #endif
729 Mov = BuildMI(MBB, I, I->getDebugLoc(), get(Opc), Dst)
730 .addReg(Src);
731 // VORR takes two source operands.
732 if (Opc == ARM::VORRq)
733 Mov.addReg(Src);
734 Mov = AddDefaultPred(Mov);
735 }
736 // Add implicit super-register defs and kills to the last instruction.
737 Mov->addRegisterDefined(DestReg, TRI);
738 if (KillSrc)
739 Mov->addRegisterKilled(SrcReg, TRI);
740 }
741
742 static const
AddDReg(MachineInstrBuilder & MIB,unsigned Reg,unsigned SubIdx,unsigned State,const TargetRegisterInfo * TRI)743 MachineInstrBuilder &AddDReg(MachineInstrBuilder &MIB,
744 unsigned Reg, unsigned SubIdx, unsigned State,
745 const TargetRegisterInfo *TRI) {
746 if (!SubIdx)
747 return MIB.addReg(Reg, State);
748
749 if (TargetRegisterInfo::isPhysicalRegister(Reg))
750 return MIB.addReg(TRI->getSubReg(Reg, SubIdx), State);
751 return MIB.addReg(Reg, State, SubIdx);
752 }
753
754 void ARMBaseInstrInfo::
storeRegToStackSlot(MachineBasicBlock & MBB,MachineBasicBlock::iterator I,unsigned SrcReg,bool isKill,int FI,const TargetRegisterClass * RC,const TargetRegisterInfo * TRI) const755 storeRegToStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator I,
756 unsigned SrcReg, bool isKill, int FI,
757 const TargetRegisterClass *RC,
758 const TargetRegisterInfo *TRI) const {
759 DebugLoc DL;
760 if (I != MBB.end()) DL = I->getDebugLoc();
761 MachineFunction &MF = *MBB.getParent();
762 MachineFrameInfo &MFI = *MF.getFrameInfo();
763 unsigned Align = MFI.getObjectAlignment(FI);
764
765 MachineMemOperand *MMO =
766 MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(FI),
767 MachineMemOperand::MOStore,
768 MFI.getObjectSize(FI),
769 Align);
770
771 switch (RC->getSize()) {
772 case 4:
773 if (ARM::GPRRegClass.hasSubClassEq(RC)) {
774 AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::STRi12))
775 .addReg(SrcReg, getKillRegState(isKill))
776 .addFrameIndex(FI).addImm(0).addMemOperand(MMO));
777 } else if (ARM::SPRRegClass.hasSubClassEq(RC)) {
778 AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VSTRS))
779 .addReg(SrcReg, getKillRegState(isKill))
780 .addFrameIndex(FI).addImm(0).addMemOperand(MMO));
781 } else
782 llvm_unreachable("Unknown reg class!");
783 break;
784 case 8:
785 if (ARM::DPRRegClass.hasSubClassEq(RC)) {
786 AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VSTRD))
787 .addReg(SrcReg, getKillRegState(isKill))
788 .addFrameIndex(FI).addImm(0).addMemOperand(MMO));
789 } else
790 llvm_unreachable("Unknown reg class!");
791 break;
792 case 16:
793 if (ARM::DPairRegClass.hasSubClassEq(RC)) {
794 // Use aligned spills if the stack can be realigned.
795 if (Align >= 16 && getRegisterInfo().canRealignStack(MF)) {
796 AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VST1q64))
797 .addFrameIndex(FI).addImm(16)
798 .addReg(SrcReg, getKillRegState(isKill))
799 .addMemOperand(MMO));
800 } else {
801 AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VSTMQIA))
802 .addReg(SrcReg, getKillRegState(isKill))
803 .addFrameIndex(FI)
804 .addMemOperand(MMO));
805 }
806 } else
807 llvm_unreachable("Unknown reg class!");
808 break;
809 case 24:
810 if (ARM::DTripleRegClass.hasSubClassEq(RC)) {
811 // Use aligned spills if the stack can be realigned.
812 if (Align >= 16 && getRegisterInfo().canRealignStack(MF)) {
813 AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VST1d64TPseudo))
814 .addFrameIndex(FI).addImm(16)
815 .addReg(SrcReg, getKillRegState(isKill))
816 .addMemOperand(MMO));
817 } else {
818 MachineInstrBuilder MIB =
819 AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VSTMDIA))
820 .addFrameIndex(FI))
821 .addMemOperand(MMO);
822 MIB = AddDReg(MIB, SrcReg, ARM::dsub_0, getKillRegState(isKill), TRI);
823 MIB = AddDReg(MIB, SrcReg, ARM::dsub_1, 0, TRI);
824 AddDReg(MIB, SrcReg, ARM::dsub_2, 0, TRI);
825 }
826 } else
827 llvm_unreachable("Unknown reg class!");
828 break;
829 case 32:
830 if (ARM::QQPRRegClass.hasSubClassEq(RC) || ARM::DQuadRegClass.hasSubClassEq(RC)) {
831 if (Align >= 16 && getRegisterInfo().canRealignStack(MF)) {
832 // FIXME: It's possible to only store part of the QQ register if the
833 // spilled def has a sub-register index.
834 AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VST1d64QPseudo))
835 .addFrameIndex(FI).addImm(16)
836 .addReg(SrcReg, getKillRegState(isKill))
837 .addMemOperand(MMO));
838 } else {
839 MachineInstrBuilder MIB =
840 AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VSTMDIA))
841 .addFrameIndex(FI))
842 .addMemOperand(MMO);
843 MIB = AddDReg(MIB, SrcReg, ARM::dsub_0, getKillRegState(isKill), TRI);
844 MIB = AddDReg(MIB, SrcReg, ARM::dsub_1, 0, TRI);
845 MIB = AddDReg(MIB, SrcReg, ARM::dsub_2, 0, TRI);
846 AddDReg(MIB, SrcReg, ARM::dsub_3, 0, TRI);
847 }
848 } else
849 llvm_unreachable("Unknown reg class!");
850 break;
851 case 64:
852 if (ARM::QQQQPRRegClass.hasSubClassEq(RC)) {
853 MachineInstrBuilder MIB =
854 AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VSTMDIA))
855 .addFrameIndex(FI))
856 .addMemOperand(MMO);
857 MIB = AddDReg(MIB, SrcReg, ARM::dsub_0, getKillRegState(isKill), TRI);
858 MIB = AddDReg(MIB, SrcReg, ARM::dsub_1, 0, TRI);
859 MIB = AddDReg(MIB, SrcReg, ARM::dsub_2, 0, TRI);
860 MIB = AddDReg(MIB, SrcReg, ARM::dsub_3, 0, TRI);
861 MIB = AddDReg(MIB, SrcReg, ARM::dsub_4, 0, TRI);
862 MIB = AddDReg(MIB, SrcReg, ARM::dsub_5, 0, TRI);
863 MIB = AddDReg(MIB, SrcReg, ARM::dsub_6, 0, TRI);
864 AddDReg(MIB, SrcReg, ARM::dsub_7, 0, TRI);
865 } else
866 llvm_unreachable("Unknown reg class!");
867 break;
868 default:
869 llvm_unreachable("Unknown reg class!");
870 }
871 }
872
873 unsigned
isStoreToStackSlot(const MachineInstr * MI,int & FrameIndex) const874 ARMBaseInstrInfo::isStoreToStackSlot(const MachineInstr *MI,
875 int &FrameIndex) const {
876 switch (MI->getOpcode()) {
877 default: break;
878 case ARM::STRrs:
879 case ARM::t2STRs: // FIXME: don't use t2STRs to access frame.
880 if (MI->getOperand(1).isFI() &&
881 MI->getOperand(2).isReg() &&
882 MI->getOperand(3).isImm() &&
883 MI->getOperand(2).getReg() == 0 &&
884 MI->getOperand(3).getImm() == 0) {
885 FrameIndex = MI->getOperand(1).getIndex();
886 return MI->getOperand(0).getReg();
887 }
888 break;
889 case ARM::STRi12:
890 case ARM::t2STRi12:
891 case ARM::tSTRspi:
892 case ARM::VSTRD:
893 case ARM::VSTRS:
894 if (MI->getOperand(1).isFI() &&
895 MI->getOperand(2).isImm() &&
896 MI->getOperand(2).getImm() == 0) {
897 FrameIndex = MI->getOperand(1).getIndex();
898 return MI->getOperand(0).getReg();
899 }
900 break;
901 case ARM::VST1q64:
902 case ARM::VST1d64TPseudo:
903 case ARM::VST1d64QPseudo:
904 if (MI->getOperand(0).isFI() &&
905 MI->getOperand(2).getSubReg() == 0) {
906 FrameIndex = MI->getOperand(0).getIndex();
907 return MI->getOperand(2).getReg();
908 }
909 break;
910 case ARM::VSTMQIA:
911 if (MI->getOperand(1).isFI() &&
912 MI->getOperand(0).getSubReg() == 0) {
913 FrameIndex = MI->getOperand(1).getIndex();
914 return MI->getOperand(0).getReg();
915 }
916 break;
917 }
918
919 return 0;
920 }
921
isStoreToStackSlotPostFE(const MachineInstr * MI,int & FrameIndex) const922 unsigned ARMBaseInstrInfo::isStoreToStackSlotPostFE(const MachineInstr *MI,
923 int &FrameIndex) const {
924 const MachineMemOperand *Dummy;
925 return MI->mayStore() && hasStoreToStackSlot(MI, Dummy, FrameIndex);
926 }
927
928 void ARMBaseInstrInfo::
loadRegFromStackSlot(MachineBasicBlock & MBB,MachineBasicBlock::iterator I,unsigned DestReg,int FI,const TargetRegisterClass * RC,const TargetRegisterInfo * TRI) const929 loadRegFromStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator I,
930 unsigned DestReg, int FI,
931 const TargetRegisterClass *RC,
932 const TargetRegisterInfo *TRI) const {
933 DebugLoc DL;
934 if (I != MBB.end()) DL = I->getDebugLoc();
935 MachineFunction &MF = *MBB.getParent();
936 MachineFrameInfo &MFI = *MF.getFrameInfo();
937 unsigned Align = MFI.getObjectAlignment(FI);
938 MachineMemOperand *MMO =
939 MF.getMachineMemOperand(
940 MachinePointerInfo::getFixedStack(FI),
941 MachineMemOperand::MOLoad,
942 MFI.getObjectSize(FI),
943 Align);
944
945 switch (RC->getSize()) {
946 case 4:
947 if (ARM::GPRRegClass.hasSubClassEq(RC)) {
948 AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::LDRi12), DestReg)
949 .addFrameIndex(FI).addImm(0).addMemOperand(MMO));
950
951 } else if (ARM::SPRRegClass.hasSubClassEq(RC)) {
952 AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLDRS), DestReg)
953 .addFrameIndex(FI).addImm(0).addMemOperand(MMO));
954 } else
955 llvm_unreachable("Unknown reg class!");
956 break;
957 case 8:
958 if (ARM::DPRRegClass.hasSubClassEq(RC)) {
959 AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLDRD), DestReg)
960 .addFrameIndex(FI).addImm(0).addMemOperand(MMO));
961 } else
962 llvm_unreachable("Unknown reg class!");
963 break;
964 case 16:
965 if (ARM::DPairRegClass.hasSubClassEq(RC)) {
966 if (Align >= 16 && getRegisterInfo().canRealignStack(MF)) {
967 AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLD1q64), DestReg)
968 .addFrameIndex(FI).addImm(16)
969 .addMemOperand(MMO));
970 } else {
971 AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLDMQIA), DestReg)
972 .addFrameIndex(FI)
973 .addMemOperand(MMO));
974 }
975 } else
976 llvm_unreachable("Unknown reg class!");
977 break;
978 case 24:
979 if (ARM::DTripleRegClass.hasSubClassEq(RC)) {
980 if (Align >= 16 && getRegisterInfo().canRealignStack(MF)) {
981 AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLD1d64TPseudo), DestReg)
982 .addFrameIndex(FI).addImm(16)
983 .addMemOperand(MMO));
984 } else {
985 MachineInstrBuilder MIB =
986 AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLDMDIA))
987 .addFrameIndex(FI)
988 .addMemOperand(MMO));
989 MIB = AddDReg(MIB, DestReg, ARM::dsub_0, RegState::DefineNoRead, TRI);
990 MIB = AddDReg(MIB, DestReg, ARM::dsub_1, RegState::DefineNoRead, TRI);
991 MIB = AddDReg(MIB, DestReg, ARM::dsub_2, RegState::DefineNoRead, TRI);
992 if (TargetRegisterInfo::isPhysicalRegister(DestReg))
993 MIB.addReg(DestReg, RegState::ImplicitDefine);
994 }
995 } else
996 llvm_unreachable("Unknown reg class!");
997 break;
998 case 32:
999 if (ARM::QQPRRegClass.hasSubClassEq(RC) || ARM::DQuadRegClass.hasSubClassEq(RC)) {
1000 if (Align >= 16 && getRegisterInfo().canRealignStack(MF)) {
1001 AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLD1d64QPseudo), DestReg)
1002 .addFrameIndex(FI).addImm(16)
1003 .addMemOperand(MMO));
1004 } else {
1005 MachineInstrBuilder MIB =
1006 AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLDMDIA))
1007 .addFrameIndex(FI))
1008 .addMemOperand(MMO);
1009 MIB = AddDReg(MIB, DestReg, ARM::dsub_0, RegState::DefineNoRead, TRI);
1010 MIB = AddDReg(MIB, DestReg, ARM::dsub_1, RegState::DefineNoRead, TRI);
1011 MIB = AddDReg(MIB, DestReg, ARM::dsub_2, RegState::DefineNoRead, TRI);
1012 MIB = AddDReg(MIB, DestReg, ARM::dsub_3, RegState::DefineNoRead, TRI);
1013 if (TargetRegisterInfo::isPhysicalRegister(DestReg))
1014 MIB.addReg(DestReg, RegState::ImplicitDefine);
1015 }
1016 } else
1017 llvm_unreachable("Unknown reg class!");
1018 break;
1019 case 64:
1020 if (ARM::QQQQPRRegClass.hasSubClassEq(RC)) {
1021 MachineInstrBuilder MIB =
1022 AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLDMDIA))
1023 .addFrameIndex(FI))
1024 .addMemOperand(MMO);
1025 MIB = AddDReg(MIB, DestReg, ARM::dsub_0, RegState::DefineNoRead, TRI);
1026 MIB = AddDReg(MIB, DestReg, ARM::dsub_1, RegState::DefineNoRead, TRI);
1027 MIB = AddDReg(MIB, DestReg, ARM::dsub_2, RegState::DefineNoRead, TRI);
1028 MIB = AddDReg(MIB, DestReg, ARM::dsub_3, RegState::DefineNoRead, TRI);
1029 MIB = AddDReg(MIB, DestReg, ARM::dsub_4, RegState::DefineNoRead, TRI);
1030 MIB = AddDReg(MIB, DestReg, ARM::dsub_5, RegState::DefineNoRead, TRI);
1031 MIB = AddDReg(MIB, DestReg, ARM::dsub_6, RegState::DefineNoRead, TRI);
1032 MIB = AddDReg(MIB, DestReg, ARM::dsub_7, RegState::DefineNoRead, TRI);
1033 if (TargetRegisterInfo::isPhysicalRegister(DestReg))
1034 MIB.addReg(DestReg, RegState::ImplicitDefine);
1035 } else
1036 llvm_unreachable("Unknown reg class!");
1037 break;
1038 default:
1039 llvm_unreachable("Unknown regclass!");
1040 }
1041 }
1042
1043 unsigned
isLoadFromStackSlot(const MachineInstr * MI,int & FrameIndex) const1044 ARMBaseInstrInfo::isLoadFromStackSlot(const MachineInstr *MI,
1045 int &FrameIndex) const {
1046 switch (MI->getOpcode()) {
1047 default: break;
1048 case ARM::LDRrs:
1049 case ARM::t2LDRs: // FIXME: don't use t2LDRs to access frame.
1050 if (MI->getOperand(1).isFI() &&
1051 MI->getOperand(2).isReg() &&
1052 MI->getOperand(3).isImm() &&
1053 MI->getOperand(2).getReg() == 0 &&
1054 MI->getOperand(3).getImm() == 0) {
1055 FrameIndex = MI->getOperand(1).getIndex();
1056 return MI->getOperand(0).getReg();
1057 }
1058 break;
1059 case ARM::LDRi12:
1060 case ARM::t2LDRi12:
1061 case ARM::tLDRspi:
1062 case ARM::VLDRD:
1063 case ARM::VLDRS:
1064 if (MI->getOperand(1).isFI() &&
1065 MI->getOperand(2).isImm() &&
1066 MI->getOperand(2).getImm() == 0) {
1067 FrameIndex = MI->getOperand(1).getIndex();
1068 return MI->getOperand(0).getReg();
1069 }
1070 break;
1071 case ARM::VLD1q64:
1072 case ARM::VLD1d64TPseudo:
1073 case ARM::VLD1d64QPseudo:
1074 if (MI->getOperand(1).isFI() &&
1075 MI->getOperand(0).getSubReg() == 0) {
1076 FrameIndex = MI->getOperand(1).getIndex();
1077 return MI->getOperand(0).getReg();
1078 }
1079 break;
1080 case ARM::VLDMQIA:
1081 if (MI->getOperand(1).isFI() &&
1082 MI->getOperand(0).getSubReg() == 0) {
1083 FrameIndex = MI->getOperand(1).getIndex();
1084 return MI->getOperand(0).getReg();
1085 }
1086 break;
1087 }
1088
1089 return 0;
1090 }
1091
isLoadFromStackSlotPostFE(const MachineInstr * MI,int & FrameIndex) const1092 unsigned ARMBaseInstrInfo::isLoadFromStackSlotPostFE(const MachineInstr *MI,
1093 int &FrameIndex) const {
1094 const MachineMemOperand *Dummy;
1095 return MI->mayLoad() && hasLoadFromStackSlot(MI, Dummy, FrameIndex);
1096 }
1097
expandPostRAPseudo(MachineBasicBlock::iterator MI) const1098 bool ARMBaseInstrInfo::expandPostRAPseudo(MachineBasicBlock::iterator MI) const{
1099 // This hook gets to expand COPY instructions before they become
1100 // copyPhysReg() calls. Look for VMOVS instructions that can legally be
1101 // widened to VMOVD. We prefer the VMOVD when possible because it may be
1102 // changed into a VORR that can go down the NEON pipeline.
