1 //===- Reassociate.cpp - Reassociate binary expressions -------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass reassociates commutative expressions in an order that is designed
11 // to promote better constant propagation, GCSE, LICM, PRE, etc.
12 //
13 // For example: 4 + (x + 5) -> x + (4 + 5)
14 //
15 // In the implementation of this algorithm, constants are assigned rank = 0,
16 // function arguments are rank = 1, and other values are assigned ranks
17 // corresponding to the reverse post order traversal of current function
18 // (starting at 2), which effectively gives values in deep loops higher rank
19 // than values not in loops.
20 //
21 //===----------------------------------------------------------------------===//
22
23 #define DEBUG_TYPE "reassociate"
24 #include "llvm/Transforms/Scalar.h"
25 #include "llvm/Transforms/Utils/Local.h"
26 #include "llvm/Constants.h"
27 #include "llvm/DerivedTypes.h"
28 #include "llvm/Function.h"
29 #include "llvm/IRBuilder.h"
30 #include "llvm/Instructions.h"
31 #include "llvm/IntrinsicInst.h"
32 #include "llvm/Pass.h"
33 #include "llvm/ADT/DenseMap.h"
34 #include "llvm/ADT/PostOrderIterator.h"
35 #include "llvm/ADT/STLExtras.h"
36 #include "llvm/ADT/SetVector.h"
37 #include "llvm/ADT/Statistic.h"
38 #include "llvm/Assembly/Writer.h"
39 #include "llvm/Support/CFG.h"
40 #include "llvm/Support/Debug.h"
41 #include "llvm/Support/ValueHandle.h"
42 #include "llvm/Support/raw_ostream.h"
43 #include <algorithm>
44 using namespace llvm;
45
46 STATISTIC(NumChanged, "Number of insts reassociated");
47 STATISTIC(NumAnnihil, "Number of expr tree annihilated");
48 STATISTIC(NumFactor , "Number of multiplies factored");
49
50 namespace {
51 struct ValueEntry {
52 unsigned Rank;
53 Value *Op;
ValueEntry__anon9469d12e0111::ValueEntry54 ValueEntry(unsigned R, Value *O) : Rank(R), Op(O) {}
55 };
operator <(const ValueEntry & LHS,const ValueEntry & RHS)56 inline bool operator<(const ValueEntry &LHS, const ValueEntry &RHS) {
57 return LHS.Rank > RHS.Rank; // Sort so that highest rank goes to start.
58 }
59 }
60
61 #ifndef NDEBUG
62 /// PrintOps - Print out the expression identified in the Ops list.
63 ///
PrintOps(Instruction * I,const SmallVectorImpl<ValueEntry> & Ops)64 static void PrintOps(Instruction *I, const SmallVectorImpl<ValueEntry> &Ops) {
65 Module *M = I->getParent()->getParent()->getParent();
66 dbgs() << Instruction::getOpcodeName(I->getOpcode()) << " "
67 << *Ops[0].Op->getType() << '\t';
68 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
69 dbgs() << "[ ";
70 WriteAsOperand(dbgs(), Ops[i].Op, false, M);
71 dbgs() << ", #" << Ops[i].Rank << "] ";
72 }
73 }
74 #endif
75
76 namespace {
77 /// \brief Utility class representing a base and exponent pair which form one
78 /// factor of some product.
79 struct Factor {
80 Value *Base;
81 unsigned Power;
82
Factor__anon9469d12e0211::Factor83 Factor(Value *Base, unsigned Power) : Base(Base), Power(Power) {}
84
85 /// \brief Sort factors by their Base.
86 struct BaseSorter {
operator ()__anon9469d12e0211::Factor::BaseSorter87 bool operator()(const Factor &LHS, const Factor &RHS) {
88 return LHS.Base < RHS.Base;
89 }
90 };
91
92 /// \brief Compare factors for equal bases.
93 struct BaseEqual {
operator ()__anon9469d12e0211::Factor::BaseEqual94 bool operator()(const Factor &LHS, const Factor &RHS) {
95 return LHS.Base == RHS.Base;
96 }
97 };
98
99 /// \brief Sort factors in descending order by their power.
100 struct PowerDescendingSorter {
operator ()__anon9469d12e0211::Factor::PowerDescendingSorter101 bool operator()(const Factor &LHS, const Factor &RHS) {
102 return LHS.Power > RHS.Power;
103 }
104 };
105
106 /// \brief Compare factors for equal powers.
107 struct PowerEqual {
operator ()__anon9469d12e0211::Factor::PowerEqual108 bool operator()(const Factor &LHS, const Factor &RHS) {
109 return LHS.Power == RHS.Power;
110 }
111 };
112 };
113 }
114
115 namespace {
116 class Reassociate : public FunctionPass {
117 DenseMap<BasicBlock*, unsigned> RankMap;
118 DenseMap<AssertingVH<Value>, unsigned> ValueRankMap;
119 SetVector<AssertingVH<Instruction> > RedoInsts;
120 bool MadeChange;
121 public:
122 static char ID; // Pass identification, replacement for typeid
Reassociate()123 Reassociate() : FunctionPass(ID) {
124 initializeReassociatePass(*PassRegistry::getPassRegistry());
125 }
126
127 bool runOnFunction(Function &F);
128
getAnalysisUsage(AnalysisUsage & AU) const129 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
130 AU.setPreservesCFG();
131 }
132 private:
133 void BuildRankMap(Function &F);
134 unsigned getRank(Value *V);
135 void ReassociateExpression(BinaryOperator *I);
136 void RewriteExprTree(BinaryOperator *I, SmallVectorImpl<ValueEntry> &Ops);
137 Value *OptimizeExpression(BinaryOperator *I,
138 SmallVectorImpl<ValueEntry> &Ops);
139 Value *OptimizeAdd(Instruction *I, SmallVectorImpl<ValueEntry> &Ops);
140 bool collectMultiplyFactors(SmallVectorImpl<ValueEntry> &Ops,
141 SmallVectorImpl<Factor> &Factors);
142 Value *buildMinimalMultiplyDAG(IRBuilder<> &Builder,
143 SmallVectorImpl<Factor> &Factors);
144 Value *OptimizeMul(BinaryOperator *I, SmallVectorImpl<ValueEntry> &Ops);
145 Value *RemoveFactorFromExpression(Value *V, Value *Factor);
146 void EraseInst(Instruction *I);
147 void OptimizeInst(Instruction *I);
148 };
149 }
150
151 char Reassociate::ID = 0;
152 INITIALIZE_PASS(Reassociate, "reassociate",
153 "Reassociate expressions", false, false)
154
155 // Public interface to the Reassociate pass
createReassociatePass()156 FunctionPass *llvm::createReassociatePass() { return new Reassociate(); }
157
158 /// isReassociableOp - Return true if V is an instruction of the specified
159 /// opcode and if it only has one use.
isReassociableOp(Value * V,unsigned Opcode)160 static BinaryOperator *isReassociableOp(Value *V, unsigned Opcode) {
161 if (V->hasOneUse() && isa<Instruction>(V) &&
162 cast<Instruction>(V)->getOpcode() == Opcode)
163 return cast<BinaryOperator>(V);
164 return 0;
165 }
166
isUnmovableInstruction(Instruction * I)167 static bool isUnmovableInstruction(Instruction *I) {
168 if (I->getOpcode() == Instruction::PHI ||
169 I->getOpcode() == Instruction::LandingPad ||
170 I->getOpcode() == Instruction::Alloca ||
171 I->getOpcode() == Instruction::Load ||
172 I->getOpcode() == Instruction::Invoke ||
173 (I->getOpcode() == Instruction::Call &&
174 !isa<DbgInfoIntrinsic>(I)) ||
175 I->getOpcode() == Instruction::UDiv ||
176 I->getOpcode() == Instruction::SDiv ||
177 I->getOpcode() == Instruction::FDiv ||
178 I->getOpcode() == Instruction::URem ||
179 I->getOpcode() == Instruction::SRem ||
180 I->getOpcode() == Instruction::FRem)
181 return true;
182 return false;
183 }
184
BuildRankMap(Function & F)185 void Reassociate::BuildRankMap(Function &F) {
186 unsigned i = 2;
187
188 // Assign distinct ranks to function arguments
189 for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I)
190 ValueRankMap[&*I] = ++i;
191
192 ReversePostOrderTraversal<Function*> RPOT(&F);
193 for (ReversePostOrderTraversal<Function*>::rpo_iterator I = RPOT.begin(),
194 E = RPOT.end(); I != E; ++I) {
195 BasicBlock *BB = *I;
196 unsigned BBRank = RankMap[BB] = ++i << 16;
197
198 // Walk the basic block, adding precomputed ranks for any instructions that
199 // we cannot move. This ensures that the ranks for these instructions are
200 // all different in the block.
201 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
202 if (isUnmovableInstruction(I))
203 ValueRankMap[&*I] = ++BBRank;
204 }
205 }
206
getRank(Value * V)207 unsigned Reassociate::getRank(Value *V) {
208 Instruction *I = dyn_cast<Instruction>(V);
209 if (I == 0) {
210 if (isa<Argument>(V)) return ValueRankMap[V]; // Function argument.
211 return 0; // Otherwise it's a global or constant, rank 0.
212 }
213
214 if (unsigned Rank = ValueRankMap[I])
215 return Rank; // Rank already known?
216
217 // If this is an expression, return the 1+MAX(rank(LHS), rank(RHS)) so that
218 // we can reassociate expressions for code motion! Since we do not recurse
219 // for PHI nodes, we cannot have infinite recursion here, because there
220 // cannot be loops in the value graph that do not go through PHI nodes.
221 unsigned Rank = 0, MaxRank = RankMap[I->getParent()];
222 for (unsigned i = 0, e = I->getNumOperands();
223 i != e && Rank != MaxRank; ++i)
224 Rank = std::max(Rank, getRank(I->getOperand(i)));
225
226 // If this is a not or neg instruction, do not count it for rank. This
227 // assures us that X and ~X will have the same rank.
