1 //===-- lib/CodeGen/MachineInstr.cpp --------------------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Methods common to all machine instructions.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/CodeGen/MachineInstr.h"
15 #include "llvm/Constants.h"
16 #include "llvm/DebugInfo.h"
17 #include "llvm/Function.h"
18 #include "llvm/InlineAsm.h"
19 #include "llvm/LLVMContext.h"
20 #include "llvm/Metadata.h"
21 #include "llvm/Module.h"
22 #include "llvm/Type.h"
23 #include "llvm/Value.h"
24 #include "llvm/Assembly/Writer.h"
25 #include "llvm/CodeGen/MachineConstantPool.h"
26 #include "llvm/CodeGen/MachineFunction.h"
27 #include "llvm/CodeGen/MachineMemOperand.h"
28 #include "llvm/CodeGen/MachineModuleInfo.h"
29 #include "llvm/CodeGen/MachineRegisterInfo.h"
30 #include "llvm/CodeGen/PseudoSourceValue.h"
31 #include "llvm/MC/MCInstrDesc.h"
32 #include "llvm/MC/MCSymbol.h"
33 #include "llvm/Target/TargetMachine.h"
34 #include "llvm/Target/TargetInstrInfo.h"
35 #include "llvm/Target/TargetRegisterInfo.h"
36 #include "llvm/Analysis/AliasAnalysis.h"
37 #include "llvm/Support/Debug.h"
38 #include "llvm/Support/ErrorHandling.h"
39 #include "llvm/Support/LeakDetector.h"
40 #include "llvm/Support/MathExtras.h"
41 #include "llvm/Support/raw_ostream.h"
42 #include "llvm/ADT/FoldingSet.h"
43 #include "llvm/ADT/Hashing.h"
44 using namespace llvm;
45
46 //===----------------------------------------------------------------------===//
47 // MachineOperand Implementation
48 //===----------------------------------------------------------------------===//
49
setReg(unsigned Reg)50 void MachineOperand::setReg(unsigned Reg) {
51 if (getReg() == Reg) return; // No change.
52
53 // Otherwise, we have to change the register. If this operand is embedded
54 // into a machine function, we need to update the old and new register's
55 // use/def lists.
56 if (MachineInstr *MI = getParent())
57 if (MachineBasicBlock *MBB = MI->getParent())
58 if (MachineFunction *MF = MBB->getParent()) {
59 MachineRegisterInfo &MRI = MF->getRegInfo();
60 MRI.removeRegOperandFromUseList(this);
61 SmallContents.RegNo = Reg;
62 MRI.addRegOperandToUseList(this);
63 return;
64 }
65
66 // Otherwise, just change the register, no problem. :)
67 SmallContents.RegNo = Reg;
68 }
69
substVirtReg(unsigned Reg,unsigned SubIdx,const TargetRegisterInfo & TRI)70 void MachineOperand::substVirtReg(unsigned Reg, unsigned SubIdx,
71 const TargetRegisterInfo &TRI) {
72 assert(TargetRegisterInfo::isVirtualRegister(Reg));
73 if (SubIdx && getSubReg())
74 SubIdx = TRI.composeSubRegIndices(SubIdx, getSubReg());
75 setReg(Reg);
76 if (SubIdx)
77 setSubReg(SubIdx);
78 }
79
substPhysReg(unsigned Reg,const TargetRegisterInfo & TRI)80 void MachineOperand::substPhysReg(unsigned Reg, const TargetRegisterInfo &TRI) {
81 assert(TargetRegisterInfo::isPhysicalRegister(Reg));
82 if (getSubReg()) {
83 Reg = TRI.getSubReg(Reg, getSubReg());
84 // Note that getSubReg() may return 0 if the sub-register doesn't exist.
85 // That won't happen in legal code.
86 setSubReg(0);
87 }
88 setReg(Reg);
89 }
90
91 /// Change a def to a use, or a use to a def.
setIsDef(bool Val)92 void MachineOperand::setIsDef(bool Val) {
93 assert(isReg() && "Wrong MachineOperand accessor");
94 assert((!Val || !isDebug()) && "Marking a debug operation as def");
95 if (IsDef == Val)
96 return;
97 // MRI may keep uses and defs in different list positions.
98 if (MachineInstr *MI = getParent())
99 if (MachineBasicBlock *MBB = MI->getParent())
100 if (MachineFunction *MF = MBB->getParent()) {
101 MachineRegisterInfo &MRI = MF->getRegInfo();
102 MRI.removeRegOperandFromUseList(this);
103 IsDef = Val;
104 MRI.addRegOperandToUseList(this);
105 return;
106 }
107 IsDef = Val;
108 }
109
110 /// ChangeToImmediate - Replace this operand with a new immediate operand of
111 /// the specified value. If an operand is known to be an immediate already,
112 /// the setImm method should be used.
ChangeToImmediate(int64_t ImmVal)113 void MachineOperand::ChangeToImmediate(int64_t ImmVal) {
114 assert((!isReg() || !isTied()) && "Cannot change a tied operand into an imm");
115 // If this operand is currently a register operand, and if this is in a
116 // function, deregister the operand from the register's use/def list.
117 if (isReg() && isOnRegUseList())
118 if (MachineInstr *MI = getParent())
119 if (MachineBasicBlock *MBB = MI->getParent())
120 if (MachineFunction *MF = MBB->getParent())
121 MF->getRegInfo().removeRegOperandFromUseList(this);
122
123 OpKind = MO_Immediate;
124 Contents.ImmVal = ImmVal;
125 }
126
127 /// ChangeToRegister - Replace this operand with a new register operand of
128 /// the specified value. If an operand is known to be an register already,
129 /// the setReg method should be used.
ChangeToRegister(unsigned Reg,bool isDef,bool isImp,bool isKill,bool isDead,bool isUndef,bool isDebug)130 void MachineOperand::ChangeToRegister(unsigned Reg, bool isDef, bool isImp,
131 bool isKill, bool isDead, bool isUndef,
132 bool isDebug) {
133 MachineRegisterInfo *RegInfo = 0;
134 if (MachineInstr *MI = getParent())
135 if (MachineBasicBlock *MBB = MI->getParent())
136 if (MachineFunction *MF = MBB->getParent())
137 RegInfo = &MF->getRegInfo();
138 // If this operand is already a register operand, remove it from the
139 // register's use/def lists.
140 bool WasReg = isReg();
141 if (RegInfo && WasReg)
142 RegInfo->removeRegOperandFromUseList(this);
143
144 // Change this to a register and set the reg#.
145 OpKind = MO_Register;
146 SmallContents.RegNo = Reg;
147 SubReg = 0;
148 IsDef = isDef;
149 IsImp = isImp;
150 IsKill = isKill;
151 IsDead = isDead;
152 IsUndef = isUndef;
153 IsInternalRead = false;
154 IsEarlyClobber = false;
155 IsDebug = isDebug;
156 // Ensure isOnRegUseList() returns false.
157 Contents.Reg.Prev = 0;
158 // Preserve the tie when the operand was already a register.
159 if (!WasReg)
160 TiedTo = 0;
161
162 // If this operand is embedded in a function, add the operand to the
163 // register's use/def list.
164 if (RegInfo)
165 RegInfo->addRegOperandToUseList(this);
166 }
167
168 /// isIdenticalTo - Return true if this operand is identical to the specified
169 /// operand. Note that this should stay in sync with the hash_value overload
170 /// below.
isIdenticalTo(const MachineOperand & Other) const171 bool MachineOperand::isIdenticalTo(const MachineOperand &Other) const {
172 if (getType() != Other.getType() ||
173 getTargetFlags() != Other.getTargetFlags())
174 return false;
175
176 switch (getType()) {
177 case MachineOperand::MO_Register:
178 return getReg() == Other.getReg() && isDef() == Other.isDef() &&
179 getSubReg() == Other.getSubReg();
180 case MachineOperand::MO_Immediate:
181 return getImm() == Other.getImm();
182 case MachineOperand::MO_CImmediate:
183 return getCImm() == Other.getCImm();
184 case MachineOperand::MO_FPImmediate:
185 return getFPImm() == Other.getFPImm();
186 case MachineOperand::MO_MachineBasicBlock:
187 return getMBB() == Other.getMBB();
188 case MachineOperand::MO_FrameIndex:
189 return getIndex() == Other.getIndex();
190 case MachineOperand::MO_ConstantPoolIndex:
191 case MachineOperand::MO_TargetIndex:
192 return getIndex() == Other.getIndex() && getOffset() == Other.getOffset();
193 case MachineOperand::MO_JumpTableIndex:
194 return getIndex() == Other.getIndex();
195 case MachineOperand::MO_GlobalAddress:
196 return getGlobal() == Other.getGlobal() && getOffset() == Other.getOffset();
197 case MachineOperand::MO_ExternalSymbol:
198 return !strcmp(getSymbolName(), Other.getSymbolName()) &&
199 getOffset() == Other.getOffset();
200 case MachineOperand::MO_BlockAddress:
201 return getBlockAddress() == Other.getBlockAddress();
202 case MO_RegisterMask:
203 return getRegMask() == Other.getRegMask();
204 case MachineOperand::MO_MCSymbol:
205 return getMCSymbol() == Other.getMCSymbol();
206 case MachineOperand::MO_Metadata:
207 return getMetadata() == Other.getMetadata();
208 }
209 llvm_unreachable("Invalid machine operand type");
210 }
211
212 // Note: this must stay exactly in sync with isIdenticalTo above.
hash_value(const MachineOperand & MO)213 hash_code llvm::hash_value(const MachineOperand &MO) {
214 switch (MO.getType()) {
215 case MachineOperand::MO_Register:
216 // Register operands don't have target flags.
217 return hash_combine(MO.getType(), MO.getReg(), MO.getSubReg(), MO.isDef());
218 case MachineOperand::MO_Immediate:
219 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getImm());
220 case MachineOperand::MO_CImmediate:
221 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getCImm());
222 case MachineOperand::MO_FPImmediate:
223 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getFPImm());
224 case MachineOperand::MO_MachineBasicBlock:
225 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getMBB());
226 case MachineOperand::MO_FrameIndex:
227 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getIndex());
228 case MachineOperand::MO_ConstantPoolIndex:
229 case MachineOperand::MO_TargetIndex:
230 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getIndex(),
231 MO.getOffset());
232 case MachineOperand::MO_JumpTableIndex:
233 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getIndex());
234 case MachineOperand::MO_ExternalSymbol:
235 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getOffset(),
236 MO.getSymbolName());
237 case MachineOperand::MO_GlobalAddress:
238 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getGlobal(),
239 MO.getOffset());
240 case MachineOperand::MO_BlockAddress:
241 return hash_combine(MO.getType(), MO.getTargetFlags(),
242 MO.getBlockAddress());
243 case MachineOperand::MO_RegisterMask:
244 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getRegMask());
245 case MachineOperand::MO_Metadata:
246 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getMetadata());
247 case MachineOperand::MO_MCSymbol:
248 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getMCSymbol());
249 }
250 llvm_unreachable("Invalid machine operand type");
251 }
252
253 /// print - Print the specified machine operand.