1103 if (!WidenVMOVS || !MI->isCopy())
1104 return false;
1105
1106 // Look for a copy between even S-registers. That is where we keep floats
1107 // when using NEON v2f32 instructions for f32 arithmetic.
1108 unsigned DstRegS = MI->getOperand(0).getReg();
1109 unsigned SrcRegS = MI->getOperand(1).getReg();
1110 if (!ARM::SPRRegClass.contains(DstRegS, SrcRegS))
1111 return false;
1112
1113 const TargetRegisterInfo *TRI = &getRegisterInfo();
1114 unsigned DstRegD = TRI->getMatchingSuperReg(DstRegS, ARM::ssub_0,
1115 &ARM::DPRRegClass);
1116 unsigned SrcRegD = TRI->getMatchingSuperReg(SrcRegS, ARM::ssub_0,
1117 &ARM::DPRRegClass);
1118 if (!DstRegD || !SrcRegD)
1119 return false;
1120
1121 // We want to widen this into a DstRegD = VMOVD SrcRegD copy. This is only
1122 // legal if the COPY already defines the full DstRegD, and it isn't a
1123 // sub-register insertion.
1124 if (!MI->definesRegister(DstRegD, TRI) || MI->readsRegister(DstRegD, TRI))
1125 return false;
1126
1127 // A dead copy shouldn't show up here, but reject it just in case.
1128 if (MI->getOperand(0).isDead())
1129 return false;
1130
1131 // All clear, widen the COPY.
1132 DEBUG(dbgs() << "widening: " << *MI);
1133
1134 // Get rid of the old <imp-def> of DstRegD. Leave it if it defines a Q-reg
1135 // or some other super-register.
1136 int ImpDefIdx = MI->findRegisterDefOperandIdx(DstRegD);
1137 if (ImpDefIdx != -1)
1138 MI->RemoveOperand(ImpDefIdx);
1139
1140 // Change the opcode and operands.
1141 MI->setDesc(get(ARM::VMOVD));
1142 MI->getOperand(0).setReg(DstRegD);
1143 MI->getOperand(1).setReg(SrcRegD);
1144 AddDefaultPred(MachineInstrBuilder(MI));
1145
1146 // We are now reading SrcRegD instead of SrcRegS. This may upset the
1147 // register scavenger and machine verifier, so we need to indicate that we
1148 // are reading an undefined value from SrcRegD, but a proper value from
1149 // SrcRegS.
1150 MI->getOperand(1).setIsUndef();
1151 MachineInstrBuilder(MI).addReg(SrcRegS, RegState::Implicit);
1152
1153 // SrcRegD may actually contain an unrelated value in the ssub_1
1154 // sub-register. Don't kill it. Only kill the ssub_0 sub-register.
1155 if (MI->getOperand(1).isKill()) {
1156 MI->getOperand(1).setIsKill(false);
1157 MI->addRegisterKilled(SrcRegS, TRI, true);
1158 }
1159
1160 DEBUG(dbgs() << "replaced by: " << *MI);
1161 return true;
1162 }
1163
1164 MachineInstr*
emitFrameIndexDebugValue(MachineFunction & MF,int FrameIx,uint64_t Offset,const MDNode * MDPtr,DebugLoc DL) const1165 ARMBaseInstrInfo::emitFrameIndexDebugValue(MachineFunction &MF,
1166 int FrameIx, uint64_t Offset,
1167 const MDNode *MDPtr,
1168 DebugLoc DL) const {
1169 MachineInstrBuilder MIB = BuildMI(MF, DL, get(ARM::DBG_VALUE))
1170 .addFrameIndex(FrameIx).addImm(0).addImm(Offset).addMetadata(MDPtr);
1171 return &*MIB;
1172 }
1173
1174 /// Create a copy of a const pool value. Update CPI to the new index and return
1175 /// the label UID.
duplicateCPV(MachineFunction & MF,unsigned & CPI)1176 static unsigned duplicateCPV(MachineFunction &MF, unsigned &CPI) {
1177 MachineConstantPool *MCP = MF.getConstantPool();
1178 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1179
1180 const MachineConstantPoolEntry &MCPE = MCP->getConstants()[CPI];
1181 assert(MCPE.isMachineConstantPoolEntry() &&
1182 "Expecting a machine constantpool entry!");
1183 ARMConstantPoolValue *ACPV =
1184 static_cast<ARMConstantPoolValue*>(MCPE.Val.MachineCPVal);
1185
1186 unsigned PCLabelId = AFI->createPICLabelUId();
1187 ARMConstantPoolValue *NewCPV = 0;
1188 // FIXME: The below assumes PIC relocation model and that the function
1189 // is Thumb mode (t1 or t2). PCAdjustment would be 8 for ARM mode PIC, and
1190 // zero for non-PIC in ARM or Thumb. The callers are all of thumb LDR
1191 // instructions, so that's probably OK, but is PIC always correct when
1192 // we get here?
1193 if (ACPV->isGlobalValue())
1194 NewCPV = ARMConstantPoolConstant::
1195 Create(cast<ARMConstantPoolConstant>(ACPV)->getGV(), PCLabelId,
1196 ARMCP::CPValue, 4);
1197 else if (ACPV->isExtSymbol())
1198 NewCPV = ARMConstantPoolSymbol::
1199 Create(MF.getFunction()->getContext(),
1200 cast<ARMConstantPoolSymbol>(ACPV)->getSymbol(), PCLabelId, 4);
1201 else if (ACPV->isBlockAddress())
1202 NewCPV = ARMConstantPoolConstant::
1203 Create(cast<ARMConstantPoolConstant>(ACPV)->getBlockAddress(), PCLabelId,
1204 ARMCP::CPBlockAddress, 4);
1205 else if (ACPV->isLSDA())
1206 NewCPV = ARMConstantPoolConstant::Create(MF.getFunction(), PCLabelId,
1207 ARMCP::CPLSDA, 4);
1208 else if (ACPV->isMachineBasicBlock())
1209 NewCPV = ARMConstantPoolMBB::
1210 Create(MF.getFunction()->getContext(),
1211 cast<ARMConstantPoolMBB>(ACPV)->getMBB(), PCLabelId, 4);
1212 else
1213 llvm_unreachable("Unexpected ARM constantpool value type!!");
1214 CPI = MCP->getConstantPoolIndex(NewCPV, MCPE.getAlignment());
1215 return PCLabelId;
1216 }
1217
1218 void ARMBaseInstrInfo::
reMaterialize(MachineBasicBlock & MBB,MachineBasicBlock::iterator I,unsigned DestReg,unsigned SubIdx,const MachineInstr * Orig,const TargetRegisterInfo & TRI) const1219 reMaterialize(MachineBasicBlock &MBB,
1220 MachineBasicBlock::iterator I,
1221 unsigned DestReg, unsigned SubIdx,
1222 const MachineInstr *Orig,
1223 const TargetRegisterInfo &TRI) const {
1224 unsigned Opcode = Orig->getOpcode();
1225 switch (Opcode) {
1226 default: {
1227 MachineInstr *MI = MBB.getParent()->CloneMachineInstr(Orig);
1228 MI->substituteRegister(Orig->getOperand(0).getReg(), DestReg, SubIdx, TRI);
1229 MBB.insert(I, MI);
1230 break;
1231 }
1232 case ARM::tLDRpci_pic:
1233 case ARM::t2LDRpci_pic: {
1234 MachineFunction &MF = *MBB.getParent();
1235 unsigned CPI = Orig->getOperand(1).getIndex();
1236 unsigned PCLabelId = duplicateCPV(MF, CPI);
1237 MachineInstrBuilder MIB = BuildMI(MBB, I, Orig->getDebugLoc(), get(Opcode),
1238 DestReg)
1239 .addConstantPoolIndex(CPI).addImm(PCLabelId);
1240 MIB->setMemRefs(Orig->memoperands_begin(), Orig->memoperands_end());
1241 break;
1242 }
1243 }
1244 }
1245
1246 MachineInstr *
duplicate(MachineInstr * Orig,MachineFunction & MF) const1247 ARMBaseInstrInfo::duplicate(MachineInstr *Orig, MachineFunction &MF) const {
1248 MachineInstr *MI = TargetInstrInfoImpl::duplicate(Orig, MF);
1249 switch(Orig->getOpcode()) {
1250 case ARM::tLDRpci_pic:
1251 case ARM::t2LDRpci_pic: {
1252 unsigned CPI = Orig->getOperand(1).getIndex();
1253 unsigned PCLabelId = duplicateCPV(MF, CPI);
1254 Orig->getOperand(1).setIndex(CPI);
1255 Orig->getOperand(2).setImm(PCLabelId);
1256 break;
1257 }
1258 }
1259 return MI;
1260 }
1261
produceSameValue(const MachineInstr * MI0,const MachineInstr * MI1,const MachineRegisterInfo * MRI) const1262 bool ARMBaseInstrInfo::produceSameValue(const MachineInstr *MI0,
1263 const MachineInstr *MI1,
1264 const MachineRegisterInfo *MRI) const {
1265 int Opcode = MI0->getOpcode();
1266 if (Opcode == ARM::t2LDRpci ||
1267 Opcode == ARM::t2LDRpci_pic ||
1268 Opcode == ARM::tLDRpci ||
1269 Opcode == ARM::tLDRpci_pic ||
1270 Opcode == ARM::MOV_ga_dyn ||
1271 Opcode == ARM::MOV_ga_pcrel ||
1272 Opcode == ARM::MOV_ga_pcrel_ldr ||
1273 Opcode == ARM::t2MOV_ga_dyn ||
1274 Opcode == ARM::t2MOV_ga_pcrel) {
1275 if (MI1->getOpcode() != Opcode)
1276 return false;
1277 if (MI0->getNumOperands() != MI1->getNumOperands())
1278 return false;
1279
1280 const MachineOperand &MO0 = MI0->getOperand(1);
1281 const MachineOperand &MO1 = MI1->getOperand(1);
1282 if (MO0.getOffset() != MO1.getOffset())
1283 return false;
1284
1285 if (Opcode == ARM::MOV_ga_dyn ||
1286 Opcode == ARM::MOV_ga_pcrel ||
1287 Opcode == ARM::MOV_ga_pcrel_ldr ||
1288 Opcode == ARM::t2MOV_ga_dyn ||
1289 Opcode == ARM::t2MOV_ga_pcrel)
1290 // Ignore the PC labels.
1291 return MO0.getGlobal() == MO1.getGlobal();
1292
1293 const MachineFunction *MF = MI0->getParent()->getParent();
1294 const MachineConstantPool *MCP = MF->getConstantPool();
1295 int CPI0 = MO0.getIndex();
1296 int CPI1 = MO1.getIndex();
1297 const MachineConstantPoolEntry &MCPE0 = MCP->getConstants()[CPI0];
1298 const MachineConstantPoolEntry &MCPE1 = MCP->getConstants()[CPI1];
1299 bool isARMCP0 = MCPE0.isMachineConstantPoolEntry();
1300 bool isARMCP1 = MCPE1.isMachineConstantPoolEntry();
1301 if (isARMCP0 && isARMCP1) {
1302 ARMConstantPoolValue *ACPV0 =
1303 static_cast<ARMConstantPoolValue*>(MCPE0.Val.MachineCPVal);
1304 ARMConstantPoolValue *ACPV1 =
1305 static_cast<ARMConstantPoolValue*>(MCPE1.Val.MachineCPVal);
1306 return ACPV0->hasSameValue(ACPV1);
1307 } else if (!isARMCP0 && !isARMCP1) {
1308 return MCPE0.Val.ConstVal == MCPE1.Val.ConstVal;
1309 }
1310 return false;
1311 } else if (Opcode == ARM::PICLDR) {
1312 if (MI1->getOpcode() != Opcode)
1313 return false;
1314 if (MI0->getNumOperands() != MI1->getNumOperands())
1315 return false;
1316
1317 unsigned Addr0 = MI0->getOperand(1).getReg();
1318 unsigned Addr1 = MI1->getOperand(1).getReg();
1319 if (Addr0 != Addr1) {
1320 if (!MRI ||
1321 !TargetRegisterInfo::isVirtualRegister(Addr0) ||
1322 !TargetRegisterInfo::isVirtualRegister(Addr1))
1323 return false;
1324
1325 // This assumes SSA form.
1326 MachineInstr *Def0 = MRI->getVRegDef(Addr0);
1327 MachineInstr *Def1 = MRI->getVRegDef(Addr1);
1328 // Check if the loaded value, e.g. a constantpool of a global address, are
1329 // the same.
1330 if (!produceSameValue(Def0, Def1, MRI))
1331 return false;
1332 }
1333
1334 for (unsigned i = 3, e = MI0->getNumOperands(); i != e; ++i) {
1335 // %vreg12<def> = PICLDR %vreg11, 0, pred:14, pred:%noreg
1336 const MachineOperand &MO0 = MI0->getOperand(i);
1337 const MachineOperand &MO1 = MI1->getOperand(i);
1338 if (!MO0.isIdenticalTo(MO1))
1339 return false;
1340 }
1341 return true;
1342 }
1343
1344 return MI0->isIdenticalTo(MI1, MachineInstr::IgnoreVRegDefs);
1345 }
1346
1347 /// areLoadsFromSameBasePtr - This is used by the pre-regalloc scheduler to
1348 /// determine if two loads are loading from the same base address. It should
1349 /// only return true if the base pointers are the same and the only differences
1350 /// between the two addresses is the offset. It also returns the offsets by
1351 /// reference.
areLoadsFromSameBasePtr(SDNode * Load1,SDNode * Load2,int64_t & Offset1,int64_t & Offset2) const1352 bool ARMBaseInstrInfo::areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2,
1353 int64_t &Offset1,
1354 int64_t &Offset2) const {
1355 // Don't worry about Thumb: just ARM and Thumb2.
1356 if (Subtarget.isThumb1Only()) return false;
1357
1358 if (!Load1->isMachineOpcode() || !Load2->isMachineOpcode())
1359 return false;
1360
1361 switch (Load1->getMachineOpcode()) {
1362 default:
1363 return false;
1364 case ARM::LDRi12:
1365 case ARM::LDRBi12:
1366 case ARM::LDRD:
1367 case ARM::LDRH:
1368 case ARM::LDRSB:
1369 case ARM::LDRSH:
1370 case ARM::VLDRD:
1371 case ARM::VLDRS:
1372 case ARM::t2LDRi8:
1373 case ARM::t2LDRDi8:
1374 case ARM::t2LDRSHi8:
1375 case ARM::t2LDRi12:
1376 case ARM::t2LDRSHi12:
1377 break;
1378 }
1379
1380 switch (Load2->getMachineOpcode()) {
1381 default:
1382 return false;
1383 case ARM::LDRi12:
1384 case ARM::LDRBi12:
1385 case ARM::LDRD:
1386 case ARM::LDRH:
1387 case ARM::LDRSB:
1388 case ARM::LDRSH:
1389 case ARM::VLDRD:
1390 case ARM::VLDRS:
1391 case ARM::t2LDRi8:
1392 case ARM::t2LDRDi8:
1393 case ARM::t2LDRSHi8:
1394 case ARM::t2LDRi12:
1395 case ARM::t2LDRSHi12:
1396 break;
1397 }
1398
1399 // Check if base addresses and chain operands match.
1400 if (Load1->getOperand(0) != Load2->getOperand(0) ||
1401 Load1->getOperand(4) != Load2->getOperand(4))
1402 return false;
1403
1404 // Index should be Reg0.
1405 if (Load1->getOperand(3) != Load2->getOperand(3))
1406 return false;
1407
1408 // Determine the offsets.