228 if (!I->getType()->isIntegerTy() ||
229 (!BinaryOperator::isNot(I) && !BinaryOperator::isNeg(I)))
230 ++Rank;
231
232 //DEBUG(dbgs() << "Calculated Rank[" << V->getName() << "] = "
233 // << Rank << "\n");
234
235 return ValueRankMap[I] = Rank;
236 }
237
238 /// LowerNegateToMultiply - Replace 0-X with X*-1.
239 ///
LowerNegateToMultiply(Instruction * Neg)240 static BinaryOperator *LowerNegateToMultiply(Instruction *Neg) {
241 Constant *Cst = Constant::getAllOnesValue(Neg->getType());
242
243 BinaryOperator *Res =
244 BinaryOperator::CreateMul(Neg->getOperand(1), Cst, "",Neg);
245 Neg->setOperand(1, Constant::getNullValue(Neg->getType())); // Drop use of op.
246 Res->takeName(Neg);
247 Neg->replaceAllUsesWith(Res);
248 Res->setDebugLoc(Neg->getDebugLoc());
249 return Res;
250 }
251
252 /// CarmichaelShift - Returns k such that lambda(2^Bitwidth) = 2^k, where lambda
253 /// is the Carmichael function. This means that x^(2^k) === 1 mod 2^Bitwidth for
254 /// every odd x, i.e. x^(2^k) = 1 for every odd x in Bitwidth-bit arithmetic.
255 /// Note that 0 <= k < Bitwidth, and if Bitwidth > 3 then x^(2^k) = 0 for every
256 /// even x in Bitwidth-bit arithmetic.
CarmichaelShift(unsigned Bitwidth)257 static unsigned CarmichaelShift(unsigned Bitwidth) {
258 if (Bitwidth < 3)
259 return Bitwidth - 1;
260 return Bitwidth - 2;
261 }
262
263 /// IncorporateWeight - Add the extra weight 'RHS' to the existing weight 'LHS',
264 /// reducing the combined weight using any special properties of the operation.
265 /// The existing weight LHS represents the computation X op X op ... op X where
266 /// X occurs LHS times. The combined weight represents X op X op ... op X with
267 /// X occurring LHS + RHS times. If op is "Xor" for example then the combined
268 /// operation is equivalent to X if LHS + RHS is odd, or 0 if LHS + RHS is even;
269 /// the routine returns 1 in LHS in the first case, and 0 in LHS in the second.
IncorporateWeight(APInt & LHS,const APInt & RHS,unsigned Opcode)270 static void IncorporateWeight(APInt &LHS, const APInt &RHS, unsigned Opcode) {
271 // If we were working with infinite precision arithmetic then the combined
272 // weight would be LHS + RHS. But we are using finite precision arithmetic,
273 // and the APInt sum LHS + RHS may not be correct if it wraps (it is correct
274 // for nilpotent operations and addition, but not for idempotent operations
275 // and multiplication), so it is important to correctly reduce the combined
276 // weight back into range if wrapping would be wrong.
277
278 // If RHS is zero then the weight didn't change.
279 if (RHS.isMinValue())
280 return;
281 // If LHS is zero then the combined weight is RHS.
282 if (LHS.isMinValue()) {
283 LHS = RHS;
284 return;
285 }
286 // From this point on we know that neither LHS nor RHS is zero.
287
288 if (Instruction::isIdempotent(Opcode)) {
289 // Idempotent means X op X === X, so any non-zero weight is equivalent to a
290 // weight of 1. Keeping weights at zero or one also means that wrapping is
291 // not a problem.
292 assert(LHS == 1 && RHS == 1 && "Weights not reduced!");
293 return; // Return a weight of 1.
294 }
295 if (Instruction::isNilpotent(Opcode)) {
296 // Nilpotent means X op X === 0, so reduce weights modulo 2.
297 assert(LHS == 1 && RHS == 1 && "Weights not reduced!");
298 LHS = 0; // 1 + 1 === 0 modulo 2.
299 return;
300 }
301 if (Opcode == Instruction::Add) {
302 // TODO: Reduce the weight by exploiting nsw/nuw?
303 LHS += RHS;
304 return;
305 }
306
307 assert(Opcode == Instruction::Mul && "Unknown associative operation!");
308 unsigned Bitwidth = LHS.getBitWidth();
309 // If CM is the Carmichael number then a weight W satisfying W >= CM+Bitwidth
310 // can be replaced with W-CM. That's because x^W=x^(W-CM) for every Bitwidth
311 // bit number x, since either x is odd in which case x^CM = 1, or x is even in
312 // which case both x^W and x^(W - CM) are zero. By subtracting off multiples
313 // of CM like this weights can always be reduced to the range [0, CM+Bitwidth)
314 // which by a happy accident means that they can always be represented using
315 // Bitwidth bits.
316 // TODO: Reduce the weight by exploiting nsw/nuw? (Could do much better than
317 // the Carmichael number).
318 if (Bitwidth > 3) {
319 /// CM - The value of Carmichael's lambda function.
320 APInt CM = APInt::getOneBitSet(Bitwidth, CarmichaelShift(Bitwidth));
321 // Any weight W >= Threshold can be replaced with W - CM.
322 APInt Threshold = CM + Bitwidth;
323 assert(LHS.ult(Threshold) && RHS.ult(Threshold) && "Weights not reduced!");
324 // For Bitwidth 4 or more the following sum does not overflow.
325 LHS += RHS;
326 while (LHS.uge(Threshold))
327 LHS -= CM;
328 } else {
329 // To avoid problems with overflow do everything the same as above but using
330 // a larger type.
331 unsigned CM = 1U << CarmichaelShift(Bitwidth);
332 unsigned Threshold = CM + Bitwidth;
333 assert(LHS.getZExtValue() < Threshold && RHS.getZExtValue() < Threshold &&
334 "Weights not reduced!");
335 unsigned Total = LHS.getZExtValue() + RHS.getZExtValue();
336 while (Total >= Threshold)
337 Total -= CM;
338 LHS = Total;
339 }
340 }
341
342 /// EvaluateRepeatedConstant - Compute C op C op ... op C where the constant C
343 /// is repeated Weight times.
EvaluateRepeatedConstant(unsigned Opcode,Constant * C,APInt Weight)344 static Constant *EvaluateRepeatedConstant(unsigned Opcode, Constant *C,
345 APInt Weight) {
346 // For addition the result can be efficiently computed as the product of the
347 // constant and the weight.
348 if (Opcode == Instruction::Add)
349 return ConstantExpr::getMul(C, ConstantInt::get(C->getContext(), Weight));
350
351 // The weight might be huge, so compute by repeated squaring to ensure that
352 // compile time is proportional to the logarithm of the weight.
353 Constant *Result = 0;
354 Constant *Power = C; // Successively C, C op C, (C op C) op (C op C) etc.
355 // Visit the bits in Weight.
356 while (Weight != 0) {
357 // If the current bit in Weight is non-zero do Result = Result op Power.
358 if (Weight[0])
359 Result = Result ? ConstantExpr::get(Opcode, Result, Power) : Power;
360 // Move on to the next bit if any more are non-zero.
361 Weight = Weight.lshr(1);
362 if (Weight.isMinValue())
363 break;
364 // Square the power.
365 Power = ConstantExpr::get(Opcode, Power, Power);
366 }
367
368 assert(Result && "Only positive weights supported!");
369 return Result;
370 }
371
372 typedef std::pair<Value*, APInt> RepeatedValue;
373
374 /// LinearizeExprTree - Given an associative binary expression, return the leaf
375 /// nodes in Ops along with their weights (how many times the leaf occurs). The
376 /// original expression is the same as
377 /// (Ops[0].first op Ops[0].first op ... Ops[0].first) <- Ops[0].second times
378 /// op
379 /// (Ops[1].first op Ops[1].first op ... Ops[1].first) <- Ops[1].second times
380 /// op
381 /// ...
382 /// op
383 /// (Ops[N].first op Ops[N].first op ... Ops[N].first) <- Ops[N].second times
384 ///
385 /// Note that the values Ops[0].first, ..., Ops[N].first are all distinct, and
386 /// they are all non-constant except possibly for the last one, which if it is
387 /// constant will have weight one (Ops[N].second === 1).
388 ///
389 /// This routine may modify the function, in which case it returns 'true'. The
390 /// changes it makes may well be destructive, changing the value computed by 'I'
391 /// to something completely different. Thus if the routine returns 'true' then
392 /// you MUST either replace I with a new expression computed from the Ops array,
393 /// or use RewriteExprTree to put the values back in.
394 ///
395 /// A leaf node is either not a binary operation of the same kind as the root
396 /// node 'I' (i.e. is not a binary operator at all, or is, but with a different
397 /// opcode), or is the same kind of binary operator but has a use which either
398 /// does not belong to the expression, or does belong to the expression but is
399 /// a leaf node. Every leaf node has at least one use that is a non-leaf node
400 /// of the expression, while for non-leaf nodes (except for the root 'I') every
401 /// use is a non-leaf node of the expression.
402 ///
403 /// For example:
404 /// expression graph node names
405 ///
406 /// + | I
407 /// / \ |
408 /// + + | A, B
409 /// / \ / \ |
410 /// * + * | C, D, E
411 /// / \ / \ / \ |
412 /// + * | F, G
413 ///
414 /// The leaf nodes are C, E, F and G. The Ops array will contain (maybe not in
415 /// that order) (C, 1), (E, 1), (F, 2), (G, 2).
416 ///
417 /// The expression is maximal: if some instruction is a binary operator of the
418 /// same kind as 'I', and all of its uses are non-leaf nodes of the expression,
419 /// then the instruction also belongs to the expression, is not a leaf node of
420 /// it, and its operands also belong to the expression (but may be leaf nodes).