254 ///
print(raw_ostream & OS,const TargetMachine * TM) const255 void MachineOperand::print(raw_ostream &OS, const TargetMachine *TM) const {
256 // If the instruction is embedded into a basic block, we can find the
257 // target info for the instruction.
258 if (!TM)
259 if (const MachineInstr *MI = getParent())
260 if (const MachineBasicBlock *MBB = MI->getParent())
261 if (const MachineFunction *MF = MBB->getParent())
262 TM = &MF->getTarget();
263 const TargetRegisterInfo *TRI = TM ? TM->getRegisterInfo() : 0;
264
265 switch (getType()) {
266 case MachineOperand::MO_Register:
267 OS << PrintReg(getReg(), TRI, getSubReg());
268
269 if (isDef() || isKill() || isDead() || isImplicit() || isUndef() ||
270 isInternalRead() || isEarlyClobber() || isTied()) {
271 OS << '<';
272 bool NeedComma = false;
273 if (isDef()) {
274 if (NeedComma) OS << ',';
275 if (isEarlyClobber())
276 OS << "earlyclobber,";
277 if (isImplicit())
278 OS << "imp-";
279 OS << "def";
280 NeedComma = true;
281 // <def,read-undef> only makes sense when getSubReg() is set.
282 // Don't clutter the output otherwise.
283 if (isUndef() && getSubReg())
284 OS << ",read-undef";
285 } else if (isImplicit()) {
286 OS << "imp-use";
287 NeedComma = true;
288 }
289
290 if (isKill()) {
291 if (NeedComma) OS << ',';
292 OS << "kill";
293 NeedComma = true;
294 }
295 if (isDead()) {
296 if (NeedComma) OS << ',';
297 OS << "dead";
298 NeedComma = true;
299 }
300 if (isUndef() && isUse()) {
301 if (NeedComma) OS << ',';
302 OS << "undef";
303 NeedComma = true;
304 }
305 if (isInternalRead()) {
306 if (NeedComma) OS << ',';
307 OS << "internal";
308 NeedComma = true;
309 }
310 if (isTied()) {
311 if (NeedComma) OS << ',';
312 OS << "tied";
313 if (TiedTo != 15)
314 OS << unsigned(TiedTo - 1);
315 NeedComma = true;
316 }
317 OS << '>';
318 }
319 break;
320 case MachineOperand::MO_Immediate:
321 OS << getImm();
322 break;
323 case MachineOperand::MO_CImmediate:
324 getCImm()->getValue().print(OS, false);
325 break;
326 case MachineOperand::MO_FPImmediate:
327 if (getFPImm()->getType()->isFloatTy())
328 OS << getFPImm()->getValueAPF().convertToFloat();
329 else
330 OS << getFPImm()->getValueAPF().convertToDouble();
331 break;
332 case MachineOperand::MO_MachineBasicBlock:
333 OS << "<BB#" << getMBB()->getNumber() << ">";
334 break;
335 case MachineOperand::MO_FrameIndex:
336 OS << "<fi#" << getIndex() << '>';
337 break;
338 case MachineOperand::MO_ConstantPoolIndex:
339 OS << "<cp#" << getIndex();
340 if (getOffset()) OS << "+" << getOffset();
341 OS << '>';
342 break;
343 case MachineOperand::MO_TargetIndex:
344 OS << "<ti#" << getIndex();
345 if (getOffset()) OS << "+" << getOffset();
346 OS << '>';
347 break;
348 case MachineOperand::MO_JumpTableIndex:
349 OS << "<jt#" << getIndex() << '>';
350 break;
351 case MachineOperand::MO_GlobalAddress:
352 OS << "<ga:";
353 WriteAsOperand(OS, getGlobal(), /*PrintType=*/false);
354 if (getOffset()) OS << "+" << getOffset();
355 OS << '>';
356 break;
357 case MachineOperand::MO_ExternalSymbol:
358 OS << "<es:" << getSymbolName();
359 if (getOffset()) OS << "+" << getOffset();
360 OS << '>';
361 break;
362 case MachineOperand::MO_BlockAddress:
363 OS << '<';
364 WriteAsOperand(OS, getBlockAddress(), /*PrintType=*/false);
365 OS << '>';
366 break;
367 case MachineOperand::MO_RegisterMask:
368 OS << "<regmask>";
369 break;
370 case MachineOperand::MO_Metadata:
371 OS << '<';
372 WriteAsOperand(OS, getMetadata(), /*PrintType=*/false);
373 OS << '>';
374 break;
375 case MachineOperand::MO_MCSymbol:
376 OS << "<MCSym=" << *getMCSymbol() << '>';
377 break;
378 }
379
380 if (unsigned TF = getTargetFlags())
381 OS << "[TF=" << TF << ']';
382 }
383
384 //===----------------------------------------------------------------------===//
385 // MachineMemOperand Implementation
386 //===----------------------------------------------------------------------===//
387
388 /// getAddrSpace - Return the LLVM IR address space number that this pointer
389 /// points into.
getAddrSpace() const390 unsigned MachinePointerInfo::getAddrSpace() const {
391 if (V == 0) return 0;
392 return cast<PointerType>(V->getType())->getAddressSpace();
393 }
394
395 /// getConstantPool - Return a MachinePointerInfo record that refers to the
396 /// constant pool.
getConstantPool()397 MachinePointerInfo MachinePointerInfo::getConstantPool() {
398 return MachinePointerInfo(PseudoSourceValue::getConstantPool());
399 }
400
401 /// getFixedStack - Return a MachinePointerInfo record that refers to the
402 /// the specified FrameIndex.
getFixedStack(int FI,int64_t offset)403 MachinePointerInfo MachinePointerInfo::getFixedStack(int FI, int64_t offset) {
404 return MachinePointerInfo(PseudoSourceValue::getFixedStack(FI), offset);
405 }
406
getJumpTable()407 MachinePointerInfo MachinePointerInfo::getJumpTable() {
408 return MachinePointerInfo(PseudoSourceValue::getJumpTable());
409 }
410
getGOT()411 MachinePointerInfo MachinePointerInfo::getGOT() {
412 return MachinePointerInfo(PseudoSourceValue::getGOT());
413 }
414
getStack(int64_t Offset)415 MachinePointerInfo MachinePointerInfo::getStack(int64_t Offset) {
416 return MachinePointerInfo(PseudoSourceValue::getStack(), Offset);
417 }
418
MachineMemOperand(MachinePointerInfo ptrinfo,unsigned f,uint64_t s,unsigned int a,const MDNode * TBAAInfo,const MDNode * Ranges)419 MachineMemOperand::MachineMemOperand(MachinePointerInfo ptrinfo, unsigned f,
420 uint64_t s, unsigned int a,
421 const MDNode *TBAAInfo,
422 const MDNode *Ranges)
423 : PtrInfo(ptrinfo), Size(s),
424 Flags((f & ((1 << MOMaxBits) - 1)) | ((Log2_32(a) + 1) << MOMaxBits)),
425 TBAAInfo(TBAAInfo), Ranges(Ranges) {
426 assert((PtrInfo.V == 0 || isa<PointerType>(PtrInfo.V->getType())) &&
427 "invalid pointer value");
428 assert(getBaseAlignment() == a && "Alignment is not a power of 2!");
429 assert((isLoad() || isStore()) && "Not a load/store!");
430 }
431
432 /// Profile - Gather unique data for the object.
433 ///
Profile(FoldingSetNodeID & ID) const434 void MachineMemOperand::Profile(FoldingSetNodeID &ID) const {
435 ID.AddInteger(getOffset());
436 ID.AddInteger(Size);
437 ID.AddPointer(getValue());
438 ID.AddInteger(Flags);
439 }
440
refineAlignment(const MachineMemOperand * MMO)441 void MachineMemOperand::refineAlignment(const MachineMemOperand *MMO) {
442 // The Value and Offset may differ due to CSE. But the flags and size
443 // should be the same.
444 assert(MMO->getFlags() == getFlags() && "Flags mismatch!");
445 assert(MMO->getSize() == getSize() && "Size mismatch!");
446
447 if (MMO->getBaseAlignment() >= getBaseAlignment()) {
448 // Update the alignment value.
449 Flags = (Flags & ((1 << MOMaxBits) - 1)) |
450 ((Log2_32(MMO->getBaseAlignment()) + 1) << MOMaxBits);
451 // Also update the base and offset, because the new alignment may
452 // not be applicable with the old ones.
453 PtrInfo = MMO->PtrInfo;
454 }
455 }
456
457 /// getAlignment - Return the minimum known alignment in bytes of the
458 /// actual memory reference.
getAlignment() const459 uint64_t MachineMemOperand::getAlignment() const {
460 return MinAlign(getBaseAlignment(), getOffset());
461 }
462
operator <<(raw_ostream & OS,const MachineMemOperand & MMO)463 raw_ostream &llvm::operator<<(raw_ostream &OS, const MachineMemOperand &MMO) {
464 assert((MMO.isLoad() || MMO.isStore()) &&
465 "SV has to be a load, store or both.");
466
467 if (MMO.isVolatile())
468 OS << "Volatile ";
469
470 if (MMO.isLoad())
471 OS << "LD";
472 if (MMO.isStore())
473 OS << "ST";
474 OS << MMO.getSize();
475
476 // Print the address information.
477 OS << "[";
478 if (!MMO.getValue())
479 OS << "<unknown>";
480 else
481 WriteAsOperand(OS, MMO.getValue(), /*PrintType=*/false);
482
483 // If the alignment of the memory reference itself differs from the alignment
484 // of the base pointer, print the base alignment explicitly, next to the base
485 // pointer.
486 if (MMO.getBaseAlignment() != MMO.getAlignment())
487 OS << "(align=" << MMO.getBaseAlignment() << ")";
488
489 if (MMO.getOffset() != 0)
490 OS << "+" << MMO.getOffset();
491 OS << "]";
492
493 // Print the alignment of the reference.
494 if (MMO.getBaseAlignment() != MMO.getAlignment() ||
495 MMO.getBaseAlignment() != MMO.getSize())
496 OS << "(align=" << MMO.getAlignment() << ")";
497
498 // Print TBAA info.
499 if (const MDNode *TBAAInfo = MMO.getTBAAInfo()) {
500 OS << "(tbaa=";
501 if (TBAAInfo->getNumOperands() > 0)
502 WriteAsOperand(OS, TBAAInfo->getOperand(0), /*PrintType=*/false);
503 else
504 OS << "<unknown>";
505 OS << ")";
506 }
507
508 // Print nontemporal info.