1409 if (isa<ConstantSDNode>(Load1->getOperand(1)) &&
1410 isa<ConstantSDNode>(Load2->getOperand(1))) {
1411 Offset1 = cast<ConstantSDNode>(Load1->getOperand(1))->getSExtValue();
1412 Offset2 = cast<ConstantSDNode>(Load2->getOperand(1))->getSExtValue();
1413 return true;
1414 }
1415
1416 return false;
1417 }
1418
1419 /// shouldScheduleLoadsNear - This is a used by the pre-regalloc scheduler to
1420 /// determine (in conjunction with areLoadsFromSameBasePtr) if two loads should
1421 /// be scheduled togther. On some targets if two loads are loading from
1422 /// addresses in the same cache line, it's better if they are scheduled
1423 /// together. This function takes two integers that represent the load offsets
1424 /// from the common base address. It returns true if it decides it's desirable
1425 /// to schedule the two loads together. "NumLoads" is the number of loads that
1426 /// have already been scheduled after Load1.
shouldScheduleLoadsNear(SDNode * Load1,SDNode * Load2,int64_t Offset1,int64_t Offset2,unsigned NumLoads) const1427 bool ARMBaseInstrInfo::shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2,
1428 int64_t Offset1, int64_t Offset2,
1429 unsigned NumLoads) const {
1430 // Don't worry about Thumb: just ARM and Thumb2.
1431 if (Subtarget.isThumb1Only()) return false;
1432
1433 assert(Offset2 > Offset1);
1434
1435 if ((Offset2 - Offset1) / 8 > 64)
1436 return false;
1437
1438 if (Load1->getMachineOpcode() != Load2->getMachineOpcode())
1439 return false; // FIXME: overly conservative?
1440
1441 // Four loads in a row should be sufficient.
1442 if (NumLoads >= 3)
1443 return false;
1444
1445 return true;
1446 }
1447
isSchedulingBoundary(const MachineInstr * MI,const MachineBasicBlock * MBB,const MachineFunction & MF) const1448 bool ARMBaseInstrInfo::isSchedulingBoundary(const MachineInstr *MI,
1449 const MachineBasicBlock *MBB,
1450 const MachineFunction &MF) const {
1451 // Debug info is never a scheduling boundary. It's necessary to be explicit
1452 // due to the special treatment of IT instructions below, otherwise a
1453 // dbg_value followed by an IT will result in the IT instruction being
1454 // considered a scheduling hazard, which is wrong. It should be the actual
1455 // instruction preceding the dbg_value instruction(s), just like it is
1456 // when debug info is not present.
1457 if (MI->isDebugValue())
1458 return false;
1459
1460 // Terminators and labels can't be scheduled around.
1461 if (MI->isTerminator() || MI->isLabel())
1462 return true;
1463
1464 // Treat the start of the IT block as a scheduling boundary, but schedule
1465 // t2IT along with all instructions following it.
1466 // FIXME: This is a big hammer. But the alternative is to add all potential
1467 // true and anti dependencies to IT block instructions as implicit operands
1468 // to the t2IT instruction. The added compile time and complexity does not
1469 // seem worth it.
1470 MachineBasicBlock::const_iterator I = MI;
1471 // Make sure to skip any dbg_value instructions
1472 while (++I != MBB->end() && I->isDebugValue())
1473 ;
1474 if (I != MBB->end() && I->getOpcode() == ARM::t2IT)
1475 return true;
1476
1477 // Don't attempt to schedule around any instruction that defines
1478 // a stack-oriented pointer, as it's unlikely to be profitable. This
1479 // saves compile time, because it doesn't require every single
1480 // stack slot reference to depend on the instruction that does the
1481 // modification.
1482 // Calls don't actually change the stack pointer, even if they have imp-defs.
1483 // No ARM calling conventions change the stack pointer. (X86 calling
1484 // conventions sometimes do).
1485 if (!MI->isCall() && MI->definesRegister(ARM::SP))
1486 return true;
1487
1488 return false;
1489 }
1490
1491 bool ARMBaseInstrInfo::
isProfitableToIfCvt(MachineBasicBlock & MBB,unsigned NumCycles,unsigned ExtraPredCycles,const BranchProbability & Probability) const1492 isProfitableToIfCvt(MachineBasicBlock &MBB,
1493 unsigned NumCycles, unsigned ExtraPredCycles,
1494 const BranchProbability &Probability) const {
1495 if (!NumCycles)
1496 return false;
1497
1498 // Attempt to estimate the relative costs of predication versus branching.
1499 unsigned UnpredCost = Probability.getNumerator() * NumCycles;
1500 UnpredCost /= Probability.getDenominator();
1501 UnpredCost += 1; // The branch itself
1502 UnpredCost += Subtarget.getMispredictionPenalty() / 10;
1503
1504 return (NumCycles + ExtraPredCycles) <= UnpredCost;
1505 }
1506
1507 bool ARMBaseInstrInfo::
isProfitableToIfCvt(MachineBasicBlock & TMBB,unsigned TCycles,unsigned TExtra,MachineBasicBlock & FMBB,unsigned FCycles,unsigned FExtra,const BranchProbability & Probability) const1508 isProfitableToIfCvt(MachineBasicBlock &TMBB,
1509 unsigned TCycles, unsigned TExtra,
1510 MachineBasicBlock &FMBB,
1511 unsigned FCycles, unsigned FExtra,
1512 const BranchProbability &Probability) const {
1513 if (!TCycles || !FCycles)
1514 return false;
1515
1516 // Attempt to estimate the relative costs of predication versus branching.
1517 unsigned TUnpredCost = Probability.getNumerator() * TCycles;
1518 TUnpredCost /= Probability.getDenominator();
1519
1520 uint32_t Comp = Probability.getDenominator() - Probability.getNumerator();
1521 unsigned FUnpredCost = Comp * FCycles;
1522 FUnpredCost /= Probability.getDenominator();
1523
1524 unsigned UnpredCost = TUnpredCost + FUnpredCost;
1525 UnpredCost += 1; // The branch itself
1526 UnpredCost += Subtarget.getMispredictionPenalty() / 10;
1527
1528 return (TCycles + FCycles + TExtra + FExtra) <= UnpredCost;
1529 }
1530
1531 /// getInstrPredicate - If instruction is predicated, returns its predicate
1532 /// condition, otherwise returns AL. It also returns the condition code
1533 /// register by reference.
1534 ARMCC::CondCodes
getInstrPredicate(const MachineInstr * MI,unsigned & PredReg)1535 llvm::getInstrPredicate(const MachineInstr *MI, unsigned &PredReg) {
1536 int PIdx = MI->findFirstPredOperandIdx();
1537 if (PIdx == -1) {
1538 PredReg = 0;
1539 return ARMCC::AL;
1540 }
1541
1542 PredReg = MI->getOperand(PIdx+1).getReg();
1543 return (ARMCC::CondCodes)MI->getOperand(PIdx).getImm();
1544 }
1545
1546
getMatchingCondBranchOpcode(int Opc)1547 int llvm::getMatchingCondBranchOpcode(int Opc) {
1548 if (Opc == ARM::B)
1549 return ARM::Bcc;
1550 if (Opc == ARM::tB)
1551 return ARM::tBcc;
1552 if (Opc == ARM::t2B)
1553 return ARM::t2Bcc;
1554
1555 llvm_unreachable("Unknown unconditional branch opcode!");
1556 }
1557
1558 /// commuteInstruction - Handle commutable instructions.
1559 MachineInstr *
commuteInstruction(MachineInstr * MI,bool NewMI) const1560 ARMBaseInstrInfo::commuteInstruction(MachineInstr *MI, bool NewMI) const {
1561 switch (MI->getOpcode()) {
1562 case ARM::MOVCCr:
1563 case ARM::t2MOVCCr: {
1564 // MOVCC can be commuted by inverting the condition.
1565 unsigned PredReg = 0;
1566 ARMCC::CondCodes CC = getInstrPredicate(MI, PredReg);
1567 // MOVCC AL can't be inverted. Shouldn't happen.
1568 if (CC == ARMCC::AL || PredReg != ARM::CPSR)
1569 return NULL;
1570 MI = TargetInstrInfoImpl::commuteInstruction(MI, NewMI);
1571 if (!MI)
1572 return NULL;
1573 // After swapping the MOVCC operands, also invert the condition.
1574 MI->getOperand(MI->findFirstPredOperandIdx())
1575 .setImm(ARMCC::getOppositeCondition(CC));
1576 return MI;
1577 }
1578 }
1579 return TargetInstrInfoImpl::commuteInstruction(MI, NewMI);
1580 }
1581
1582 /// Identify instructions that can be folded into a MOVCC instruction, and
1583 /// return the defining instruction.
canFoldIntoMOVCC(unsigned Reg,const MachineRegisterInfo & MRI,const TargetInstrInfo * TII)1584 static MachineInstr *canFoldIntoMOVCC(unsigned Reg,
1585 const MachineRegisterInfo &MRI,
1586 const TargetInstrInfo *TII) {
1587 if (!TargetRegisterInfo::isVirtualRegister(Reg))
1588 return 0;
1589 if (!MRI.hasOneNonDBGUse(Reg))
1590 return 0;
1591 MachineInstr *MI = MRI.getVRegDef(Reg);
1592 if (!MI)
1593 return 0;
1594 // MI is folded into the MOVCC by predicating it.
1595 if (!MI->isPredicable())
1596 return 0;
1597 // Check if MI has any non-dead defs or physreg uses. This also detects
1598 // predicated instructions which will be reading CPSR.
1599 for (unsigned i = 1, e = MI->getNumOperands(); i != e; ++i) {
1600 const MachineOperand &MO = MI->getOperand(i);
1601 // Reject frame index operands, PEI can't handle the predicated pseudos.
1602 if (MO.isFI() || MO.isCPI() || MO.isJTI())
1603 return 0;
1604 if (!MO.isReg())
1605 continue;
1606 // MI can't have any tied operands, that would conflict with predication.
1607 if (MO.isTied())
1608 return 0;
1609 if (TargetRegisterInfo::isPhysicalRegister(MO.getReg()))
1610 return 0;
1611 if (MO.isDef() && !MO.isDead())
1612 return 0;
1613 }
1614 bool DontMoveAcrossStores = true;
1615 if (!MI->isSafeToMove(TII, /* AliasAnalysis = */ 0, DontMoveAcrossStores))
1616 return 0;
1617 return MI;
1618 }
1619
analyzeSelect(const MachineInstr * MI,SmallVectorImpl<MachineOperand> & Cond,unsigned & TrueOp,unsigned & FalseOp,bool & Optimizable) const1620 bool ARMBaseInstrInfo::analyzeSelect(const MachineInstr *MI,
1621 SmallVectorImpl<MachineOperand> &Cond,
1622 unsigned &TrueOp, unsigned &FalseOp,
1623 bool &Optimizable) const {
1624 assert((MI->getOpcode() == ARM::MOVCCr || MI->getOpcode() == ARM::t2MOVCCr) &&
1625 "Unknown select instruction");
1626 // MOVCC operands:
1627 // 0: Def.
1628 // 1: True use.
1629 // 2: False use.
1630 // 3: Condition code.
1631 // 4: CPSR use.
1632 TrueOp = 1;
1633 FalseOp = 2;
1634 Cond.push_back(MI->getOperand(3));
1635 Cond.push_back(MI->getOperand(4));
1636 // We can always fold a def.
1637 Optimizable = true;
1638 return false;
1639 }
1640
optimizeSelect(MachineInstr * MI,bool PreferFalse) const1641 MachineInstr *ARMBaseInstrInfo::optimizeSelect(MachineInstr *MI,
1642 bool PreferFalse) const {
1643 assert((MI->getOpcode() == ARM::MOVCCr || MI->getOpcode() == ARM::t2MOVCCr) &&
1644 "Unknown select instruction");
1645 const MachineRegisterInfo &MRI = MI->getParent()->getParent()->getRegInfo();
1646 MachineInstr *DefMI = canFoldIntoMOVCC(MI->getOperand(2).getReg(), MRI, this);
1647 bool Invert = !DefMI;
1648 if (!DefMI)
1649 DefMI = canFoldIntoMOVCC(MI->getOperand(1).getReg(), MRI, this);
1650 if (!DefMI)
1651 return 0;
1652
1653 // Create a new predicated version of DefMI.
1654 // Rfalse is the first use.
1655 MachineInstrBuilder NewMI = BuildMI(*MI->getParent(), MI, MI->getDebugLoc(),
1656 DefMI->getDesc(),
1657 MI->getOperand(0).getReg());
1658
1659 // Copy all the DefMI operands, excluding its (null) predicate.
1660 const MCInstrDesc &DefDesc = DefMI->getDesc();
1661 for (unsigned i = 1, e = DefDesc.getNumOperands();
1662 i != e && !DefDesc.OpInfo[i].isPredicate(); ++i)
1663 NewMI.addOperand(DefMI->getOperand(i));
1664
1665 unsigned CondCode = MI->getOperand(3).getImm();
1666 if (Invert)
1667 NewMI.addImm(ARMCC::getOppositeCondition(ARMCC::CondCodes(CondCode)));
1668 else
1669 NewMI.addImm(CondCode);
1670 NewMI.addOperand(MI->getOperand(4));
1671
1672 // DefMI is not the -S version that sets CPSR, so add an optional %noreg.
1673 if (NewMI->hasOptionalDef())
1674 AddDefaultCC(NewMI);
1675
1676 // The output register value when the predicate is false is an implicit
1677 // register operand tied to the first def.
1678 // The tie makes the register allocator ensure the FalseReg is allocated the
1679 // same register as operand 0.
1680 MachineOperand FalseReg = MI->getOperand(Invert ? 2 : 1);
1681 FalseReg.setImplicit();
1682 NewMI->addOperand(FalseReg);
1683 NewMI->tieOperands(0, NewMI->getNumOperands() - 1);
1684
1685 // The caller will erase MI, but not DefMI.
1686 DefMI->eraseFromParent();
1687 return NewMI;
1688 }
1689
1690 /// Map pseudo instructions that imply an 'S' bit onto real opcodes. Whether the
1691 /// instruction is encoded with an 'S' bit is determined by the optional CPSR
1692 /// def operand.
1693 ///
1694 /// This will go away once we can teach tblgen how to set the optional CPSR def
1695 /// operand itself.
1696 struct AddSubFlagsOpcodePair {
1697 uint16_t PseudoOpc;
1698 uint16_t MachineOpc;
1699 };
1700
1701 static const AddSubFlagsOpcodePair AddSubFlagsOpcodeMap[] = {
1702 {ARM::ADDSri, ARM::ADDri},
1703 {ARM::ADDSrr, ARM::ADDrr},
1704 {ARM::ADDSrsi, ARM::ADDrsi},
1705 {ARM::ADDSrsr, ARM::ADDrsr},
1706
1707 {ARM::SUBSri, ARM::SUBri},
1708 {ARM::SUBSrr, ARM::SUBrr},
1709 {ARM::SUBSrsi, ARM::SUBrsi},
1710 {ARM::SUBSrsr, ARM::SUBrsr},
1711
1712 {ARM::RSBSri, ARM::RSBri},
1713 {ARM::RSBSrsi, ARM::RSBrsi},
1714 {ARM::RSBSrsr, ARM::RSBrsr},
1715
1716 {ARM::t2ADDSri, ARM::t2ADDri},
1717 {ARM::t2ADDSrr, ARM::t2ADDrr},
1718 {ARM::t2ADDSrs, ARM::t2ADDrs},
1719
1720 {ARM::t2SUBSri, ARM::t2SUBri},
1721 {ARM::t2SUBSrr, ARM::t2SUBrr},
1722 {ARM::t2SUBSrs, ARM::t2SUBrs},
1723
1724 {ARM::t2RSBSri, ARM::t2RSBri},
1725 {ARM::t2RSBSrs, ARM::t2RSBrs},
1726 };
1727
convertAddSubFlagsOpcode(unsigned OldOpc)1728 unsigned llvm::convertAddSubFlagsOpcode(unsigned OldOpc) {
1729 for (unsigned i = 0, e = array_lengthof(AddSubFlagsOpcodeMap); i != e; ++i)
1730 if (OldOpc == AddSubFlagsOpcodeMap[i].PseudoOpc)
1731 return AddSubFlagsOpcodeMap[i].MachineOpc;
1732 return 0;
1733 }
1734
emitARMRegPlusImmediate(MachineBasicBlock & MBB,MachineBasicBlock::iterator & MBBI,DebugLoc dl,unsigned DestReg,unsigned BaseReg,int NumBytes,ARMCC::CondCodes Pred,unsigned PredReg,const ARMBaseInstrInfo & TII,unsigned MIFlags)1735 void llvm::emitARMRegPlusImmediate(MachineBasicBlock &MBB,
1736 MachineBasicBlock::iterator &MBBI, DebugLoc dl,
1737 unsigned DestReg, unsigned BaseReg, int NumBytes,
1738 ARMCC::CondCodes Pred, unsigned PredReg,
1739 const ARMBaseInstrInfo &TII, unsigned MIFlags) {
1740 bool isSub = NumBytes < 0;
1741 if (isSub) NumBytes = -NumBytes;
1742
1743 while (NumBytes) {
1744 unsigned RotAmt = ARM_AM::getSOImmValRotate(NumBytes);
1745 unsigned ThisVal = NumBytes & ARM_AM::rotr32(0xFF, RotAmt);
1746 assert(ThisVal && "Didn't extract field correctly");
1747
1748 // We will handle these bits from offset, clear them.
1749 NumBytes &= ~ThisVal;
1750
1751 assert(ARM_AM::getSOImmVal(ThisVal) != -1 && "Bit extraction didn't work?");
1752
1753 // Build the new ADD / SUB.