421 ///
422 /// NOTE: This routine will set operands of non-leaf non-root nodes to undef in
423 /// order to ensure that every non-root node in the expression has *exactly one*
424 /// use by a non-leaf node of the expression. This destruction means that the
425 /// caller MUST either replace 'I' with a new expression or use something like
426 /// RewriteExprTree to put the values back in if the routine indicates that it
427 /// made a change by returning 'true'.
428 ///
429 /// In the above example either the right operand of A or the left operand of B
430 /// will be replaced by undef. If it is B's operand then this gives:
431 ///
432 /// + | I
433 /// / \ |
434 /// + + | A, B - operand of B replaced with undef
435 /// / \ \ |
436 /// * + * | C, D, E
437 /// / \ / \ / \ |
438 /// + * | F, G
439 ///
440 /// Note that such undef operands can only be reached by passing through 'I'.
441 /// For example, if you visit operands recursively starting from a leaf node
442 /// then you will never see such an undef operand unless you get back to 'I',
443 /// which requires passing through a phi node.
444 ///
445 /// Note that this routine may also mutate binary operators of the wrong type
446 /// that have all uses inside the expression (i.e. only used by non-leaf nodes
447 /// of the expression) if it can turn them into binary operators of the right
448 /// type and thus make the expression bigger.
449
LinearizeExprTree(BinaryOperator * I,SmallVectorImpl<RepeatedValue> & Ops)450 static bool LinearizeExprTree(BinaryOperator *I,
451 SmallVectorImpl<RepeatedValue> &Ops) {
452 DEBUG(dbgs() << "LINEARIZE: " << *I << '\n');
453 unsigned Bitwidth = I->getType()->getScalarType()->getPrimitiveSizeInBits();
454 unsigned Opcode = I->getOpcode();
455 assert(Instruction::isAssociative(Opcode) &&
456 Instruction::isCommutative(Opcode) &&
457 "Expected an associative and commutative operation!");
458 // If we see an absorbing element then the entire expression must be equal to
459 // it. For example, if this is a multiplication expression and zero occurs as
460 // an operand somewhere in it then the result of the expression must be zero.
461 Constant *Absorber = ConstantExpr::getBinOpAbsorber(Opcode, I->getType());
462
463 // Visit all operands of the expression, keeping track of their weight (the
464 // number of paths from the expression root to the operand, or if you like
465 // the number of times that operand occurs in the linearized expression).
466 // For example, if I = X + A, where X = A + B, then I, X and B have weight 1
467 // while A has weight two.
468
469 // Worklist of non-leaf nodes (their operands are in the expression too) along
470 // with their weights, representing a certain number of paths to the operator.
471 // If an operator occurs in the worklist multiple times then we found multiple
472 // ways to get to it.
473 SmallVector<std::pair<BinaryOperator*, APInt>, 8> Worklist; // (Op, Weight)
474 Worklist.push_back(std::make_pair(I, APInt(Bitwidth, 1)));
475 bool MadeChange = false;
476
477 // Leaves of the expression are values that either aren't the right kind of
478 // operation (eg: a constant, or a multiply in an add tree), or are, but have
479 // some uses that are not inside the expression. For example, in I = X + X,
480 // X = A + B, the value X has two uses (by I) that are in the expression. If
481 // X has any other uses, for example in a return instruction, then we consider
482 // X to be a leaf, and won't analyze it further. When we first visit a value,
483 // if it has more than one use then at first we conservatively consider it to
484 // be a leaf. Later, as the expression is explored, we may discover some more
485 // uses of the value from inside the expression. If all uses turn out to be
486 // from within the expression (and the value is a binary operator of the right
487 // kind) then the value is no longer considered to be a leaf, and its operands
488 // are explored.
489
490 // Leaves - Keeps track of the set of putative leaves as well as the number of
491 // paths to each leaf seen so far.
492 typedef DenseMap<Value*, APInt> LeafMap;
493 LeafMap Leaves; // Leaf -> Total weight so far.
494 SmallVector<Value*, 8> LeafOrder; // Ensure deterministic leaf output order.
495
496 #ifndef NDEBUG
497 SmallPtrSet<Value*, 8> Visited; // For sanity checking the iteration scheme.
498 #endif
499 while (!Worklist.empty()) {
500 std::pair<BinaryOperator*, APInt> P = Worklist.pop_back_val();
501 I = P.first; // We examine the operands of this binary operator.
502
503 for (unsigned OpIdx = 0; OpIdx < 2; ++OpIdx) { // Visit operands.
504 Value *Op = I->getOperand(OpIdx);
505 APInt Weight = P.second; // Number of paths to this operand.
506 DEBUG(dbgs() << "OPERAND: " << *Op << " (" << Weight << ")\n");
507 assert(!Op->use_empty() && "No uses, so how did we get to it?!");
508
509 // If the expression contains an absorbing element then there is no need
510 // to analyze it further: it must evaluate to the absorbing element.
511 if (Op == Absorber && !Weight.isMinValue()) {
512 Ops.push_back(std::make_pair(Absorber, APInt(Bitwidth, 1)));
513 return MadeChange;
514 }
515
516 // If this is a binary operation of the right kind with only one use then
517 // add its operands to the expression.
518 if (BinaryOperator *BO = isReassociableOp(Op, Opcode)) {
519 assert(Visited.insert(Op) && "Not first visit!");
520 DEBUG(dbgs() << "DIRECT ADD: " << *Op << " (" << Weight << ")\n");
521 Worklist.push_back(std::make_pair(BO, Weight));
522 continue;
523 }
524
525 // Appears to be a leaf. Is the operand already in the set of leaves?
526 LeafMap::iterator It = Leaves.find(Op);
527 if (It == Leaves.end()) {
528 // Not in the leaf map. Must be the first time we saw this operand.
529 assert(Visited.insert(Op) && "Not first visit!");
530 if (!Op->hasOneUse()) {
531 // This value has uses not accounted for by the expression, so it is
532 // not safe to modify. Mark it as being a leaf.
533 DEBUG(dbgs() << "ADD USES LEAF: " << *Op << " (" << Weight << ")\n");
534 LeafOrder.push_back(Op);
535 Leaves[Op] = Weight;
536 continue;
537 }
538 // No uses outside the expression, try morphing it.
539 } else if (It != Leaves.end()) {
540 // Already in the leaf map.
541 assert(Visited.count(Op) && "In leaf map but not visited!");
542
543 // Update the number of paths to the leaf.
544 IncorporateWeight(It->second, Weight, Opcode);
545
546 #if 0 // TODO: Re-enable once PR13021 is fixed.
547 // The leaf already has one use from inside the expression. As we want
548 // exactly one such use, drop this new use of the leaf.
549 assert(!Op->hasOneUse() && "Only one use, but we got here twice!");
550 I->setOperand(OpIdx, UndefValue::get(I->getType()));
551 MadeChange = true;
552
553 // If the leaf is a binary operation of the right kind and we now see
554 // that its multiple original uses were in fact all by nodes belonging
555 // to the expression, then no longer consider it to be a leaf and add
556 // its operands to the expression.
557 if (BinaryOperator *BO = isReassociableOp(Op, Opcode)) {
558 DEBUG(dbgs() << "UNLEAF: " << *Op << " (" << It->second << ")\n");
559 Worklist.push_back(std::make_pair(BO, It->second));
560 Leaves.erase(It);
561 continue;
562 }
563 #endif
564
565 // If we still have uses that are not accounted for by the expression
566 // then it is not safe to modify the value.
567 if (!Op->hasOneUse())
568 continue;
569
570 // No uses outside the expression, try morphing it.
571 Weight = It->second;
572 Leaves.erase(It); // Since the value may be morphed below.
573 }
574
575 // At this point we have a value which, first of all, is not a binary
576 // expression of the right kind, and secondly, is only used inside the
577 // expression. This means that it can safely be modified. See if we
578 // can usefully morph it into an expression of the right kind.
579 assert((!isa<Instruction>(Op) ||
580 cast<Instruction>(Op)->getOpcode() != Opcode) &&
581 "Should have been handled above!");
582 assert(Op->hasOneUse() && "Has uses outside the expression tree!");
583
584 // If this is a multiply expression, turn any internal negations into
585 // multiplies by -1 so they can be reassociated.
586 BinaryOperator *BO = dyn_cast<BinaryOperator>(Op);
587 if (Opcode == Instruction::Mul && BO && BinaryOperator::isNeg(BO)) {
588 DEBUG(dbgs() << "MORPH LEAF: " << *Op << " (" << Weight << ") TO ");
589 BO = LowerNegateToMultiply(BO);
590 DEBUG(dbgs() << *BO << 'n');
591 Worklist.push_back(std::make_pair(BO, Weight));
592 MadeChange = true;
593 continue;
594 }
595
596 // Failed to morph into an expression of the right type. This really is
597 // a leaf.
598 DEBUG(dbgs() << "ADD LEAF: " << *Op << " (" << Weight << ")\n");
599 assert(!isReassociableOp(Op, Opcode) && "Value was morphed?");
600 LeafOrder.push_back(Op);
601 Leaves[Op] = Weight;
602 }
603 }
604
605 // The leaves, repeated according to their weights, represent the linearized
606 // form of the expression.
607 Constant *Cst = 0; // Accumulate constants here.
608 for (unsigned i = 0, e = LeafOrder.size(); i != e; ++i) {
609 Value *V = LeafOrder[i];
610 LeafMap::iterator It = Leaves.find(V);
611 if (It == Leaves.end())
612 // Node initially thought to be a leaf wasn't.
613 continue;
614 assert(!isReassociableOp(V, Opcode) && "Shouldn't be a leaf!");
615 APInt Weight = It->second;
616 if (Weight.isMinValue())
617 // Leaf already output or weight reduction eliminated it.
618 continue;
619 // Ensure the leaf is only output once.
620 It->second = 0;
621 // Glob all constants together into Cst.
