• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===- Reassociate.cpp - Reassociate binary expressions -------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass reassociates commutative expressions in an order that is designed
11 // to promote better constant propagation, GCSE, LICM, PRE, etc.
12 //
13 // For example: 4 + (x + 5) -> x + (4 + 5)
14 //
15 // In the implementation of this algorithm, constants are assigned rank = 0,
16 // function arguments are rank = 1, and other values are assigned ranks
17 // corresponding to the reverse post order traversal of current function
18 // (starting at 2), which effectively gives values in deep loops higher rank
19 // than values not in loops.
20 //
21 //===----------------------------------------------------------------------===//
22 
23 #define DEBUG_TYPE "reassociate"
24 #include "llvm/Transforms/Scalar.h"
25 #include "llvm/Transforms/Utils/Local.h"
26 #include "llvm/Constants.h"
27 #include "llvm/DerivedTypes.h"
28 #include "llvm/Function.h"
29 #include "llvm/IRBuilder.h"
30 #include "llvm/Instructions.h"
31 #include "llvm/IntrinsicInst.h"
32 #include "llvm/Pass.h"
33 #include "llvm/ADT/DenseMap.h"
34 #include "llvm/ADT/PostOrderIterator.h"
35 #include "llvm/ADT/STLExtras.h"
36 #include "llvm/ADT/SetVector.h"
37 #include "llvm/ADT/Statistic.h"
38 #include "llvm/Assembly/Writer.h"
39 #include "llvm/Support/CFG.h"
40 #include "llvm/Support/Debug.h"
41 #include "llvm/Support/ValueHandle.h"
42 #include "llvm/Support/raw_ostream.h"
43 #include <algorithm>
44 using namespace llvm;
45 
46 STATISTIC(NumChanged, "Number of insts reassociated");
47 STATISTIC(NumAnnihil, "Number of expr tree annihilated");
48 STATISTIC(NumFactor , "Number of multiplies factored");
49 
50 namespace {
51   struct ValueEntry {
52     unsigned Rank;
53     Value *Op;
ValueEntry__anon9469d12e0111::ValueEntry54     ValueEntry(unsigned R, Value *O) : Rank(R), Op(O) {}
55   };
operator <(const ValueEntry & LHS,const ValueEntry & RHS)56   inline bool operator<(const ValueEntry &LHS, const ValueEntry &RHS) {
57     return LHS.Rank > RHS.Rank;   // Sort so that highest rank goes to start.
58   }
59 }
60 
61 #ifndef NDEBUG
62 /// PrintOps - Print out the expression identified in the Ops list.
63 ///
PrintOps(Instruction * I,const SmallVectorImpl<ValueEntry> & Ops)64 static void PrintOps(Instruction *I, const SmallVectorImpl<ValueEntry> &Ops) {
65   Module *M = I->getParent()->getParent()->getParent();
66   dbgs() << Instruction::getOpcodeName(I->getOpcode()) << " "
67        << *Ops[0].Op->getType() << '\t';
68   for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
69     dbgs() << "[ ";
70     WriteAsOperand(dbgs(), Ops[i].Op, false, M);
71     dbgs() << ", #" << Ops[i].Rank << "] ";
72   }
73 }
74 #endif
75 
76 namespace {
77   /// \brief Utility class representing a base and exponent pair which form one
78   /// factor of some product.
79   struct Factor {
80     Value *Base;
81     unsigned Power;
82 
Factor__anon9469d12e0211::Factor83     Factor(Value *Base, unsigned Power) : Base(Base), Power(Power) {}
84 
85     /// \brief Sort factors by their Base.
86     struct BaseSorter {
operator ()__anon9469d12e0211::Factor::BaseSorter87       bool operator()(const Factor &LHS, const Factor &RHS) {
88         return LHS.Base < RHS.Base;
89       }
90     };
91 
92     /// \brief Compare factors for equal bases.
93     struct BaseEqual {
operator ()__anon9469d12e0211::Factor::BaseEqual94       bool operator()(const Factor &LHS, const Factor &RHS) {
95         return LHS.Base == RHS.Base;
96       }
97     };
98 
99     /// \brief Sort factors in descending order by their power.
100     struct PowerDescendingSorter {
operator ()__anon9469d12e0211::Factor::PowerDescendingSorter101       bool operator()(const Factor &LHS, const Factor &RHS) {
102         return LHS.Power > RHS.Power;
103       }
104     };
105 
106     /// \brief Compare factors for equal powers.
107     struct PowerEqual {
operator ()__anon9469d12e0211::Factor::PowerEqual108       bool operator()(const Factor &LHS, const Factor &RHS) {
109         return LHS.Power == RHS.Power;
110       }
111     };
112   };
113 }
114 
115 namespace {
116   class Reassociate : public FunctionPass {
117     DenseMap<BasicBlock*, unsigned> RankMap;
118     DenseMap<AssertingVH<Value>, unsigned> ValueRankMap;
119     SetVector<AssertingVH<Instruction> > RedoInsts;
120     bool MadeChange;
121   public:
122     static char ID; // Pass identification, replacement for typeid
Reassociate()123     Reassociate() : FunctionPass(ID) {
124       initializeReassociatePass(*PassRegistry::getPassRegistry());
125     }
126 
127     bool runOnFunction(Function &F);
128 
getAnalysisUsage(AnalysisUsage & AU) const129     virtual void getAnalysisUsage(AnalysisUsage &AU) const {
130       AU.setPreservesCFG();
131     }
132   private:
133     void BuildRankMap(Function &F);
134     unsigned getRank(Value *V);
135     void ReassociateExpression(BinaryOperator *I);
136     void RewriteExprTree(BinaryOperator *I, SmallVectorImpl<ValueEntry> &Ops);
137     Value *OptimizeExpression(BinaryOperator *I,
138                               SmallVectorImpl<ValueEntry> &Ops);
139     Value *OptimizeAdd(Instruction *I, SmallVectorImpl<ValueEntry> &Ops);
140     bool collectMultiplyFactors(SmallVectorImpl<ValueEntry> &Ops,
141                                 SmallVectorImpl<Factor> &Factors);
142     Value *buildMinimalMultiplyDAG(IRBuilder<> &Builder,
143                                    SmallVectorImpl<Factor> &Factors);
144     Value *OptimizeMul(BinaryOperator *I, SmallVectorImpl<ValueEntry> &Ops);
145     Value *RemoveFactorFromExpression(Value *V, Value *Factor);
146     void EraseInst(Instruction *I);
147     void OptimizeInst(Instruction *I);
148   };
149 }
150 
151 char Reassociate::ID = 0;
152 INITIALIZE_PASS(Reassociate, "reassociate",
153                 "Reassociate expressions", false, false)
154 
155 // Public interface to the Reassociate pass
createReassociatePass()156 FunctionPass *llvm::createReassociatePass() { return new Reassociate(); }
157 
158 /// isReassociableOp - Return true if V is an instruction of the specified
159 /// opcode and if it only has one use.
isReassociableOp(Value * V,unsigned Opcode)160 static BinaryOperator *isReassociableOp(Value *V, unsigned Opcode) {
161   if (V->hasOneUse() && isa<Instruction>(V) &&
162       cast<Instruction>(V)->getOpcode() == Opcode)
163     return cast<BinaryOperator>(V);
164   return 0;
165 }
166 
isUnmovableInstruction(Instruction * I)167 static bool isUnmovableInstruction(Instruction *I) {
168   if (I->getOpcode() == Instruction::PHI ||
169       I->getOpcode() == Instruction::LandingPad ||
170       I->getOpcode() == Instruction::Alloca ||
171       I->getOpcode() == Instruction::Load ||
172       I->getOpcode() == Instruction::Invoke ||
173       (I->getOpcode() == Instruction::Call &&
174        !isa<DbgInfoIntrinsic>(I)) ||
175       I->getOpcode() == Instruction::UDiv ||
176       I->getOpcode() == Instruction::SDiv ||
177       I->getOpcode() == Instruction::FDiv ||
178       I->getOpcode() == Instruction::URem ||
179       I->getOpcode() == Instruction::SRem ||
180       I->getOpcode() == Instruction::FRem)
181     return true;
182   return false;
183 }
184 
BuildRankMap(Function & F)185 void Reassociate::BuildRankMap(Function &F) {
186   unsigned i = 2;
187 
188   // Assign distinct ranks to function arguments
189   for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I)
190     ValueRankMap[&*I] = ++i;
191 
192   ReversePostOrderTraversal<Function*> RPOT(&F);
193   for (ReversePostOrderTraversal<Function*>::rpo_iterator I = RPOT.begin(),
194          E = RPOT.end(); I != E; ++I) {
195     BasicBlock *BB = *I;
196     unsigned BBRank = RankMap[BB] = ++i << 16;
197 
198     // Walk the basic block, adding precomputed ranks for any instructions that
199     // we cannot move.  This ensures that the ranks for these instructions are
200     // all different in the block.
201     for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
202       if (isUnmovableInstruction(I))
203         ValueRankMap[&*I] = ++BBRank;
204   }
205 }
206 
getRank(Value * V)207 unsigned Reassociate::getRank(Value *V) {
208   Instruction *I = dyn_cast<Instruction>(V);
209   if (I == 0) {
210     if (isa<Argument>(V)) return ValueRankMap[V];   // Function argument.
211     return 0;  // Otherwise it's a global or constant, rank 0.
212   }
213 
214   if (unsigned Rank = ValueRankMap[I])
215     return Rank;    // Rank already known?
216 
217   // If this is an expression, return the 1+MAX(rank(LHS), rank(RHS)) so that
218   // we can reassociate expressions for code motion!  Since we do not recurse
219   // for PHI nodes, we cannot have infinite recursion here, because there
220   // cannot be loops in the value graph that do not go through PHI nodes.
221   unsigned Rank = 0, MaxRank = RankMap[I->getParent()];
222   for (unsigned i = 0, e = I->getNumOperands();
223        i != e && Rank != MaxRank; ++i)
224     Rank = std::max(Rank, getRank(I->getOperand(i)));
225 
226   // If this is a not or neg instruction, do not count it for rank.  This
227   // assures us that X and ~X will have the same rank.