1754 unsigned Opc = isSub ? ARM::SUBri : ARM::ADDri;
1755 BuildMI(MBB, MBBI, dl, TII.get(Opc), DestReg)
1756 .addReg(BaseReg, RegState::Kill).addImm(ThisVal)
1757 .addImm((unsigned)Pred).addReg(PredReg).addReg(0)
1758 .setMIFlags(MIFlags);
1759 BaseReg = DestReg;
1760 }
1761 }
1762
rewriteARMFrameIndex(MachineInstr & MI,unsigned FrameRegIdx,unsigned FrameReg,int & Offset,const ARMBaseInstrInfo & TII)1763 bool llvm::rewriteARMFrameIndex(MachineInstr &MI, unsigned FrameRegIdx,
1764 unsigned FrameReg, int &Offset,
1765 const ARMBaseInstrInfo &TII) {
1766 unsigned Opcode = MI.getOpcode();
1767 const MCInstrDesc &Desc = MI.getDesc();
1768 unsigned AddrMode = (Desc.TSFlags & ARMII::AddrModeMask);
1769 bool isSub = false;
1770
1771 // Memory operands in inline assembly always use AddrMode2.
1772 if (Opcode == ARM::INLINEASM)
1773 AddrMode = ARMII::AddrMode2;
1774
1775 if (Opcode == ARM::ADDri) {
1776 Offset += MI.getOperand(FrameRegIdx+1).getImm();
1777 if (Offset == 0) {
1778 // Turn it into a move.
1779 MI.setDesc(TII.get(ARM::MOVr));
1780 MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false);
1781 MI.RemoveOperand(FrameRegIdx+1);
1782 Offset = 0;
1783 return true;
1784 } else if (Offset < 0) {
1785 Offset = -Offset;
1786 isSub = true;
1787 MI.setDesc(TII.get(ARM::SUBri));
1788 }
1789
1790 // Common case: small offset, fits into instruction.
1791 if (ARM_AM::getSOImmVal(Offset) != -1) {
1792 // Replace the FrameIndex with sp / fp
1793 MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false);
1794 MI.getOperand(FrameRegIdx+1).ChangeToImmediate(Offset);
1795 Offset = 0;
1796 return true;
1797 }
1798
1799 // Otherwise, pull as much of the immedidate into this ADDri/SUBri
1800 // as possible.
1801 unsigned RotAmt = ARM_AM::getSOImmValRotate(Offset);
1802 unsigned ThisImmVal = Offset & ARM_AM::rotr32(0xFF, RotAmt);
1803
1804 // We will handle these bits from offset, clear them.
1805 Offset &= ~ThisImmVal;
1806
1807 // Get the properly encoded SOImmVal field.
1808 assert(ARM_AM::getSOImmVal(ThisImmVal) != -1 &&
1809 "Bit extraction didn't work?");
1810 MI.getOperand(FrameRegIdx+1).ChangeToImmediate(ThisImmVal);
1811 } else {
1812 unsigned ImmIdx = 0;
1813 int InstrOffs = 0;
1814 unsigned NumBits = 0;
1815 unsigned Scale = 1;
1816 switch (AddrMode) {
1817 case ARMII::AddrMode_i12: {
1818 ImmIdx = FrameRegIdx + 1;
1819 InstrOffs = MI.getOperand(ImmIdx).getImm();
1820 NumBits = 12;
1821 break;
1822 }
1823 case ARMII::AddrMode2: {
1824 ImmIdx = FrameRegIdx+2;
1825 InstrOffs = ARM_AM::getAM2Offset(MI.getOperand(ImmIdx).getImm());
1826 if (ARM_AM::getAM2Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub)
1827 InstrOffs *= -1;
1828 NumBits = 12;
1829 break;
1830 }
1831 case ARMII::AddrMode3: {
1832 ImmIdx = FrameRegIdx+2;
1833 InstrOffs = ARM_AM::getAM3Offset(MI.getOperand(ImmIdx).getImm());
1834 if (ARM_AM::getAM3Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub)
1835 InstrOffs *= -1;
1836 NumBits = 8;
1837 break;
1838 }
1839 case ARMII::AddrMode4:
1840 case ARMII::AddrMode6:
1841 // Can't fold any offset even if it's zero.
1842 return false;
1843 case ARMII::AddrMode5: {
1844 ImmIdx = FrameRegIdx+1;
1845 InstrOffs = ARM_AM::getAM5Offset(MI.getOperand(ImmIdx).getImm());
1846 if (ARM_AM::getAM5Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub)
1847 InstrOffs *= -1;
1848 NumBits = 8;
1849 Scale = 4;
1850 break;
1851 }
1852 default:
1853 llvm_unreachable("Unsupported addressing mode!");
1854 }
1855
1856 Offset += InstrOffs * Scale;
1857 assert((Offset & (Scale-1)) == 0 && "Can't encode this offset!");
1858 if (Offset < 0) {
1859 Offset = -Offset;
1860 isSub = true;
1861 }
1862
1863 // Attempt to fold address comp. if opcode has offset bits
1864 if (NumBits > 0) {
1865 // Common case: small offset, fits into instruction.
1866 MachineOperand &ImmOp = MI.getOperand(ImmIdx);
1867 int ImmedOffset = Offset / Scale;
1868 unsigned Mask = (1 << NumBits) - 1;
1869 if ((unsigned)Offset <= Mask * Scale) {
1870 // Replace the FrameIndex with sp
1871 MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false);
1872 // FIXME: When addrmode2 goes away, this will simplify (like the
1873 // T2 version), as the LDR.i12 versions don't need the encoding
1874 // tricks for the offset value.
1875 if (isSub) {
1876 if (AddrMode == ARMII::AddrMode_i12)
1877 ImmedOffset = -ImmedOffset;
1878 else
1879 ImmedOffset |= 1 << NumBits;
1880 }
1881 ImmOp.ChangeToImmediate(ImmedOffset);
1882 Offset = 0;
1883 return true;
1884 }
1885
1886 // Otherwise, it didn't fit. Pull in what we can to simplify the immed.
1887 ImmedOffset = ImmedOffset & Mask;
1888 if (isSub) {
1889 if (AddrMode == ARMII::AddrMode_i12)
1890 ImmedOffset = -ImmedOffset;
1891 else
1892 ImmedOffset |= 1 << NumBits;
1893 }
1894 ImmOp.ChangeToImmediate(ImmedOffset);
1895 Offset &= ~(Mask*Scale);
1896 }
1897 }
1898
1899 Offset = (isSub) ? -Offset : Offset;
1900 return Offset == 0;
1901 }
1902
1903 /// analyzeCompare - For a comparison instruction, return the source registers
1904 /// in SrcReg and SrcReg2 if having two register operands, and the value it
1905 /// compares against in CmpValue. Return true if the comparison instruction
1906 /// can be analyzed.
1907 bool ARMBaseInstrInfo::
analyzeCompare(const MachineInstr * MI,unsigned & SrcReg,unsigned & SrcReg2,int & CmpMask,int & CmpValue) const1908 analyzeCompare(const MachineInstr *MI, unsigned &SrcReg, unsigned &SrcReg2,
1909 int &CmpMask, int &CmpValue) const {
1910 switch (MI->getOpcode()) {
1911 default: break;
1912 case ARM::CMPri:
1913 case ARM::t2CMPri:
1914 SrcReg = MI->getOperand(0).getReg();
1915 SrcReg2 = 0;
1916 CmpMask = ~0;
1917 CmpValue = MI->getOperand(1).getImm();
1918 return true;
1919 case ARM::CMPrr:
1920 case ARM::t2CMPrr:
1921 SrcReg = MI->getOperand(0).getReg();
1922 SrcReg2 = MI->getOperand(1).getReg();
1923 CmpMask = ~0;
1924 CmpValue = 0;
1925 return true;
1926 case ARM::TSTri:
1927 case ARM::t2TSTri:
1928 SrcReg = MI->getOperand(0).getReg();
1929 SrcReg2 = 0;
1930 CmpMask = MI->getOperand(1).getImm();
1931 CmpValue = 0;
1932 return true;
1933 }
1934
1935 return false;
1936 }
1937
1938 /// isSuitableForMask - Identify a suitable 'and' instruction that
1939 /// operates on the given source register and applies the same mask
1940 /// as a 'tst' instruction. Provide a limited look-through for copies.
1941 /// When successful, MI will hold the found instruction.
isSuitableForMask(MachineInstr * & MI,unsigned SrcReg,int CmpMask,bool CommonUse)1942 static bool isSuitableForMask(MachineInstr *&MI, unsigned SrcReg,
1943 int CmpMask, bool CommonUse) {
1944 switch (MI->getOpcode()) {
1945 case ARM::ANDri:
1946 case ARM::t2ANDri:
1947 if (CmpMask != MI->getOperand(2).getImm())
1948 return false;
1949 if (SrcReg == MI->getOperand(CommonUse ? 1 : 0).getReg())
1950 return true;
1951 break;
1952 case ARM::COPY: {
1953 // Walk down one instruction which is potentially an 'and'.
1954 const MachineInstr &Copy = *MI;
1955 MachineBasicBlock::iterator AND(
1956 llvm::next(MachineBasicBlock::iterator(MI)));
1957 if (AND == MI->getParent()->end()) return false;
1958 MI = AND;
1959 return isSuitableForMask(MI, Copy.getOperand(0).getReg(),
1960 CmpMask, true);
1961 }
1962 }
1963
1964 return false;
1965 }
1966
1967 /// getSwappedCondition - assume the flags are set by MI(a,b), return
1968 /// the condition code if we modify the instructions such that flags are
1969 /// set by MI(b,a).
getSwappedCondition(ARMCC::CondCodes CC)1970 inline static ARMCC::CondCodes getSwappedCondition(ARMCC::CondCodes CC) {
1971 switch (CC) {
1972 default: return ARMCC::AL;
1973 case ARMCC::EQ: return ARMCC::EQ;
1974 case ARMCC::NE: return ARMCC::NE;
1975 case ARMCC::HS: return ARMCC::LS;
1976 case ARMCC::LO: return ARMCC::HI;
1977 case ARMCC::HI: return ARMCC::LO;
1978 case ARMCC::LS: return ARMCC::HS;
1979 case ARMCC::GE: return ARMCC::LE;
1980 case ARMCC::LT: return ARMCC::GT;
1981 case ARMCC::GT: return ARMCC::LT;
1982 case ARMCC::LE: return ARMCC::GE;
1983 }
1984 }
1985
1986 /// isRedundantFlagInstr - check whether the first instruction, whose only
1987 /// purpose is to update flags, can be made redundant.
1988 /// CMPrr can be made redundant by SUBrr if the operands are the same.
1989 /// CMPri can be made redundant by SUBri if the operands are the same.
1990 /// This function can be extended later on.
isRedundantFlagInstr(MachineInstr * CmpI,unsigned SrcReg,unsigned SrcReg2,int ImmValue,MachineInstr * OI)1991 inline static bool isRedundantFlagInstr(MachineInstr *CmpI, unsigned SrcReg,
1992 unsigned SrcReg2, int ImmValue,
1993 MachineInstr *OI) {
1994 if ((CmpI->getOpcode() == ARM::CMPrr ||
1995 CmpI->getOpcode() == ARM::t2CMPrr) &&
1996 (OI->getOpcode() == ARM::SUBrr ||
1997 OI->getOpcode() == ARM::t2SUBrr) &&
1998 ((OI->getOperand(1).getReg() == SrcReg &&
1999 OI->getOperand(2).getReg() == SrcReg2) ||
2000 (OI->getOperand(1).getReg() == SrcReg2 &&
2001 OI->getOperand(2).getReg() == SrcReg)))
2002 return true;
2003
2004 if ((CmpI->getOpcode() == ARM::CMPri ||
2005 CmpI->getOpcode() == ARM::t2CMPri) &&
2006 (OI->getOpcode() == ARM::SUBri ||
2007 OI->getOpcode() == ARM::t2SUBri) &&
2008 OI->getOperand(1).getReg() == SrcReg &&
2009 OI->getOperand(2).getImm() == ImmValue)
2010 return true;
2011 return false;
2012 }
2013
2014 /// optimizeCompareInstr - Convert the instruction supplying the argument to the
2015 /// comparison into one that sets the zero bit in the flags register;
2016 /// Remove a redundant Compare instruction if an earlier instruction can set the
2017 /// flags in the same way as Compare.
2018 /// E.g. SUBrr(r1,r2) and CMPrr(r1,r2). We also handle the case where two
2019 /// operands are swapped: SUBrr(r1,r2) and CMPrr(r2,r1), by updating the
2020 /// condition code of instructions which use the flags.
2021 bool ARMBaseInstrInfo::
optimizeCompareInstr(MachineInstr * CmpInstr,unsigned SrcReg,unsigned SrcReg2,int CmpMask,int CmpValue,const MachineRegisterInfo * MRI) const2022 optimizeCompareInstr(MachineInstr *CmpInstr, unsigned SrcReg, unsigned SrcReg2,
2023 int CmpMask, int CmpValue,
2024 const MachineRegisterInfo *MRI) const {
2025 // Get the unique definition of SrcReg.
2026 MachineInstr *MI = MRI->getUniqueVRegDef(SrcReg);
2027 if (!MI) return false;
2028
2029 // Masked compares sometimes use the same register as the corresponding 'and'.
2030 if (CmpMask != ~0) {
2031 if (!isSuitableForMask(MI, SrcReg, CmpMask, false) || isPredicated(MI)) {
2032 MI = 0;
2033 for (MachineRegisterInfo::use_iterator UI = MRI->use_begin(SrcReg),
2034 UE = MRI->use_end(); UI != UE; ++UI) {
2035 if (UI->getParent() != CmpInstr->getParent()) continue;
2036 MachineInstr *PotentialAND = &*UI;
2037 if (!isSuitableForMask(PotentialAND, SrcReg, CmpMask, true) ||
2038 isPredicated(PotentialAND))
2039 continue;
2040 MI = PotentialAND;
2041 break;
2042 }
2043 if (!MI) return false;
2044 }
2045 }
2046
2047 // Get ready to iterate backward from CmpInstr.
2048 MachineBasicBlock::iterator I = CmpInstr, E = MI,
2049 B = CmpInstr->getParent()->begin();
2050
2051 // Early exit if CmpInstr is at the beginning of the BB.
2052 if (I == B) return false;
2053
2054 // There are two possible candidates which can be changed to set CPSR:
2055 // One is MI, the other is a SUB instruction.
2056 // For CMPrr(r1,r2), we are looking for SUB(r1,r2) or SUB(r2,r1).
2057 // For CMPri(r1, CmpValue), we are looking for SUBri(r1, CmpValue).
2058 MachineInstr *Sub = NULL;
2059 if (SrcReg2 != 0)
2060 // MI is not a candidate for CMPrr.
2061 MI = NULL;
2062 else if (MI->getParent() != CmpInstr->getParent() || CmpValue != 0) {
2063 // Conservatively refuse to convert an instruction which isn't in the same
2064 // BB as the comparison.
2065 // For CMPri, we need to check Sub, thus we can't return here.
2066 if (CmpInstr->getOpcode() == ARM::CMPri ||
2067 CmpInstr->getOpcode() == ARM::t2CMPri)
2068 MI = NULL;
2069 else
2070 return false;
2071 }
2072
2073 // Check that CPSR isn't set between the comparison instruction and the one we
2074 // want to change. At the same time, search for Sub.
2075 const TargetRegisterInfo *TRI = &getRegisterInfo();
2076 --I;
2077 for (; I != E; --I) {
2078 const MachineInstr &Instr = *I;
2079
2080 if (Instr.modifiesRegister(ARM::CPSR, TRI) ||
2081 Instr.readsRegister(ARM::CPSR, TRI))
2082 // This instruction modifies or uses CPSR after the one we want to
2083 // change. We can't do this transformation.
2084 return false;
2085
2086 // Check whether CmpInstr can be made redundant by the current instruction.
2087 if (isRedundantFlagInstr(CmpInstr, SrcReg, SrcReg2, CmpValue, &*I)) {
2088 Sub = &*I;
2089 break;
2090 }
2091
2092 if (I == B)
2093 // The 'and' is below the comparison instruction.
2094 return false;
2095 }
2096
2097 // Return false if no candidates exist.
2098 if (!MI && !Sub)
2099 return false;
2100
2101 // The single candidate is called MI.
2102 if (!MI) MI = Sub;
2103
2104 // We can't use a predicated instruction - it doesn't always write the flags.
2105 if (isPredicated(MI))
2106 return false;
2107
2108 switch (MI->getOpcode()) {
2109 default: break;
2110 case ARM::RSBrr:
2111 case ARM::RSBri:
2112 case ARM::RSCrr:
2113 case ARM::RSCri:
2114 case ARM::ADDrr:
2115 case ARM::ADDri:
2116 case ARM::ADCrr:
2117 case ARM::ADCri:
2118 case ARM::SUBrr:
2119 case ARM::SUBri:
2120 case ARM::SBCrr:
2121 case ARM::SBCri:
2122 case ARM::t2RSBri:
2123 case ARM::t2ADDrr:
2124 case ARM::t2ADDri:
2125 case ARM::t2ADCrr:
2126 case ARM::t2ADCri:
2127 case ARM::t2SUBrr:
2128 case ARM::t2SUBri:
2129 case ARM::t2SBCrr:
2130 case ARM::t2SBCri:
2131 case ARM::ANDrr:
2132 case ARM::ANDri:
2133 case ARM::t2ANDrr:
2134 case ARM::t2ANDri:
2135 case ARM::ORRrr:
2136 case ARM::ORRri:
2137 case ARM::t2ORRrr:
2138 case ARM::t2ORRri:
2139 case ARM::EORrr:
2140 case ARM::EORri:
2141 case ARM::t2EORrr:
2142 case ARM::t2EORri: {
2143 // Scan forward for the use of CPSR
2144 // When checking against MI: if it's a conditional code requires
2145 // checking of V bit, then this is not safe to do.