622 if (Constant *C = dyn_cast<Constant>(V)) {
623 C = EvaluateRepeatedConstant(Opcode, C, Weight);
624 Cst = Cst ? ConstantExpr::get(Opcode, Cst, C) : C;
625 continue;
626 }
627 // Add non-constant
628 Ops.push_back(std::make_pair(V, Weight));
629 }
630
631 // Add any constants back into Ops, all globbed together and reduced to having
632 // weight 1 for the convenience of users.
633 Constant *Identity = ConstantExpr::getBinOpIdentity(Opcode, I->getType());
634 if (Cst && Cst != Identity) {
635 // If combining multiple constants resulted in the absorber then the entire
636 // expression must evaluate to the absorber.
637 if (Cst == Absorber)
638 Ops.clear();
639 Ops.push_back(std::make_pair(Cst, APInt(Bitwidth, 1)));
640 }
641
642 // For nilpotent operations or addition there may be no operands, for example
643 // because the expression was "X xor X" or consisted of 2^Bitwidth additions:
644 // in both cases the weight reduces to 0 causing the value to be skipped.
645 if (Ops.empty()) {
646 assert(Identity && "Associative operation without identity!");
647 Ops.push_back(std::make_pair(Identity, APInt(Bitwidth, 1)));
648 }
649
650 return MadeChange;
651 }
652
653 // RewriteExprTree - Now that the operands for this expression tree are
654 // linearized and optimized, emit them in-order.
RewriteExprTree(BinaryOperator * I,SmallVectorImpl<ValueEntry> & Ops)655 void Reassociate::RewriteExprTree(BinaryOperator *I,
656 SmallVectorImpl<ValueEntry> &Ops) {
657 assert(Ops.size() > 1 && "Single values should be used directly!");
658
659 // Since our optimizations never increase the number of operations, the new
660 // expression can always be written by reusing the existing binary operators
661 // from the original expression tree, without creating any new instructions,
662 // though the rewritten expression may have a completely different topology.
663 // We take care to not change anything if the new expression will be the same
664 // as the original. If more than trivial changes (like commuting operands)
665 // were made then we are obliged to clear out any optional subclass data like
666 // nsw flags.
667
668 /// NodesToRewrite - Nodes from the original expression available for writing
669 /// the new expression into.
670 SmallVector<BinaryOperator*, 8> NodesToRewrite;
671 unsigned Opcode = I->getOpcode();
672 BinaryOperator *Op = I;
673
674 // ExpressionChanged - Non-null if the rewritten expression differs from the
675 // original in some non-trivial way, requiring the clearing of optional flags.
676 // Flags are cleared from the operator in ExpressionChanged up to I inclusive.
677 BinaryOperator *ExpressionChanged = 0;
678 for (unsigned i = 0; ; ++i) {
679 // The last operation (which comes earliest in the IR) is special as both
680 // operands will come from Ops, rather than just one with the other being
681 // a subexpression.
682 if (i+2 == Ops.size()) {
683 Value *NewLHS = Ops[i].Op;
684 Value *NewRHS = Ops[i+1].Op;
685 Value *OldLHS = Op->getOperand(0);
686 Value *OldRHS = Op->getOperand(1);
687
688 if (NewLHS == OldLHS && NewRHS == OldRHS)
689 // Nothing changed, leave it alone.
690 break;
691
692 if (NewLHS == OldRHS && NewRHS == OldLHS) {
693 // The order of the operands was reversed. Swap them.
694 DEBUG(dbgs() << "RA: " << *Op << '\n');
695 Op->swapOperands();
696 DEBUG(dbgs() << "TO: " << *Op << '\n');
697 MadeChange = true;
698 ++NumChanged;
699 break;
700 }
701
702 // The new operation differs non-trivially from the original. Overwrite
703 // the old operands with the new ones.
704 DEBUG(dbgs() << "RA: " << *Op << '\n');
705 if (NewLHS != OldLHS) {
706 if (BinaryOperator *BO = isReassociableOp(OldLHS, Opcode))
707 NodesToRewrite.push_back(BO);
708 Op->setOperand(0, NewLHS);
709 }
710 if (NewRHS != OldRHS) {
711 if (BinaryOperator *BO = isReassociableOp(OldRHS, Opcode))
712 NodesToRewrite.push_back(BO);
713 Op->setOperand(1, NewRHS);
714 }
715 DEBUG(dbgs() << "TO: " << *Op << '\n');
716
717 ExpressionChanged = Op;
718 MadeChange = true;
719 ++NumChanged;
720
721 break;
722 }
723
724 // Not the last operation. The left-hand side will be a sub-expression
725 // while the right-hand side will be the current element of Ops.
726 Value *NewRHS = Ops[i].Op;
727 if (NewRHS != Op->getOperand(1)) {
728 DEBUG(dbgs() << "RA: " << *Op << '\n');
729 if (NewRHS == Op->getOperand(0)) {
730 // The new right-hand side was already present as the left operand. If
731 // we are lucky then swapping the operands will sort out both of them.
732 Op->swapOperands();
733 } else {
734 // Overwrite with the new right-hand side.
735 if (BinaryOperator *BO = isReassociableOp(Op->getOperand(1), Opcode))
736 NodesToRewrite.push_back(BO);
737 Op->setOperand(1, NewRHS);
738 ExpressionChanged = Op;
739 }
740 DEBUG(dbgs() << "TO: " << *Op << '\n');
741 MadeChange = true;
742 ++NumChanged;
743 }
744
745 // Now deal with the left-hand side. If this is already an operation node
746 // from the original expression then just rewrite the rest of the expression
747 // into it.
748 if (BinaryOperator *BO = isReassociableOp(Op->getOperand(0), Opcode)) {
749 Op = BO;
750 continue;
751 }
752
753 // Otherwise, grab a spare node from the original expression and use that as
754 // the left-hand side. If there are no nodes left then the optimizers made
755 // an expression with more nodes than the original! This usually means that
756 // they did something stupid but it might mean that the problem was just too
757 // hard (finding the mimimal number of multiplications needed to realize a
758 // multiplication expression is NP-complete). Whatever the reason, smart or
759 // stupid, create a new node if there are none left.
760 BinaryOperator *NewOp;
761 if (NodesToRewrite.empty()) {
762 Constant *Undef = UndefValue::get(I->getType());
763 NewOp = BinaryOperator::Create(Instruction::BinaryOps(Opcode),
764 Undef, Undef, "", I);
765 } else {
766 NewOp = NodesToRewrite.pop_back_val();
767 }
768
769 DEBUG(dbgs() << "RA: " << *Op << '\n');
770 Op->setOperand(0, NewOp);
771 DEBUG(dbgs() << "TO: " << *Op << '\n');
772 ExpressionChanged = Op;
773 MadeChange = true;
774 ++NumChanged;
775 Op = NewOp;
776 }
777
778 // If the expression changed non-trivially then clear out all subclass data
779 // starting from the operator specified in ExpressionChanged, and compactify
780 // the operators to just before the expression root to guarantee that the
781 // expression tree is dominated by all of Ops.
782 if (ExpressionChanged)
783 do {
784 ExpressionChanged->clearSubclassOptionalData();
785 if (ExpressionChanged == I)
786 break;
787 ExpressionChanged->moveBefore(I);
788 ExpressionChanged = cast<BinaryOperator>(*ExpressionChanged->use_begin());
789 } while (1);
790
791 // Throw away any left over nodes from the original expression.
792 for (unsigned i = 0, e = NodesToRewrite.size(); i != e; ++i)
793 RedoInsts.insert(NodesToRewrite[i]);
794 }
795
796 /// NegateValue - Insert instructions before the instruction pointed to by BI,
797 /// that computes the negative version of the value specified. The negative
798 /// version of the value is returned, and BI is left pointing at the instruction
799 /// that should be processed next by the reassociation pass.
NegateValue(Value * V,Instruction * BI)800 static Value *NegateValue(Value *V, Instruction *BI) {
801 if (Constant *C = dyn_cast<Constant>(V))
802 return ConstantExpr::getNeg(C);
803
804 // We are trying to expose opportunity for reassociation. One of the things
805 // that we want to do to achieve this is to push a negation as deep into an
806 // expression chain as possible, to expose the add instructions. In practice,
807 // this means that we turn this:
808 // X = -(A+12+C+D) into X = -A + -12 + -C + -D = -12 + -A + -C + -D
809 // so that later, a: Y = 12+X could get reassociated with the -12 to eliminate
810 // the constants. We assume that instcombine will clean up the mess later if
811 // we introduce tons of unnecessary negation instructions.
812 //
813 if (BinaryOperator *I = isReassociableOp(V, Instruction::Add)) {
814 // Push the negates through the add.
815 I->setOperand(0, NegateValue(I->getOperand(0), BI));
816 I->setOperand(1, NegateValue(I->getOperand(1), BI));
817
818 // We must move the add instruction here, because the neg instructions do
819 // not dominate the old add instruction in general. By moving it, we are
820 // assured that the neg instructions we just inserted dominate the
821 // instruction we are about to insert after them.
822 //
823 I->moveBefore(BI);
824 I->setName(I->getName()+".neg");
825 return I;
826 }
827
828 // Okay, we need to materialize a negated version of V with an instruction.
829 // Scan the use lists of V to see if we have one already.
830 for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;++UI){
831 User *U = *UI;
832 if (!BinaryOperator::isNeg(U)) continue;
833
834 // We found one! Now we have to make sure that the definition dominates
835 // this use. We do this by moving it to the entry block (if it is a
836 // non-instruction value) or right after the definition. These negates will
837 // be zapped by reassociate later, so we don't need much finesse here.
838 BinaryOperator *TheNeg = cast<BinaryOperator>(U);
839
840 // Verify that the negate is in this function, V might be a constant expr.