509 if (MMO.isNonTemporal())
510 OS << "(nontemporal)";
511
512 return OS;
513 }
514
515 //===----------------------------------------------------------------------===//
516 // MachineInstr Implementation
517 //===----------------------------------------------------------------------===//
518
519 /// MachineInstr ctor - This constructor creates a dummy MachineInstr with
520 /// MCID NULL and no operands.
MachineInstr()521 MachineInstr::MachineInstr()
522 : MCID(0), Flags(0), AsmPrinterFlags(0),
523 NumMemRefs(0), MemRefs(0),
524 Parent(0) {
525 // Make sure that we get added to a machine basicblock
526 LeakDetector::addGarbageObject(this);
527 }
528
addImplicitDefUseOperands()529 void MachineInstr::addImplicitDefUseOperands() {
530 if (MCID->ImplicitDefs)
531 for (const uint16_t *ImpDefs = MCID->getImplicitDefs(); *ImpDefs; ++ImpDefs)
532 addOperand(MachineOperand::CreateReg(*ImpDefs, true, true));
533 if (MCID->ImplicitUses)
534 for (const uint16_t *ImpUses = MCID->getImplicitUses(); *ImpUses; ++ImpUses)
535 addOperand(MachineOperand::CreateReg(*ImpUses, false, true));
536 }
537
538 /// MachineInstr ctor - This constructor creates a MachineInstr and adds the
539 /// implicit operands. It reserves space for the number of operands specified by
540 /// the MCInstrDesc.
MachineInstr(const MCInstrDesc & tid,bool NoImp)541 MachineInstr::MachineInstr(const MCInstrDesc &tid, bool NoImp)
542 : MCID(&tid), Flags(0), AsmPrinterFlags(0),
543 NumMemRefs(0), MemRefs(0), Parent(0) {
544 unsigned NumImplicitOps = 0;
545 if (!NoImp)
546 NumImplicitOps = MCID->getNumImplicitDefs() + MCID->getNumImplicitUses();
547 Operands.reserve(NumImplicitOps + MCID->getNumOperands());
548 if (!NoImp)
549 addImplicitDefUseOperands();
550 // Make sure that we get added to a machine basicblock
551 LeakDetector::addGarbageObject(this);
552 }
553
554 /// MachineInstr ctor - As above, but with a DebugLoc.
MachineInstr(const MCInstrDesc & tid,const DebugLoc dl,bool NoImp)555 MachineInstr::MachineInstr(const MCInstrDesc &tid, const DebugLoc dl,
556 bool NoImp)
557 : MCID(&tid), Flags(0), AsmPrinterFlags(0),
558 NumMemRefs(0), MemRefs(0), Parent(0), debugLoc(dl) {
559 unsigned NumImplicitOps = 0;
560 if (!NoImp)
561 NumImplicitOps = MCID->getNumImplicitDefs() + MCID->getNumImplicitUses();
562 Operands.reserve(NumImplicitOps + MCID->getNumOperands());
563 if (!NoImp)
564 addImplicitDefUseOperands();
565 // Make sure that we get added to a machine basicblock
566 LeakDetector::addGarbageObject(this);
567 }
568
569 /// MachineInstr ctor - Work exactly the same as the ctor two above, except
570 /// that the MachineInstr is created and added to the end of the specified
571 /// basic block.
MachineInstr(MachineBasicBlock * MBB,const MCInstrDesc & tid)572 MachineInstr::MachineInstr(MachineBasicBlock *MBB, const MCInstrDesc &tid)
573 : MCID(&tid), Flags(0), AsmPrinterFlags(0),
574 NumMemRefs(0), MemRefs(0), Parent(0) {
575 assert(MBB && "Cannot use inserting ctor with null basic block!");
576 unsigned NumImplicitOps =
577 MCID->getNumImplicitDefs() + MCID->getNumImplicitUses();
578 Operands.reserve(NumImplicitOps + MCID->getNumOperands());
579 addImplicitDefUseOperands();
580 // Make sure that we get added to a machine basicblock
581 LeakDetector::addGarbageObject(this);
582 MBB->push_back(this); // Add instruction to end of basic block!
583 }
584
585 /// MachineInstr ctor - As above, but with a DebugLoc.
586 ///
MachineInstr(MachineBasicBlock * MBB,const DebugLoc dl,const MCInstrDesc & tid)587 MachineInstr::MachineInstr(MachineBasicBlock *MBB, const DebugLoc dl,
588 const MCInstrDesc &tid)
589 : MCID(&tid), Flags(0), AsmPrinterFlags(0),
590 NumMemRefs(0), MemRefs(0), Parent(0), debugLoc(dl) {
591 assert(MBB && "Cannot use inserting ctor with null basic block!");
592 unsigned NumImplicitOps =
593 MCID->getNumImplicitDefs() + MCID->getNumImplicitUses();
594 Operands.reserve(NumImplicitOps + MCID->getNumOperands());
595 addImplicitDefUseOperands();
596 // Make sure that we get added to a machine basicblock
597 LeakDetector::addGarbageObject(this);
598 MBB->push_back(this); // Add instruction to end of basic block!
599 }
600
601 /// MachineInstr ctor - Copies MachineInstr arg exactly
602 ///
MachineInstr(MachineFunction & MF,const MachineInstr & MI)603 MachineInstr::MachineInstr(MachineFunction &MF, const MachineInstr &MI)
604 : MCID(&MI.getDesc()), Flags(0), AsmPrinterFlags(0),
605 NumMemRefs(MI.NumMemRefs), MemRefs(MI.MemRefs),
606 Parent(0), debugLoc(MI.getDebugLoc()) {
607 Operands.reserve(MI.getNumOperands());
608
609 // Add operands
610 for (unsigned i = 0; i != MI.getNumOperands(); ++i)
611 addOperand(MI.getOperand(i));
612
613 // Copy all the flags.
614 Flags = MI.Flags;
615
616 // Set parent to null.
617 Parent = 0;
618
619 LeakDetector::addGarbageObject(this);
620 }
621
~MachineInstr()622 MachineInstr::~MachineInstr() {
623 LeakDetector::removeGarbageObject(this);
624 #ifndef NDEBUG
625 for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
626 assert(Operands[i].ParentMI == this && "ParentMI mismatch!");
627 assert((!Operands[i].isReg() || !Operands[i].isOnRegUseList()) &&
628 "Reg operand def/use list corrupted");
629 }
630 #endif
631 }
632
633 /// getRegInfo - If this instruction is embedded into a MachineFunction,
634 /// return the MachineRegisterInfo object for the current function, otherwise
635 /// return null.
getRegInfo()636 MachineRegisterInfo *MachineInstr::getRegInfo() {
637 if (MachineBasicBlock *MBB = getParent())
638 return &MBB->getParent()->getRegInfo();
639 return 0;
640 }
641
642 /// RemoveRegOperandsFromUseLists - Unlink all of the register operands in
643 /// this instruction from their respective use lists. This requires that the
644 /// operands already be on their use lists.
RemoveRegOperandsFromUseLists(MachineRegisterInfo & MRI)645 void MachineInstr::RemoveRegOperandsFromUseLists(MachineRegisterInfo &MRI) {
646 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
647 if (Operands[i].isReg())
648 MRI.removeRegOperandFromUseList(&Operands[i]);
649 }
650
651 /// AddRegOperandsToUseLists - Add all of the register operands in
652 /// this instruction from their respective use lists. This requires that the
653 /// operands not be on their use lists yet.
AddRegOperandsToUseLists(MachineRegisterInfo & MRI)654 void MachineInstr::AddRegOperandsToUseLists(MachineRegisterInfo &MRI) {
655 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
656 if (Operands[i].isReg())
657 MRI.addRegOperandToUseList(&Operands[i]);
658 }
659
660 /// addOperand - Add the specified operand to the instruction. If it is an
661 /// implicit operand, it is added to the end of the operand list. If it is
662 /// an explicit operand it is added at the end of the explicit operand list
663 /// (before the first implicit operand).
addOperand(const MachineOperand & Op)664 void MachineInstr::addOperand(const MachineOperand &Op) {
665 assert(MCID && "Cannot add operands before providing an instr descriptor");
666 bool isImpReg = Op.isReg() && Op.isImplicit();
667 MachineRegisterInfo *RegInfo = getRegInfo();
668
669 // If the Operands backing store is reallocated, all register operands must
670 // be removed and re-added to RegInfo. It is storing pointers to operands.
671 bool Reallocate = RegInfo &&
672 !Operands.empty() && Operands.size() == Operands.capacity();
673
674 // Find the insert location for the new operand. Implicit registers go at
675 // the end, everything goes before the implicit regs.
676 unsigned OpNo = Operands.size();
677
678 // Remove all the implicit operands from RegInfo if they need to be shifted.
679 // FIXME: Allow mixed explicit and implicit operands on inline asm.
680 // InstrEmitter::EmitSpecialNode() is marking inline asm clobbers as
681 // implicit-defs, but they must not be moved around. See the FIXME in
682 // InstrEmitter.cpp.
683 if (!isImpReg && !isInlineAsm()) {
684 while (OpNo && Operands[OpNo-1].isReg() && Operands[OpNo-1].isImplicit()) {
685 --OpNo;
686 assert(!Operands[OpNo].isTied() && "Cannot move tied operands");
687 if (RegInfo)
688 RegInfo->removeRegOperandFromUseList(&Operands[OpNo]);
689 }
690 }
691
692 // OpNo now points as the desired insertion point. Unless this is a variadic
693 // instruction, only implicit regs are allowed beyond MCID->getNumOperands().
694 // RegMask operands go between the explicit and implicit operands.
695 assert((isImpReg || Op.isRegMask() || MCID->isVariadic() ||
696 OpNo < MCID->getNumOperands()) &&
697 "Trying to add an operand to a machine instr that is already done!");
698
699 // All operands from OpNo have been removed from RegInfo. If the Operands
700 // backing store needs to be reallocated, we also need to remove any other
701 // register operands.
702 if (Reallocate)
703 for (unsigned i = 0; i != OpNo; ++i)
704 if (Operands[i].isReg())
705 RegInfo->removeRegOperandFromUseList(&Operands[i]);
706
707 // Insert the new operand at OpNo.
708 Operands.insert(Operands.begin() + OpNo, Op);
709 Operands[OpNo].ParentMI = this;
710
711 // The Operands backing store has now been reallocated, so we can re-add the
712 // operands before OpNo.
713 if (Reallocate)
714 for (unsigned i = 0; i != OpNo; ++i)
715 if (Operands[i].isReg())
716 RegInfo->addRegOperandToUseList(&Operands[i]);
717
718 // When adding a register operand, tell RegInfo about it.
719 if (Operands[OpNo].isReg()) {
720 // Ensure isOnRegUseList() returns false, regardless of Op's status.