2146 // It is safe to remove CmpInstr if CPSR is redefined or killed.
2147 // If we are done with the basic block, we need to check whether CPSR is
2148 // live-out.
2149 SmallVector<std::pair<MachineOperand*, ARMCC::CondCodes>, 4>
2150 OperandsToUpdate;
2151 bool isSafe = false;
2152 I = CmpInstr;
2153 E = CmpInstr->getParent()->end();
2154 while (!isSafe && ++I != E) {
2155 const MachineInstr &Instr = *I;
2156 for (unsigned IO = 0, EO = Instr.getNumOperands();
2157 !isSafe && IO != EO; ++IO) {
2158 const MachineOperand &MO = Instr.getOperand(IO);
2159 if (MO.isRegMask() && MO.clobbersPhysReg(ARM::CPSR)) {
2160 isSafe = true;
2161 break;
2162 }
2163 if (!MO.isReg() || MO.getReg() != ARM::CPSR)
2164 continue;
2165 if (MO.isDef()) {
2166 isSafe = true;
2167 break;
2168 }
2169 // Condition code is after the operand before CPSR.
2170 ARMCC::CondCodes CC = (ARMCC::CondCodes)Instr.getOperand(IO-1).getImm();
2171 if (Sub) {
2172 ARMCC::CondCodes NewCC = getSwappedCondition(CC);
2173 if (NewCC == ARMCC::AL)
2174 return false;
2175 // If we have SUB(r1, r2) and CMP(r2, r1), the condition code based
2176 // on CMP needs to be updated to be based on SUB.
2177 // Push the condition code operands to OperandsToUpdate.
2178 // If it is safe to remove CmpInstr, the condition code of these
2179 // operands will be modified.
2180 if (SrcReg2 != 0 && Sub->getOperand(1).getReg() == SrcReg2 &&
2181 Sub->getOperand(2).getReg() == SrcReg)
2182 OperandsToUpdate.push_back(std::make_pair(&((*I).getOperand(IO-1)),
2183 NewCC));
2184 }
2185 else
2186 switch (CC) {
2187 default:
2188 // CPSR can be used multiple times, we should continue.
2189 break;
2190 case ARMCC::VS:
2191 case ARMCC::VC:
2192 case ARMCC::GE:
2193 case ARMCC::LT:
2194 case ARMCC::GT:
2195 case ARMCC::LE:
2196 return false;
2197 }
2198 }
2199 }
2200
2201 // If CPSR is not killed nor re-defined, we should check whether it is
2202 // live-out. If it is live-out, do not optimize.
2203 if (!isSafe) {
2204 MachineBasicBlock *MBB = CmpInstr->getParent();
2205 for (MachineBasicBlock::succ_iterator SI = MBB->succ_begin(),
2206 SE = MBB->succ_end(); SI != SE; ++SI)
2207 if ((*SI)->isLiveIn(ARM::CPSR))
2208 return false;
2209 }
2210
2211 // Toggle the optional operand to CPSR.
2212 MI->getOperand(5).setReg(ARM::CPSR);
2213 MI->getOperand(5).setIsDef(true);
2214 assert(!isPredicated(MI) && "Can't use flags from predicated instruction");
2215 CmpInstr->eraseFromParent();
2216
2217 // Modify the condition code of operands in OperandsToUpdate.
2218 // Since we have SUB(r1, r2) and CMP(r2, r1), the condition code needs to
2219 // be changed from r2 > r1 to r1 < r2, from r2 < r1 to r1 > r2, etc.
2220 for (unsigned i = 0, e = OperandsToUpdate.size(); i < e; i++)
2221 OperandsToUpdate[i].first->setImm(OperandsToUpdate[i].second);
2222 return true;
2223 }
2224 }
2225
2226 return false;
2227 }
2228
FoldImmediate(MachineInstr * UseMI,MachineInstr * DefMI,unsigned Reg,MachineRegisterInfo * MRI) const2229 bool ARMBaseInstrInfo::FoldImmediate(MachineInstr *UseMI,
2230 MachineInstr *DefMI, unsigned Reg,
2231 MachineRegisterInfo *MRI) const {
2232 // Fold large immediates into add, sub, or, xor.
2233 unsigned DefOpc = DefMI->getOpcode();
2234 if (DefOpc != ARM::t2MOVi32imm && DefOpc != ARM::MOVi32imm)
2235 return false;
2236 if (!DefMI->getOperand(1).isImm())
2237 // Could be t2MOVi32imm <ga:xx>
2238 return false;
2239
2240 if (!MRI->hasOneNonDBGUse(Reg))
2241 return false;
2242
2243 const MCInstrDesc &DefMCID = DefMI->getDesc();
2244 if (DefMCID.hasOptionalDef()) {
2245 unsigned NumOps = DefMCID.getNumOperands();
2246 const MachineOperand &MO = DefMI->getOperand(NumOps-1);
2247 if (MO.getReg() == ARM::CPSR && !MO.isDead())
2248 // If DefMI defines CPSR and it is not dead, it's obviously not safe
2249 // to delete DefMI.
2250 return false;
2251 }
2252
2253 const MCInstrDesc &UseMCID = UseMI->getDesc();
2254 if (UseMCID.hasOptionalDef()) {
2255 unsigned NumOps = UseMCID.getNumOperands();
2256 if (UseMI->getOperand(NumOps-1).getReg() == ARM::CPSR)
2257 // If the instruction sets the flag, do not attempt this optimization
2258 // since it may change the semantics of the code.
2259 return false;
2260 }
2261
2262 unsigned UseOpc = UseMI->getOpcode();
2263 unsigned NewUseOpc = 0;
2264 uint32_t ImmVal = (uint32_t)DefMI->getOperand(1).getImm();
2265 uint32_t SOImmValV1 = 0, SOImmValV2 = 0;
2266 bool Commute = false;
2267 switch (UseOpc) {
2268 default: return false;
2269 case ARM::SUBrr:
2270 case ARM::ADDrr:
2271 case ARM::ORRrr:
2272 case ARM::EORrr:
2273 case ARM::t2SUBrr:
2274 case ARM::t2ADDrr:
2275 case ARM::t2ORRrr:
2276 case ARM::t2EORrr: {
2277 Commute = UseMI->getOperand(2).getReg() != Reg;
2278 switch (UseOpc) {
2279 default: break;
2280 case ARM::SUBrr: {
2281 if (Commute)
2282 return false;
2283 ImmVal = -ImmVal;
2284 NewUseOpc = ARM::SUBri;
2285 // Fallthrough
2286 }
2287 case ARM::ADDrr:
2288 case ARM::ORRrr:
2289 case ARM::EORrr: {
2290 if (!ARM_AM::isSOImmTwoPartVal(ImmVal))
2291 return false;
2292 SOImmValV1 = (uint32_t)ARM_AM::getSOImmTwoPartFirst(ImmVal);
2293 SOImmValV2 = (uint32_t)ARM_AM::getSOImmTwoPartSecond(ImmVal);
2294 switch (UseOpc) {
2295 default: break;
2296 case ARM::ADDrr: NewUseOpc = ARM::ADDri; break;
2297 case ARM::ORRrr: NewUseOpc = ARM::ORRri; break;
2298 case ARM::EORrr: NewUseOpc = ARM::EORri; break;
2299 }
2300 break;
2301 }
2302 case ARM::t2SUBrr: {
2303 if (Commute)
2304 return false;
2305 ImmVal = -ImmVal;
2306 NewUseOpc = ARM::t2SUBri;
2307 // Fallthrough
2308 }
2309 case ARM::t2ADDrr:
2310 case ARM::t2ORRrr:
2311 case ARM::t2EORrr: {
2312 if (!ARM_AM::isT2SOImmTwoPartVal(ImmVal))
2313 return false;
2314 SOImmValV1 = (uint32_t)ARM_AM::getT2SOImmTwoPartFirst(ImmVal);
2315 SOImmValV2 = (uint32_t)ARM_AM::getT2SOImmTwoPartSecond(ImmVal);
2316 switch (UseOpc) {
2317 default: break;
2318 case ARM::t2ADDrr: NewUseOpc = ARM::t2ADDri; break;
2319 case ARM::t2ORRrr: NewUseOpc = ARM::t2ORRri; break;
2320 case ARM::t2EORrr: NewUseOpc = ARM::t2EORri; break;
2321 }
2322 break;
2323 }
2324 }
2325 }
2326 }
2327
2328 unsigned OpIdx = Commute ? 2 : 1;
2329 unsigned Reg1 = UseMI->getOperand(OpIdx).getReg();
2330 bool isKill = UseMI->getOperand(OpIdx).isKill();
2331 unsigned NewReg = MRI->createVirtualRegister(MRI->getRegClass(Reg));
2332 AddDefaultCC(AddDefaultPred(BuildMI(*UseMI->getParent(),
2333 UseMI, UseMI->getDebugLoc(),
2334 get(NewUseOpc), NewReg)
2335 .addReg(Reg1, getKillRegState(isKill))
2336 .addImm(SOImmValV1)));
2337 UseMI->setDesc(get(NewUseOpc));
2338 UseMI->getOperand(1).setReg(NewReg);
2339 UseMI->getOperand(1).setIsKill();
2340 UseMI->getOperand(2).ChangeToImmediate(SOImmValV2);
2341 DefMI->eraseFromParent();
2342 return true;
2343 }
2344
2345 unsigned
getNumMicroOps(const InstrItineraryData * ItinData,const MachineInstr * MI) const2346 ARMBaseInstrInfo::getNumMicroOps(const InstrItineraryData *ItinData,
2347 const MachineInstr *MI) const {
2348 if (!ItinData || ItinData->isEmpty())
2349 return 1;
2350
2351 const MCInstrDesc &Desc = MI->getDesc();
2352 unsigned Class = Desc.getSchedClass();
2353 int ItinUOps = ItinData->getNumMicroOps(Class);
2354 if (ItinUOps >= 0)
2355 return ItinUOps;
2356
2357 unsigned Opc = MI->getOpcode();
2358 switch (Opc) {
2359 default:
2360 llvm_unreachable("Unexpected multi-uops instruction!");
2361 case ARM::VLDMQIA:
2362 case ARM::VSTMQIA:
2363 return 2;
2364
2365 // The number of uOps for load / store multiple are determined by the number
2366 // registers.
2367 //
2368 // On Cortex-A8, each pair of register loads / stores can be scheduled on the
2369 // same cycle. The scheduling for the first load / store must be done
2370 // separately by assuming the address is not 64-bit aligned.
2371 //
2372 // On Cortex-A9, the formula is simply (#reg / 2) + (#reg % 2). If the address
2373 // is not 64-bit aligned, then AGU would take an extra cycle. For VFP / NEON
2374 // load / store multiple, the formula is (#reg / 2) + (#reg % 2) + 1.
2375 case ARM::VLDMDIA:
2376 case ARM::VLDMDIA_UPD:
2377 case ARM::VLDMDDB_UPD:
2378 case ARM::VLDMSIA:
2379 case ARM::VLDMSIA_UPD:
2380 case ARM::VLDMSDB_UPD:
2381 case ARM::VSTMDIA:
2382 case ARM::VSTMDIA_UPD:
2383 case ARM::VSTMDDB_UPD:
2384 case ARM::VSTMSIA:
2385 case ARM::VSTMSIA_UPD:
2386 case ARM::VSTMSDB_UPD: {
2387 unsigned NumRegs = MI->getNumOperands() - Desc.getNumOperands();
2388 return (NumRegs / 2) + (NumRegs % 2) + 1;
2389 }
2390
2391 case ARM::LDMIA_RET:
2392 case ARM::LDMIA:
2393 case ARM::LDMDA:
2394 case ARM::LDMDB:
2395 case ARM::LDMIB:
2396 case ARM::LDMIA_UPD:
2397 case ARM::LDMDA_UPD:
2398 case ARM::LDMDB_UPD:
2399 case ARM::LDMIB_UPD:
2400 case ARM::STMIA:
2401 case ARM::STMDA:
2402 case ARM::STMDB:
2403 case ARM::STMIB:
2404 case ARM::STMIA_UPD:
2405 case ARM::STMDA_UPD:
2406 case ARM::STMDB_UPD:
2407 case ARM::STMIB_UPD:
2408 case ARM::tLDMIA:
2409 case ARM::tLDMIA_UPD:
2410 case ARM::tSTMIA_UPD:
2411 case ARM::tPOP_RET:
2412 case ARM::tPOP:
2413 case ARM::tPUSH:
2414 case ARM::t2LDMIA_RET:
2415 case ARM::t2LDMIA:
2416 case ARM::t2LDMDB:
2417 case ARM::t2LDMIA_UPD:
2418 case ARM::t2LDMDB_UPD:
2419 case ARM::t2STMIA:
2420 case ARM::t2STMDB:
2421 case ARM::t2STMIA_UPD:
2422 case ARM::t2STMDB_UPD: {
2423 unsigned NumRegs = MI->getNumOperands() - Desc.getNumOperands() + 1;
2424 if (Subtarget.isCortexA8()) {
2425 if (NumRegs < 4)
2426 return 2;
2427 // 4 registers would be issued: 2, 2.
2428 // 5 registers would be issued: 2, 2, 1.
2429 int A8UOps = (NumRegs / 2);
2430 if (NumRegs % 2)
2431 ++A8UOps;
2432 return A8UOps;
2433 } else if (Subtarget.isCortexA9()) {
2434 int A9UOps = (NumRegs / 2);
2435 // If there are odd number of registers or if it's not 64-bit aligned,
2436 // then it takes an extra AGU (Address Generation Unit) cycle.
2437 if ((NumRegs % 2) ||
2438 !MI->hasOneMemOperand() ||
2439 (*MI->memoperands_begin())->getAlignment() < 8)
2440 ++A9UOps;
2441 return A9UOps;
2442 } else {
2443 // Assume the worst.
2444 return NumRegs;
2445 }
2446 }
2447 }
2448 }
2449
2450 int
getVLDMDefCycle(const InstrItineraryData * ItinData,const MCInstrDesc & DefMCID,unsigned DefClass,unsigned DefIdx,unsigned DefAlign) const2451 ARMBaseInstrInfo::getVLDMDefCycle(const InstrItineraryData *ItinData,
2452 const MCInstrDesc &DefMCID,
2453 unsigned DefClass,
2454 unsigned DefIdx, unsigned DefAlign) const {
2455 int RegNo = (int)(DefIdx+1) - DefMCID.getNumOperands() + 1;
2456 if (RegNo <= 0)
2457 // Def is the address writeback.
2458 return ItinData->getOperandCycle(DefClass, DefIdx);
2459
2460 int DefCycle;
2461 if (Subtarget.isCortexA8()) {
2462 // (regno / 2) + (regno % 2) + 1
2463 DefCycle = RegNo / 2 + 1;
2464 if (RegNo % 2)
2465 ++DefCycle;
2466 } else if (Subtarget.isCortexA9()) {
2467 DefCycle = RegNo;
2468 bool isSLoad = false;
2469
2470 switch (DefMCID.getOpcode()) {
2471 default: break;
2472 case ARM::VLDMSIA:
2473 case ARM::VLDMSIA_UPD:
2474 case ARM::VLDMSDB_UPD:
2475 isSLoad = true;
2476 break;
2477 }
2478
2479 // If there are odd number of 'S' registers or if it's not 64-bit aligned,
2480 // then it takes an extra cycle.
2481 if ((isSLoad && (RegNo % 2)) || DefAlign < 8)
2482 ++DefCycle;
2483 } else {
2484 // Assume the worst.
2485 DefCycle = RegNo + 2;
2486 }
2487
2488 return DefCycle;
2489 }
2490
2491 int
getLDMDefCycle(const InstrItineraryData * ItinData,const MCInstrDesc & DefMCID,unsigned DefClass,unsigned DefIdx,unsigned DefAlign) const2492 ARMBaseInstrInfo::getLDMDefCycle(const InstrItineraryData *ItinData,
2493 const MCInstrDesc &DefMCID,
2494 unsigned DefClass,
2495 unsigned DefIdx, unsigned DefAlign) const {
2496 int RegNo = (int)(DefIdx+1) - DefMCID.getNumOperands() + 1;
2497 if (RegNo <= 0)
2498 // Def is the address writeback.
2499 return ItinData->getOperandCycle(DefClass, DefIdx);
2500
2501 int DefCycle;
2502 if (Subtarget.isCortexA8()) {
2503 // 4 registers would be issued: 1, 2, 1.
2504 // 5 registers would be issued: 1, 2, 2.
2505 DefCycle = RegNo / 2;
2506 if (DefCycle < 1)
2507 DefCycle = 1;
2508 // Result latency is issue cycle + 2: E2.
2509 DefCycle += 2;
2510 } else if (Subtarget.isCortexA9()) {
2511 DefCycle = (RegNo / 2);
2512 // If there are odd number of registers or if it's not 64-bit aligned,
2513 // then it takes an extra AGU (Address Generation Unit) cycle.