228   if (!I->getType()->isIntegerTy() ||
229       (!BinaryOperator::isNot(I) && !BinaryOperator::isNeg(I)))
230     ++Rank;
231 
232   //DEBUG(dbgs() << "Calculated Rank[" << V->getName() << "] = "
233   //     << Rank << "\n");
234 
235   return ValueRankMap[I] = Rank;
236 }
237 
238 /// LowerNegateToMultiply - Replace 0-X with X*-1.
239 ///
LowerNegateToMultiply(Instruction * Neg)240 static BinaryOperator *LowerNegateToMultiply(Instruction *Neg) {
241   Constant *Cst = Constant::getAllOnesValue(Neg->getType());
242 
243   BinaryOperator *Res =
244     BinaryOperator::CreateMul(Neg->getOperand(1), Cst, "",Neg);
245   Neg->setOperand(1, Constant::getNullValue(Neg->getType())); // Drop use of op.
246   Res->takeName(Neg);
247   Neg->replaceAllUsesWith(Res);
248   Res->setDebugLoc(Neg->getDebugLoc());
249   return Res;
250 }
251 
252 /// CarmichaelShift - Returns k such that lambda(2^Bitwidth) = 2^k, where lambda
253 /// is the Carmichael function. This means that x^(2^k) === 1 mod 2^Bitwidth for
254 /// every odd x, i.e. x^(2^k) = 1 for every odd x in Bitwidth-bit arithmetic.
255 /// Note that 0 <= k < Bitwidth, and if Bitwidth > 3 then x^(2^k) = 0 for every
256 /// even x in Bitwidth-bit arithmetic.
CarmichaelShift(unsigned Bitwidth)257 static unsigned CarmichaelShift(unsigned Bitwidth) {
258   if (Bitwidth < 3)
259     return Bitwidth - 1;
260   return Bitwidth - 2;
261 }
262 
263 /// IncorporateWeight - Add the extra weight 'RHS' to the existing weight 'LHS',
264 /// reducing the combined weight using any special properties of the operation.
265 /// The existing weight LHS represents the computation X op X op ... op X where
266 /// X occurs LHS times.  The combined weight represents  X op X op ... op X with
267 /// X occurring LHS + RHS times.  If op is "Xor" for example then the combined
268 /// operation is equivalent to X if LHS + RHS is odd, or 0 if LHS + RHS is even;
269 /// the routine returns 1 in LHS in the first case, and 0 in LHS in the second.
IncorporateWeight(APInt & LHS,const APInt & RHS,unsigned Opcode)270 static void IncorporateWeight(APInt &LHS, const APInt &RHS, unsigned Opcode) {
271   // If we were working with infinite precision arithmetic then the combined
272   // weight would be LHS + RHS.  But we are using finite precision arithmetic,
273   // and the APInt sum LHS + RHS may not be correct if it wraps (it is correct
274   // for nilpotent operations and addition, but not for idempotent operations
275   // and multiplication), so it is important to correctly reduce the combined
276   // weight back into range if wrapping would be wrong.
277 
278   // If RHS is zero then the weight didn't change.
279   if (RHS.isMinValue())
280     return;
281   // If LHS is zero then the combined weight is RHS.
282   if (LHS.isMinValue()) {
283     LHS = RHS;
284     return;
285   }
286   // From this point on we know that neither LHS nor RHS is zero.
287 
288   if (Instruction::isIdempotent(Opcode)) {
289     // Idempotent means X op X === X, so any non-zero weight is equivalent to a
290     // weight of 1.  Keeping weights at zero or one also means that wrapping is
291     // not a problem.
292     assert(LHS == 1 && RHS == 1 && "Weights not reduced!");
293     return; // Return a weight of 1.
294   }
295   if (Instruction::isNilpotent(Opcode)) {
296     // Nilpotent means X op X === 0, so reduce weights modulo 2.
297     assert(LHS == 1 && RHS == 1 && "Weights not reduced!");
298     LHS = 0; // 1 + 1 === 0 modulo 2.
299     return;
300   }
301   if (Opcode == Instruction::Add) {
302     // TODO: Reduce the weight by exploiting nsw/nuw?
303     LHS += RHS;
304     return;
305   }
306 
307   assert(Opcode == Instruction::Mul && "Unknown associative operation!");
308   unsigned Bitwidth = LHS.getBitWidth();
309   // If CM is the Carmichael number then a weight W satisfying W >= CM+Bitwidth
310   // can be replaced with W-CM.  That's because x^W=x^(W-CM) for every Bitwidth
311   // bit number x, since either x is odd in which case x^CM = 1, or x is even in
312   // which case both x^W and x^(W - CM) are zero.  By subtracting off multiples
313   // of CM like this weights can always be reduced to the range [0, CM+Bitwidth)
314   // which by a happy accident means that they can always be represented using
315   // Bitwidth bits.
316   // TODO: Reduce the weight by exploiting nsw/nuw?  (Could do much better than
317   // the Carmichael number).
318   if (Bitwidth > 3) {
319     /// CM - The value of Carmichael's lambda function.
320     APInt CM = APInt::getOneBitSet(Bitwidth, CarmichaelShift(Bitwidth));
321     // Any weight W >= Threshold can be replaced with W - CM.
322     APInt Threshold = CM + Bitwidth;
323     assert(LHS.ult(Threshold) && RHS.ult(Threshold) && "Weights not reduced!");
324     // For Bitwidth 4 or more the following sum does not overflow.
325     LHS += RHS;
326     while (LHS.uge(Threshold))
327       LHS -= CM;
328   } else {
329     // To avoid problems with overflow do everything the same as above but using
330     // a larger type.
331     unsigned CM = 1U << CarmichaelShift(Bitwidth);
332     unsigned Threshold = CM + Bitwidth;
333     assert(LHS.getZExtValue() < Threshold && RHS.getZExtValue() < Threshold &&
334            "Weights not reduced!");
335     unsigned Total = LHS.getZExtValue() + RHS.getZExtValue();
336     while (Total >= Threshold)
337       Total -= CM;
338     LHS = Total;
339   }
340 }
341 
342 /// EvaluateRepeatedConstant - Compute C op C op ... op C where the constant C
343 /// is repeated Weight times.
EvaluateRepeatedConstant(unsigned Opcode,Constant * C,APInt Weight)344 static Constant *EvaluateRepeatedConstant(unsigned Opcode, Constant *C,
345                                           APInt Weight) {
346   // For addition the result can be efficiently computed as the product of the
347   // constant and the weight.
348   if (Opcode == Instruction::Add)
349     return ConstantExpr::getMul(C, ConstantInt::get(C->getContext(), Weight));
350 
351   // The weight might be huge, so compute by repeated squaring to ensure that
352   // compile time is proportional to the logarithm of the weight.
353   Constant *Result = 0;
354   Constant *Power = C; // Successively C, C op C, (C op C) op (C op C) etc.
355   // Visit the bits in Weight.
356   while (Weight != 0) {
357     // If the current bit in Weight is non-zero do Result = Result op Power.
358     if (Weight[0])
359       Result = Result ? ConstantExpr::get(Opcode, Result, Power) : Power;
360     // Move on to the next bit if any more are non-zero.
361     Weight = Weight.lshr(1);
362     if (Weight.isMinValue())
363       break;
364     // Square the power.
365     Power = ConstantExpr::get(Opcode, Power, Power);
366   }
367 
368   assert(Result && "Only positive weights supported!");
369   return Result;
370 }
371 
372 typedef std::pair<Value*, APInt> RepeatedValue;
373 
374 /// LinearizeExprTree - Given an associative binary expression, return the leaf
375 /// nodes in Ops along with their weights (how many times the leaf occurs).  The
376 /// original expression is the same as
377 ///   (Ops[0].first op Ops[0].first op ... Ops[0].first)  <- Ops[0].second times
378 /// op
379 ///   (Ops[1].first op Ops[1].first op ... Ops[1].first)  <- Ops[1].second times
380 /// op
381 ///   ...
382 /// op
383 ///   (Ops[N].first op Ops[N].first op ... Ops[N].first)  <- Ops[N].second times
384 ///
385 /// Note that the values Ops[0].first, ..., Ops[N].first are all distinct, and
386 /// they are all non-constant except possibly for the last one, which if it is
387 /// constant will have weight one (Ops[N].second === 1).
388 ///
389 /// This routine may modify the function, in which case it returns 'true'.  The
390 /// changes it makes may well be destructive, changing the value computed by 'I'
391 /// to something completely different.  Thus if the routine returns 'true' then
392 /// you MUST either replace I with a new expression computed from the Ops array,
393 /// or use RewriteExprTree to put the values back in.
394 ///
395 /// A leaf node is either not a binary operation of the same kind as the root
396 /// node 'I' (i.e. is not a binary operator at all, or is, but with a different
397 /// opcode), or is the same kind of binary operator but has a use which either
398 /// does not belong to the expression, or does belong to the expression but is
399 /// a leaf node.  Every leaf node has at least one use that is a non-leaf node
400 /// of the expression, while for non-leaf nodes (except for the root 'I') every
401 /// use is a non-leaf node of the expression.
402 ///
403 /// For example:
404 ///           expression graph        node names
405 ///
406 ///                     +        |        I
407 ///                    / \       |
408 ///                   +   +      |      A,  B
409 ///                  / \ / \     |
410 ///                 *   +   *    |    C,  D,  E
411 ///                / \ / \ / \   |
412 ///                   +   *      |      F,  G
413 ///
414 /// The leaf nodes are C, E, F and G.  The Ops array will contain (maybe not in
415 /// that order) (C, 1), (E, 1), (F, 2), (G, 2).
416 ///
417 /// The expression is maximal: if some instruction is a binary operator of the
418 /// same kind as 'I', and all of its uses are non-leaf nodes of the expression,
419 /// then the instruction also belongs to the expression, is not a leaf node of
420 /// it, and its operands also belong to the expression (but may be leaf nodes).