721 Operands[OpNo].Contents.Reg.Prev = 0;
722 // Ignore existing ties. This is not a property that can be copied.
723 Operands[OpNo].TiedTo = 0;
724 // Add the new operand to RegInfo.
725 if (RegInfo)
726 RegInfo->addRegOperandToUseList(&Operands[OpNo]);
727 // The MCID operand information isn't accurate until we start adding
728 // explicit operands. The implicit operands are added first, then the
729 // explicits are inserted before them.
730 if (!isImpReg) {
731 // Tie uses to defs as indicated in MCInstrDesc.
732 if (Operands[OpNo].isUse()) {
733 int DefIdx = MCID->getOperandConstraint(OpNo, MCOI::TIED_TO);
734 if (DefIdx != -1)
735 tieOperands(DefIdx, OpNo);
736 }
737 // If the register operand is flagged as early, mark the operand as such.
738 if (MCID->getOperandConstraint(OpNo, MCOI::EARLY_CLOBBER) != -1)
739 Operands[OpNo].setIsEarlyClobber(true);
740 }
741 }
742
743 // Re-add all the implicit ops.
744 if (RegInfo) {
745 for (unsigned i = OpNo + 1, e = Operands.size(); i != e; ++i) {
746 assert(Operands[i].isReg() && "Should only be an implicit reg!");
747 RegInfo->addRegOperandToUseList(&Operands[i]);
748 }
749 }
750 }
751
752 /// RemoveOperand - Erase an operand from an instruction, leaving it with one
753 /// fewer operand than it started with.
754 ///
RemoveOperand(unsigned OpNo)755 void MachineInstr::RemoveOperand(unsigned OpNo) {
756 assert(OpNo < Operands.size() && "Invalid operand number");
757 untieRegOperand(OpNo);
758 MachineRegisterInfo *RegInfo = getRegInfo();
759
760 // Special case removing the last one.
761 if (OpNo == Operands.size()-1) {
762 // If needed, remove from the reg def/use list.
763 if (RegInfo && Operands.back().isReg() && Operands.back().isOnRegUseList())
764 RegInfo->removeRegOperandFromUseList(&Operands.back());
765
766 Operands.pop_back();
767 return;
768 }
769
770 // Otherwise, we are removing an interior operand. If we have reginfo to
771 // update, remove all operands that will be shifted down from their reg lists,
772 // move everything down, then re-add them.
773 if (RegInfo) {
774 for (unsigned i = OpNo, e = Operands.size(); i != e; ++i) {
775 if (Operands[i].isReg())
776 RegInfo->removeRegOperandFromUseList(&Operands[i]);
777 }
778 }
779
780 #ifndef NDEBUG
781 // Moving tied operands would break the ties.
782 for (unsigned i = OpNo + 1, e = Operands.size(); i != e; ++i)
783 if (Operands[i].isReg())
784 assert(!Operands[i].isTied() && "Cannot move tied operands");
785 #endif
786
787 Operands.erase(Operands.begin()+OpNo);
788
789 if (RegInfo) {
790 for (unsigned i = OpNo, e = Operands.size(); i != e; ++i) {
791 if (Operands[i].isReg())
792 RegInfo->addRegOperandToUseList(&Operands[i]);
793 }
794 }
795 }
796
797 /// addMemOperand - Add a MachineMemOperand to the machine instruction.
798 /// This function should be used only occasionally. The setMemRefs function
799 /// is the primary method for setting up a MachineInstr's MemRefs list.
addMemOperand(MachineFunction & MF,MachineMemOperand * MO)800 void MachineInstr::addMemOperand(MachineFunction &MF,
801 MachineMemOperand *MO) {
802 mmo_iterator OldMemRefs = MemRefs;
803 uint16_t OldNumMemRefs = NumMemRefs;
804
805 uint16_t NewNum = NumMemRefs + 1;
806 mmo_iterator NewMemRefs = MF.allocateMemRefsArray(NewNum);
807
808 std::copy(OldMemRefs, OldMemRefs + OldNumMemRefs, NewMemRefs);
809 NewMemRefs[NewNum - 1] = MO;
810
811 MemRefs = NewMemRefs;
812 NumMemRefs = NewNum;
813 }
814
hasPropertyInBundle(unsigned Mask,QueryType Type) const815 bool MachineInstr::hasPropertyInBundle(unsigned Mask, QueryType Type) const {
816 const MachineBasicBlock *MBB = getParent();
817 MachineBasicBlock::const_instr_iterator MII = *this; ++MII;
818 while (MII != MBB->end() && MII->isInsideBundle()) {
819 if (MII->getDesc().getFlags() & Mask) {
820 if (Type == AnyInBundle)
821 return true;
822 } else {
823 if (Type == AllInBundle)
824 return false;
825 }
826 ++MII;
827 }
828
829 return Type == AllInBundle;
830 }
831
isIdenticalTo(const MachineInstr * Other,MICheckType Check) const832 bool MachineInstr::isIdenticalTo(const MachineInstr *Other,
833 MICheckType Check) const {
834 // If opcodes or number of operands are not the same then the two
835 // instructions are obviously not identical.
836 if (Other->getOpcode() != getOpcode() ||
837 Other->getNumOperands() != getNumOperands())
838 return false;
839
840 if (isBundle()) {
841 // Both instructions are bundles, compare MIs inside the bundle.
842 MachineBasicBlock::const_instr_iterator I1 = *this;
843 MachineBasicBlock::const_instr_iterator E1 = getParent()->instr_end();
844 MachineBasicBlock::const_instr_iterator I2 = *Other;
845 MachineBasicBlock::const_instr_iterator E2= Other->getParent()->instr_end();
846 while (++I1 != E1 && I1->isInsideBundle()) {
847 ++I2;
848 if (I2 == E2 || !I2->isInsideBundle() || !I1->isIdenticalTo(I2, Check))
849 return false;
850 }
851 }
852
853 // Check operands to make sure they match.
854 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
855 const MachineOperand &MO = getOperand(i);
856 const MachineOperand &OMO = Other->getOperand(i);
857 if (!MO.isReg()) {
858 if (!MO.isIdenticalTo(OMO))
859 return false;
860 continue;
861 }
862
863 // Clients may or may not want to ignore defs when testing for equality.
864 // For example, machine CSE pass only cares about finding common
865 // subexpressions, so it's safe to ignore virtual register defs.
866 if (MO.isDef()) {
867 if (Check == IgnoreDefs)
868 continue;
869 else if (Check == IgnoreVRegDefs) {
870 if (TargetRegisterInfo::isPhysicalRegister(MO.getReg()) ||
871 TargetRegisterInfo::isPhysicalRegister(OMO.getReg()))
872 if (MO.getReg() != OMO.getReg())
873 return false;
874 } else {
875 if (!MO.isIdenticalTo(OMO))
876 return false;
877 if (Check == CheckKillDead && MO.isDead() != OMO.isDead())
878 return false;
879 }
880 } else {
881 if (!MO.isIdenticalTo(OMO))
882 return false;
883 if (Check == CheckKillDead && MO.isKill() != OMO.isKill())
884 return false;
885 }
886 }
887 // If DebugLoc does not match then two dbg.values are not identical.
888 if (isDebugValue())
889 if (!getDebugLoc().isUnknown() && !Other->getDebugLoc().isUnknown()
890 && getDebugLoc() != Other->getDebugLoc())
891 return false;
892 return true;
893 }
894
895 /// removeFromParent - This method unlinks 'this' from the containing basic
896 /// block, and returns it, but does not delete it.
removeFromParent()897 MachineInstr *MachineInstr::removeFromParent() {
898 assert(getParent() && "Not embedded in a basic block!");
899
900 // If it's a bundle then remove the MIs inside the bundle as well.
901 if (isBundle()) {
902 MachineBasicBlock *MBB = getParent();
903 MachineBasicBlock::instr_iterator MII = *this; ++MII;
904 MachineBasicBlock::instr_iterator E = MBB->instr_end();
905 while (MII != E && MII->isInsideBundle()) {
906 MachineInstr *MI = &*MII;
907 ++MII;
908 MBB->remove(MI);
909 }
910 }
911 getParent()->remove(this);
912 return this;
913 }
914
915
916 /// eraseFromParent - This method unlinks 'this' from the containing basic
917 /// block, and deletes it.
eraseFromParent()918 void MachineInstr::eraseFromParent() {
919 assert(getParent() && "Not embedded in a basic block!");
920 // If it's a bundle then remove the MIs inside the bundle as well.
921 if (isBundle()) {
922 MachineBasicBlock *MBB = getParent();
923 MachineBasicBlock::instr_iterator MII = *this; ++MII;
924 MachineBasicBlock::instr_iterator E = MBB->instr_end();
925 while (MII != E && MII->isInsideBundle()) {
926 MachineInstr *MI = &*MII;
927 ++MII;
928 MBB->erase(MI);
929 }
930 }
931 // Erase the individual instruction, which may itself be inside a bundle.
932 getParent()->erase_instr(this);
933 }
934
935
936 /// getNumExplicitOperands - Returns the number of non-implicit operands.
937 ///
getNumExplicitOperands() const938 unsigned MachineInstr::getNumExplicitOperands() const {
939 unsigned NumOperands = MCID->getNumOperands();
940 if (!MCID->isVariadic())
941 return NumOperands;
942
943 for (unsigned i = NumOperands, e = getNumOperands(); i != e; ++i) {
944 const MachineOperand &MO = getOperand(i);
945 if (!MO.isReg() || !MO.isImplicit())
946 NumOperands++;
947 }
948 return NumOperands;
949 }
950
951 /// isBundled - Return true if this instruction part of a bundle. This is true
952 /// if either itself or its following instruction is marked "InsideBundle".
isBundled() const953 bool MachineInstr::isBundled() const {
954 if (isInsideBundle())
955 return true;
956 MachineBasicBlock::const_instr_iterator nextMI = this;
957 ++nextMI;
958 return nextMI != Parent->instr_end() && nextMI->isInsideBundle();
959 }
960
isStackAligningInlineAsm() const961 bool MachineInstr::isStackAligningInlineAsm() const {
962 if (isInlineAsm()) {
963 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
964 if (ExtraInfo & InlineAsm::Extra_IsAlignStack)
965 return true;
966 }
967 return false;
968 }
969
getInlineAsmDialect() const970 InlineAsm::AsmDialect MachineInstr::getInlineAsmDialect() const {
971 assert(isInlineAsm() && "getInlineAsmDialect() only works for inline asms!");
972 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
973 return InlineAsm::AsmDialect((ExtraInfo & InlineAsm::Extra_AsmDialect) != 0);
974 }
975
findInlineAsmFlagIdx(unsigned OpIdx,unsigned * GroupNo) const976 int MachineInstr::findInlineAsmFlagIdx(unsigned OpIdx,
977 unsigned *GroupNo) const {
978 assert(isInlineAsm() && "Expected an inline asm instruction");
979 assert(OpIdx < getNumOperands() && "OpIdx out of range");
980
981 // Ignore queries about the initial operands.