841 if (TheNeg->getParent()->getParent() != BI->getParent()->getParent())
842 continue;
843
844 BasicBlock::iterator InsertPt;
845 if (Instruction *InstInput = dyn_cast<Instruction>(V)) {
846 if (InvokeInst *II = dyn_cast<InvokeInst>(InstInput)) {
847 InsertPt = II->getNormalDest()->begin();
848 } else {
849 InsertPt = InstInput;
850 ++InsertPt;
851 }
852 while (isa<PHINode>(InsertPt)) ++InsertPt;
853 } else {
854 InsertPt = TheNeg->getParent()->getParent()->getEntryBlock().begin();
855 }
856 TheNeg->moveBefore(InsertPt);
857 return TheNeg;
858 }
859
860 // Insert a 'neg' instruction that subtracts the value from zero to get the
861 // negation.
862 return BinaryOperator::CreateNeg(V, V->getName() + ".neg", BI);
863 }
864
865 /// ShouldBreakUpSubtract - Return true if we should break up this subtract of
866 /// X-Y into (X + -Y).
ShouldBreakUpSubtract(Instruction * Sub)867 static bool ShouldBreakUpSubtract(Instruction *Sub) {
868 // If this is a negation, we can't split it up!
869 if (BinaryOperator::isNeg(Sub))
870 return false;
871
872 // Don't bother to break this up unless either the LHS is an associable add or
873 // subtract or if this is only used by one.
874 if (isReassociableOp(Sub->getOperand(0), Instruction::Add) ||
875 isReassociableOp(Sub->getOperand(0), Instruction::Sub))
876 return true;
877 if (isReassociableOp(Sub->getOperand(1), Instruction::Add) ||
878 isReassociableOp(Sub->getOperand(1), Instruction::Sub))
879 return true;
880 if (Sub->hasOneUse() &&
881 (isReassociableOp(Sub->use_back(), Instruction::Add) ||
882 isReassociableOp(Sub->use_back(), Instruction::Sub)))
883 return true;
884
885 return false;
886 }
887
888 /// BreakUpSubtract - If we have (X-Y), and if either X is an add, or if this is
889 /// only used by an add, transform this into (X+(0-Y)) to promote better
890 /// reassociation.
BreakUpSubtract(Instruction * Sub)891 static BinaryOperator *BreakUpSubtract(Instruction *Sub) {
892 // Convert a subtract into an add and a neg instruction. This allows sub
893 // instructions to be commuted with other add instructions.
894 //
895 // Calculate the negative value of Operand 1 of the sub instruction,
896 // and set it as the RHS of the add instruction we just made.
897 //
898 Value *NegVal = NegateValue(Sub->getOperand(1), Sub);
899 BinaryOperator *New =
900 BinaryOperator::CreateAdd(Sub->getOperand(0), NegVal, "", Sub);
901 Sub->setOperand(0, Constant::getNullValue(Sub->getType())); // Drop use of op.
902 Sub->setOperand(1, Constant::getNullValue(Sub->getType())); // Drop use of op.
903 New->takeName(Sub);
904
905 // Everyone now refers to the add instruction.
906 Sub->replaceAllUsesWith(New);
907 New->setDebugLoc(Sub->getDebugLoc());
908
909 DEBUG(dbgs() << "Negated: " << *New << '\n');
910 return New;
911 }
912
913 /// ConvertShiftToMul - If this is a shift of a reassociable multiply or is used
914 /// by one, change this into a multiply by a constant to assist with further
915 /// reassociation.
ConvertShiftToMul(Instruction * Shl)916 static BinaryOperator *ConvertShiftToMul(Instruction *Shl) {
917 Constant *MulCst = ConstantInt::get(Shl->getType(), 1);
918 MulCst = ConstantExpr::getShl(MulCst, cast<Constant>(Shl->getOperand(1)));
919
920 BinaryOperator *Mul =
921 BinaryOperator::CreateMul(Shl->getOperand(0), MulCst, "", Shl);
922 Shl->setOperand(0, UndefValue::get(Shl->getType())); // Drop use of op.
923 Mul->takeName(Shl);
924 Shl->replaceAllUsesWith(Mul);
925 Mul->setDebugLoc(Shl->getDebugLoc());
926 return Mul;
927 }
928
929 /// FindInOperandList - Scan backwards and forwards among values with the same
930 /// rank as element i to see if X exists. If X does not exist, return i. This
931 /// is useful when scanning for 'x' when we see '-x' because they both get the
932 /// same rank.
FindInOperandList(SmallVectorImpl<ValueEntry> & Ops,unsigned i,Value * X)933 static unsigned FindInOperandList(SmallVectorImpl<ValueEntry> &Ops, unsigned i,
934 Value *X) {
935 unsigned XRank = Ops[i].Rank;
936 unsigned e = Ops.size();
937 for (unsigned j = i+1; j != e && Ops[j].Rank == XRank; ++j)
938 if (Ops[j].Op == X)
939 return j;
940 // Scan backwards.
941 for (unsigned j = i-1; j != ~0U && Ops[j].Rank == XRank; --j)
942 if (Ops[j].Op == X)
943 return j;
944 return i;
945 }
946
947 /// EmitAddTreeOfValues - Emit a tree of add instructions, summing Ops together
948 /// and returning the result. Insert the tree before I.
EmitAddTreeOfValues(Instruction * I,SmallVectorImpl<WeakVH> & Ops)949 static Value *EmitAddTreeOfValues(Instruction *I,
950 SmallVectorImpl<WeakVH> &Ops){
951 if (Ops.size() == 1) return Ops.back();
952
953 Value *V1 = Ops.back();
954 Ops.pop_back();
955 Value *V2 = EmitAddTreeOfValues(I, Ops);
956 return BinaryOperator::CreateAdd(V2, V1, "tmp", I);
957 }
958
959 /// RemoveFactorFromExpression - If V is an expression tree that is a
960 /// multiplication sequence, and if this sequence contains a multiply by Factor,
961 /// remove Factor from the tree and return the new tree.
RemoveFactorFromExpression(Value * V,Value * Factor)962 Value *Reassociate::RemoveFactorFromExpression(Value *V, Value *Factor) {
963 BinaryOperator *BO = isReassociableOp(V, Instruction::Mul);
964 if (!BO) return 0;
965
966 SmallVector<RepeatedValue, 8> Tree;
967 MadeChange |= LinearizeExprTree(BO, Tree);
968 SmallVector<ValueEntry, 8> Factors;
969 Factors.reserve(Tree.size());
970 for (unsigned i = 0, e = Tree.size(); i != e; ++i) {
971 RepeatedValue E = Tree[i];
972 Factors.append(E.second.getZExtValue(),
973 ValueEntry(getRank(E.first), E.first));
974 }
975
976 bool FoundFactor = false;
977 bool NeedsNegate = false;
978 for (unsigned i = 0, e = Factors.size(); i != e; ++i) {
979 if (Factors[i].Op == Factor) {
980 FoundFactor = true;
981 Factors.erase(Factors.begin()+i);
982 break;
983 }
984
985 // If this is a negative version of this factor, remove it.
986 if (ConstantInt *FC1 = dyn_cast<ConstantInt>(Factor))
987 if (ConstantInt *FC2 = dyn_cast<ConstantInt>(Factors[i].Op))
988 if (FC1->getValue() == -FC2->getValue()) {
989 FoundFactor = NeedsNegate = true;
990 Factors.erase(Factors.begin()+i);
991 break;
992 }
993 }
994
995 if (!FoundFactor) {
996 // Make sure to restore the operands to the expression tree.
997 RewriteExprTree(BO, Factors);
998 return 0;
999 }
1000
1001 BasicBlock::iterator InsertPt = BO; ++InsertPt;
1002
1003 // If this was just a single multiply, remove the multiply and return the only
1004 // remaining operand.
1005 if (Factors.size() == 1) {
1006 RedoInsts.insert(BO);
1007 V = Factors[0].Op;
1008 } else {
1009 RewriteExprTree(BO, Factors);
1010 V = BO;
1011 }
1012
1013 if (NeedsNegate)
1014 V = BinaryOperator::CreateNeg(V, "neg", InsertPt);
1015
1016 return V;
1017 }
1018
1019 /// FindSingleUseMultiplyFactors - If V is a single-use multiply, recursively
1020 /// add its operands as factors, otherwise add V to the list of factors.
1021 ///
1022 /// Ops is the top-level list of add operands we're trying to factor.
FindSingleUseMultiplyFactors(Value * V,SmallVectorImpl<Value * > & Factors,const SmallVectorImpl<ValueEntry> & Ops)1023 static void FindSingleUseMultiplyFactors(Value *V,
1024 SmallVectorImpl<Value*> &Factors,
1025 const SmallVectorImpl<ValueEntry> &Ops) {
1026 BinaryOperator *BO = isReassociableOp(V, Instruction::Mul);
1027 if (!BO) {
1028 Factors.push_back(V);
1029 return;
1030 }
1031
1032 // Otherwise, add the LHS and RHS to the list of factors.
1033 FindSingleUseMultiplyFactors(BO->getOperand(1), Factors, Ops);
1034 FindSingleUseMultiplyFactors(BO->getOperand(0), Factors, Ops);
1035 }
1036
1037 /// OptimizeAndOrXor - Optimize a series of operands to an 'and', 'or', or 'xor'
1038 /// instruction. This optimizes based on identities. If it can be reduced to
1039 /// a single Value, it is returned, otherwise the Ops list is mutated as
1040 /// necessary.
OptimizeAndOrXor(unsigned Opcode,SmallVectorImpl<ValueEntry> & Ops)1041 static Value *OptimizeAndOrXor(unsigned Opcode,
1042 SmallVectorImpl<ValueEntry> &Ops) {
1043 // Scan the operand lists looking for X and ~X pairs, along with X,X pairs.
1044 // If we find any, we can simplify the expression. X&~X == 0, X|~X == -1.
1045 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1046 // First, check for X and ~X in the operand list.
1047 assert(i < Ops.size());
1048 if (BinaryOperator::isNot(Ops[i].Op)) { // Cannot occur for ^.