421 ///
422 /// NOTE: This routine will set operands of non-leaf non-root nodes to undef in
423 /// order to ensure that every non-root node in the expression has *exactly one*
424 /// use by a non-leaf node of the expression.  This destruction means that the
425 /// caller MUST either replace 'I' with a new expression or use something like
426 /// RewriteExprTree to put the values back in if the routine indicates that it
427 /// made a change by returning 'true'.
428 ///
429 /// In the above example either the right operand of A or the left operand of B
430 /// will be replaced by undef.  If it is B's operand then this gives:
431 ///
432 ///                     +        |        I
433 ///                    / \       |
434 ///                   +   +      |      A,  B - operand of B replaced with undef
435 ///                  / \   \     |
436 ///                 *   +   *    |    C,  D,  E
437 ///                / \ / \ / \   |
438 ///                   +   *      |      F,  G
439 ///
440 /// Note that such undef operands can only be reached by passing through 'I'.
441 /// For example, if you visit operands recursively starting from a leaf node
442 /// then you will never see such an undef operand unless you get back to 'I',
443 /// which requires passing through a phi node.
444 ///
445 /// Note that this routine may also mutate binary operators of the wrong type
446 /// that have all uses inside the expression (i.e. only used by non-leaf nodes
447 /// of the expression) if it can turn them into binary operators of the right
448 /// type and thus make the expression bigger.
449 
LinearizeExprTree(BinaryOperator * I,SmallVectorImpl<RepeatedValue> & Ops)450 static bool LinearizeExprTree(BinaryOperator *I,
451                               SmallVectorImpl<RepeatedValue> &Ops) {
452   DEBUG(dbgs() << "LINEARIZE: " << *I << '\n');
453   unsigned Bitwidth = I->getType()->getScalarType()->getPrimitiveSizeInBits();
454   unsigned Opcode = I->getOpcode();
455   assert(Instruction::isAssociative(Opcode) &&
456          Instruction::isCommutative(Opcode) &&
457          "Expected an associative and commutative operation!");
458   // If we see an absorbing element then the entire expression must be equal to
459   // it.  For example, if this is a multiplication expression and zero occurs as
460   // an operand somewhere in it then the result of the expression must be zero.
461   Constant *Absorber = ConstantExpr::getBinOpAbsorber(Opcode, I->getType());
462 
463   // Visit all operands of the expression, keeping track of their weight (the
464   // number of paths from the expression root to the operand, or if you like
465   // the number of times that operand occurs in the linearized expression).
466   // For example, if I = X + A, where X = A + B, then I, X and B have weight 1
467   // while A has weight two.
468 
469   // Worklist of non-leaf nodes (their operands are in the expression too) along
470   // with their weights, representing a certain number of paths to the operator.
471   // If an operator occurs in the worklist multiple times then we found multiple
472   // ways to get to it.
473   SmallVector<std::pair<BinaryOperator*, APInt>, 8> Worklist; // (Op, Weight)
474   Worklist.push_back(std::make_pair(I, APInt(Bitwidth, 1)));
475   bool MadeChange = false;
476 
477   // Leaves of the expression are values that either aren't the right kind of
478   // operation (eg: a constant, or a multiply in an add tree), or are, but have
479   // some uses that are not inside the expression.  For example, in I = X + X,
480   // X = A + B, the value X has two uses (by I) that are in the expression.  If
481   // X has any other uses, for example in a return instruction, then we consider
482   // X to be a leaf, and won't analyze it further.  When we first visit a value,
483   // if it has more than one use then at first we conservatively consider it to
484   // be a leaf.  Later, as the expression is explored, we may discover some more
485   // uses of the value from inside the expression.  If all uses turn out to be
486   // from within the expression (and the value is a binary operator of the right
487   // kind) then the value is no longer considered to be a leaf, and its operands
488   // are explored.
489 
490   // Leaves - Keeps track of the set of putative leaves as well as the number of
491   // paths to each leaf seen so far.
492   typedef DenseMap<Value*, APInt> LeafMap;
493   LeafMap Leaves; // Leaf -> Total weight so far.
494   SmallVector<Value*, 8> LeafOrder; // Ensure deterministic leaf output order.
495 
496 #ifndef NDEBUG
497   SmallPtrSet<Value*, 8> Visited; // For sanity checking the iteration scheme.
498 #endif
499   while (!Worklist.empty()) {
500     std::pair<BinaryOperator*, APInt> P = Worklist.pop_back_val();
501     I = P.first; // We examine the operands of this binary operator.
502 
503     for (unsigned OpIdx = 0; OpIdx < 2; ++OpIdx) { // Visit operands.
504       Value *Op = I->getOperand(OpIdx);
505       APInt Weight = P.second; // Number of paths to this operand.
506       DEBUG(dbgs() << "OPERAND: " << *Op << " (" << Weight << ")\n");
507       assert(!Op->use_empty() && "No uses, so how did we get to it?!");
508 
509       // If the expression contains an absorbing element then there is no need
510       // to analyze it further: it must evaluate to the absorbing element.
511       if (Op == Absorber && !Weight.isMinValue()) {
512         Ops.push_back(std::make_pair(Absorber, APInt(Bitwidth, 1)));
513         return MadeChange;
514       }
515 
516       // If this is a binary operation of the right kind with only one use then
517       // add its operands to the expression.
518       if (BinaryOperator *BO = isReassociableOp(Op, Opcode)) {
519         assert(Visited.insert(Op) && "Not first visit!");
520         DEBUG(dbgs() << "DIRECT ADD: " << *Op << " (" << Weight << ")\n");
521         Worklist.push_back(std::make_pair(BO, Weight));
522         continue;
523       }
524 
525       // Appears to be a leaf.  Is the operand already in the set of leaves?
526       LeafMap::iterator It = Leaves.find(Op);
527       if (It == Leaves.end()) {
528         // Not in the leaf map.  Must be the first time we saw this operand.
529         assert(Visited.insert(Op) && "Not first visit!");
530         if (!Op->hasOneUse()) {
531           // This value has uses not accounted for by the expression, so it is
532           // not safe to modify.  Mark it as being a leaf.
533           DEBUG(dbgs() << "ADD USES LEAF: " << *Op << " (" << Weight << ")\n");
534           LeafOrder.push_back(Op);
535           Leaves[Op] = Weight;
536           continue;
537         }
538         // No uses outside the expression, try morphing it.
539       } else if (It != Leaves.end()) {
540         // Already in the leaf map.
541         assert(Visited.count(Op) && "In leaf map but not visited!");
542 
543         // Update the number of paths to the leaf.
544         IncorporateWeight(It->second, Weight, Opcode);
545 
546 #if 0   // TODO: Re-enable once PR13021 is fixed.
547         // The leaf already has one use from inside the expression.  As we want
548         // exactly one such use, drop this new use of the leaf.
549         assert(!Op->hasOneUse() && "Only one use, but we got here twice!");
550         I->setOperand(OpIdx, UndefValue::get(I->getType()));
551         MadeChange = true;
552 
553         // If the leaf is a binary operation of the right kind and we now see
554         // that its multiple original uses were in fact all by nodes belonging
555         // to the expression, then no longer consider it to be a leaf and add
556         // its operands to the expression.
557         if (BinaryOperator *BO = isReassociableOp(Op, Opcode)) {
558           DEBUG(dbgs() << "UNLEAF: " << *Op << " (" << It->second << ")\n");
559           Worklist.push_back(std::make_pair(BO, It->second));
560           Leaves.erase(It);
561           continue;
562         }
563 #endif
564 
565         // If we still have uses that are not accounted for by the expression
566         // then it is not safe to modify the value.
567         if (!Op->hasOneUse())
568           continue;
569 
570         // No uses outside the expression, try morphing it.
571         Weight = It->second;
572         Leaves.erase(It); // Since the value may be morphed below.
573       }
574 
575       // At this point we have a value which, first of all, is not a binary
576       // expression of the right kind, and secondly, is only used inside the
577       // expression.  This means that it can safely be modified.  See if we
578       // can usefully morph it into an expression of the right kind.
579       assert((!isa<Instruction>(Op) ||
580               cast<Instruction>(Op)->getOpcode() != Opcode) &&
581              "Should have been handled above!");
582       assert(Op->hasOneUse() && "Has uses outside the expression tree!");
583 
584       // If this is a multiply expression, turn any internal negations into
585       // multiplies by -1 so they can be reassociated.
586       BinaryOperator *BO = dyn_cast<BinaryOperator>(Op);
587       if (Opcode == Instruction::Mul && BO && BinaryOperator::isNeg(BO)) {
588         DEBUG(dbgs() << "MORPH LEAF: " << *Op << " (" << Weight << ") TO ");
589         BO = LowerNegateToMultiply(BO);
590         DEBUG(dbgs() << *BO << 'n');
591         Worklist.push_back(std::make_pair(BO, Weight));
592         MadeChange = true;
593         continue;
594       }
595 
596       // Failed to morph into an expression of the right type.  This really is
597       // a leaf.
598       DEBUG(dbgs() << "ADD LEAF: " << *Op << " (" << Weight << ")\n");
599       assert(!isReassociableOp(Op, Opcode) && "Value was morphed?");
600       LeafOrder.push_back(Op);
601       Leaves[Op] = Weight;
602     }
603   }
604 
605   // The leaves, repeated according to their weights, represent the linearized
606   // form of the expression.
607   Constant *Cst = 0; // Accumulate constants here.
608   for (unsigned i = 0, e = LeafOrder.size(); i != e; ++i) {
609     Value *V = LeafOrder[i];
610     LeafMap::iterator It = Leaves.find(V);
611     if (It == Leaves.end())
612       // Node initially thought to be a leaf wasn't.
613       continue;
614     assert(!isReassociableOp(V, Opcode) && "Shouldn't be a leaf!");
615     APInt Weight = It->second;
616     if (Weight.isMinValue())
617       // Leaf already output or weight reduction eliminated it.
618       continue;
619     // Ensure the leaf is only output once.
620     It->second = 0;
621     // Glob all constants together into Cst.