982 if (OpIdx < InlineAsm::MIOp_FirstOperand)
983 return -1;
984
985 unsigned Group = 0;
986 unsigned NumOps;
987 for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e;
988 i += NumOps) {
989 const MachineOperand &FlagMO = getOperand(i);
990 // If we reach the implicit register operands, stop looking.
991 if (!FlagMO.isImm())
992 return -1;
993 NumOps = 1 + InlineAsm::getNumOperandRegisters(FlagMO.getImm());
994 if (i + NumOps > OpIdx) {
995 if (GroupNo)
996 *GroupNo = Group;
997 return i;
998 }
999 ++Group;
1000 }
1001 return -1;
1002 }
1003
1004 const TargetRegisterClass*
getRegClassConstraint(unsigned OpIdx,const TargetInstrInfo * TII,const TargetRegisterInfo * TRI) const1005 MachineInstr::getRegClassConstraint(unsigned OpIdx,
1006 const TargetInstrInfo *TII,
1007 const TargetRegisterInfo *TRI) const {
1008 assert(getParent() && "Can't have an MBB reference here!");
1009 assert(getParent()->getParent() && "Can't have an MF reference here!");
1010 const MachineFunction &MF = *getParent()->getParent();
1011
1012 // Most opcodes have fixed constraints in their MCInstrDesc.
1013 if (!isInlineAsm())
1014 return TII->getRegClass(getDesc(), OpIdx, TRI, MF);
1015
1016 if (!getOperand(OpIdx).isReg())
1017 return NULL;
1018
1019 // For tied uses on inline asm, get the constraint from the def.
1020 unsigned DefIdx;
1021 if (getOperand(OpIdx).isUse() && isRegTiedToDefOperand(OpIdx, &DefIdx))
1022 OpIdx = DefIdx;
1023
1024 // Inline asm stores register class constraints in the flag word.
1025 int FlagIdx = findInlineAsmFlagIdx(OpIdx);
1026 if (FlagIdx < 0)
1027 return NULL;
1028
1029 unsigned Flag = getOperand(FlagIdx).getImm();
1030 unsigned RCID;
1031 if (InlineAsm::hasRegClassConstraint(Flag, RCID))
1032 return TRI->getRegClass(RCID);
1033
1034 // Assume that all registers in a memory operand are pointers.
1035 if (InlineAsm::getKind(Flag) == InlineAsm::Kind_Mem)
1036 return TRI->getPointerRegClass(MF);
1037
1038 return NULL;
1039 }
1040
1041 /// getBundleSize - Return the number of instructions inside the MI bundle.
getBundleSize() const1042 unsigned MachineInstr::getBundleSize() const {
1043 assert(isBundle() && "Expecting a bundle");
1044
1045 MachineBasicBlock::const_instr_iterator I = *this;
1046 unsigned Size = 0;
1047 while ((++I)->isInsideBundle()) {
1048 ++Size;
1049 }
1050 assert(Size > 1 && "Malformed bundle");
1051
1052 return Size;
1053 }
1054
1055 /// findRegisterUseOperandIdx() - Returns the MachineOperand that is a use of
1056 /// the specific register or -1 if it is not found. It further tightens
1057 /// the search criteria to a use that kills the register if isKill is true.
findRegisterUseOperandIdx(unsigned Reg,bool isKill,const TargetRegisterInfo * TRI) const1058 int MachineInstr::findRegisterUseOperandIdx(unsigned Reg, bool isKill,
1059 const TargetRegisterInfo *TRI) const {
1060 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1061 const MachineOperand &MO = getOperand(i);
1062 if (!MO.isReg() || !MO.isUse())
1063 continue;
1064 unsigned MOReg = MO.getReg();
1065 if (!MOReg)
1066 continue;
1067 if (MOReg == Reg ||
1068 (TRI &&
1069 TargetRegisterInfo::isPhysicalRegister(MOReg) &&
1070 TargetRegisterInfo::isPhysicalRegister(Reg) &&
1071 TRI->isSubRegister(MOReg, Reg)))
1072 if (!isKill || MO.isKill())
1073 return i;
1074 }
1075 return -1;
1076 }
1077
1078 /// readsWritesVirtualRegister - Return a pair of bools (reads, writes)
1079 /// indicating if this instruction reads or writes Reg. This also considers
1080 /// partial defines.
1081 std::pair<bool,bool>
readsWritesVirtualRegister(unsigned Reg,SmallVectorImpl<unsigned> * Ops) const1082 MachineInstr::readsWritesVirtualRegister(unsigned Reg,
1083 SmallVectorImpl<unsigned> *Ops) const {
1084 bool PartDef = false; // Partial redefine.
1085 bool FullDef = false; // Full define.
1086 bool Use = false;
1087
1088 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1089 const MachineOperand &MO = getOperand(i);
1090 if (!MO.isReg() || MO.getReg() != Reg)
1091 continue;
1092 if (Ops)
1093 Ops->push_back(i);
1094 if (MO.isUse())
1095 Use |= !MO.isUndef();
1096 else if (MO.getSubReg() && !MO.isUndef())
1097 // A partial <def,undef> doesn't count as reading the register.
1098 PartDef = true;
1099 else
1100 FullDef = true;
1101 }
1102 // A partial redefine uses Reg unless there is also a full define.
1103 return std::make_pair(Use || (PartDef && !FullDef), PartDef || FullDef);
1104 }
1105
1106 /// findRegisterDefOperandIdx() - Returns the operand index that is a def of
1107 /// the specified register or -1 if it is not found. If isDead is true, defs
1108 /// that are not dead are skipped. If TargetRegisterInfo is non-null, then it
1109 /// also checks if there is a def of a super-register.
1110 int
findRegisterDefOperandIdx(unsigned Reg,bool isDead,bool Overlap,const TargetRegisterInfo * TRI) const1111 MachineInstr::findRegisterDefOperandIdx(unsigned Reg, bool isDead, bool Overlap,
1112 const TargetRegisterInfo *TRI) const {
1113 bool isPhys = TargetRegisterInfo::isPhysicalRegister(Reg);
1114 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1115 const MachineOperand &MO = getOperand(i);
1116 // Accept regmask operands when Overlap is set.
1117 // Ignore them when looking for a specific def operand (Overlap == false).
1118 if (isPhys && Overlap && MO.isRegMask() && MO.clobbersPhysReg(Reg))
1119 return i;
1120 if (!MO.isReg() || !MO.isDef())
1121 continue;
1122 unsigned MOReg = MO.getReg();
1123 bool Found = (MOReg == Reg);
1124 if (!Found && TRI && isPhys &&
1125 TargetRegisterInfo::isPhysicalRegister(MOReg)) {
1126 if (Overlap)
1127 Found = TRI->regsOverlap(MOReg, Reg);
1128 else
1129 Found = TRI->isSubRegister(MOReg, Reg);
1130 }
1131 if (Found && (!isDead || MO.isDead()))
1132 return i;
1133 }
1134 return -1;
1135 }
1136
1137 /// findFirstPredOperandIdx() - Find the index of the first operand in the
1138 /// operand list that is used to represent the predicate. It returns -1 if
1139 /// none is found.
findFirstPredOperandIdx() const1140 int MachineInstr::findFirstPredOperandIdx() const {
1141 // Don't call MCID.findFirstPredOperandIdx() because this variant
1142 // is sometimes called on an instruction that's not yet complete, and
1143 // so the number of operands is less than the MCID indicates. In
1144 // particular, the PTX target does this.
1145 const MCInstrDesc &MCID = getDesc();
1146 if (MCID.isPredicable()) {
1147 for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
1148 if (MCID.OpInfo[i].isPredicate())
1149 return i;
1150 }
1151
1152 return -1;
1153 }
1154
1155 // MachineOperand::TiedTo is 4 bits wide.
1156 const unsigned TiedMax = 15;
1157
1158 /// tieOperands - Mark operands at DefIdx and UseIdx as tied to each other.
1159 ///
1160 /// Use and def operands can be tied together, indicated by a non-zero TiedTo
1161 /// field. TiedTo can have these values:
1162 ///
1163 /// 0: Operand is not tied to anything.
1164 /// 1 to TiedMax-1: Tied to getOperand(TiedTo-1).
1165 /// TiedMax: Tied to an operand >= TiedMax-1.
1166 ///
1167 /// The tied def must be one of the first TiedMax operands on a normal
1168 /// instruction. INLINEASM instructions allow more tied defs.
1169 ///
tieOperands(unsigned DefIdx,unsigned UseIdx)1170 void MachineInstr::tieOperands(unsigned DefIdx, unsigned UseIdx) {
1171 MachineOperand &DefMO = getOperand(DefIdx);
1172 MachineOperand &UseMO = getOperand(UseIdx);
1173 assert(DefMO.isDef() && "DefIdx must be a def operand");
1174 assert(UseMO.isUse() && "UseIdx must be a use operand");
1175 assert(!DefMO.isTied() && "Def is already tied to another use");
1176 assert(!UseMO.isTied() && "Use is already tied to another def");
1177
1178 if (DefIdx < TiedMax)
1179 UseMO.TiedTo = DefIdx + 1;
1180 else {
1181 // Inline asm can use the group descriptors to find tied operands, but on
1182 // normal instruction, the tied def must be within the first TiedMax
1183 // operands.
1184 assert(isInlineAsm() && "DefIdx out of range");
1185 UseMO.TiedTo = TiedMax;
1186 }
1187
1188 // UseIdx can be out of range, we'll search for it in findTiedOperandIdx().
1189 DefMO.TiedTo = std::min(UseIdx + 1, TiedMax);
1190 }
1191
1192 /// Given the index of a tied register operand, find the operand it is tied to.
1193 /// Defs are tied to uses and vice versa. Returns the index of the tied operand
1194 /// which must exist.
findTiedOperandIdx(unsigned OpIdx) const1195 unsigned MachineInstr::findTiedOperandIdx(unsigned OpIdx) const {
1196 const MachineOperand &MO = getOperand(OpIdx);
1197 assert(MO.isTied() && "Operand isn't tied");
1198
1199 // Normally TiedTo is in range.
1200 if (MO.TiedTo < TiedMax)
1201 return MO.TiedTo - 1;
1202
1203 // Uses on normal instructions can be out of range.
1204 if (!isInlineAsm()) {
1205 // Normal tied defs must be in the 0..TiedMax-1 range.
1206 if (MO.isUse())
1207 return TiedMax - 1;
1208 // MO is a def. Search for the tied use.