1049 Value *X = BinaryOperator::getNotArgument(Ops[i].Op);
1050 unsigned FoundX = FindInOperandList(Ops, i, X);
1051 if (FoundX != i) {
1052 if (Opcode == Instruction::And) // ...&X&~X = 0
1053 return Constant::getNullValue(X->getType());
1054
1055 if (Opcode == Instruction::Or) // ...|X|~X = -1
1056 return Constant::getAllOnesValue(X->getType());
1057 }
1058 }
1059
1060 // Next, check for duplicate pairs of values, which we assume are next to
1061 // each other, due to our sorting criteria.
1062 assert(i < Ops.size());
1063 if (i+1 != Ops.size() && Ops[i+1].Op == Ops[i].Op) {
1064 if (Opcode == Instruction::And || Opcode == Instruction::Or) {
1065 // Drop duplicate values for And and Or.
1066 Ops.erase(Ops.begin()+i);
1067 --i; --e;
1068 ++NumAnnihil;
1069 continue;
1070 }
1071
1072 // Drop pairs of values for Xor.
1073 assert(Opcode == Instruction::Xor);
1074 if (e == 2)
1075 return Constant::getNullValue(Ops[0].Op->getType());
1076
1077 // Y ^ X^X -> Y
1078 Ops.erase(Ops.begin()+i, Ops.begin()+i+2);
1079 i -= 1; e -= 2;
1080 ++NumAnnihil;
1081 }
1082 }
1083 return 0;
1084 }
1085
1086 /// OptimizeAdd - Optimize a series of operands to an 'add' instruction. This
1087 /// optimizes based on identities. If it can be reduced to a single Value, it
1088 /// is returned, otherwise the Ops list is mutated as necessary.
OptimizeAdd(Instruction * I,SmallVectorImpl<ValueEntry> & Ops)1089 Value *Reassociate::OptimizeAdd(Instruction *I,
1090 SmallVectorImpl<ValueEntry> &Ops) {
1091 // Scan the operand lists looking for X and -X pairs. If we find any, we
1092 // can simplify the expression. X+-X == 0. While we're at it, scan for any
1093 // duplicates. We want to canonicalize Y+Y+Y+Z -> 3*Y+Z.
1094 //
1095 // TODO: We could handle "X + ~X" -> "-1" if we wanted, since "-X = ~X+1".
1096 //
1097 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1098 Value *TheOp = Ops[i].Op;
1099 // Check to see if we've seen this operand before. If so, we factor all
1100 // instances of the operand together. Due to our sorting criteria, we know
1101 // that these need to be next to each other in the vector.
1102 if (i+1 != Ops.size() && Ops[i+1].Op == TheOp) {
1103 // Rescan the list, remove all instances of this operand from the expr.
1104 unsigned NumFound = 0;
1105 do {
1106 Ops.erase(Ops.begin()+i);
1107 ++NumFound;
1108 } while (i != Ops.size() && Ops[i].Op == TheOp);
1109
1110 DEBUG(errs() << "\nFACTORING [" << NumFound << "]: " << *TheOp << '\n');
1111 ++NumFactor;
1112
1113 // Insert a new multiply.
1114 Value *Mul = ConstantInt::get(cast<IntegerType>(I->getType()), NumFound);
1115 Mul = BinaryOperator::CreateMul(TheOp, Mul, "factor", I);
1116
1117 // Now that we have inserted a multiply, optimize it. This allows us to
1118 // handle cases that require multiple factoring steps, such as this:
1119 // (X*2) + (X*2) + (X*2) -> (X*2)*3 -> X*6
1120 RedoInsts.insert(cast<Instruction>(Mul));
1121
1122 // If every add operand was a duplicate, return the multiply.
1123 if (Ops.empty())
1124 return Mul;
1125
1126 // Otherwise, we had some input that didn't have the dupe, such as
1127 // "A + A + B" -> "A*2 + B". Add the new multiply to the list of
1128 // things being added by this operation.
1129 Ops.insert(Ops.begin(), ValueEntry(getRank(Mul), Mul));
1130
1131 --i;
1132 e = Ops.size();
1133 continue;
1134 }
1135
1136 // Check for X and -X in the operand list.
1137 if (!BinaryOperator::isNeg(TheOp))
1138 continue;
1139
1140 Value *X = BinaryOperator::getNegArgument(TheOp);
1141 unsigned FoundX = FindInOperandList(Ops, i, X);
1142 if (FoundX == i)
1143 continue;
1144
1145 // Remove X and -X from the operand list.
1146 if (Ops.size() == 2)
1147 return Constant::getNullValue(X->getType());
1148
1149 Ops.erase(Ops.begin()+i);
1150 if (i < FoundX)
1151 --FoundX;
1152 else
1153 --i; // Need to back up an extra one.
1154 Ops.erase(Ops.begin()+FoundX);
1155 ++NumAnnihil;
1156 --i; // Revisit element.
1157 e -= 2; // Removed two elements.
1158 }
1159
1160 // Scan the operand list, checking to see if there are any common factors
1161 // between operands. Consider something like A*A+A*B*C+D. We would like to
1162 // reassociate this to A*(A+B*C)+D, which reduces the number of multiplies.
1163 // To efficiently find this, we count the number of times a factor occurs
1164 // for any ADD operands that are MULs.
1165 DenseMap<Value*, unsigned> FactorOccurrences;
1166
1167 // Keep track of each multiply we see, to avoid triggering on (X*4)+(X*4)
1168 // where they are actually the same multiply.
1169 unsigned MaxOcc = 0;
1170 Value *MaxOccVal = 0;
1171 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1172 BinaryOperator *BOp = isReassociableOp(Ops[i].Op, Instruction::Mul);
1173 if (!BOp)
1174 continue;
1175
1176 // Compute all of the factors of this added value.
1177 SmallVector<Value*, 8> Factors;
1178 FindSingleUseMultiplyFactors(BOp, Factors, Ops);
1179 assert(Factors.size() > 1 && "Bad linearize!");
1180
1181 // Add one to FactorOccurrences for each unique factor in this op.
1182 SmallPtrSet<Value*, 8> Duplicates;
1183 for (unsigned i = 0, e = Factors.size(); i != e; ++i) {
1184 Value *Factor = Factors[i];
1185 if (!Duplicates.insert(Factor)) continue;
1186
1187 unsigned Occ = ++FactorOccurrences[Factor];
1188 if (Occ > MaxOcc) { MaxOcc = Occ; MaxOccVal = Factor; }
1189
1190 // If Factor is a negative constant, add the negated value as a factor
1191 // because we can percolate the negate out. Watch for minint, which
1192 // cannot be positivified.
1193 if (ConstantInt *CI = dyn_cast<ConstantInt>(Factor))
1194 if (CI->isNegative() && !CI->isMinValue(true)) {
1195 Factor = ConstantInt::get(CI->getContext(), -CI->getValue());
1196 assert(!Duplicates.count(Factor) &&
1197 "Shouldn't have two constant factors, missed a canonicalize");
1198
1199 unsigned Occ = ++FactorOccurrences[Factor];
1200 if (Occ > MaxOcc) { MaxOcc = Occ; MaxOccVal = Factor; }
1201 }
1202 }
1203 }
1204
1205 // If any factor occurred more than one time, we can pull it out.
1206 if (MaxOcc > 1) {
1207 DEBUG(errs() << "\nFACTORING [" << MaxOcc << "]: " << *MaxOccVal << '\n');
1208 ++NumFactor;
1209
1210 // Create a new instruction that uses the MaxOccVal twice. If we don't do
1211 // this, we could otherwise run into situations where removing a factor
1212 // from an expression will drop a use of maxocc, and this can cause
1213 // RemoveFactorFromExpression on successive values to behave differently.
1214 Instruction *DummyInst = BinaryOperator::CreateAdd(MaxOccVal, MaxOccVal);
1215 SmallVector<WeakVH, 4> NewMulOps;
1216 for (unsigned i = 0; i != Ops.size(); ++i) {
1217 // Only try to remove factors from expressions we're allowed to.
1218 BinaryOperator *BOp = isReassociableOp(Ops[i].Op, Instruction::Mul);
1219 if (!BOp)
1220 continue;
1221
1222 if (Value *V = RemoveFactorFromExpression(Ops[i].Op, MaxOccVal)) {
1223 // The factorized operand may occur several times. Convert them all in
1224 // one fell swoop.
1225 for (unsigned j = Ops.size(); j != i;) {
1226 --j;
1227 if (Ops[j].Op == Ops[i].Op) {
1228 NewMulOps.push_back(V);
1229 Ops.erase(Ops.begin()+j);
1230 }
1231 }
1232 --i;
1233 }
1234 }
1235
1236 // No need for extra uses anymore.
1237 delete DummyInst;
1238
1239 unsigned NumAddedValues = NewMulOps.size();
1240 Value *V = EmitAddTreeOfValues(I, NewMulOps);
1241
1242 // Now that we have inserted the add tree, optimize it. This allows us to
1243 // handle cases that require multiple factoring steps, such as this:
1244 // A*A*B + A*A*C --> A*(A*B+A*C) --> A*(A*(B+C))
1245 assert(NumAddedValues > 1 && "Each occurrence should contribute a value");
1246 (void)NumAddedValues;
1247 if (Instruction *VI = dyn_cast<Instruction>(V))
1248 RedoInsts.insert(VI);
1249
1250 // Create the multiply.
1251 Instruction *V2 = BinaryOperator::CreateMul(V, MaxOccVal, "tmp", I);
1252
1253 // Rerun associate on the multiply in case the inner expression turned into
1254 // a multiply. We want to make sure that we keep things in canonical form.
1255 RedoInsts.insert(V2);
1256
1257 // If every add operand included the factor (e.g. "A*B + A*C"), then the
1258 // entire result expression is just the multiply "A*(B+C)".
1259 if (Ops.empty())
1260 return V2;
1261
1262 // Otherwise, we had some input that didn't have the factor, such as
1263 // "A*B + A*C + D" -> "A*(B+C) + D". Add the new multiply to the list of
1264 // things being added by this operation.