2514 if ((RegNo % 2) || DefAlign < 8)
2515 ++DefCycle;
2516 // Result latency is AGU cycles + 2.
2517 DefCycle += 2;
2518 } else {
2519 // Assume the worst.
2520 DefCycle = RegNo + 2;
2521 }
2522
2523 return DefCycle;
2524 }
2525
2526 int
getVSTMUseCycle(const InstrItineraryData * ItinData,const MCInstrDesc & UseMCID,unsigned UseClass,unsigned UseIdx,unsigned UseAlign) const2527 ARMBaseInstrInfo::getVSTMUseCycle(const InstrItineraryData *ItinData,
2528 const MCInstrDesc &UseMCID,
2529 unsigned UseClass,
2530 unsigned UseIdx, unsigned UseAlign) const {
2531 int RegNo = (int)(UseIdx+1) - UseMCID.getNumOperands() + 1;
2532 if (RegNo <= 0)
2533 return ItinData->getOperandCycle(UseClass, UseIdx);
2534
2535 int UseCycle;
2536 if (Subtarget.isCortexA8()) {
2537 // (regno / 2) + (regno % 2) + 1
2538 UseCycle = RegNo / 2 + 1;
2539 if (RegNo % 2)
2540 ++UseCycle;
2541 } else if (Subtarget.isCortexA9()) {
2542 UseCycle = RegNo;
2543 bool isSStore = false;
2544
2545 switch (UseMCID.getOpcode()) {
2546 default: break;
2547 case ARM::VSTMSIA:
2548 case ARM::VSTMSIA_UPD:
2549 case ARM::VSTMSDB_UPD:
2550 isSStore = true;
2551 break;
2552 }
2553
2554 // If there are odd number of 'S' registers or if it's not 64-bit aligned,
2555 // then it takes an extra cycle.
2556 if ((isSStore && (RegNo % 2)) || UseAlign < 8)
2557 ++UseCycle;
2558 } else {
2559 // Assume the worst.
2560 UseCycle = RegNo + 2;
2561 }
2562
2563 return UseCycle;
2564 }
2565
2566 int
getSTMUseCycle(const InstrItineraryData * ItinData,const MCInstrDesc & UseMCID,unsigned UseClass,unsigned UseIdx,unsigned UseAlign) const2567 ARMBaseInstrInfo::getSTMUseCycle(const InstrItineraryData *ItinData,
2568 const MCInstrDesc &UseMCID,
2569 unsigned UseClass,
2570 unsigned UseIdx, unsigned UseAlign) const {
2571 int RegNo = (int)(UseIdx+1) - UseMCID.getNumOperands() + 1;
2572 if (RegNo <= 0)
2573 return ItinData->getOperandCycle(UseClass, UseIdx);
2574
2575 int UseCycle;
2576 if (Subtarget.isCortexA8()) {
2577 UseCycle = RegNo / 2;
2578 if (UseCycle < 2)
2579 UseCycle = 2;
2580 // Read in E3.
2581 UseCycle += 2;
2582 } else if (Subtarget.isCortexA9()) {
2583 UseCycle = (RegNo / 2);
2584 // If there are odd number of registers or if it's not 64-bit aligned,
2585 // then it takes an extra AGU (Address Generation Unit) cycle.
2586 if ((RegNo % 2) || UseAlign < 8)
2587 ++UseCycle;
2588 } else {
2589 // Assume the worst.
2590 UseCycle = 1;
2591 }
2592 return UseCycle;
2593 }
2594
2595 int
getOperandLatency(const InstrItineraryData * ItinData,const MCInstrDesc & DefMCID,unsigned DefIdx,unsigned DefAlign,const MCInstrDesc & UseMCID,unsigned UseIdx,unsigned UseAlign) const2596 ARMBaseInstrInfo::getOperandLatency(const InstrItineraryData *ItinData,
2597 const MCInstrDesc &DefMCID,
2598 unsigned DefIdx, unsigned DefAlign,
2599 const MCInstrDesc &UseMCID,
2600 unsigned UseIdx, unsigned UseAlign) const {
2601 unsigned DefClass = DefMCID.getSchedClass();
2602 unsigned UseClass = UseMCID.getSchedClass();
2603
2604 if (DefIdx < DefMCID.getNumDefs() && UseIdx < UseMCID.getNumOperands())
2605 return ItinData->getOperandLatency(DefClass, DefIdx, UseClass, UseIdx);
2606
2607 // This may be a def / use of a variable_ops instruction, the operand
2608 // latency might be determinable dynamically. Let the target try to
2609 // figure it out.
2610 int DefCycle = -1;
2611 bool LdmBypass = false;
2612 switch (DefMCID.getOpcode()) {
2613 default:
2614 DefCycle = ItinData->getOperandCycle(DefClass, DefIdx);
2615 break;
2616
2617 case ARM::VLDMDIA:
2618 case ARM::VLDMDIA_UPD:
2619 case ARM::VLDMDDB_UPD:
2620 case ARM::VLDMSIA:
2621 case ARM::VLDMSIA_UPD:
2622 case ARM::VLDMSDB_UPD:
2623 DefCycle = getVLDMDefCycle(ItinData, DefMCID, DefClass, DefIdx, DefAlign);
2624 break;
2625
2626 case ARM::LDMIA_RET:
2627 case ARM::LDMIA:
2628 case ARM::LDMDA:
2629 case ARM::LDMDB:
2630 case ARM::LDMIB:
2631 case ARM::LDMIA_UPD:
2632 case ARM::LDMDA_UPD:
2633 case ARM::LDMDB_UPD:
2634 case ARM::LDMIB_UPD:
2635 case ARM::tLDMIA:
2636 case ARM::tLDMIA_UPD:
2637 case ARM::tPUSH:
2638 case ARM::t2LDMIA_RET:
2639 case ARM::t2LDMIA:
2640 case ARM::t2LDMDB:
2641 case ARM::t2LDMIA_UPD:
2642 case ARM::t2LDMDB_UPD:
2643 LdmBypass = 1;
2644 DefCycle = getLDMDefCycle(ItinData, DefMCID, DefClass, DefIdx, DefAlign);
2645 break;
2646 }
2647
2648 if (DefCycle == -1)
2649 // We can't seem to determine the result latency of the def, assume it's 2.
2650 DefCycle = 2;
2651
2652 int UseCycle = -1;
2653 switch (UseMCID.getOpcode()) {
2654 default:
2655 UseCycle = ItinData->getOperandCycle(UseClass, UseIdx);
2656 break;
2657
2658 case ARM::VSTMDIA:
2659 case ARM::VSTMDIA_UPD:
2660 case ARM::VSTMDDB_UPD:
2661 case ARM::VSTMSIA:
2662 case ARM::VSTMSIA_UPD:
2663 case ARM::VSTMSDB_UPD:
2664 UseCycle = getVSTMUseCycle(ItinData, UseMCID, UseClass, UseIdx, UseAlign);
2665 break;
2666
2667 case ARM::STMIA:
2668 case ARM::STMDA:
2669 case ARM::STMDB:
2670 case ARM::STMIB:
2671 case ARM::STMIA_UPD:
2672 case ARM::STMDA_UPD:
2673 case ARM::STMDB_UPD:
2674 case ARM::STMIB_UPD:
2675 case ARM::tSTMIA_UPD:
2676 case ARM::tPOP_RET:
2677 case ARM::tPOP:
2678 case ARM::t2STMIA:
2679 case ARM::t2STMDB:
2680 case ARM::t2STMIA_UPD:
2681 case ARM::t2STMDB_UPD:
2682 UseCycle = getSTMUseCycle(ItinData, UseMCID, UseClass, UseIdx, UseAlign);
2683 break;
2684 }
2685
2686 if (UseCycle == -1)
2687 // Assume it's read in the first stage.
2688 UseCycle = 1;
2689
2690 UseCycle = DefCycle - UseCycle + 1;
2691 if (UseCycle > 0) {
2692 if (LdmBypass) {
2693 // It's a variable_ops instruction so we can't use DefIdx here. Just use
2694 // first def operand.
2695 if (ItinData->hasPipelineForwarding(DefClass, DefMCID.getNumOperands()-1,
2696 UseClass, UseIdx))
2697 --UseCycle;
2698 } else if (ItinData->hasPipelineForwarding(DefClass, DefIdx,
2699 UseClass, UseIdx)) {
2700 --UseCycle;
2701 }
2702 }
2703
2704 return UseCycle;
2705 }
2706
getBundledDefMI(const TargetRegisterInfo * TRI,const MachineInstr * MI,unsigned Reg,unsigned & DefIdx,unsigned & Dist)2707 static const MachineInstr *getBundledDefMI(const TargetRegisterInfo *TRI,
2708 const MachineInstr *MI, unsigned Reg,
2709 unsigned &DefIdx, unsigned &Dist) {
2710 Dist = 0;
2711
2712 MachineBasicBlock::const_iterator I = MI; ++I;
2713 MachineBasicBlock::const_instr_iterator II =
2714 llvm::prior(I.getInstrIterator());
2715 assert(II->isInsideBundle() && "Empty bundle?");
2716
2717 int Idx = -1;
2718 while (II->isInsideBundle()) {
2719 Idx = II->findRegisterDefOperandIdx(Reg, false, true, TRI);
2720 if (Idx != -1)
2721 break;
2722 --II;
2723 ++Dist;
2724 }
2725
2726 assert(Idx != -1 && "Cannot find bundled definition!");
2727 DefIdx = Idx;
2728 return II;
2729 }
2730
getBundledUseMI(const TargetRegisterInfo * TRI,const MachineInstr * MI,unsigned Reg,unsigned & UseIdx,unsigned & Dist)2731 static const MachineInstr *getBundledUseMI(const TargetRegisterInfo *TRI,
2732 const MachineInstr *MI, unsigned Reg,
2733 unsigned &UseIdx, unsigned &Dist) {
2734 Dist = 0;
2735
2736 MachineBasicBlock::const_instr_iterator II = MI; ++II;
2737 assert(II->isInsideBundle() && "Empty bundle?");
2738 MachineBasicBlock::const_instr_iterator E = MI->getParent()->instr_end();
2739
2740 // FIXME: This doesn't properly handle multiple uses.
2741 int Idx = -1;
2742 while (II != E && II->isInsideBundle()) {
2743 Idx = II->findRegisterUseOperandIdx(Reg, false, TRI);
2744 if (Idx != -1)
2745 break;
2746 if (II->getOpcode() != ARM::t2IT)
2747 ++Dist;
2748 ++II;
2749 }
2750
2751 if (Idx == -1) {
2752 Dist = 0;
2753 return 0;
2754 }
2755
2756 UseIdx = Idx;
2757 return II;
2758 }
2759
2760 /// Return the number of cycles to add to (or subtract from) the static
2761 /// itinerary based on the def opcode and alignment. The caller will ensure that
2762 /// adjusted latency is at least one cycle.
adjustDefLatency(const ARMSubtarget & Subtarget,const MachineInstr * DefMI,const MCInstrDesc * DefMCID,unsigned DefAlign)2763 static int adjustDefLatency(const ARMSubtarget &Subtarget,
2764 const MachineInstr *DefMI,
2765 const MCInstrDesc *DefMCID, unsigned DefAlign) {
2766 int Adjust = 0;
2767 if (Subtarget.isCortexA8() || Subtarget.isCortexA9()) {
2768 // FIXME: Shifter op hack: no shift (i.e. [r +/- r]) or [r + r << 2]
2769 // variants are one cycle cheaper.
2770 switch (DefMCID->getOpcode()) {
2771 default: break;
2772 case ARM::LDRrs:
2773 case ARM::LDRBrs: {
2774 unsigned ShOpVal = DefMI->getOperand(3).getImm();
2775 unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
2776 if (ShImm == 0 ||
2777 (ShImm == 2 && ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl))
2778 --Adjust;
2779 break;
2780 }
2781 case ARM::t2LDRs:
2782 case ARM::t2LDRBs:
2783 case ARM::t2LDRHs:
2784 case ARM::t2LDRSHs: {
2785 // Thumb2 mode: lsl only.
2786 unsigned ShAmt = DefMI->getOperand(3).getImm();
2787 if (ShAmt == 0 || ShAmt == 2)
2788 --Adjust;
2789 break;
2790 }
2791 }
2792 }
2793
2794 if (DefAlign < 8 && Subtarget.isCortexA9()) {
2795 switch (DefMCID->getOpcode()) {
2796 default: break;
2797 case ARM::VLD1q8:
2798 case ARM::VLD1q16:
2799 case ARM::VLD1q32:
2800 case ARM::VLD1q64:
2801 case ARM::VLD1q8wb_fixed:
2802 case ARM::VLD1q16wb_fixed:
2803 case ARM::VLD1q32wb_fixed:
2804 case ARM::VLD1q64wb_fixed:
2805 case ARM::VLD1q8wb_register:
2806 case ARM::VLD1q16wb_register:
2807 case ARM::VLD1q32wb_register:
2808 case ARM::VLD1q64wb_register:
2809 case ARM::VLD2d8:
2810 case ARM::VLD2d16:
2811 case ARM::VLD2d32:
2812 case ARM::VLD2q8:
2813 case ARM::VLD2q16:
2814 case ARM::VLD2q32:
2815 case ARM::VLD2d8wb_fixed:
2816 case ARM::VLD2d16wb_fixed:
2817 case ARM::VLD2d32wb_fixed:
2818 case ARM::VLD2q8wb_fixed:
2819 case ARM::VLD2q16wb_fixed:
2820 case ARM::VLD2q32wb_fixed:
2821 case ARM::VLD2d8wb_register:
2822 case ARM::VLD2d16wb_register:
2823 case ARM::VLD2d32wb_register:
2824 case ARM::VLD2q8wb_register:
2825 case ARM::VLD2q16wb_register:
2826 case ARM::VLD2q32wb_register:
2827 case ARM::VLD3d8:
2828 case ARM::VLD3d16:
2829 case ARM::VLD3d32:
2830 case ARM::VLD1d64T:
2831 case ARM::VLD3d8_UPD:
2832 case ARM::VLD3d16_UPD:
2833 case ARM::VLD3d32_UPD:
2834 case ARM::VLD1d64Twb_fixed:
2835 case ARM::VLD1d64Twb_register:
2836 case ARM::VLD3q8_UPD:
2837 case ARM::VLD3q16_UPD:
2838 case ARM::VLD3q32_UPD:
2839 case ARM::VLD4d8:
2840 case ARM::VLD4d16:
2841 case ARM::VLD4d32:
2842 case ARM::VLD1d64Q:
2843 case ARM::VLD4d8_UPD:
2844 case ARM::VLD4d16_UPD:
2845 case ARM::VLD4d32_UPD:
2846 case ARM::VLD1d64Qwb_fixed:
2847 case ARM::VLD1d64Qwb_register:
2848 case ARM::VLD4q8_UPD:
2849 case ARM::VLD4q16_UPD:
2850 case ARM::VLD4q32_UPD:
2851 case ARM::VLD1DUPq8:
2852 case ARM::VLD1DUPq16:
2853 case ARM::VLD1DUPq32:
2854 case ARM::VLD1DUPq8wb_fixed:
2855 case ARM::VLD1DUPq16wb_fixed:
2856 case ARM::VLD1DUPq32wb_fixed:
2857 case ARM::VLD1DUPq8wb_register:
2858 case ARM::VLD1DUPq16wb_register:
2859 case ARM::VLD1DUPq32wb_register:
2860 case ARM::VLD2DUPd8:
2861 case ARM::VLD2DUPd16:
2862 case ARM::VLD2DUPd32:
2863 case ARM::VLD2DUPd8wb_fixed:
2864 case ARM::VLD2DUPd16wb_fixed:
2865 case ARM::VLD2DUPd32wb_fixed:
2866 case ARM::VLD2DUPd8wb_register:
2867 case ARM::VLD2DUPd16wb_register:
2868 case ARM::VLD2DUPd32wb_register:
2869 case ARM::VLD4DUPd8:
2870 case ARM::VLD4DUPd16:
2871 case ARM::VLD4DUPd32:
2872 case ARM::VLD4DUPd8_UPD:
2873 case ARM::VLD4DUPd16_UPD:
2874 case ARM::VLD4DUPd32_UPD:
2875 case ARM::VLD1LNd8:
2876 case ARM::VLD1LNd16:
2877 case ARM::VLD1LNd32:
2878 case ARM::VLD1LNd8_UPD:
2879 case ARM::VLD1LNd16_UPD:
2880 case ARM::VLD1LNd32_UPD:
2881 case ARM::VLD2LNd8:
2882 case ARM::VLD2LNd16:
2883 case ARM::VLD2LNd32:
2884 case ARM::VLD2LNq16:
2885 case ARM::VLD2LNq32:
2886 case ARM::VLD2LNd8_UPD:
2887 case ARM::VLD2LNd16_UPD:
2888 case ARM::VLD2LNd32_UPD:
2889 case ARM::VLD2LNq16_UPD:
2890 case ARM::VLD2LNq32_UPD:
2891 case ARM::VLD4LNd8:
2892 case ARM::VLD4LNd16:
2893 case ARM::VLD4LNd32:
2894 case ARM::VLD4LNq16:
2895 case ARM::VLD4LNq32:
2896 case ARM::VLD4LNd8_UPD:
2897 case ARM::VLD4LNd16_UPD:
2898 case ARM::VLD4LNd32_UPD:
2899 case ARM::VLD4LNq16_UPD:
2900 case ARM::VLD4LNq32_UPD:
2901 // If the address is not 64-bit aligned, the latencies of these
2902 // instructions increases by one.