1209 for (unsigned i = TiedMax - 1, e = getNumOperands(); i != e; ++i) {
1210 const MachineOperand &UseMO = getOperand(i);
1211 if (UseMO.isReg() && UseMO.isUse() && UseMO.TiedTo == OpIdx + 1)
1212 return i;
1213 }
1214 llvm_unreachable("Can't find tied use");
1215 }
1216
1217 // Now deal with inline asm by parsing the operand group descriptor flags.
1218 // Find the beginning of each operand group.
1219 SmallVector<unsigned, 8> GroupIdx;
1220 unsigned OpIdxGroup = ~0u;
1221 unsigned NumOps;
1222 for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e;
1223 i += NumOps) {
1224 const MachineOperand &FlagMO = getOperand(i);
1225 assert(FlagMO.isImm() && "Invalid tied operand on inline asm");
1226 unsigned CurGroup = GroupIdx.size();
1227 GroupIdx.push_back(i);
1228 NumOps = 1 + InlineAsm::getNumOperandRegisters(FlagMO.getImm());
1229 // OpIdx belongs to this operand group.
1230 if (OpIdx > i && OpIdx < i + NumOps)
1231 OpIdxGroup = CurGroup;
1232 unsigned TiedGroup;
1233 if (!InlineAsm::isUseOperandTiedToDef(FlagMO.getImm(), TiedGroup))
1234 continue;
1235 // Operands in this group are tied to operands in TiedGroup which must be
1236 // earlier. Find the number of operands between the two groups.
1237 unsigned Delta = i - GroupIdx[TiedGroup];
1238
1239 // OpIdx is a use tied to TiedGroup.
1240 if (OpIdxGroup == CurGroup)
1241 return OpIdx - Delta;
1242
1243 // OpIdx is a def tied to this use group.
1244 if (OpIdxGroup == TiedGroup)
1245 return OpIdx + Delta;
1246 }
1247 llvm_unreachable("Invalid tied operand on inline asm");
1248 }
1249
1250 /// clearKillInfo - Clears kill flags on all operands.
1251 ///
clearKillInfo()1252 void MachineInstr::clearKillInfo() {
1253 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1254 MachineOperand &MO = getOperand(i);
1255 if (MO.isReg() && MO.isUse())
1256 MO.setIsKill(false);
1257 }
1258 }
1259
1260 /// copyKillDeadInfo - Copies kill / dead operand properties from MI.
1261 ///
copyKillDeadInfo(const MachineInstr * MI)1262 void MachineInstr::copyKillDeadInfo(const MachineInstr *MI) {
1263 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1264 const MachineOperand &MO = MI->getOperand(i);
1265 if (!MO.isReg() || (!MO.isKill() && !MO.isDead()))
1266 continue;
1267 for (unsigned j = 0, ee = getNumOperands(); j != ee; ++j) {
1268 MachineOperand &MOp = getOperand(j);
1269 if (!MOp.isIdenticalTo(MO))
1270 continue;
1271 if (MO.isKill())
1272 MOp.setIsKill();
1273 else
1274 MOp.setIsDead();
1275 break;
1276 }
1277 }
1278 }
1279
1280 /// copyPredicates - Copies predicate operand(s) from MI.
copyPredicates(const MachineInstr * MI)1281 void MachineInstr::copyPredicates(const MachineInstr *MI) {
1282 assert(!isBundle() && "MachineInstr::copyPredicates() can't handle bundles");
1283
1284 const MCInstrDesc &MCID = MI->getDesc();
1285 if (!MCID.isPredicable())
1286 return;
1287 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1288 if (MCID.OpInfo[i].isPredicate()) {
1289 // Predicated operands must be last operands.
1290 addOperand(MI->getOperand(i));
1291 }
1292 }
1293 }
1294
substituteRegister(unsigned FromReg,unsigned ToReg,unsigned SubIdx,const TargetRegisterInfo & RegInfo)1295 void MachineInstr::substituteRegister(unsigned FromReg,
1296 unsigned ToReg,
1297 unsigned SubIdx,
1298 const TargetRegisterInfo &RegInfo) {
1299 if (TargetRegisterInfo::isPhysicalRegister(ToReg)) {
1300 if (SubIdx)
1301 ToReg = RegInfo.getSubReg(ToReg, SubIdx);
1302 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1303 MachineOperand &MO = getOperand(i);
1304 if (!MO.isReg() || MO.getReg() != FromReg)
1305 continue;
1306 MO.substPhysReg(ToReg, RegInfo);
1307 }
1308 } else {
1309 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1310 MachineOperand &MO = getOperand(i);
1311 if (!MO.isReg() || MO.getReg() != FromReg)
1312 continue;
1313 MO.substVirtReg(ToReg, SubIdx, RegInfo);
1314 }
1315 }
1316 }
1317
1318 /// isSafeToMove - Return true if it is safe to move this instruction. If
1319 /// SawStore is set to true, it means that there is a store (or call) between
1320 /// the instruction's location and its intended destination.
isSafeToMove(const TargetInstrInfo * TII,AliasAnalysis * AA,bool & SawStore) const1321 bool MachineInstr::isSafeToMove(const TargetInstrInfo *TII,
1322 AliasAnalysis *AA,
1323 bool &SawStore) const {
1324 // Ignore stuff that we obviously can't move.
1325 //
1326 // Treat volatile loads as stores. This is not strictly necessary for
1327 // volatiles, but it is required for atomic loads. It is not allowed to move
1328 // a load across an atomic load with Ordering > Monotonic.
1329 if (mayStore() || isCall() ||
1330 (mayLoad() && hasOrderedMemoryRef())) {
1331 SawStore = true;
1332 return false;
1333 }
1334
1335 if (isLabel() || isDebugValue() ||
1336 isTerminator() || hasUnmodeledSideEffects())
1337 return false;
1338
1339 // See if this instruction does a load. If so, we have to guarantee that the
1340 // loaded value doesn't change between the load and the its intended
1341 // destination. The check for isInvariantLoad gives the targe the chance to
1342 // classify the load as always returning a constant, e.g. a constant pool
1343 // load.
1344 if (mayLoad() && !isInvariantLoad(AA))
1345 // Otherwise, this is a real load. If there is a store between the load and
1346 // end of block, we can't move it.
1347 return !SawStore;
1348
1349 return true;
1350 }
1351
1352 /// isSafeToReMat - Return true if it's safe to rematerialize the specified
1353 /// instruction which defined the specified register instead of copying it.
isSafeToReMat(const TargetInstrInfo * TII,AliasAnalysis * AA,unsigned DstReg) const1354 bool MachineInstr::isSafeToReMat(const TargetInstrInfo *TII,
1355 AliasAnalysis *AA,
1356 unsigned DstReg) const {
1357 bool SawStore = false;
1358 if (!TII->isTriviallyReMaterializable(this, AA) ||
1359 !isSafeToMove(TII, AA, SawStore))
1360 return false;
1361 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1362 const MachineOperand &MO = getOperand(i);
1363 if (!MO.isReg())
1364 continue;
1365 // FIXME: For now, do not remat any instruction with register operands.
1366 // Later on, we can loosen the restriction is the register operands have
1367 // not been modified between the def and use. Note, this is different from
1368 // MachineSink because the code is no longer in two-address form (at least
1369 // partially).
1370 if (MO.isUse())
1371 return false;
1372 else if (!MO.isDead() && MO.getReg() != DstReg)
1373 return false;
1374 }
1375 return true;
1376 }
1377
1378 /// hasOrderedMemoryRef - Return true if this instruction may have an ordered
1379 /// or volatile memory reference, or if the information describing the memory
1380 /// reference is not available. Return false if it is known to have no ordered
1381 /// memory references.
hasOrderedMemoryRef() const1382 bool MachineInstr::hasOrderedMemoryRef() const {
1383 // An instruction known never to access memory won't have a volatile access.
1384 if (!mayStore() &&
1385 !mayLoad() &&
1386 !isCall() &&
1387 !hasUnmodeledSideEffects())
1388 return false;
1389
1390 // Otherwise, if the instruction has no memory reference information,
1391 // conservatively assume it wasn't preserved.
1392 if (memoperands_empty())
1393 return true;
1394
1395 // Check the memory reference information for ordered references.
1396 for (mmo_iterator I = memoperands_begin(), E = memoperands_end(); I != E; ++I)
1397 if (!(*I)->isUnordered())
1398 return true;
1399
1400 return false;
1401 }
1402
1403 /// isInvariantLoad - Return true if this instruction is loading from a
1404 /// location whose value is invariant across the function. For example,
1405 /// loading a value from the constant pool or from the argument area
1406 /// of a function if it does not change. This should only return true of
1407 /// *all* loads the instruction does are invariant (if it does multiple loads).
isInvariantLoad(AliasAnalysis * AA) const1408 bool MachineInstr::isInvariantLoad(AliasAnalysis *AA) const {
1409 // If the instruction doesn't load at all, it isn't an invariant load.
1410 if (!mayLoad())
1411 return false;
1412
1413 // If the instruction has lost its memoperands, conservatively assume that
1414 // it may not be an invariant load.
1415 if (memoperands_empty())
1416 return false;
1417
1418 const MachineFrameInfo *MFI = getParent()->getParent()->getFrameInfo();
1419
1420 for (mmo_iterator I = memoperands_begin(),
1421 E = memoperands_end(); I != E; ++I) {
1422 if ((*I)->isVolatile()) return false;
1423 if ((*I)->isStore()) return false;
1424 if ((*I)->isInvariant()) return true;
1425
1426 if (const Value *V = (*I)->getValue()) {
1427 // A load from a constant PseudoSourceValue is invariant.
1428 if (const PseudoSourceValue *PSV = dyn_cast<PseudoSourceValue>(V))
1429 if (PSV->isConstant(MFI))
1430 continue;
1431 // If we have an AliasAnalysis, ask it whether the memory is constant.
1432 if (AA && AA->pointsToConstantMemory(
1433 AliasAnalysis::Location(V, (*I)->getSize(),
1434 (*I)->getTBAAInfo())))
1435 continue;
1436 }
1437
1438 // Otherwise assume conservatively.
1439 return false;
1440 }
1441
1442 // Everything checks out.
1443 return true;
1444 }
1445
1446 /// isConstantValuePHI - If the specified instruction is a PHI that always
1447 /// merges together the same virtual register, return the register, otherwise
1448 /// return 0.
isConstantValuePHI() const1449 unsigned MachineInstr::isConstantValuePHI() const {
1450 if (!isPHI())
1451 return 0;
1452 assert(getNumOperands() >= 3 &&
1453 "It's illegal to have a PHI without source operands");
1454
1455 unsigned Reg = getOperand(1).getReg();
1456 for (unsigned i = 3, e = getNumOperands(); i < e; i += 2)
1457 if (getOperand(i).getReg() != Reg)
1458 return 0;
1459 return Reg;
1460 }
1461
hasUnmodeledSideEffects() const1462 bool MachineInstr::hasUnmodeledSideEffects() const {
1463 if (hasProperty(MCID::UnmodeledSideEffects))
1464 return true;
1465 if (isInlineAsm()) {
1466 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
1467 if (ExtraInfo & InlineAsm::Extra_HasSideEffects)
1468 return true;
1469 }
1470
1471 return false;
1472 }
1473
1474 /// allDefsAreDead - Return true if all the defs of this instruction are dead.