622     if (Constant *C = dyn_cast<Constant>(V)) {
623       C = EvaluateRepeatedConstant(Opcode, C, Weight);
624       Cst = Cst ? ConstantExpr::get(Opcode, Cst, C) : C;
625       continue;
626     }
627     // Add non-constant
628     Ops.push_back(std::make_pair(V, Weight));
629   }
630 
631   // Add any constants back into Ops, all globbed together and reduced to having
632   // weight 1 for the convenience of users.
633   Constant *Identity = ConstantExpr::getBinOpIdentity(Opcode, I->getType());
634   if (Cst && Cst != Identity) {
635     // If combining multiple constants resulted in the absorber then the entire
636     // expression must evaluate to the absorber.
637     if (Cst == Absorber)
638       Ops.clear();
639     Ops.push_back(std::make_pair(Cst, APInt(Bitwidth, 1)));
640   }
641 
642   // For nilpotent operations or addition there may be no operands, for example
643   // because the expression was "X xor X" or consisted of 2^Bitwidth additions:
644   // in both cases the weight reduces to 0 causing the value to be skipped.
645   if (Ops.empty()) {
646     assert(Identity && "Associative operation without identity!");
647     Ops.push_back(std::make_pair(Identity, APInt(Bitwidth, 1)));
648   }
649 
650   return MadeChange;
651 }
652 
653 // RewriteExprTree - Now that the operands for this expression tree are
654 // linearized and optimized, emit them in-order.
RewriteExprTree(BinaryOperator * I,SmallVectorImpl<ValueEntry> & Ops)655 void Reassociate::RewriteExprTree(BinaryOperator *I,
656                                   SmallVectorImpl<ValueEntry> &Ops) {
657   assert(Ops.size() > 1 && "Single values should be used directly!");
658 
659   // Since our optimizations never increase the number of operations, the new
660   // expression can always be written by reusing the existing binary operators
661   // from the original expression tree, without creating any new instructions,
662   // though the rewritten expression may have a completely different topology.
663   // We take care to not change anything if the new expression will be the same
664   // as the original.  If more than trivial changes (like commuting operands)
665   // were made then we are obliged to clear out any optional subclass data like
666   // nsw flags.
667 
668   /// NodesToRewrite - Nodes from the original expression available for writing
669   /// the new expression into.
670   SmallVector<BinaryOperator*, 8> NodesToRewrite;
671   unsigned Opcode = I->getOpcode();
672   BinaryOperator *Op = I;
673 
674   // ExpressionChanged - Non-null if the rewritten expression differs from the
675   // original in some non-trivial way, requiring the clearing of optional flags.
676   // Flags are cleared from the operator in ExpressionChanged up to I inclusive.
677   BinaryOperator *ExpressionChanged = 0;
678   for (unsigned i = 0; ; ++i) {
679     // The last operation (which comes earliest in the IR) is special as both
680     // operands will come from Ops, rather than just one with the other being
681     // a subexpression.
682     if (i+2 == Ops.size()) {
683       Value *NewLHS = Ops[i].Op;
684       Value *NewRHS = Ops[i+1].Op;
685       Value *OldLHS = Op->getOperand(0);
686       Value *OldRHS = Op->getOperand(1);
687 
688       if (NewLHS == OldLHS && NewRHS == OldRHS)
689         // Nothing changed, leave it alone.
690         break;
691 
692       if (NewLHS == OldRHS && NewRHS == OldLHS) {
693         // The order of the operands was reversed.  Swap them.
694         DEBUG(dbgs() << "RA: " << *Op << '\n');
695         Op->swapOperands();
696         DEBUG(dbgs() << "TO: " << *Op << '\n');
697         MadeChange = true;
698         ++NumChanged;
699         break;
700       }
701 
702       // The new operation differs non-trivially from the original. Overwrite
703       // the old operands with the new ones.
704       DEBUG(dbgs() << "RA: " << *Op << '\n');
705       if (NewLHS != OldLHS) {
706         if (BinaryOperator *BO = isReassociableOp(OldLHS, Opcode))
707           NodesToRewrite.push_back(BO);
708         Op->setOperand(0, NewLHS);
709       }
710       if (NewRHS != OldRHS) {
711         if (BinaryOperator *BO = isReassociableOp(OldRHS, Opcode))
712           NodesToRewrite.push_back(BO);
713         Op->setOperand(1, NewRHS);
714       }
715       DEBUG(dbgs() << "TO: " << *Op << '\n');
716 
717       ExpressionChanged = Op;
718       MadeChange = true;
719       ++NumChanged;
720 
721       break;
722     }
723 
724     // Not the last operation.  The left-hand side will be a sub-expression
725     // while the right-hand side will be the current element of Ops.
726     Value *NewRHS = Ops[i].Op;
727     if (NewRHS != Op->getOperand(1)) {
728       DEBUG(dbgs() << "RA: " << *Op << '\n');
729       if (NewRHS == Op->getOperand(0)) {
730         // The new right-hand side was already present as the left operand.  If
731         // we are lucky then swapping the operands will sort out both of them.
732         Op->swapOperands();
733       } else {
734         // Overwrite with the new right-hand side.
735         if (BinaryOperator *BO = isReassociableOp(Op->getOperand(1), Opcode))
736           NodesToRewrite.push_back(BO);
737         Op->setOperand(1, NewRHS);
738         ExpressionChanged = Op;
739       }
740       DEBUG(dbgs() << "TO: " << *Op << '\n');
741       MadeChange = true;
742       ++NumChanged;
743     }
744 
745     // Now deal with the left-hand side.  If this is already an operation node
746     // from the original expression then just rewrite the rest of the expression
747     // into it.
748     if (BinaryOperator *BO = isReassociableOp(Op->getOperand(0), Opcode)) {
749       Op = BO;
750       continue;
751     }
752 
753     // Otherwise, grab a spare node from the original expression and use that as
754     // the left-hand side.  If there are no nodes left then the optimizers made
755     // an expression with more nodes than the original!  This usually means that
756     // they did something stupid but it might mean that the problem was just too
757     // hard (finding the mimimal number of multiplications needed to realize a
758     // multiplication expression is NP-complete).  Whatever the reason, smart or
759     // stupid, create a new node if there are none left.
760     BinaryOperator *NewOp;
761     if (NodesToRewrite.empty()) {
762       Constant *Undef = UndefValue::get(I->getType());
763       NewOp = BinaryOperator::Create(Instruction::BinaryOps(Opcode),
764                                      Undef, Undef, "", I);
765     } else {
766       NewOp = NodesToRewrite.pop_back_val();
767     }
768 
769     DEBUG(dbgs() << "RA: " << *Op << '\n');
770     Op->setOperand(0, NewOp);
771     DEBUG(dbgs() << "TO: " << *Op << '\n');
772     ExpressionChanged = Op;
773     MadeChange = true;
774     ++NumChanged;
775     Op = NewOp;
776   }
777 
778   // If the expression changed non-trivially then clear out all subclass data
779   // starting from the operator specified in ExpressionChanged, and compactify
780   // the operators to just before the expression root to guarantee that the
781   // expression tree is dominated by all of Ops.
782   if (ExpressionChanged)
783     do {
784       ExpressionChanged->clearSubclassOptionalData();
785       if (ExpressionChanged == I)
786         break;
787       ExpressionChanged->moveBefore(I);
788       ExpressionChanged = cast<BinaryOperator>(*ExpressionChanged->use_begin());
789     } while (1);
790 
791   // Throw away any left over nodes from the original expression.
792   for (unsigned i = 0, e = NodesToRewrite.size(); i != e; ++i)
793     RedoInsts.insert(NodesToRewrite[i]);
794 }
795 
796 /// NegateValue - Insert instructions before the instruction pointed to by BI,
797 /// that computes the negative version of the value specified.  The negative
798 /// version of the value is returned, and BI is left pointing at the instruction
799 /// that should be processed next by the reassociation pass.
NegateValue(Value * V,Instruction * BI)800 static Value *NegateValue(Value *V, Instruction *BI) {
801   if (Constant *C = dyn_cast<Constant>(V))
802     return ConstantExpr::getNeg(C);
803 
804   // We are trying to expose opportunity for reassociation.  One of the things
805   // that we want to do to achieve this is to push a negation as deep into an
806   // expression chain as possible, to expose the add instructions.  In practice,
807   // this means that we turn this:
808   //   X = -(A+12+C+D)   into    X = -A + -12 + -C + -D = -12 + -A + -C + -D
809   // so that later, a: Y = 12+X could get reassociated with the -12 to eliminate
810   // the constants.  We assume that instcombine will clean up the mess later if
811   // we introduce tons of unnecessary negation instructions.
812   //
813   if (BinaryOperator *I = isReassociableOp(V, Instruction::Add)) {
814     // Push the negates through the add.
815     I->setOperand(0, NegateValue(I->getOperand(0), BI));
816     I->setOperand(1, NegateValue(I->getOperand(1), BI));
817 
818     // We must move the add instruction here, because the neg instructions do
819     // not dominate the old add instruction in general.  By moving it, we are
820     // assured that the neg instructions we just inserted dominate the
821     // instruction we are about to insert after them.
822     //
823     I->moveBefore(BI);
824     I->setName(I->getName()+".neg");
825     return I;
826   }
827 
828   // Okay, we need to materialize a negated version of V with an instruction.
829   // Scan the use lists of V to see if we have one already.
830   for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;++UI){
831     User *U = *UI;
832     if (!BinaryOperator::isNeg(U)) continue;
833 
834     // We found one!  Now we have to make sure that the definition dominates
835     // this use.  We do this by moving it to the entry block (if it is a
836     // non-instruction value) or right after the definition.  These negates will
837     // be zapped by reassociate later, so we don't need much finesse here.
838     BinaryOperator *TheNeg = cast<BinaryOperator>(U);
839 
840     // Verify that the negate is in this function, V might be a constant expr.