1265 Ops.insert(Ops.begin(), ValueEntry(getRank(V2), V2));
1266 }
1267
1268 return 0;
1269 }
1270
1271 namespace {
1272 /// \brief Predicate tests whether a ValueEntry's op is in a map.
1273 struct IsValueInMap {
1274 const DenseMap<Value *, unsigned> ⤅
1275
IsValueInMap__anon9469d12e0411::IsValueInMap1276 IsValueInMap(const DenseMap<Value *, unsigned> &Map) : Map(Map) {}
1277
operator ()__anon9469d12e0411::IsValueInMap1278 bool operator()(const ValueEntry &Entry) {
1279 return Map.find(Entry.Op) != Map.end();
1280 }
1281 };
1282 }
1283
1284 /// \brief Build up a vector of value/power pairs factoring a product.
1285 ///
1286 /// Given a series of multiplication operands, build a vector of factors and
1287 /// the powers each is raised to when forming the final product. Sort them in
1288 /// the order of descending power.
1289 ///
1290 /// (x*x) -> [(x, 2)]
1291 /// ((x*x)*x) -> [(x, 3)]
1292 /// ((((x*y)*x)*y)*x) -> [(x, 3), (y, 2)]
1293 ///
1294 /// \returns Whether any factors have a power greater than one.
collectMultiplyFactors(SmallVectorImpl<ValueEntry> & Ops,SmallVectorImpl<Factor> & Factors)1295 bool Reassociate::collectMultiplyFactors(SmallVectorImpl<ValueEntry> &Ops,
1296 SmallVectorImpl<Factor> &Factors) {
1297 // FIXME: Have Ops be (ValueEntry, Multiplicity) pairs, simplifying this.
1298 // Compute the sum of powers of simplifiable factors.
1299 unsigned FactorPowerSum = 0;
1300 for (unsigned Idx = 1, Size = Ops.size(); Idx < Size; ++Idx) {
1301 Value *Op = Ops[Idx-1].Op;
1302
1303 // Count the number of occurrences of this value.
1304 unsigned Count = 1;
1305 for (; Idx < Size && Ops[Idx].Op == Op; ++Idx)
1306 ++Count;
1307 // Track for simplification all factors which occur 2 or more times.
1308 if (Count > 1)
1309 FactorPowerSum += Count;
1310 }
1311
1312 // We can only simplify factors if the sum of the powers of our simplifiable
1313 // factors is 4 or higher. When that is the case, we will *always* have
1314 // a simplification. This is an important invariant to prevent cyclicly
1315 // trying to simplify already minimal formations.
1316 if (FactorPowerSum < 4)
1317 return false;
1318
1319 // Now gather the simplifiable factors, removing them from Ops.
1320 FactorPowerSum = 0;
1321 for (unsigned Idx = 1; Idx < Ops.size(); ++Idx) {
1322 Value *Op = Ops[Idx-1].Op;
1323
1324 // Count the number of occurrences of this value.
1325 unsigned Count = 1;
1326 for (; Idx < Ops.size() && Ops[Idx].Op == Op; ++Idx)
1327 ++Count;
1328 if (Count == 1)
1329 continue;
1330 // Move an even number of occurrences to Factors.
1331 Count &= ~1U;
1332 Idx -= Count;
1333 FactorPowerSum += Count;
1334 Factors.push_back(Factor(Op, Count));
1335 Ops.erase(Ops.begin()+Idx, Ops.begin()+Idx+Count);
1336 }
1337
1338 // None of the adjustments above should have reduced the sum of factor powers
1339 // below our mininum of '4'.
1340 assert(FactorPowerSum >= 4);
1341
1342 std::sort(Factors.begin(), Factors.end(), Factor::PowerDescendingSorter());
1343 return true;
1344 }
1345
1346 /// \brief Build a tree of multiplies, computing the product of Ops.
buildMultiplyTree(IRBuilder<> & Builder,SmallVectorImpl<Value * > & Ops)1347 static Value *buildMultiplyTree(IRBuilder<> &Builder,
1348 SmallVectorImpl<Value*> &Ops) {
1349 if (Ops.size() == 1)
1350 return Ops.back();
1351
1352 Value *LHS = Ops.pop_back_val();
1353 do {
1354 LHS = Builder.CreateMul(LHS, Ops.pop_back_val());
1355 } while (!Ops.empty());
1356
1357 return LHS;
1358 }
1359
1360 /// \brief Build a minimal multiplication DAG for (a^x)*(b^y)*(c^z)*...
1361 ///
1362 /// Given a vector of values raised to various powers, where no two values are
1363 /// equal and the powers are sorted in decreasing order, compute the minimal
1364 /// DAG of multiplies to compute the final product, and return that product
1365 /// value.
buildMinimalMultiplyDAG(IRBuilder<> & Builder,SmallVectorImpl<Factor> & Factors)1366 Value *Reassociate::buildMinimalMultiplyDAG(IRBuilder<> &Builder,
1367 SmallVectorImpl<Factor> &Factors) {
1368 assert(Factors[0].Power);
1369 SmallVector<Value *, 4> OuterProduct;
1370 for (unsigned LastIdx = 0, Idx = 1, Size = Factors.size();
1371 Idx < Size && Factors[Idx].Power > 0; ++Idx) {
1372 if (Factors[Idx].Power != Factors[LastIdx].Power) {
1373 LastIdx = Idx;
1374 continue;
1375 }
1376
1377 // We want to multiply across all the factors with the same power so that
1378 // we can raise them to that power as a single entity. Build a mini tree
1379 // for that.
1380 SmallVector<Value *, 4> InnerProduct;
1381 InnerProduct.push_back(Factors[LastIdx].Base);
1382 do {
1383 InnerProduct.push_back(Factors[Idx].Base);
1384 ++Idx;
1385 } while (Idx < Size && Factors[Idx].Power == Factors[LastIdx].Power);
1386
1387 // Reset the base value of the first factor to the new expression tree.
1388 // We'll remove all the factors with the same power in a second pass.
1389 Value *M = Factors[LastIdx].Base = buildMultiplyTree(Builder, InnerProduct);
1390 if (Instruction *MI = dyn_cast<Instruction>(M))
1391 RedoInsts.insert(MI);
1392
1393 LastIdx = Idx;
1394 }
1395 // Unique factors with equal powers -- we've folded them into the first one's
1396 // base.
1397 Factors.erase(std::unique(Factors.begin(), Factors.end(),
1398 Factor::PowerEqual()),
1399 Factors.end());
1400
1401 // Iteratively collect the base of each factor with an add power into the
1402 // outer product, and halve each power in preparation for squaring the
1403 // expression.
1404 for (unsigned Idx = 0, Size = Factors.size(); Idx != Size; ++Idx) {
1405 if (Factors[Idx].Power & 1)
1406 OuterProduct.push_back(Factors[Idx].Base);
1407 Factors[Idx].Power >>= 1;
1408 }
1409 if (Factors[0].Power) {
1410 Value *SquareRoot = buildMinimalMultiplyDAG(Builder, Factors);
1411 OuterProduct.push_back(SquareRoot);
1412 OuterProduct.push_back(SquareRoot);
1413 }
1414 if (OuterProduct.size() == 1)
1415 return OuterProduct.front();
1416
1417 Value *V = buildMultiplyTree(Builder, OuterProduct);
1418 return V;
1419 }
1420
OptimizeMul(BinaryOperator * I,SmallVectorImpl<ValueEntry> & Ops)1421 Value *Reassociate::OptimizeMul(BinaryOperator *I,
1422 SmallVectorImpl<ValueEntry> &Ops) {
1423 // We can only optimize the multiplies when there is a chain of more than
1424 // three, such that a balanced tree might require fewer total multiplies.
1425 if (Ops.size() < 4)
1426 return 0;
1427
1428 // Try to turn linear trees of multiplies without other uses of the
1429 // intermediate stages into minimal multiply DAGs with perfect sub-expression
1430 // re-use.
1431 SmallVector<Factor, 4> Factors;
1432 if (!collectMultiplyFactors(Ops, Factors))
1433 return 0; // All distinct factors, so nothing left for us to do.
1434
1435 IRBuilder<> Builder(I);
1436 Value *V = buildMinimalMultiplyDAG(Builder, Factors);
1437 if (Ops.empty())
1438 return V;
1439
1440 ValueEntry NewEntry = ValueEntry(getRank(V), V);
1441 Ops.insert(std::lower_bound(Ops.begin(), Ops.end(), NewEntry), NewEntry);
1442 return 0;
1443 }
1444
OptimizeExpression(BinaryOperator * I,SmallVectorImpl<ValueEntry> & Ops)1445 Value *Reassociate::OptimizeExpression(BinaryOperator *I,
1446 SmallVectorImpl<ValueEntry> &Ops) {
1447 // Now that we have the linearized expression tree, try to optimize it.
1448 // Start by folding any constants that we found.
1449 if (Ops.size() == 1) return Ops[0].Op;
1450
1451 unsigned Opcode = I->getOpcode();
1452
1453 // Handle destructive annihilation due to identities between elements in the
1454 // argument list here.
1455 unsigned NumOps = Ops.size();
1456 switch (Opcode) {
1457 default: break;
1458 case Instruction::And:
1459 case Instruction::Or:
1460 case Instruction::Xor:
1461 if (Value *Result = OptimizeAndOrXor(Opcode, Ops))
1462 return Result;
1463 break;
1464
1465 case Instruction::Add:
1466 if (Value *Result = OptimizeAdd(I, Ops))
1467 return Result;
1468 break;
1469
1470 case Instruction::Mul:
1471 if (Value *Result = OptimizeMul(I, Ops))
1472 return Result;
1473 break;
1474 }
1475
1476 if (Ops.size() != NumOps)
1477 return OptimizeExpression(I, Ops);
1478 return 0;
1479 }
1480
1481 /// EraseInst - Zap the given instruction, adding interesting operands to the
1482 /// work list.