2903 ++Adjust;
2904 break;
2905 }
2906 }
2907 return Adjust;
2908 }
2909
2910
2911
2912 int
getOperandLatency(const InstrItineraryData * ItinData,const MachineInstr * DefMI,unsigned DefIdx,const MachineInstr * UseMI,unsigned UseIdx) const2913 ARMBaseInstrInfo::getOperandLatency(const InstrItineraryData *ItinData,
2914 const MachineInstr *DefMI, unsigned DefIdx,
2915 const MachineInstr *UseMI,
2916 unsigned UseIdx) const {
2917 // No operand latency. The caller may fall back to getInstrLatency.
2918 if (!ItinData || ItinData->isEmpty())
2919 return -1;
2920
2921 const MachineOperand &DefMO = DefMI->getOperand(DefIdx);
2922 unsigned Reg = DefMO.getReg();
2923 const MCInstrDesc *DefMCID = &DefMI->getDesc();
2924 const MCInstrDesc *UseMCID = &UseMI->getDesc();
2925
2926 unsigned DefAdj = 0;
2927 if (DefMI->isBundle()) {
2928 DefMI = getBundledDefMI(&getRegisterInfo(), DefMI, Reg, DefIdx, DefAdj);
2929 DefMCID = &DefMI->getDesc();
2930 }
2931 if (DefMI->isCopyLike() || DefMI->isInsertSubreg() ||
2932 DefMI->isRegSequence() || DefMI->isImplicitDef()) {
2933 return 1;
2934 }
2935
2936 unsigned UseAdj = 0;
2937 if (UseMI->isBundle()) {
2938 unsigned NewUseIdx;
2939 const MachineInstr *NewUseMI = getBundledUseMI(&getRegisterInfo(), UseMI,
2940 Reg, NewUseIdx, UseAdj);
2941 if (!NewUseMI)
2942 return -1;
2943
2944 UseMI = NewUseMI;
2945 UseIdx = NewUseIdx;
2946 UseMCID = &UseMI->getDesc();
2947 }
2948
2949 if (Reg == ARM::CPSR) {
2950 if (DefMI->getOpcode() == ARM::FMSTAT) {
2951 // fpscr -> cpsr stalls over 20 cycles on A8 (and earlier?)
2952 return Subtarget.isCortexA9() ? 1 : 20;
2953 }
2954
2955 // CPSR set and branch can be paired in the same cycle.
2956 if (UseMI->isBranch())
2957 return 0;
2958
2959 // Otherwise it takes the instruction latency (generally one).
2960 unsigned Latency = getInstrLatency(ItinData, DefMI);
2961
2962 // For Thumb2 and -Os, prefer scheduling CPSR setting instruction close to
2963 // its uses. Instructions which are otherwise scheduled between them may
2964 // incur a code size penalty (not able to use the CPSR setting 16-bit
2965 // instructions).
2966 if (Latency > 0 && Subtarget.isThumb2()) {
2967 const MachineFunction *MF = DefMI->getParent()->getParent();
2968 if (MF->getFunction()->hasFnAttr(Attribute::OptimizeForSize))
2969 --Latency;
2970 }
2971 return Latency;
2972 }
2973
2974 if (DefMO.isImplicit() || UseMI->getOperand(UseIdx).isImplicit())
2975 return -1;
2976
2977 unsigned DefAlign = DefMI->hasOneMemOperand()
2978 ? (*DefMI->memoperands_begin())->getAlignment() : 0;
2979 unsigned UseAlign = UseMI->hasOneMemOperand()
2980 ? (*UseMI->memoperands_begin())->getAlignment() : 0;
2981
2982 // Get the itinerary's latency if possible, and handle variable_ops.
2983 int Latency = getOperandLatency(ItinData, *DefMCID, DefIdx, DefAlign,
2984 *UseMCID, UseIdx, UseAlign);
2985 // Unable to find operand latency. The caller may resort to getInstrLatency.
2986 if (Latency < 0)
2987 return Latency;
2988
2989 // Adjust for IT block position.
2990 int Adj = DefAdj + UseAdj;
2991
2992 // Adjust for dynamic def-side opcode variants not captured by the itinerary.
2993 Adj += adjustDefLatency(Subtarget, DefMI, DefMCID, DefAlign);
2994 if (Adj >= 0 || (int)Latency > -Adj) {
2995 return Latency + Adj;
2996 }
2997 // Return the itinerary latency, which may be zero but not less than zero.
2998 return Latency;
2999 }
3000
3001 int
getOperandLatency(const InstrItineraryData * ItinData,SDNode * DefNode,unsigned DefIdx,SDNode * UseNode,unsigned UseIdx) const3002 ARMBaseInstrInfo::getOperandLatency(const InstrItineraryData *ItinData,
3003 SDNode *DefNode, unsigned DefIdx,
3004 SDNode *UseNode, unsigned UseIdx) const {
3005 if (!DefNode->isMachineOpcode())
3006 return 1;
3007
3008 const MCInstrDesc &DefMCID = get(DefNode->getMachineOpcode());
3009
3010 if (isZeroCost(DefMCID.Opcode))
3011 return 0;
3012
3013 if (!ItinData || ItinData->isEmpty())
3014 return DefMCID.mayLoad() ? 3 : 1;
3015
3016 if (!UseNode->isMachineOpcode()) {
3017 int Latency = ItinData->getOperandCycle(DefMCID.getSchedClass(), DefIdx);
3018 if (Subtarget.isCortexA9())
3019 return Latency <= 2 ? 1 : Latency - 1;
3020 else
3021 return Latency <= 3 ? 1 : Latency - 2;
3022 }
3023
3024 const MCInstrDesc &UseMCID = get(UseNode->getMachineOpcode());
3025 const MachineSDNode *DefMN = dyn_cast<MachineSDNode>(DefNode);
3026 unsigned DefAlign = !DefMN->memoperands_empty()
3027 ? (*DefMN->memoperands_begin())->getAlignment() : 0;
3028 const MachineSDNode *UseMN = dyn_cast<MachineSDNode>(UseNode);
3029 unsigned UseAlign = !UseMN->memoperands_empty()
3030 ? (*UseMN->memoperands_begin())->getAlignment() : 0;
3031 int Latency = getOperandLatency(ItinData, DefMCID, DefIdx, DefAlign,
3032 UseMCID, UseIdx, UseAlign);
3033
3034 if (Latency > 1 &&
3035 (Subtarget.isCortexA8() || Subtarget.isCortexA9())) {
3036 // FIXME: Shifter op hack: no shift (i.e. [r +/- r]) or [r + r << 2]
3037 // variants are one cycle cheaper.
3038 switch (DefMCID.getOpcode()) {
3039 default: break;
3040 case ARM::LDRrs:
3041 case ARM::LDRBrs: {
3042 unsigned ShOpVal =
3043 cast<ConstantSDNode>(DefNode->getOperand(2))->getZExtValue();
3044 unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
3045 if (ShImm == 0 ||
3046 (ShImm == 2 && ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl))
3047 --Latency;
3048 break;
3049 }
3050 case ARM::t2LDRs:
3051 case ARM::t2LDRBs:
3052 case ARM::t2LDRHs:
3053 case ARM::t2LDRSHs: {
3054 // Thumb2 mode: lsl only.
3055 unsigned ShAmt =
3056 cast<ConstantSDNode>(DefNode->getOperand(2))->getZExtValue();
3057 if (ShAmt == 0 || ShAmt == 2)
3058 --Latency;
3059 break;
3060 }
3061 }
3062 }
3063
3064 if (DefAlign < 8 && Subtarget.isCortexA9())
3065 switch (DefMCID.getOpcode()) {
3066 default: break;
3067 case ARM::VLD1q8:
3068 case ARM::VLD1q16:
3069 case ARM::VLD1q32:
3070 case ARM::VLD1q64:
3071 case ARM::VLD1q8wb_register:
3072 case ARM::VLD1q16wb_register:
3073 case ARM::VLD1q32wb_register:
3074 case ARM::VLD1q64wb_register:
3075 case ARM::VLD1q8wb_fixed:
3076 case ARM::VLD1q16wb_fixed:
3077 case ARM::VLD1q32wb_fixed:
3078 case ARM::VLD1q64wb_fixed:
3079 case ARM::VLD2d8:
3080 case ARM::VLD2d16:
3081 case ARM::VLD2d32:
3082 case ARM::VLD2q8Pseudo:
3083 case ARM::VLD2q16Pseudo:
3084 case ARM::VLD2q32Pseudo:
3085 case ARM::VLD2d8wb_fixed:
3086 case ARM::VLD2d16wb_fixed:
3087 case ARM::VLD2d32wb_fixed:
3088 case ARM::VLD2q8PseudoWB_fixed:
3089 case ARM::VLD2q16PseudoWB_fixed:
3090 case ARM::VLD2q32PseudoWB_fixed:
3091 case ARM::VLD2d8wb_register:
3092 case ARM::VLD2d16wb_register:
3093 case ARM::VLD2d32wb_register:
3094 case ARM::VLD2q8PseudoWB_register:
3095 case ARM::VLD2q16PseudoWB_register:
3096 case ARM::VLD2q32PseudoWB_register:
3097 case ARM::VLD3d8Pseudo:
3098 case ARM::VLD3d16Pseudo:
3099 case ARM::VLD3d32Pseudo:
3100 case ARM::VLD1d64TPseudo:
3101 case ARM::VLD3d8Pseudo_UPD:
3102 case ARM::VLD3d16Pseudo_UPD:
3103 case ARM::VLD3d32Pseudo_UPD:
3104 case ARM::VLD3q8Pseudo_UPD:
3105 case ARM::VLD3q16Pseudo_UPD:
3106 case ARM::VLD3q32Pseudo_UPD:
3107 case ARM::VLD3q8oddPseudo:
3108 case ARM::VLD3q16oddPseudo:
3109 case ARM::VLD3q32oddPseudo:
3110 case ARM::VLD3q8oddPseudo_UPD:
3111 case ARM::VLD3q16oddPseudo_UPD:
3112 case ARM::VLD3q32oddPseudo_UPD:
3113 case ARM::VLD4d8Pseudo:
3114 case ARM::VLD4d16Pseudo:
3115 case ARM::VLD4d32Pseudo:
3116 case ARM::VLD1d64QPseudo:
3117 case ARM::VLD4d8Pseudo_UPD:
3118 case ARM::VLD4d16Pseudo_UPD:
3119 case ARM::VLD4d32Pseudo_UPD:
3120 case ARM::VLD4q8Pseudo_UPD:
3121 case ARM::VLD4q16Pseudo_UPD:
3122 case ARM::VLD4q32Pseudo_UPD:
3123 case ARM::VLD4q8oddPseudo:
3124 case ARM::VLD4q16oddPseudo:
3125 case ARM::VLD4q32oddPseudo:
3126 case ARM::VLD4q8oddPseudo_UPD:
3127 case ARM::VLD4q16oddPseudo_UPD:
3128 case ARM::VLD4q32oddPseudo_UPD:
3129 case ARM::VLD1DUPq8:
3130 case ARM::VLD1DUPq16:
3131 case ARM::VLD1DUPq32:
3132 case ARM::VLD1DUPq8wb_fixed:
3133 case ARM::VLD1DUPq16wb_fixed:
3134 case ARM::VLD1DUPq32wb_fixed:
3135 case ARM::VLD1DUPq8wb_register:
3136 case ARM::VLD1DUPq16wb_register:
3137 case ARM::VLD1DUPq32wb_register:
3138 case ARM::VLD2DUPd8:
3139 case ARM::VLD2DUPd16:
3140 case ARM::VLD2DUPd32:
3141 case ARM::VLD2DUPd8wb_fixed:
3142 case ARM::VLD2DUPd16wb_fixed:
3143 case ARM::VLD2DUPd32wb_fixed:
3144 case ARM::VLD2DUPd8wb_register:
3145 case ARM::VLD2DUPd16wb_register:
3146 case ARM::VLD2DUPd32wb_register:
3147 case ARM::VLD4DUPd8Pseudo:
3148 case ARM::VLD4DUPd16Pseudo:
3149 case ARM::VLD4DUPd32Pseudo:
3150 case ARM::VLD4DUPd8Pseudo_UPD:
3151 case ARM::VLD4DUPd16Pseudo_UPD:
3152 case ARM::VLD4DUPd32Pseudo_UPD:
3153 case ARM::VLD1LNq8Pseudo:
3154 case ARM::VLD1LNq16Pseudo:
3155 case ARM::VLD1LNq32Pseudo:
3156 case ARM::VLD1LNq8Pseudo_UPD:
3157 case ARM::VLD1LNq16Pseudo_UPD:
3158 case ARM::VLD1LNq32Pseudo_UPD:
3159 case ARM::VLD2LNd8Pseudo:
3160 case ARM::VLD2LNd16Pseudo:
3161 case ARM::VLD2LNd32Pseudo:
3162 case ARM::VLD2LNq16Pseudo:
3163 case ARM::VLD2LNq32Pseudo:
3164 case ARM::VLD2LNd8Pseudo_UPD:
3165 case ARM::VLD2LNd16Pseudo_UPD:
3166 case ARM::VLD2LNd32Pseudo_UPD:
3167 case ARM::VLD2LNq16Pseudo_UPD:
3168 case ARM::VLD2LNq32Pseudo_UPD:
3169 case ARM::VLD4LNd8Pseudo:
3170 case ARM::VLD4LNd16Pseudo:
3171 case ARM::VLD4LNd32Pseudo:
3172 case ARM::VLD4LNq16Pseudo:
3173 case ARM::VLD4LNq32Pseudo:
3174 case ARM::VLD4LNd8Pseudo_UPD:
3175 case ARM::VLD4LNd16Pseudo_UPD:
3176 case ARM::VLD4LNd32Pseudo_UPD:
3177 case ARM::VLD4LNq16Pseudo_UPD:
3178 case ARM::VLD4LNq32Pseudo_UPD:
3179 // If the address is not 64-bit aligned, the latencies of these
3180 // instructions increases by one.
3181 ++Latency;
3182 break;
3183 }
3184
3185 return Latency;
3186 }
3187
3188 unsigned
getOutputLatency(const InstrItineraryData * ItinData,const MachineInstr * DefMI,unsigned DefIdx,const MachineInstr * DepMI) const3189 ARMBaseInstrInfo::getOutputLatency(const InstrItineraryData *ItinData,
3190 const MachineInstr *DefMI, unsigned DefIdx,
3191 const MachineInstr *DepMI) const {
3192 unsigned Reg = DefMI->getOperand(DefIdx).getReg();
3193 if (DepMI->readsRegister(Reg, &getRegisterInfo()) || !isPredicated(DepMI))
3194 return 1;
3195
3196 // If the second MI is predicated, then there is an implicit use dependency.
3197 return getInstrLatency(ItinData, DefMI);
3198 }
3199
getInstrLatency(const InstrItineraryData * ItinData,const MachineInstr * MI,unsigned * PredCost) const3200 unsigned ARMBaseInstrInfo::getInstrLatency(const InstrItineraryData *ItinData,
3201 const MachineInstr *MI,
3202 unsigned *PredCost) const {
3203 if (MI->isCopyLike() || MI->isInsertSubreg() ||
3204 MI->isRegSequence() || MI->isImplicitDef())
3205 return 1;
3206
3207 // An instruction scheduler typically runs on unbundled instructions, however
3208 // other passes may query the latency of a bundled instruction.
3209 if (MI->isBundle()) {
3210 unsigned Latency = 0;
3211 MachineBasicBlock::const_instr_iterator I = MI;
3212 MachineBasicBlock::const_instr_iterator E = MI->getParent()->instr_end();
3213 while (++I != E && I->isInsideBundle()) {
3214 if (I->getOpcode() != ARM::t2IT)
3215 Latency += getInstrLatency(ItinData, I, PredCost);
3216 }
3217 return Latency;
3218 }
3219
3220 const MCInstrDesc &MCID = MI->getDesc();
3221 if (PredCost && (MCID.isCall() || MCID.hasImplicitDefOfPhysReg(ARM::CPSR))) {
3222 // When predicated, CPSR is an additional source operand for CPSR updating
3223 // instructions, this apparently increases their latencies.
3224 *PredCost = 1;
3225 }
3226 // Be sure to call getStageLatency for an empty itinerary in case it has a
3227 // valid MinLatency property.
3228 if (!ItinData)
3229 return MI->mayLoad() ? 3 : 1;
3230
3231 unsigned Class = MCID.getSchedClass();
3232
3233 // For instructions with variable uops, use uops as latency.
3234 if (!ItinData->isEmpty() && ItinData->getNumMicroOps(Class) < 0)
3235 return getNumMicroOps(ItinData, MI);
3236
3237 // For the common case, fall back on the itinerary's latency.
3238 unsigned Latency = ItinData->getStageLatency(Class);
3239
3240 // Adjust for dynamic def-side opcode variants not captured by the itinerary.