841     if (TheNeg->getParent()->getParent() != BI->getParent()->getParent())
842       continue;
843 
844     BasicBlock::iterator InsertPt;
845     if (Instruction *InstInput = dyn_cast<Instruction>(V)) {
846       if (InvokeInst *II = dyn_cast<InvokeInst>(InstInput)) {
847         InsertPt = II->getNormalDest()->begin();
848       } else {
849         InsertPt = InstInput;
850         ++InsertPt;
851       }
852       while (isa<PHINode>(InsertPt)) ++InsertPt;
853     } else {
854       InsertPt = TheNeg->getParent()->getParent()->getEntryBlock().begin();
855     }
856     TheNeg->moveBefore(InsertPt);
857     return TheNeg;
858   }
859 
860   // Insert a 'neg' instruction that subtracts the value from zero to get the
861   // negation.
862   return BinaryOperator::CreateNeg(V, V->getName() + ".neg", BI);
863 }
864 
865 /// ShouldBreakUpSubtract - Return true if we should break up this subtract of
866 /// X-Y into (X + -Y).
ShouldBreakUpSubtract(Instruction * Sub)867 static bool ShouldBreakUpSubtract(Instruction *Sub) {
868   // If this is a negation, we can't split it up!
869   if (BinaryOperator::isNeg(Sub))
870     return false;
871 
872   // Don't bother to break this up unless either the LHS is an associable add or
873   // subtract or if this is only used by one.
874   if (isReassociableOp(Sub->getOperand(0), Instruction::Add) ||
875       isReassociableOp(Sub->getOperand(0), Instruction::Sub))
876     return true;
877   if (isReassociableOp(Sub->getOperand(1), Instruction::Add) ||
878       isReassociableOp(Sub->getOperand(1), Instruction::Sub))
879     return true;
880   if (Sub->hasOneUse() &&
881       (isReassociableOp(Sub->use_back(), Instruction::Add) ||
882        isReassociableOp(Sub->use_back(), Instruction::Sub)))
883     return true;
884 
885   return false;
886 }
887 
888 /// BreakUpSubtract - If we have (X-Y), and if either X is an add, or if this is
889 /// only used by an add, transform this into (X+(0-Y)) to promote better
890 /// reassociation.
BreakUpSubtract(Instruction * Sub)891 static BinaryOperator *BreakUpSubtract(Instruction *Sub) {
892   // Convert a subtract into an add and a neg instruction. This allows sub
893   // instructions to be commuted with other add instructions.
894   //
895   // Calculate the negative value of Operand 1 of the sub instruction,
896   // and set it as the RHS of the add instruction we just made.
897   //
898   Value *NegVal = NegateValue(Sub->getOperand(1), Sub);
899   BinaryOperator *New =
900     BinaryOperator::CreateAdd(Sub->getOperand(0), NegVal, "", Sub);
901   Sub->setOperand(0, Constant::getNullValue(Sub->getType())); // Drop use of op.
902   Sub->setOperand(1, Constant::getNullValue(Sub->getType())); // Drop use of op.
903   New->takeName(Sub);
904 
905   // Everyone now refers to the add instruction.
906   Sub->replaceAllUsesWith(New);
907   New->setDebugLoc(Sub->getDebugLoc());
908 
909   DEBUG(dbgs() << "Negated: " << *New << '\n');
910   return New;
911 }
912 
913 /// ConvertShiftToMul - If this is a shift of a reassociable multiply or is used
914 /// by one, change this into a multiply by a constant to assist with further
915 /// reassociation.
ConvertShiftToMul(Instruction * Shl)916 static BinaryOperator *ConvertShiftToMul(Instruction *Shl) {
917   Constant *MulCst = ConstantInt::get(Shl->getType(), 1);
918   MulCst = ConstantExpr::getShl(MulCst, cast<Constant>(Shl->getOperand(1)));
919 
920   BinaryOperator *Mul =
921     BinaryOperator::CreateMul(Shl->getOperand(0), MulCst, "", Shl);
922   Shl->setOperand(0, UndefValue::get(Shl->getType())); // Drop use of op.
923   Mul->takeName(Shl);
924   Shl->replaceAllUsesWith(Mul);
925   Mul->setDebugLoc(Shl->getDebugLoc());
926   return Mul;
927 }
928 
929 /// FindInOperandList - Scan backwards and forwards among values with the same
930 /// rank as element i to see if X exists.  If X does not exist, return i.  This
931 /// is useful when scanning for 'x' when we see '-x' because they both get the
932 /// same rank.
FindInOperandList(SmallVectorImpl<ValueEntry> & Ops,unsigned i,Value * X)933 static unsigned FindInOperandList(SmallVectorImpl<ValueEntry> &Ops, unsigned i,
934                                   Value *X) {
935   unsigned XRank = Ops[i].Rank;
936   unsigned e = Ops.size();
937   for (unsigned j = i+1; j != e && Ops[j].Rank == XRank; ++j)
938     if (Ops[j].Op == X)
939       return j;
940   // Scan backwards.
941   for (unsigned j = i-1; j != ~0U && Ops[j].Rank == XRank; --j)
942     if (Ops[j].Op == X)
943       return j;
944   return i;
945 }
946 
947 /// EmitAddTreeOfValues - Emit a tree of add instructions, summing Ops together
948 /// and returning the result.  Insert the tree before I.
EmitAddTreeOfValues(Instruction * I,SmallVectorImpl<WeakVH> & Ops)949 static Value *EmitAddTreeOfValues(Instruction *I,
950                                   SmallVectorImpl<WeakVH> &Ops){
951   if (Ops.size() == 1) return Ops.back();
952 
953   Value *V1 = Ops.back();
954   Ops.pop_back();
955   Value *V2 = EmitAddTreeOfValues(I, Ops);
956   return BinaryOperator::CreateAdd(V2, V1, "tmp", I);
957 }
958 
959 /// RemoveFactorFromExpression - If V is an expression tree that is a
960 /// multiplication sequence, and if this sequence contains a multiply by Factor,
961 /// remove Factor from the tree and return the new tree.
RemoveFactorFromExpression(Value * V,Value * Factor)962 Value *Reassociate::RemoveFactorFromExpression(Value *V, Value *Factor) {
963   BinaryOperator *BO = isReassociableOp(V, Instruction::Mul);
964   if (!BO) return 0;
965 
966   SmallVector<RepeatedValue, 8> Tree;
967   MadeChange |= LinearizeExprTree(BO, Tree);
968   SmallVector<ValueEntry, 8> Factors;
969   Factors.reserve(Tree.size());
970   for (unsigned i = 0, e = Tree.size(); i != e; ++i) {
971     RepeatedValue E = Tree[i];
972     Factors.append(E.second.getZExtValue(),
973                    ValueEntry(getRank(E.first), E.first));
974   }
975 
976   bool FoundFactor = false;
977   bool NeedsNegate = false;
978   for (unsigned i = 0, e = Factors.size(); i != e; ++i) {
979     if (Factors[i].Op == Factor) {
980       FoundFactor = true;
981       Factors.erase(Factors.begin()+i);
982       break;
983     }
984 
985     // If this is a negative version of this factor, remove it.
986     if (ConstantInt *FC1 = dyn_cast<ConstantInt>(Factor))
987       if (ConstantInt *FC2 = dyn_cast<ConstantInt>(Factors[i].Op))
988         if (FC1->getValue() == -FC2->getValue()) {
989           FoundFactor = NeedsNegate = true;
990           Factors.erase(Factors.begin()+i);
991           break;
992         }
993   }
994 
995   if (!FoundFactor) {
996     // Make sure to restore the operands to the expression tree.
997     RewriteExprTree(BO, Factors);
998     return 0;
999   }
1000 
1001   BasicBlock::iterator InsertPt = BO; ++InsertPt;
1002 
1003   // If this was just a single multiply, remove the multiply and return the only
1004   // remaining operand.
1005   if (Factors.size() == 1) {
1006     RedoInsts.insert(BO);
1007     V = Factors[0].Op;
1008   } else {
1009     RewriteExprTree(BO, Factors);
1010     V = BO;
1011   }
1012 
1013   if (NeedsNegate)
1014     V = BinaryOperator::CreateNeg(V, "neg", InsertPt);
1015 
1016   return V;
1017 }
1018 
1019 /// FindSingleUseMultiplyFactors - If V is a single-use multiply, recursively
1020 /// add its operands as factors, otherwise add V to the list of factors.
1021 ///
1022 /// Ops is the top-level list of add operands we're trying to factor.
FindSingleUseMultiplyFactors(Value * V,SmallVectorImpl<Value * > & Factors,const SmallVectorImpl<ValueEntry> & Ops)1023 static void FindSingleUseMultiplyFactors(Value *V,
1024                                          SmallVectorImpl<Value*> &Factors,
1025                                        const SmallVectorImpl<ValueEntry> &Ops) {
1026   BinaryOperator *BO = isReassociableOp(V, Instruction::Mul);
1027   if (!BO) {
1028     Factors.push_back(V);
1029     return;
1030   }
1031 
1032   // Otherwise, add the LHS and RHS to the list of factors.
1033   FindSingleUseMultiplyFactors(BO->getOperand(1), Factors, Ops);
1034   FindSingleUseMultiplyFactors(BO->getOperand(0), Factors, Ops);
1035 }
1036 
1037 /// OptimizeAndOrXor - Optimize a series of operands to an 'and', 'or', or 'xor'
1038 /// instruction.  This optimizes based on identities.  If it can be reduced to
1039 /// a single Value, it is returned, otherwise the Ops list is mutated as
1040 /// necessary.
OptimizeAndOrXor(unsigned Opcode,SmallVectorImpl<ValueEntry> & Ops)1041 static Value *OptimizeAndOrXor(unsigned Opcode,
1042                                SmallVectorImpl<ValueEntry> &Ops) {
1043   // Scan the operand lists looking for X and ~X pairs, along with X,X pairs.
1044   // If we find any, we can simplify the expression. X&~X == 0, X|~X == -1.
1045   for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1046     // First, check for X and ~X in the operand list.
1047     assert(i < Ops.size());
1048     if (BinaryOperator::isNot(Ops[i].Op)) {    // Cannot occur for ^.