1475 ///
allDefsAreDead() const1476 bool MachineInstr::allDefsAreDead() const {
1477 for (unsigned i = 0, e = getNumOperands(); i < e; ++i) {
1478 const MachineOperand &MO = getOperand(i);
1479 if (!MO.isReg() || MO.isUse())
1480 continue;
1481 if (!MO.isDead())
1482 return false;
1483 }
1484 return true;
1485 }
1486
1487 /// copyImplicitOps - Copy implicit register operands from specified
1488 /// instruction to this instruction.
copyImplicitOps(const MachineInstr * MI)1489 void MachineInstr::copyImplicitOps(const MachineInstr *MI) {
1490 for (unsigned i = MI->getDesc().getNumOperands(), e = MI->getNumOperands();
1491 i != e; ++i) {
1492 const MachineOperand &MO = MI->getOperand(i);
1493 if (MO.isReg() && MO.isImplicit())
1494 addOperand(MO);
1495 }
1496 }
1497
dump() const1498 void MachineInstr::dump() const {
1499 #ifndef NDEBUG
1500 dbgs() << " " << *this;
1501 #endif
1502 }
1503
printDebugLoc(DebugLoc DL,const MachineFunction * MF,raw_ostream & CommentOS)1504 static void printDebugLoc(DebugLoc DL, const MachineFunction *MF,
1505 raw_ostream &CommentOS) {
1506 const LLVMContext &Ctx = MF->getFunction()->getContext();
1507 if (!DL.isUnknown()) { // Print source line info.
1508 DIScope Scope(DL.getScope(Ctx));
1509 // Omit the directory, because it's likely to be long and uninteresting.
1510 if (Scope.Verify())
1511 CommentOS << Scope.getFilename();
1512 else
1513 CommentOS << "<unknown>";
1514 CommentOS << ':' << DL.getLine();
1515 if (DL.getCol() != 0)
1516 CommentOS << ':' << DL.getCol();
1517 DebugLoc InlinedAtDL = DebugLoc::getFromDILocation(DL.getInlinedAt(Ctx));
1518 if (!InlinedAtDL.isUnknown()) {
1519 CommentOS << " @[ ";
1520 printDebugLoc(InlinedAtDL, MF, CommentOS);
1521 CommentOS << " ]";
1522 }
1523 }
1524 }
1525
print(raw_ostream & OS,const TargetMachine * TM) const1526 void MachineInstr::print(raw_ostream &OS, const TargetMachine *TM) const {
1527 // We can be a bit tidier if we know the TargetMachine and/or MachineFunction.
1528 const MachineFunction *MF = 0;
1529 const MachineRegisterInfo *MRI = 0;
1530 if (const MachineBasicBlock *MBB = getParent()) {
1531 MF = MBB->getParent();
1532 if (!TM && MF)
1533 TM = &MF->getTarget();
1534 if (MF)
1535 MRI = &MF->getRegInfo();
1536 }
1537
1538 // Save a list of virtual registers.
1539 SmallVector<unsigned, 8> VirtRegs;
1540
1541 // Print explicitly defined operands on the left of an assignment syntax.
1542 unsigned StartOp = 0, e = getNumOperands();
1543 for (; StartOp < e && getOperand(StartOp).isReg() &&
1544 getOperand(StartOp).isDef() &&
1545 !getOperand(StartOp).isImplicit();
1546 ++StartOp) {
1547 if (StartOp != 0) OS << ", ";
1548 getOperand(StartOp).print(OS, TM);
1549 unsigned Reg = getOperand(StartOp).getReg();
1550 if (TargetRegisterInfo::isVirtualRegister(Reg))
1551 VirtRegs.push_back(Reg);
1552 }
1553
1554 if (StartOp != 0)
1555 OS << " = ";
1556
1557 // Print the opcode name.
1558 if (TM && TM->getInstrInfo())
1559 OS << TM->getInstrInfo()->getName(getOpcode());
1560 else
1561 OS << "UNKNOWN";
1562
1563 // Print the rest of the operands.
1564 bool OmittedAnyCallClobbers = false;
1565 bool FirstOp = true;
1566 unsigned AsmDescOp = ~0u;
1567 unsigned AsmOpCount = 0;
1568
1569 if (isInlineAsm() && e >= InlineAsm::MIOp_FirstOperand) {
1570 // Print asm string.
1571 OS << " ";
1572 getOperand(InlineAsm::MIOp_AsmString).print(OS, TM);
1573
1574 // Print HasSideEffects, IsAlignStack
1575 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
1576 if (ExtraInfo & InlineAsm::Extra_HasSideEffects)
1577 OS << " [sideeffect]";
1578 if (ExtraInfo & InlineAsm::Extra_IsAlignStack)
1579 OS << " [alignstack]";
1580 if (getInlineAsmDialect() == InlineAsm::AD_ATT)
1581 OS << " [attdialect]";
1582 if (getInlineAsmDialect() == InlineAsm::AD_Intel)
1583 OS << " [inteldialect]";
1584
1585 StartOp = AsmDescOp = InlineAsm::MIOp_FirstOperand;
1586 FirstOp = false;
1587 }
1588
1589
1590 for (unsigned i = StartOp, e = getNumOperands(); i != e; ++i) {
1591 const MachineOperand &MO = getOperand(i);
1592
1593 if (MO.isReg() && TargetRegisterInfo::isVirtualRegister(MO.getReg()))
1594 VirtRegs.push_back(MO.getReg());
1595
1596 // Omit call-clobbered registers which aren't used anywhere. This makes
1597 // call instructions much less noisy on targets where calls clobber lots
1598 // of registers. Don't rely on MO.isDead() because we may be called before
1599 // LiveVariables is run, or we may be looking at a non-allocatable reg.
1600 if (MF && isCall() &&
1601 MO.isReg() && MO.isImplicit() && MO.isDef()) {
1602 unsigned Reg = MO.getReg();
1603 if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
1604 const MachineRegisterInfo &MRI = MF->getRegInfo();
1605 if (MRI.use_empty(Reg) && !MRI.isLiveOut(Reg)) {
1606 bool HasAliasLive = false;
1607 for (MCRegAliasIterator AI(Reg, TM->getRegisterInfo(), true);
1608 AI.isValid(); ++AI) {
1609 unsigned AliasReg = *AI;
1610 if (!MRI.use_empty(AliasReg) || MRI.isLiveOut(AliasReg)) {
1611 HasAliasLive = true;
1612 break;
1613 }
1614 }
1615 if (!HasAliasLive) {
1616 OmittedAnyCallClobbers = true;
1617 continue;
1618 }
1619 }
1620 }
1621 }
1622
1623 if (FirstOp) FirstOp = false; else OS << ",";
1624 OS << " ";
1625 if (i < getDesc().NumOperands) {
1626 const MCOperandInfo &MCOI = getDesc().OpInfo[i];
1627 if (MCOI.isPredicate())
1628 OS << "pred:";
1629 if (MCOI.isOptionalDef())
1630 OS << "opt:";
1631 }
1632 if (isDebugValue() && MO.isMetadata()) {
1633 // Pretty print DBG_VALUE instructions.
1634 const MDNode *MD = MO.getMetadata();
1635 if (const MDString *MDS = dyn_cast<MDString>(MD->getOperand(2)))
1636 OS << "!\"" << MDS->getString() << '\"';
1637 else
1638 MO.print(OS, TM);
1639 } else if (TM && (isInsertSubreg() || isRegSequence()) && MO.isImm()) {
1640 OS << TM->getRegisterInfo()->getSubRegIndexName(MO.getImm());
1641 } else if (i == AsmDescOp && MO.isImm()) {
1642 // Pretty print the inline asm operand descriptor.
1643 OS << '$' << AsmOpCount++;
1644 unsigned Flag = MO.getImm();
1645 switch (InlineAsm::getKind(Flag)) {
1646 case InlineAsm::Kind_RegUse: OS << ":[reguse"; break;
1647 case InlineAsm::Kind_RegDef: OS << ":[regdef"; break;
1648 case InlineAsm::Kind_RegDefEarlyClobber: OS << ":[regdef-ec"; break;
1649 case InlineAsm::Kind_Clobber: OS << ":[clobber"; break;
1650 case InlineAsm::Kind_Imm: OS << ":[imm"; break;
1651 case InlineAsm::Kind_Mem: OS << ":[mem"; break;
1652 default: OS << ":[??" << InlineAsm::getKind(Flag); break;
1653 }
1654
1655 unsigned RCID = 0;
1656 if (InlineAsm::hasRegClassConstraint(Flag, RCID)) {
1657 if (TM)
1658 OS << ':' << TM->getRegisterInfo()->getRegClass(RCID)->getName();
1659 else
1660 OS << ":RC" << RCID;
1661 }
1662
1663 unsigned TiedTo = 0;
1664 if (InlineAsm::isUseOperandTiedToDef(Flag, TiedTo))
1665 OS << " tiedto:$" << TiedTo;
1666
1667 OS << ']';
1668
1669 // Compute the index of the next operand descriptor.
1670 AsmDescOp += 1 + InlineAsm::getNumOperandRegisters(Flag);
1671 } else
1672 MO.print(OS, TM);
1673 }
1674
1675 // Briefly indicate whether any call clobbers were omitted.
1676 if (OmittedAnyCallClobbers) {
1677 if (!FirstOp) OS << ",";
1678 OS << " ...";
1679 }
1680
1681 bool HaveSemi = false;
1682 if (Flags) {
1683 if (!HaveSemi) OS << ";"; HaveSemi = true;
1684 OS << " flags: ";
1685
1686 if (Flags & FrameSetup)
1687 OS << "FrameSetup";
1688 }
1689
1690 if (!memoperands_empty()) {
1691 if (!HaveSemi) OS << ";"; HaveSemi = true;
1692
1693 OS << " mem:";
1694 for (mmo_iterator i = memoperands_begin(), e = memoperands_end();
1695 i != e; ++i) {
1696 OS << **i;
1697 if (llvm::next(i) != e)
1698 OS << " ";
1699 }
1700 }
1701
1702 // Print the regclass of any virtual registers encountered.