EraseInst(Instruction * I)1483 void Reassociate::EraseInst(Instruction *I) {
1484 assert(isInstructionTriviallyDead(I) && "Trivially dead instructions only!");
1485 SmallVector<Value*, 8> Ops(I->op_begin(), I->op_end());
1486 // Erase the dead instruction.
1487 ValueRankMap.erase(I);
1488 RedoInsts.remove(I);
1489 I->eraseFromParent();
1490 // Optimize its operands.
1491 SmallPtrSet<Instruction *, 8> Visited; // Detect self-referential nodes.
1492 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1493 if (Instruction *Op = dyn_cast<Instruction>(Ops[i])) {
1494 // If this is a node in an expression tree, climb to the expression root
1495 // and add that since that's where optimization actually happens.
1496 unsigned Opcode = Op->getOpcode();
1497 while (Op->hasOneUse() && Op->use_back()->getOpcode() == Opcode &&
1498 Visited.insert(Op))
1499 Op = Op->use_back();
1500 RedoInsts.insert(Op);
1501 }
1502 }
1503
1504 /// OptimizeInst - Inspect and optimize the given instruction. Note that erasing
1505 /// instructions is not allowed.
OptimizeInst(Instruction * I)1506 void Reassociate::OptimizeInst(Instruction *I) {
1507 // Only consider operations that we understand.
1508 if (!isa<BinaryOperator>(I))
1509 return;
1510
1511 if (I->getOpcode() == Instruction::Shl &&
1512 isa<ConstantInt>(I->getOperand(1)))
1513 // If an operand of this shift is a reassociable multiply, or if the shift
1514 // is used by a reassociable multiply or add, turn into a multiply.
1515 if (isReassociableOp(I->getOperand(0), Instruction::Mul) ||
1516 (I->hasOneUse() &&
1517 (isReassociableOp(I->use_back(), Instruction::Mul) ||
1518 isReassociableOp(I->use_back(), Instruction::Add)))) {
1519 Instruction *NI = ConvertShiftToMul(I);
1520 RedoInsts.insert(I);
1521 MadeChange = true;
1522 I = NI;
1523 }
1524
1525 // Floating point binary operators are not associative, but we can still
1526 // commute (some) of them, to canonicalize the order of their operands.
1527 // This can potentially expose more CSE opportunities, and makes writing
1528 // other transformations simpler.
1529 if ((I->getType()->isFloatingPointTy() || I->getType()->isVectorTy())) {
1530 // FAdd and FMul can be commuted.
1531 if (I->getOpcode() != Instruction::FMul &&
1532 I->getOpcode() != Instruction::FAdd)
1533 return;
1534
1535 Value *LHS = I->getOperand(0);
1536 Value *RHS = I->getOperand(1);
1537 unsigned LHSRank = getRank(LHS);
1538 unsigned RHSRank = getRank(RHS);
1539
1540 // Sort the operands by rank.
1541 if (RHSRank < LHSRank) {
1542 I->setOperand(0, RHS);
1543 I->setOperand(1, LHS);
1544 }
1545
1546 return;
1547 }
1548
1549 // Do not reassociate boolean (i1) expressions. We want to preserve the
1550 // original order of evaluation for short-circuited comparisons that
1551 // SimplifyCFG has folded to AND/OR expressions. If the expression
1552 // is not further optimized, it is likely to be transformed back to a
1553 // short-circuited form for code gen, and the source order may have been
1554 // optimized for the most likely conditions.
1555 if (I->getType()->isIntegerTy(1))
1556 return;
1557
1558 // If this is a subtract instruction which is not already in negate form,
1559 // see if we can convert it to X+-Y.
1560 if (I->getOpcode() == Instruction::Sub) {
1561 if (ShouldBreakUpSubtract(I)) {
1562 Instruction *NI = BreakUpSubtract(I);
1563 RedoInsts.insert(I);
1564 MadeChange = true;
1565 I = NI;
1566 } else if (BinaryOperator::isNeg(I)) {
1567 // Otherwise, this is a negation. See if the operand is a multiply tree
1568 // and if this is not an inner node of a multiply tree.
1569 if (isReassociableOp(I->getOperand(1), Instruction::Mul) &&
1570 (!I->hasOneUse() ||
1571 !isReassociableOp(I->use_back(), Instruction::Mul))) {
1572 Instruction *NI = LowerNegateToMultiply(I);
1573 RedoInsts.insert(I);
1574 MadeChange = true;
1575 I = NI;
1576 }
1577 }
1578 }
1579
1580 // If this instruction is an associative binary operator, process it.
1581 if (!I->isAssociative()) return;
1582 BinaryOperator *BO = cast<BinaryOperator>(I);
1583
1584 // If this is an interior node of a reassociable tree, ignore it until we
1585 // get to the root of the tree, to avoid N^2 analysis.
1586 unsigned Opcode = BO->getOpcode();
1587 if (BO->hasOneUse() && BO->use_back()->getOpcode() == Opcode)
1588 return;
1589
1590 // If this is an add tree that is used by a sub instruction, ignore it
1591 // until we process the subtract.
1592 if (BO->hasOneUse() && BO->getOpcode() == Instruction::Add &&
1593 cast<Instruction>(BO->use_back())->getOpcode() == Instruction::Sub)
1594 return;
1595
1596 ReassociateExpression(BO);
1597 }
1598
ReassociateExpression(BinaryOperator * I)1599 void Reassociate::ReassociateExpression(BinaryOperator *I) {
1600
1601 // First, walk the expression tree, linearizing the tree, collecting the
1602 // operand information.
1603 SmallVector<RepeatedValue, 8> Tree;
1604 MadeChange |= LinearizeExprTree(I, Tree);
1605 SmallVector<ValueEntry, 8> Ops;
1606 Ops.reserve(Tree.size());
1607 for (unsigned i = 0, e = Tree.size(); i != e; ++i) {
1608 RepeatedValue E = Tree[i];
1609 Ops.append(E.second.getZExtValue(),
1610 ValueEntry(getRank(E.first), E.first));
1611 }
1612
1613 DEBUG(dbgs() << "RAIn:\t"; PrintOps(I, Ops); dbgs() << '\n');
1614
1615 // Now that we have linearized the tree to a list and have gathered all of
1616 // the operands and their ranks, sort the operands by their rank. Use a
1617 // stable_sort so that values with equal ranks will have their relative
1618 // positions maintained (and so the compiler is deterministic). Note that
1619 // this sorts so that the highest ranking values end up at the beginning of
1620 // the vector.
1621 std::stable_sort(Ops.begin(), Ops.end());
1622
1623 // OptimizeExpression - Now that we have the expression tree in a convenient
1624 // sorted form, optimize it globally if possible.
1625 if (Value *V = OptimizeExpression(I, Ops)) {
1626 if (V == I)
1627 // Self-referential expression in unreachable code.
1628 return;
1629 // This expression tree simplified to something that isn't a tree,
1630 // eliminate it.
1631 DEBUG(dbgs() << "Reassoc to scalar: " << *V << '\n');
1632 I->replaceAllUsesWith(V);
1633 if (Instruction *VI = dyn_cast<Instruction>(V))
1634 VI->setDebugLoc(I->getDebugLoc());
1635 RedoInsts.insert(I);
1636 ++NumAnnihil;
1637 return;
1638 }
1639
1640 // We want to sink immediates as deeply as possible except in the case where
1641 // this is a multiply tree used only by an add, and the immediate is a -1.
1642 // In this case we reassociate to put the negation on the outside so that we
1643 // can fold the negation into the add: (-X)*Y + Z -> Z-X*Y
1644 if (I->getOpcode() == Instruction::Mul && I->hasOneUse() &&
1645 cast<Instruction>(I->use_back())->getOpcode() == Instruction::Add &&
1646 isa<ConstantInt>(Ops.back().Op) &&
1647 cast<ConstantInt>(Ops.back().Op)->isAllOnesValue()) {
1648 ValueEntry Tmp = Ops.pop_back_val();
1649 Ops.insert(Ops.begin(), Tmp);
1650 }
1651
1652 DEBUG(dbgs() << "RAOut:\t"; PrintOps(I, Ops); dbgs() << '\n');
1653
1654 if (Ops.size() == 1) {
1655 if (Ops[0].Op == I)
1656 // Self-referential expression in unreachable code.
1657 return;
1658
1659 // This expression tree simplified to something that isn't a tree,
1660 // eliminate it.
1661 I->replaceAllUsesWith(Ops[0].Op);
1662 if (Instruction *OI = dyn_cast<Instruction>(Ops[0].Op))
1663 OI->setDebugLoc(I->getDebugLoc());
1664 RedoInsts.insert(I);
1665 return;
1666 }
1667
1668 // Now that we ordered and optimized the expressions, splat them back into
1669 // the expression tree, removing any unneeded nodes.
1670 RewriteExprTree(I, Ops);
1671 }
1672
runOnFunction(Function & F)1673 bool Reassociate::runOnFunction(Function &F) {
1674 // Calculate the rank map for F
1675 BuildRankMap(F);
1676
1677 MadeChange = false;
1678 for (Function::iterator BI = F.begin(), BE = F.end(); BI != BE; ++BI) {
1679 // Optimize every instruction in the basic block.
1680 for (BasicBlock::iterator II = BI->begin(), IE = BI->end(); II != IE; )
1681 if (isInstructionTriviallyDead(II)) {
1682 EraseInst(II++);
1683 } else {
1684 OptimizeInst(II);
1685 assert(II->getParent() == BI && "Moved to a different block!");
1686 ++II;
1687 }
1688
1689 // If this produced extra instructions to optimize, handle them now.
1690 while (!RedoInsts.empty()) {
1691 Instruction *I = RedoInsts.pop_back_val();
1692 if (isInstructionTriviallyDead(I))
1693 EraseInst(I);
1694 else
1695 OptimizeInst(I);
1696 }
1697 }
1698
1699 // We are done with the rank map.
1700 RankMap.clear();
1701 ValueRankMap.clear();
1702
1703 return MadeChange;
1704 }
1705