1049       Value *X = BinaryOperator::getNotArgument(Ops[i].Op);
1050       unsigned FoundX = FindInOperandList(Ops, i, X);
1051       if (FoundX != i) {
1052         if (Opcode == Instruction::And)   // ...&X&~X = 0
1053           return Constant::getNullValue(X->getType());
1054 
1055         if (Opcode == Instruction::Or)    // ...|X|~X = -1
1056           return Constant::getAllOnesValue(X->getType());
1057       }
1058     }
1059 
1060     // Next, check for duplicate pairs of values, which we assume are next to
1061     // each other, due to our sorting criteria.
1062     assert(i < Ops.size());
1063     if (i+1 != Ops.size() && Ops[i+1].Op == Ops[i].Op) {
1064       if (Opcode == Instruction::And || Opcode == Instruction::Or) {
1065         // Drop duplicate values for And and Or.
1066         Ops.erase(Ops.begin()+i);
1067         --i; --e;
1068         ++NumAnnihil;
1069         continue;
1070       }
1071 
1072       // Drop pairs of values for Xor.
1073       assert(Opcode == Instruction::Xor);
1074       if (e == 2)
1075         return Constant::getNullValue(Ops[0].Op->getType());
1076 
1077       // Y ^ X^X -> Y
1078       Ops.erase(Ops.begin()+i, Ops.begin()+i+2);
1079       i -= 1; e -= 2;
1080       ++NumAnnihil;
1081     }
1082   }
1083   return 0;
1084 }
1085 
1086 /// OptimizeAdd - Optimize a series of operands to an 'add' instruction.  This
1087 /// optimizes based on identities.  If it can be reduced to a single Value, it
1088 /// is returned, otherwise the Ops list is mutated as necessary.
OptimizeAdd(Instruction * I,SmallVectorImpl<ValueEntry> & Ops)1089 Value *Reassociate::OptimizeAdd(Instruction *I,
1090                                 SmallVectorImpl<ValueEntry> &Ops) {
1091   // Scan the operand lists looking for X and -X pairs.  If we find any, we
1092   // can simplify the expression. X+-X == 0.  While we're at it, scan for any
1093   // duplicates.  We want to canonicalize Y+Y+Y+Z -> 3*Y+Z.
1094   //
1095   // TODO: We could handle "X + ~X" -> "-1" if we wanted, since "-X = ~X+1".
1096   //
1097   for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1098     Value *TheOp = Ops[i].Op;
1099     // Check to see if we've seen this operand before.  If so, we factor all
1100     // instances of the operand together.  Due to our sorting criteria, we know
1101     // that these need to be next to each other in the vector.
1102     if (i+1 != Ops.size() && Ops[i+1].Op == TheOp) {
1103       // Rescan the list, remove all instances of this operand from the expr.
1104       unsigned NumFound = 0;
1105       do {
1106         Ops.erase(Ops.begin()+i);
1107         ++NumFound;
1108       } while (i != Ops.size() && Ops[i].Op == TheOp);
1109 
1110       DEBUG(errs() << "\nFACTORING [" << NumFound << "]: " << *TheOp << '\n');
1111       ++NumFactor;
1112 
1113       // Insert a new multiply.
1114       Value *Mul = ConstantInt::get(cast<IntegerType>(I->getType()), NumFound);
1115       Mul = BinaryOperator::CreateMul(TheOp, Mul, "factor", I);
1116 
1117       // Now that we have inserted a multiply, optimize it. This allows us to
1118       // handle cases that require multiple factoring steps, such as this:
1119       // (X*2) + (X*2) + (X*2) -> (X*2)*3 -> X*6
1120       RedoInsts.insert(cast<Instruction>(Mul));
1121 
1122       // If every add operand was a duplicate, return the multiply.
1123       if (Ops.empty())
1124         return Mul;
1125 
1126       // Otherwise, we had some input that didn't have the dupe, such as
1127       // "A + A + B" -> "A*2 + B".  Add the new multiply to the list of
1128       // things being added by this operation.
1129       Ops.insert(Ops.begin(), ValueEntry(getRank(Mul), Mul));
1130 
1131       --i;
1132       e = Ops.size();
1133       continue;
1134     }
1135 
1136     // Check for X and -X in the operand list.
1137     if (!BinaryOperator::isNeg(TheOp))
1138       continue;
1139 
1140     Value *X = BinaryOperator::getNegArgument(TheOp);
1141     unsigned FoundX = FindInOperandList(Ops, i, X);
1142     if (FoundX == i)
1143       continue;
1144 
1145     // Remove X and -X from the operand list.
1146     if (Ops.size() == 2)
1147       return Constant::getNullValue(X->getType());
1148 
1149     Ops.erase(Ops.begin()+i);
1150     if (i < FoundX)
1151       --FoundX;
1152     else
1153       --i;   // Need to back up an extra one.
1154     Ops.erase(Ops.begin()+FoundX);
1155     ++NumAnnihil;
1156     --i;     // Revisit element.
1157     e -= 2;  // Removed two elements.
1158   }
1159 
1160   // Scan the operand list, checking to see if there are any common factors
1161   // between operands.  Consider something like A*A+A*B*C+D.  We would like to
1162   // reassociate this to A*(A+B*C)+D, which reduces the number of multiplies.
1163   // To efficiently find this, we count the number of times a factor occurs
1164   // for any ADD operands that are MULs.
1165   DenseMap<Value*, unsigned> FactorOccurrences;
1166 
1167   // Keep track of each multiply we see, to avoid triggering on (X*4)+(X*4)
1168   // where they are actually the same multiply.
1169   unsigned MaxOcc = 0;
1170   Value *MaxOccVal = 0;
1171   for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1172     BinaryOperator *BOp = isReassociableOp(Ops[i].Op, Instruction::Mul);
1173     if (!BOp)
1174       continue;
1175 
1176     // Compute all of the factors of this added value.
1177     SmallVector<Value*, 8> Factors;
1178     FindSingleUseMultiplyFactors(BOp, Factors, Ops);
1179     assert(Factors.size() > 1 && "Bad linearize!");
1180 
1181     // Add one to FactorOccurrences for each unique factor in this op.
1182     SmallPtrSet<Value*, 8> Duplicates;
1183     for (unsigned i = 0, e = Factors.size(); i != e; ++i) {
1184       Value *Factor = Factors[i];
1185       if (!Duplicates.insert(Factor)) continue;
1186 
1187       unsigned Occ = ++FactorOccurrences[Factor];
1188       if (Occ > MaxOcc) { MaxOcc = Occ; MaxOccVal = Factor; }
1189 
1190       // If Factor is a negative constant, add the negated value as a factor
1191       // because we can percolate the negate out.  Watch for minint, which
1192       // cannot be positivified.
1193       if (ConstantInt *CI = dyn_cast<ConstantInt>(Factor))
1194         if (CI->isNegative() && !CI->isMinValue(true)) {
1195           Factor = ConstantInt::get(CI->getContext(), -CI->getValue());
1196           assert(!Duplicates.count(Factor) &&
1197                  "Shouldn't have two constant factors, missed a canonicalize");
1198 
1199           unsigned Occ = ++FactorOccurrences[Factor];
1200           if (Occ > MaxOcc) { MaxOcc = Occ; MaxOccVal = Factor; }
1201         }
1202     }
1203   }
1204 
1205   // If any factor occurred more than one time, we can pull it out.
1206   if (MaxOcc > 1) {
1207     DEBUG(errs() << "\nFACTORING [" << MaxOcc << "]: " << *MaxOccVal << '\n');
1208     ++NumFactor;
1209 
1210     // Create a new instruction that uses the MaxOccVal twice.  If we don't do
1211     // this, we could otherwise run into situations where removing a factor
1212     // from an expression will drop a use of maxocc, and this can cause
1213     // RemoveFactorFromExpression on successive values to behave differently.
1214     Instruction *DummyInst = BinaryOperator::CreateAdd(MaxOccVal, MaxOccVal);
1215     SmallVector<WeakVH, 4> NewMulOps;
1216     for (unsigned i = 0; i != Ops.size(); ++i) {
1217       // Only try to remove factors from expressions we're allowed to.
1218       BinaryOperator *BOp = isReassociableOp(Ops[i].Op, Instruction::Mul);
1219       if (!BOp)
1220         continue;
1221 
1222       if (Value *V = RemoveFactorFromExpression(Ops[i].Op, MaxOccVal)) {
1223         // The factorized operand may occur several times.  Convert them all in
1224         // one fell swoop.
1225         for (unsigned j = Ops.size(); j != i;) {
1226           --j;
1227           if (Ops[j].Op == Ops[i].Op) {
1228             NewMulOps.push_back(V);
1229             Ops.erase(Ops.begin()+j);
1230           }
1231         }
1232         --i;
1233       }
1234     }
1235 
1236     // No need for extra uses anymore.
1237     delete DummyInst;
1238 
1239     unsigned NumAddedValues = NewMulOps.size();
1240     Value *V = EmitAddTreeOfValues(I, NewMulOps);
1241 
1242     // Now that we have inserted the add tree, optimize it. This allows us to
1243     // handle cases that require multiple factoring steps, such as this:
1244     // A*A*B + A*A*C   -->   A*(A*B+A*C)   -->   A*(A*(B+C))
1245     assert(NumAddedValues > 1 && "Each occurrence should contribute a value");
1246     (void)NumAddedValues;
1247     if (Instruction *VI = dyn_cast<Instruction>(V))
1248       RedoInsts.insert(VI);
1249 
1250     // Create the multiply.
1251     Instruction *V2 = BinaryOperator::CreateMul(V, MaxOccVal, "tmp", I);
1252 
1253     // Rerun associate on the multiply in case the inner expression turned into
1254     // a multiply.  We want to make sure that we keep things in canonical form.
1255     RedoInsts.insert(V2);
1256 
1257     // If every add operand included the factor (e.g. "A*B + A*C"), then the
1258     // entire result expression is just the multiply "A*(B+C)".
1259     if (Ops.empty())
1260       return V2;
1261 
1262     // Otherwise, we had some input that didn't have the factor, such as
1263     // "A*B + A*C + D" -> "A*(B+C) + D".  Add the new multiply to the list of
1264     // things being added by this operation.