1703 if (MRI && !VirtRegs.empty()) {
1704 if (!HaveSemi) OS << ";"; HaveSemi = true;
1705 for (unsigned i = 0; i != VirtRegs.size(); ++i) {
1706 const TargetRegisterClass *RC = MRI->getRegClass(VirtRegs[i]);
1707 OS << " " << RC->getName() << ':' << PrintReg(VirtRegs[i]);
1708 for (unsigned j = i+1; j != VirtRegs.size();) {
1709 if (MRI->getRegClass(VirtRegs[j]) != RC) {
1710 ++j;
1711 continue;
1712 }
1713 if (VirtRegs[i] != VirtRegs[j])
1714 OS << "," << PrintReg(VirtRegs[j]);
1715 VirtRegs.erase(VirtRegs.begin()+j);
1716 }
1717 }
1718 }
1719
1720 // Print debug location information.
1721 if (isDebugValue() && getOperand(e - 1).isMetadata()) {
1722 if (!HaveSemi) OS << ";"; HaveSemi = true;
1723 DIVariable DV(getOperand(e - 1).getMetadata());
1724 OS << " line no:" << DV.getLineNumber();
1725 if (MDNode *InlinedAt = DV.getInlinedAt()) {
1726 DebugLoc InlinedAtDL = DebugLoc::getFromDILocation(InlinedAt);
1727 if (!InlinedAtDL.isUnknown()) {
1728 OS << " inlined @[ ";
1729 printDebugLoc(InlinedAtDL, MF, OS);
1730 OS << " ]";
1731 }
1732 }
1733 } else if (!debugLoc.isUnknown() && MF) {
1734 if (!HaveSemi) OS << ";"; HaveSemi = true;
1735 OS << " dbg:";
1736 printDebugLoc(debugLoc, MF, OS);
1737 }
1738
1739 OS << '\n';
1740 }
1741
addRegisterKilled(unsigned IncomingReg,const TargetRegisterInfo * RegInfo,bool AddIfNotFound)1742 bool MachineInstr::addRegisterKilled(unsigned IncomingReg,
1743 const TargetRegisterInfo *RegInfo,
1744 bool AddIfNotFound) {
1745 bool isPhysReg = TargetRegisterInfo::isPhysicalRegister(IncomingReg);
1746 bool hasAliases = isPhysReg &&
1747 MCRegAliasIterator(IncomingReg, RegInfo, false).isValid();
1748 bool Found = false;
1749 SmallVector<unsigned,4> DeadOps;
1750 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1751 MachineOperand &MO = getOperand(i);
1752 if (!MO.isReg() || !MO.isUse() || MO.isUndef())
1753 continue;
1754 unsigned Reg = MO.getReg();
1755 if (!Reg)
1756 continue;
1757
1758 if (Reg == IncomingReg) {
1759 if (!Found) {
1760 if (MO.isKill())
1761 // The register is already marked kill.
1762 return true;
1763 if (isPhysReg && isRegTiedToDefOperand(i))
1764 // Two-address uses of physregs must not be marked kill.
1765 return true;
1766 MO.setIsKill();
1767 Found = true;
1768 }
1769 } else if (hasAliases && MO.isKill() &&
1770 TargetRegisterInfo::isPhysicalRegister(Reg)) {
1771 // A super-register kill already exists.
1772 if (RegInfo->isSuperRegister(IncomingReg, Reg))
1773 return true;
1774 if (RegInfo->isSubRegister(IncomingReg, Reg))
1775 DeadOps.push_back(i);
1776 }
1777 }
1778
1779 // Trim unneeded kill operands.
1780 while (!DeadOps.empty()) {
1781 unsigned OpIdx = DeadOps.back();
1782 if (getOperand(OpIdx).isImplicit())
1783 RemoveOperand(OpIdx);
1784 else
1785 getOperand(OpIdx).setIsKill(false);
1786 DeadOps.pop_back();
1787 }
1788
1789 // If not found, this means an alias of one of the operands is killed. Add a
1790 // new implicit operand if required.
1791 if (!Found && AddIfNotFound) {
1792 addOperand(MachineOperand::CreateReg(IncomingReg,
1793 false /*IsDef*/,
1794 true /*IsImp*/,
1795 true /*IsKill*/));
1796 return true;
1797 }
1798 return Found;
1799 }
1800
clearRegisterKills(unsigned Reg,const TargetRegisterInfo * RegInfo)1801 void MachineInstr::clearRegisterKills(unsigned Reg,
1802 const TargetRegisterInfo *RegInfo) {
1803 if (!TargetRegisterInfo::isPhysicalRegister(Reg))
1804 RegInfo = 0;
1805 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1806 MachineOperand &MO = getOperand(i);
1807 if (!MO.isReg() || !MO.isUse() || !MO.isKill())
1808 continue;
1809 unsigned OpReg = MO.getReg();
1810 if (OpReg == Reg || (RegInfo && RegInfo->isSuperRegister(Reg, OpReg)))
1811 MO.setIsKill(false);
1812 }
1813 }
1814
addRegisterDead(unsigned IncomingReg,const TargetRegisterInfo * RegInfo,bool AddIfNotFound)1815 bool MachineInstr::addRegisterDead(unsigned IncomingReg,
1816 const TargetRegisterInfo *RegInfo,
1817 bool AddIfNotFound) {
1818 bool isPhysReg = TargetRegisterInfo::isPhysicalRegister(IncomingReg);
1819 bool hasAliases = isPhysReg &&
1820 MCRegAliasIterator(IncomingReg, RegInfo, false).isValid();
1821 bool Found = false;
1822 SmallVector<unsigned,4> DeadOps;
1823 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1824 MachineOperand &MO = getOperand(i);
1825 if (!MO.isReg() || !MO.isDef())
1826 continue;
1827 unsigned Reg = MO.getReg();
1828 if (!Reg)
1829 continue;
1830
1831 if (Reg == IncomingReg) {
1832 MO.setIsDead();
1833 Found = true;
1834 } else if (hasAliases && MO.isDead() &&
1835 TargetRegisterInfo::isPhysicalRegister(Reg)) {
1836 // There exists a super-register that's marked dead.
1837 if (RegInfo->isSuperRegister(IncomingReg, Reg))
1838 return true;
1839 if (RegInfo->isSubRegister(IncomingReg, Reg))
1840 DeadOps.push_back(i);
1841 }
1842 }
1843
1844 // Trim unneeded dead operands.
1845 while (!DeadOps.empty()) {
1846 unsigned OpIdx = DeadOps.back();
1847 if (getOperand(OpIdx).isImplicit())
1848 RemoveOperand(OpIdx);
1849 else
1850 getOperand(OpIdx).setIsDead(false);
1851 DeadOps.pop_back();
1852 }
1853
1854 // If not found, this means an alias of one of the operands is dead. Add a
1855 // new implicit operand if required.
1856 if (Found || !AddIfNotFound)
1857 return Found;
1858
1859 addOperand(MachineOperand::CreateReg(IncomingReg,
1860 true /*IsDef*/,
1861 true /*IsImp*/,
1862 false /*IsKill*/,
1863 true /*IsDead*/));
1864 return true;
1865 }
1866
addRegisterDefined(unsigned IncomingReg,const TargetRegisterInfo * RegInfo)1867 void MachineInstr::addRegisterDefined(unsigned IncomingReg,
1868 const TargetRegisterInfo *RegInfo) {
1869 if (TargetRegisterInfo::isPhysicalRegister(IncomingReg)) {
1870 MachineOperand *MO = findRegisterDefOperand(IncomingReg, false, RegInfo);
1871 if (MO)
1872 return;
1873 } else {
1874 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1875 const MachineOperand &MO = getOperand(i);
1876 if (MO.isReg() && MO.getReg() == IncomingReg && MO.isDef() &&
1877 MO.getSubReg() == 0)
1878 return;
1879 }
1880 }
1881 addOperand(MachineOperand::CreateReg(IncomingReg,
1882 true /*IsDef*/,
1883 true /*IsImp*/));
1884 }
1885
setPhysRegsDeadExcept(ArrayRef<unsigned> UsedRegs,const TargetRegisterInfo & TRI)1886 void MachineInstr::setPhysRegsDeadExcept(ArrayRef<unsigned> UsedRegs,
1887 const TargetRegisterInfo &TRI) {
1888 bool HasRegMask = false;
1889 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1890 MachineOperand &MO = getOperand(i);
1891 if (MO.isRegMask()) {
1892 HasRegMask = true;
1893 continue;
1894 }
1895 if (!MO.isReg() || !MO.isDef()) continue;
1896 unsigned Reg = MO.getReg();
1897 if (!TargetRegisterInfo::isPhysicalRegister(Reg)) continue;
1898 bool Dead = true;
1899 for (ArrayRef<unsigned>::iterator I = UsedRegs.begin(), E = UsedRegs.end();
1900 I != E; ++I)
1901 if (TRI.regsOverlap(*I, Reg)) {
1902 Dead = false;
1903 break;
1904 }
1905 // If there are no uses, including partial uses, the def is dead.
1906 if (Dead) MO.setIsDead();
1907 }
1908
1909 // This is a call with a register mask operand.
1910 // Mask clobbers are always dead, so add defs for the non-dead defines.
1911 if (HasRegMask)
1912 for (ArrayRef<unsigned>::iterator I = UsedRegs.begin(), E = UsedRegs.end();
1913 I != E; ++I)
1914 addRegisterDefined(*I, &TRI);
1915 }
1916
1917 unsigned
getHashValue(const MachineInstr * const & MI)1918 MachineInstrExpressionTrait::getHashValue(const MachineInstr* const &MI) {
1919 // Build up a buffer of hash code components.
1920 SmallVector<size_t, 8> HashComponents;
1921 HashComponents.reserve(MI->getNumOperands() + 1);
1922 HashComponents.push_back(MI->getOpcode());
1923 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1924 const MachineOperand &MO = MI->getOperand(i);
1925 if (MO.isReg() && MO.isDef() &&
1926 TargetRegisterInfo::isVirtualRegister(MO.getReg()))
1927 continue; // Skip virtual register defs.
1928
1929 HashComponents.push_back(hash_value(MO));
1930 }
1931 return hash_combine_range(HashComponents.begin(), HashComponents.end());
1932 }
1933
emitError(StringRef Msg) const1934 void MachineInstr::emitError(StringRef Msg) const {
1935 // Find the source location cookie.
1936 unsigned LocCookie = 0;
1937 const MDNode *LocMD = 0;
1938 for (unsigned i = getNumOperands(); i != 0; --i) {
1939 if (getOperand(i-1).isMetadata() &&
1940 (LocMD = getOperand(i-1).getMetadata()) &&
1941 LocMD->getNumOperands() != 0) {
1942 if (const ConstantInt *CI = dyn_cast<ConstantInt>(LocMD->getOperand(0))) {
1943 LocCookie = CI->getZExtValue();
1944 break;
1945 }
1946 }
1947 }
1948
1949 if (const MachineBasicBlock *MBB = getParent())
1950 if (const MachineFunction *MF = MBB->getParent())
1951 return MF->getMMI().getModule()->getContext().emitError(LocCookie, Msg);
1952 report_fatal_error(Msg);
1953 }
1954