3241 unsigned DefAlign = MI->hasOneMemOperand()
3242 ? (*MI->memoperands_begin())->getAlignment() : 0;
3243 int Adj = adjustDefLatency(Subtarget, MI, &MCID, DefAlign);
3244 if (Adj >= 0 || (int)Latency > -Adj) {
3245 return Latency + Adj;
3246 }
3247 return Latency;
3248 }
3249
getInstrLatency(const InstrItineraryData * ItinData,SDNode * Node) const3250 int ARMBaseInstrInfo::getInstrLatency(const InstrItineraryData *ItinData,
3251 SDNode *Node) const {
3252 if (!Node->isMachineOpcode())
3253 return 1;
3254
3255 if (!ItinData || ItinData->isEmpty())
3256 return 1;
3257
3258 unsigned Opcode = Node->getMachineOpcode();
3259 switch (Opcode) {
3260 default:
3261 return ItinData->getStageLatency(get(Opcode).getSchedClass());
3262 case ARM::VLDMQIA:
3263 case ARM::VSTMQIA:
3264 return 2;
3265 }
3266 }
3267
3268 bool ARMBaseInstrInfo::
hasHighOperandLatency(const InstrItineraryData * ItinData,const MachineRegisterInfo * MRI,const MachineInstr * DefMI,unsigned DefIdx,const MachineInstr * UseMI,unsigned UseIdx) const3269 hasHighOperandLatency(const InstrItineraryData *ItinData,
3270 const MachineRegisterInfo *MRI,
3271 const MachineInstr *DefMI, unsigned DefIdx,
3272 const MachineInstr *UseMI, unsigned UseIdx) const {
3273 unsigned DDomain = DefMI->getDesc().TSFlags & ARMII::DomainMask;
3274 unsigned UDomain = UseMI->getDesc().TSFlags & ARMII::DomainMask;
3275 if (Subtarget.isCortexA8() &&
3276 (DDomain == ARMII::DomainVFP || UDomain == ARMII::DomainVFP))
3277 // CortexA8 VFP instructions are not pipelined.
3278 return true;
3279
3280 // Hoist VFP / NEON instructions with 4 or higher latency.
3281 int Latency = computeOperandLatency(ItinData, DefMI, DefIdx, UseMI, UseIdx,
3282 /*FindMin=*/false);
3283 if (Latency < 0)
3284 Latency = getInstrLatency(ItinData, DefMI);
3285 if (Latency <= 3)
3286 return false;
3287 return DDomain == ARMII::DomainVFP || DDomain == ARMII::DomainNEON ||
3288 UDomain == ARMII::DomainVFP || UDomain == ARMII::DomainNEON;
3289 }
3290
3291 bool ARMBaseInstrInfo::
hasLowDefLatency(const InstrItineraryData * ItinData,const MachineInstr * DefMI,unsigned DefIdx) const3292 hasLowDefLatency(const InstrItineraryData *ItinData,
3293 const MachineInstr *DefMI, unsigned DefIdx) const {
3294 if (!ItinData || ItinData->isEmpty())
3295 return false;
3296
3297 unsigned DDomain = DefMI->getDesc().TSFlags & ARMII::DomainMask;
3298 if (DDomain == ARMII::DomainGeneral) {
3299 unsigned DefClass = DefMI->getDesc().getSchedClass();
3300 int DefCycle = ItinData->getOperandCycle(DefClass, DefIdx);
3301 return (DefCycle != -1 && DefCycle <= 2);
3302 }
3303 return false;
3304 }
3305
verifyInstruction(const MachineInstr * MI,StringRef & ErrInfo) const3306 bool ARMBaseInstrInfo::verifyInstruction(const MachineInstr *MI,
3307 StringRef &ErrInfo) const {
3308 if (convertAddSubFlagsOpcode(MI->getOpcode())) {
3309 ErrInfo = "Pseudo flag setting opcodes only exist in Selection DAG";
3310 return false;
3311 }
3312 return true;
3313 }
3314
3315 bool
isFpMLxInstruction(unsigned Opcode,unsigned & MulOpc,unsigned & AddSubOpc,bool & NegAcc,bool & HasLane) const3316 ARMBaseInstrInfo::isFpMLxInstruction(unsigned Opcode, unsigned &MulOpc,
3317 unsigned &AddSubOpc,
3318 bool &NegAcc, bool &HasLane) const {
3319 DenseMap<unsigned, unsigned>::const_iterator I = MLxEntryMap.find(Opcode);
3320 if (I == MLxEntryMap.end())
3321 return false;
3322
3323 const ARM_MLxEntry &Entry = ARM_MLxTable[I->second];
3324 MulOpc = Entry.MulOpc;
3325 AddSubOpc = Entry.AddSubOpc;
3326 NegAcc = Entry.NegAcc;
3327 HasLane = Entry.HasLane;
3328 return true;
3329 }
3330
3331 //===----------------------------------------------------------------------===//
3332 // Execution domains.
3333 //===----------------------------------------------------------------------===//
3334 //
3335 // Some instructions go down the NEON pipeline, some go down the VFP pipeline,
3336 // and some can go down both. The vmov instructions go down the VFP pipeline,
3337 // but they can be changed to vorr equivalents that are executed by the NEON
3338 // pipeline.
3339 //
3340 // We use the following execution domain numbering:
3341 //
3342 enum ARMExeDomain {
3343 ExeGeneric = 0,
3344 ExeVFP = 1,
3345 ExeNEON = 2
3346 };
3347 //
3348 // Also see ARMInstrFormats.td and Domain* enums in ARMBaseInfo.h
3349 //
3350 std::pair<uint16_t, uint16_t>
getExecutionDomain(const MachineInstr * MI) const3351 ARMBaseInstrInfo::getExecutionDomain(const MachineInstr *MI) const {
3352 // VMOVD, VMOVRS and VMOVSR are VFP instructions, but can be changed to NEON
3353 // if they are not predicated.
3354 if (MI->getOpcode() == ARM::VMOVD && !isPredicated(MI))
3355 return std::make_pair(ExeVFP, (1<<ExeVFP) | (1<<ExeNEON));
3356
3357 // Cortex-A9 is particularly picky about mixing the two and wants these
3358 // converted.
3359 if (Subtarget.isCortexA9() && !isPredicated(MI) &&
3360 (MI->getOpcode() == ARM::VMOVRS ||
3361 MI->getOpcode() == ARM::VMOVSR ||
3362 MI->getOpcode() == ARM::VMOVS))
3363 return std::make_pair(ExeVFP, (1<<ExeVFP) | (1<<ExeNEON));
3364
3365 // No other instructions can be swizzled, so just determine their domain.
3366 unsigned Domain = MI->getDesc().TSFlags & ARMII::DomainMask;
3367
3368 if (Domain & ARMII::DomainNEON)
3369 return std::make_pair(ExeNEON, 0);
3370
3371 // Certain instructions can go either way on Cortex-A8.
3372 // Treat them as NEON instructions.
3373 if ((Domain & ARMII::DomainNEONA8) && Subtarget.isCortexA8())
3374 return std::make_pair(ExeNEON, 0);
3375
3376 if (Domain & ARMII::DomainVFP)
3377 return std::make_pair(ExeVFP, 0);
3378
3379 return std::make_pair(ExeGeneric, 0);
3380 }
3381
getCorrespondingDRegAndLane(const TargetRegisterInfo * TRI,unsigned SReg,unsigned & Lane)3382 static unsigned getCorrespondingDRegAndLane(const TargetRegisterInfo *TRI,
3383 unsigned SReg, unsigned &Lane) {
3384 unsigned DReg = TRI->getMatchingSuperReg(SReg, ARM::ssub_0, &ARM::DPRRegClass);
3385 Lane = 0;
3386
3387 if (DReg != ARM::NoRegister)
3388 return DReg;
3389
3390 Lane = 1;
3391 DReg = TRI->getMatchingSuperReg(SReg, ARM::ssub_1, &ARM::DPRRegClass);
3392
3393 assert(DReg && "S-register with no D super-register?");
3394 return DReg;
3395 }
3396
3397
3398 void
setExecutionDomain(MachineInstr * MI,unsigned Domain) const3399 ARMBaseInstrInfo::setExecutionDomain(MachineInstr *MI, unsigned Domain) const {
3400 unsigned DstReg, SrcReg, DReg;
3401 unsigned Lane;
3402 MachineInstrBuilder MIB(MI);
3403 const TargetRegisterInfo *TRI = &getRegisterInfo();
3404 switch (MI->getOpcode()) {
3405 default:
3406 llvm_unreachable("cannot handle opcode!");
3407 break;
3408 case ARM::VMOVD:
3409 if (Domain != ExeNEON)
3410 break;
3411
3412 // Zap the predicate operands.
3413 assert(!isPredicated(MI) && "Cannot predicate a VORRd");
3414
3415 // Source instruction is %DDst = VMOVD %DSrc, 14, %noreg (; implicits)
3416 DstReg = MI->getOperand(0).getReg();
3417 SrcReg = MI->getOperand(1).getReg();
3418
3419 for (unsigned i = MI->getDesc().getNumOperands(); i; --i)
3420 MI->RemoveOperand(i-1);
3421
3422 // Change to a %DDst = VORRd %DSrc, %DSrc, 14, %noreg (; implicits)
3423 MI->setDesc(get(ARM::VORRd));
3424 AddDefaultPred(MIB.addReg(DstReg, RegState::Define)
3425 .addReg(SrcReg)
3426 .addReg(SrcReg));
3427 break;
3428 case ARM::VMOVRS:
3429 if (Domain != ExeNEON)
3430 break;
3431 assert(!isPredicated(MI) && "Cannot predicate a VGETLN");
3432
3433 // Source instruction is %RDst = VMOVRS %SSrc, 14, %noreg (; implicits)
3434 DstReg = MI->getOperand(0).getReg();
3435 SrcReg = MI->getOperand(1).getReg();
3436
3437 for (unsigned i = MI->getDesc().getNumOperands(); i; --i)
3438 MI->RemoveOperand(i-1);
3439
3440 DReg = getCorrespondingDRegAndLane(TRI, SrcReg, Lane);
3441
3442 // Convert to %RDst = VGETLNi32 %DSrc, Lane, 14, %noreg (; imps)
3443 // Note that DSrc has been widened and the other lane may be undef, which
3444 // contaminates the entire register.
3445 MI->setDesc(get(ARM::VGETLNi32));
3446 AddDefaultPred(MIB.addReg(DstReg, RegState::Define)
3447 .addReg(DReg, RegState::Undef)
3448 .addImm(Lane));
3449
3450 // The old source should be an implicit use, otherwise we might think it
3451 // was dead before here.
3452 MIB.addReg(SrcReg, RegState::Implicit);
3453 break;
3454 case ARM::VMOVSR:
3455 if (Domain != ExeNEON)
3456 break;
3457 assert(!isPredicated(MI) && "Cannot predicate a VSETLN");
3458
3459 // Source instruction is %SDst = VMOVSR %RSrc, 14, %noreg (; implicits)
3460 DstReg = MI->getOperand(0).getReg();
3461 SrcReg = MI->getOperand(1).getReg();
3462
3463 DReg = getCorrespondingDRegAndLane(TRI, DstReg, Lane);
3464
3465 // If we insert both a novel <def> and an <undef> on the DReg, we break
3466 // any existing dependency chain on the unused lane. Either already being
3467 // present means this instruction is in that chain anyway so we can make
3468 // the transformation.
3469 if (!MI->definesRegister(DReg, TRI) && !MI->readsRegister(DReg, TRI))
3470 break;
3471
3472 for (unsigned i = MI->getDesc().getNumOperands(); i; --i)
3473 MI->RemoveOperand(i-1);
3474
3475 // Convert to %DDst = VSETLNi32 %DDst, %RSrc, Lane, 14, %noreg (; imps)
3476 // Again DDst may be undefined at the beginning of this instruction.
3477 MI->setDesc(get(ARM::VSETLNi32));
3478 MIB.addReg(DReg, RegState::Define)
3479 .addReg(DReg, getUndefRegState(!MI->readsRegister(DReg, TRI)))
3480 .addReg(SrcReg)
3481 .addImm(Lane);
3482 AddDefaultPred(MIB);
3483
3484 // The narrower destination must be marked as set to keep previous chains
3485 // in place.
3486 MIB.addReg(DstReg, RegState::Define | RegState::Implicit);
3487 break;
3488 case ARM::VMOVS: {
3489 if (Domain != ExeNEON)
3490 break;
3491
3492 // Source instruction is %SDst = VMOVS %SSrc, 14, %noreg (; implicits)
3493 DstReg = MI->getOperand(0).getReg();
3494 SrcReg = MI->getOperand(1).getReg();
3495
3496 unsigned DstLane = 0, SrcLane = 0, DDst, DSrc;
3497 DDst = getCorrespondingDRegAndLane(TRI, DstReg, DstLane);
3498 DSrc = getCorrespondingDRegAndLane(TRI, SrcReg, SrcLane);
3499
3500 // If we insert both a novel <def> and an <undef> on the DReg, we break
3501 // any existing dependency chain on the unused lane. Either already being
3502 // present means this instruction is in that chain anyway so we can make
3503 // the transformation.
3504 if (!MI->definesRegister(DDst, TRI) && !MI->readsRegister(DDst, TRI))
3505 break;
3506
3507 for (unsigned i = MI->getDesc().getNumOperands(); i; --i)
3508 MI->RemoveOperand(i-1);
3509
3510 if (DSrc == DDst) {
3511 // Destination can be:
3512 // %DDst = VDUPLN32d %DDst, Lane, 14, %noreg (; implicits)
3513 MI->setDesc(get(ARM::VDUPLN32d));
3514 MIB.addReg(DDst, RegState::Define)
3515 .addReg(DDst, getUndefRegState(!MI->readsRegister(DDst, TRI)))
3516 .addImm(SrcLane);
3517 AddDefaultPred(MIB);
3518
3519 // Neither the source or the destination are naturally represented any
3520 // more, so add them in manually.
3521 MIB.addReg(DstReg, RegState::Implicit | RegState::Define);
3522 MIB.addReg(SrcReg, RegState::Implicit);
3523 break;
3524 }
3525
3526 // In general there's no single instruction that can perform an S <-> S
3527 // move in NEON space, but a pair of VEXT instructions *can* do the
3528 // job. It turns out that the VEXTs needed will only use DSrc once, with
3529 // the position based purely on the combination of lane-0 and lane-1
3530 // involved. For example
3531 // vmov s0, s2 -> vext.32 d0, d0, d1, #1 vext.32 d0, d0, d0, #1
3532 // vmov s1, s3 -> vext.32 d0, d1, d0, #1 vext.32 d0, d0, d0, #1
3533 // vmov s0, s3 -> vext.32 d0, d0, d0, #1 vext.32 d0, d1, d0, #1
3534 // vmov s1, s2 -> vext.32 d0, d0, d0, #1 vext.32 d0, d0, d1, #1
3535 //
3536 // Pattern of the MachineInstrs is:
3537 // %DDst = VEXTd32 %DSrc1, %DSrc2, Lane, 14, %noreg (;implicits)
3538 MachineInstrBuilder NewMIB;
3539 NewMIB = BuildMI(*MI->getParent(), MI, MI->getDebugLoc(),
3540 get(ARM::VEXTd32), DDst);
3541
3542 // On the first instruction, both DSrc and DDst may be <undef> if present.
3543 // Specifically when the original instruction didn't have them as an
3544 // <imp-use>.
3545 unsigned CurReg = SrcLane == 1 && DstLane == 1 ? DSrc : DDst;
3546 bool CurUndef = !MI->readsRegister(CurReg, TRI);
3547 NewMIB.addReg(CurReg, getUndefRegState(CurUndef));
3548
3549 CurReg = SrcLane == 0 && DstLane == 0 ? DSrc : DDst;
3550 CurUndef = !MI->readsRegister(CurReg, TRI);
3551 NewMIB.addReg(CurReg, getUndefRegState(CurUndef));
3552
3553 NewMIB.addImm(1);
3554 AddDefaultPred(NewMIB);
3555
3556 if (SrcLane == DstLane)
3557 NewMIB.addReg(SrcReg, RegState::Implicit);
3558
3559 MI->setDesc(get(ARM::VEXTd32));
3560 MIB.addReg(DDst, RegState::Define);
3561
3562 // On the second instruction, DDst has definitely been defined above, so
3563 // it is not <undef>. DSrc, if present, can be <undef> as above.
3564 CurReg = SrcLane == 1 && DstLane == 0 ? DSrc : DDst;
3565 CurUndef = CurReg == DSrc && !MI->readsRegister(CurReg, TRI);
3566 MIB.addReg(CurReg, getUndefRegState(CurUndef));
3567
3568 CurReg = SrcLane == 0 && DstLane == 1 ? DSrc : DDst;
3569 CurUndef = CurReg == DSrc && !MI->readsRegister(CurReg, TRI);
3570 MIB.addReg(CurReg, getUndefRegState(CurUndef));
3571
3572 MIB.addImm(1);
3573 AddDefaultPred(MIB);
3574
3575 if (SrcLane != DstLane)
3576 MIB.addReg(SrcReg, RegState::Implicit);
3577
3578 // As before, the original destination is no longer represented, add it
3579 // implicitly.
3580 MIB.addReg(DstReg, RegState::Define | RegState::Implicit);
3581 break;
3582 }
3583 }
3584
3585 }
3586
hasNOP() const3587 bool ARMBaseInstrInfo::hasNOP() const {
3588 return (Subtarget.getFeatureBits() & ARM::HasV6T2Ops) != 0;
3589 }
3590