1265     Ops.insert(Ops.begin(), ValueEntry(getRank(V2), V2));
1266   }
1267 
1268   return 0;
1269 }
1270 
1271 namespace {
1272   /// \brief Predicate tests whether a ValueEntry's op is in a map.
1273   struct IsValueInMap {
1274     const DenseMap<Value *, unsigned> &Map;
1275 
IsValueInMap__anon9469d12e0411::IsValueInMap1276     IsValueInMap(const DenseMap<Value *, unsigned> &Map) : Map(Map) {}
1277 
operator ()__anon9469d12e0411::IsValueInMap1278     bool operator()(const ValueEntry &Entry) {
1279       return Map.find(Entry.Op) != Map.end();
1280     }
1281   };
1282 }
1283 
1284 /// \brief Build up a vector of value/power pairs factoring a product.
1285 ///
1286 /// Given a series of multiplication operands, build a vector of factors and
1287 /// the powers each is raised to when forming the final product. Sort them in
1288 /// the order of descending power.
1289 ///
1290 ///      (x*x)          -> [(x, 2)]
1291 ///     ((x*x)*x)       -> [(x, 3)]
1292 ///   ((((x*y)*x)*y)*x) -> [(x, 3), (y, 2)]
1293 ///
1294 /// \returns Whether any factors have a power greater than one.
collectMultiplyFactors(SmallVectorImpl<ValueEntry> & Ops,SmallVectorImpl<Factor> & Factors)1295 bool Reassociate::collectMultiplyFactors(SmallVectorImpl<ValueEntry> &Ops,
1296                                          SmallVectorImpl<Factor> &Factors) {
1297   // FIXME: Have Ops be (ValueEntry, Multiplicity) pairs, simplifying this.
1298   // Compute the sum of powers of simplifiable factors.
1299   unsigned FactorPowerSum = 0;
1300   for (unsigned Idx = 1, Size = Ops.size(); Idx < Size; ++Idx) {
1301     Value *Op = Ops[Idx-1].Op;
1302 
1303     // Count the number of occurrences of this value.
1304     unsigned Count = 1;
1305     for (; Idx < Size && Ops[Idx].Op == Op; ++Idx)
1306       ++Count;
1307     // Track for simplification all factors which occur 2 or more times.
1308     if (Count > 1)
1309       FactorPowerSum += Count;
1310   }
1311 
1312   // We can only simplify factors if the sum of the powers of our simplifiable
1313   // factors is 4 or higher. When that is the case, we will *always* have
1314   // a simplification. This is an important invariant to prevent cyclicly
1315   // trying to simplify already minimal formations.
1316   if (FactorPowerSum < 4)
1317     return false;
1318 
1319   // Now gather the simplifiable factors, removing them from Ops.
1320   FactorPowerSum = 0;
1321   for (unsigned Idx = 1; Idx < Ops.size(); ++Idx) {
1322     Value *Op = Ops[Idx-1].Op;
1323 
1324     // Count the number of occurrences of this value.
1325     unsigned Count = 1;
1326     for (; Idx < Ops.size() && Ops[Idx].Op == Op; ++Idx)
1327       ++Count;
1328     if (Count == 1)
1329       continue;
1330     // Move an even number of occurrences to Factors.
1331     Count &= ~1U;
1332     Idx -= Count;
1333     FactorPowerSum += Count;
1334     Factors.push_back(Factor(Op, Count));
1335     Ops.erase(Ops.begin()+Idx, Ops.begin()+Idx+Count);
1336   }
1337 
1338   // None of the adjustments above should have reduced the sum of factor powers
1339   // below our mininum of '4'.
1340   assert(FactorPowerSum >= 4);
1341 
1342   std::sort(Factors.begin(), Factors.end(), Factor::PowerDescendingSorter());
1343   return true;
1344 }
1345 
1346 /// \brief Build a tree of multiplies, computing the product of Ops.
buildMultiplyTree(IRBuilder<> & Builder,SmallVectorImpl<Value * > & Ops)1347 static Value *buildMultiplyTree(IRBuilder<> &Builder,
1348                                 SmallVectorImpl<Value*> &Ops) {
1349   if (Ops.size() == 1)
1350     return Ops.back();
1351 
1352   Value *LHS = Ops.pop_back_val();
1353   do {
1354     LHS = Builder.CreateMul(LHS, Ops.pop_back_val());
1355   } while (!Ops.empty());
1356 
1357   return LHS;
1358 }
1359 
1360 /// \brief Build a minimal multiplication DAG for (a^x)*(b^y)*(c^z)*...
1361 ///
1362 /// Given a vector of values raised to various powers, where no two values are
1363 /// equal and the powers are sorted in decreasing order, compute the minimal
1364 /// DAG of multiplies to compute the final product, and return that product
1365 /// value.
buildMinimalMultiplyDAG(IRBuilder<> & Builder,SmallVectorImpl<Factor> & Factors)1366 Value *Reassociate::buildMinimalMultiplyDAG(IRBuilder<> &Builder,
1367                                             SmallVectorImpl<Factor> &Factors) {
1368   assert(Factors[0].Power);
1369   SmallVector<Value *, 4> OuterProduct;
1370   for (unsigned LastIdx = 0, Idx = 1, Size = Factors.size();
1371        Idx < Size && Factors[Idx].Power > 0; ++Idx) {
1372     if (Factors[Idx].Power != Factors[LastIdx].Power) {
1373       LastIdx = Idx;
1374       continue;
1375     }
1376 
1377     // We want to multiply across all the factors with the same power so that
1378     // we can raise them to that power as a single entity. Build a mini tree
1379     // for that.
1380     SmallVector<Value *, 4> InnerProduct;
1381     InnerProduct.push_back(Factors[LastIdx].Base);
1382     do {
1383       InnerProduct.push_back(Factors[Idx].Base);
1384       ++Idx;
1385     } while (Idx < Size && Factors[Idx].Power == Factors[LastIdx].Power);
1386 
1387     // Reset the base value of the first factor to the new expression tree.
1388     // We'll remove all the factors with the same power in a second pass.
1389     Value *M = Factors[LastIdx].Base = buildMultiplyTree(Builder, InnerProduct);
1390     if (Instruction *MI = dyn_cast<Instruction>(M))
1391       RedoInsts.insert(MI);
1392 
1393     LastIdx = Idx;
1394   }
1395   // Unique factors with equal powers -- we've folded them into the first one's
1396   // base.
1397   Factors.erase(std::unique(Factors.begin(), Factors.end(),
1398                             Factor::PowerEqual()),
1399                 Factors.end());
1400 
1401   // Iteratively collect the base of each factor with an add power into the
1402   // outer product, and halve each power in preparation for squaring the
1403   // expression.
1404   for (unsigned Idx = 0, Size = Factors.size(); Idx != Size; ++Idx) {
1405     if (Factors[Idx].Power & 1)
1406       OuterProduct.push_back(Factors[Idx].Base);
1407     Factors[Idx].Power >>= 1;
1408   }
1409   if (Factors[0].Power) {
1410     Value *SquareRoot = buildMinimalMultiplyDAG(Builder, Factors);
1411     OuterProduct.push_back(SquareRoot);
1412     OuterProduct.push_back(SquareRoot);
1413   }
1414   if (OuterProduct.size() == 1)
1415     return OuterProduct.front();
1416 
1417   Value *V = buildMultiplyTree(Builder, OuterProduct);
1418   return V;
1419 }
1420 
OptimizeMul(BinaryOperator * I,SmallVectorImpl<ValueEntry> & Ops)1421 Value *Reassociate::OptimizeMul(BinaryOperator *I,
1422                                 SmallVectorImpl<ValueEntry> &Ops) {
1423   // We can only optimize the multiplies when there is a chain of more than
1424   // three, such that a balanced tree might require fewer total multiplies.
1425   if (Ops.size() < 4)
1426     return 0;
1427 
1428   // Try to turn linear trees of multiplies without other uses of the
1429   // intermediate stages into minimal multiply DAGs with perfect sub-expression
1430   // re-use.
1431   SmallVector<Factor, 4> Factors;
1432   if (!collectMultiplyFactors(Ops, Factors))
1433     return 0; // All distinct factors, so nothing left for us to do.
1434 
1435   IRBuilder<> Builder(I);
1436   Value *V = buildMinimalMultiplyDAG(Builder, Factors);
1437   if (Ops.empty())
1438     return V;
1439 
1440   ValueEntry NewEntry = ValueEntry(getRank(V), V);
1441   Ops.insert(std::lower_bound(Ops.begin(), Ops.end(), NewEntry), NewEntry);
1442   return 0;
1443 }
1444 
OptimizeExpression(BinaryOperator * I,SmallVectorImpl<ValueEntry> & Ops)1445 Value *Reassociate::OptimizeExpression(BinaryOperator *I,
1446                                        SmallVectorImpl<ValueEntry> &Ops) {
1447   // Now that we have the linearized expression tree, try to optimize it.
1448   // Start by folding any constants that we found.
1449   if (Ops.size() == 1) return Ops[0].Op;
1450 
1451   unsigned Opcode = I->getOpcode();
1452 
1453   // Handle destructive annihilation due to identities between elements in the
1454   // argument list here.
1455   unsigned NumOps = Ops.size();
1456   switch (Opcode) {
1457   default: break;
1458   case Instruction::And:
1459   case Instruction::Or:
1460   case Instruction::Xor:
1461     if (Value *Result = OptimizeAndOrXor(Opcode, Ops))
1462       return Result;
1463     break;
1464 
1465   case Instruction::Add:
1466     if (Value *Result = OptimizeAdd(I, Ops))
1467       return Result;
1468     break;
1469 
1470   case Instruction::Mul:
1471     if (Value *Result = OptimizeMul(I, Ops))
1472       return Result;
1473     break;
1474   }
1475 
1476   if (Ops.size() != NumOps)
1477     return OptimizeExpression(I, Ops);
1478   return 0;
1479 }
1480 
1481 /// EraseInst - Zap the given instruction, adding interesting operands to the
1482 /// work list.
EraseInst(Instruction * I)1483 void Reassociate::EraseInst(Instruction *I) {
1484   assert(isInstructionTriviallyDead(I) && "Trivially dead instructions only!");
1485   SmallVector<Value*, 8> Ops(I->op_begin(), I->op_end());
1486   // Erase the dead instruction.
1487   ValueRankMap.erase(I);
1488   RedoInsts.remove(I);
1489   I->eraseFromParent();
1490   // Optimize its operands.
1491   SmallPtrSet<Instruction *, 8> Visited; // Detect self-referential nodes.
1492   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1493     if (Instruction *Op = dyn_cast<Instruction>(Ops[i])) {
1494       // If this is a node in an expression tree, climb to the expression root
1495       // and add that since that's where optimization actually happens.
1496       unsigned Opcode = Op->getOpcode();
1497       while (Op->hasOneUse() && Op->use_back()->getOpcode() == Opcode &&
1498              Visited.insert(Op))
1499         Op = Op->use_back();
1500       RedoInsts.insert(Op);
1501     }
1502 }
1503 
1504 /// OptimizeInst - Inspect and optimize the given instruction. Note that erasing
1505 /// instructions is not allowed.
OptimizeInst(Instruction * I)1506 void Reassociate::OptimizeInst(Instruction *I) {
1507   // Only consider operations that we understand.
1508   if (!isa<BinaryOperator>(I))
1509     return;
1510 
1511   if (I->getOpcode() == Instruction::Shl &&
1512       isa<ConstantInt>(I->getOperand(1)))
1513     // If an operand of this shift is a reassociable multiply, or if the shift
1514     // is used by a reassociable multiply or add, turn into a multiply.
1515     if (isReassociableOp(I->getOperand(0), Instruction::Mul) ||
1516         (I->hasOneUse() &&
1517          (isReassociableOp(I->use_back(), Instruction::Mul) ||
1518           isReassociableOp(I->use_back(), Instruction::Add)))) {
1519       Instruction *NI = ConvertShiftToMul(I);
1520       RedoInsts.insert(I);
1521       MadeChange = true;
1522       I = NI;
1523     }
1524 
1525   // Floating point binary operators are not associative, but we can still
1526   // commute (some) of them, to canonicalize the order of their operands.
1527   // This can potentially expose more CSE opportunities, and makes writing
1528   // other transformations simpler.
1529   if ((I->getType()->isFloatingPointTy() || I->getType()->isVectorTy())) {
1530     // FAdd and FMul can be commuted.
1531     if (I->getOpcode() != Instruction::FMul &&
1532         I->getOpcode() != Instruction::FAdd)
1533       return;
1534 
1535     Value *LHS = I->getOperand(0);
1536     Value *RHS = I->getOperand(1);
1537     unsigned LHSRank = getRank(LHS);
1538     unsigned RHSRank = getRank(RHS);
1539 
1540     // Sort the operands by rank.
1541     if (RHSRank < LHSRank) {
1542       I->setOperand(0, RHS);
1543       I->setOperand(1, LHS);
1544     }
1545 
1546     return;
1547   }
1548 
1549   // Do not reassociate boolean (i1) expressions.  We want to preserve the
1550   // original order of evaluation for short-circuited comparisons that
1551   // SimplifyCFG has folded to AND/OR expressions.  If the expression
1552   // is not further optimized, it is likely to be transformed back to a
1553   // short-circuited form for code gen, and the source order may have been
1554   // optimized for the most likely conditions.
1555   if (I->getType()->isIntegerTy(1))
1556     return;
1557 
1558   // If this is a subtract instruction which is not already in negate form,
1559   // see if we can convert it to X+-Y.
1560   if (I->getOpcode() == Instruction::Sub) {
1561     if (ShouldBreakUpSubtract(I)) {
1562       Instruction *NI = BreakUpSubtract(I);
1563       RedoInsts.insert(I);
1564       MadeChange = true;
1565       I = NI;
1566     } else if (BinaryOperator::isNeg(I)) {
1567       // Otherwise, this is a negation.  See if the operand is a multiply tree
1568       // and if this is not an inner node of a multiply tree.
1569       if (isReassociableOp(I->getOperand(1), Instruction::Mul) &&
1570           (!I->hasOneUse() ||
1571            !isReassociableOp(I->use_back(), Instruction::Mul))) {
1572         Instruction *NI = LowerNegateToMultiply(I);
1573         RedoInsts.insert(I);
1574         MadeChange = true;
1575         I = NI;
1576       }
1577     }
1578   }
1579 
1580   // If this instruction is an associative binary operator, process it.
1581   if (!I->isAssociative()) return;
1582   BinaryOperator *BO = cast<BinaryOperator>(I);
1583 
1584   // If this is an interior node of a reassociable tree, ignore it until we
1585   // get to the root of the tree, to avoid N^2 analysis.
1586   unsigned Opcode = BO->getOpcode();
1587   if (BO->hasOneUse() && BO->use_back()->getOpcode() == Opcode)
1588     return;
1589 
1590   // If this is an add tree that is used by a sub instruction, ignore it
1591   // until we process the subtract.
1592   if (BO->hasOneUse() && BO->getOpcode() == Instruction::Add &&
1593       cast<Instruction>(BO->use_back())->getOpcode() == Instruction::Sub)
1594     return;
1595 
1596   ReassociateExpression(BO);
1597 }
1598 
ReassociateExpression(BinaryOperator * I)1599 void Reassociate::ReassociateExpression(BinaryOperator *I) {
1600 
1601   // First, walk the expression tree, linearizing the tree, collecting the
1602   // operand information.
1603   SmallVector<RepeatedValue, 8> Tree;
1604   MadeChange |= LinearizeExprTree(I, Tree);
1605   SmallVector<ValueEntry, 8> Ops;
1606   Ops.reserve(Tree.size());
1607   for (unsigned i = 0, e = Tree.size(); i != e; ++i) {
1608     RepeatedValue E = Tree[i];
1609     Ops.append(E.second.getZExtValue(),
1610                ValueEntry(getRank(E.first), E.first));
1611   }
1612 
1613   DEBUG(dbgs() << "RAIn:\t"; PrintOps(I, Ops); dbgs() << '\n');
1614 
1615   // Now that we have linearized the tree to a list and have gathered all of
1616   // the operands and their ranks, sort the operands by their rank.  Use a
1617   // stable_sort so that values with equal ranks will have their relative
1618   // positions maintained (and so the compiler is deterministic).  Note that
1619   // this sorts so that the highest ranking values end up at the beginning of
1620   // the vector.
1621   std::stable_sort(Ops.begin(), Ops.end());
1622 
1623   // OptimizeExpression - Now that we have the expression tree in a convenient
1624   // sorted form, optimize it globally if possible.
1625   if (Value *V = OptimizeExpression(I, Ops)) {
1626     if (V == I)
1627       // Self-referential expression in unreachable code.
1628       return;
1629     // This expression tree simplified to something that isn't a tree,
1630     // eliminate it.
1631     DEBUG(dbgs() << "Reassoc to scalar: " << *V << '\n');
1632     I->replaceAllUsesWith(V);
1633     if (Instruction *VI = dyn_cast<Instruction>(V))
1634       VI->setDebugLoc(I->getDebugLoc());
1635     RedoInsts.insert(I);
1636     ++NumAnnihil;
1637     return;
1638   }
1639 
1640   // We want to sink immediates as deeply as possible except in the case where
1641   // this is a multiply tree used only by an add, and the immediate is a -1.
1642   // In this case we reassociate to put the negation on the outside so that we
1643   // can fold the negation into the add: (-X)*Y + Z -> Z-X*Y
1644   if (I->getOpcode() == Instruction::Mul && I->hasOneUse() &&
1645       cast<Instruction>(I->use_back())->getOpcode() == Instruction::Add &&
1646       isa<ConstantInt>(Ops.back().Op) &&
1647       cast<ConstantInt>(Ops.back().Op)->isAllOnesValue()) {
1648     ValueEntry Tmp = Ops.pop_back_val();
1649     Ops.insert(Ops.begin(), Tmp);
1650   }
1651 
1652   DEBUG(dbgs() << "RAOut:\t"; PrintOps(I, Ops); dbgs() << '\n');
1653 
1654   if (Ops.size() == 1) {
1655     if (Ops[0].Op == I)
1656       // Self-referential expression in unreachable code.
1657       return;
1658 
1659     // This expression tree simplified to something that isn't a tree,
1660     // eliminate it.
1661     I->replaceAllUsesWith(Ops[0].Op);
1662     if (Instruction *OI = dyn_cast<Instruction>(Ops[0].Op))
1663       OI->setDebugLoc(I->getDebugLoc());
1664     RedoInsts.insert(I);
1665     return;
1666   }
1667 
1668   // Now that we ordered and optimized the expressions, splat them back into
1669   // the expression tree, removing any unneeded nodes.
1670   RewriteExprTree(I, Ops);
1671 }
1672 
runOnFunction(Function & F)1673 bool Reassociate::runOnFunction(Function &F) {
1674   // Calculate the rank map for F
1675   BuildRankMap(F);
1676 
1677   MadeChange = false;
1678   for (Function::iterator BI = F.begin(), BE = F.end(); BI != BE; ++BI) {
1679     // Optimize every instruction in the basic block.
1680     for (BasicBlock::iterator II = BI->begin(), IE = BI->end(); II != IE; )
1681       if (isInstructionTriviallyDead(II)) {
1682         EraseInst(II++);
1683       } else {
1684         OptimizeInst(II);
1685         assert(II->getParent() == BI && "Moved to a different block!");
1686         ++II;
1687       }
1688 
1689     // If this produced extra instructions to optimize, handle them now.
1690     while (!RedoInsts.empty()) {
1691       Instruction *I = RedoInsts.pop_back_val();
1692       if (isInstructionTriviallyDead(I))
1693         EraseInst(I);
1694       else
1695         OptimizeInst(I);
1696     }
1697   }
1698 
1699   // We are done with the rank map.
1700   RankMap.clear();
1701   ValueRankMap.clear();
1702 
1703   return MadeChange;
1704 }
1705