1 //===-- Verifier.cpp - Implement the Module Verifier -----------------------==//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the function verifier interface, that can be used for some
11 // sanity checking of input to the system.
12 //
13 // Note that this does not provide full `Java style' security and verifications,
14 // instead it just tries to ensure that code is well-formed.
15 //
16 // * Both of a binary operator's parameters are of the same type
17 // * Verify that the indices of mem access instructions match other operands
18 // * Verify that arithmetic and other things are only performed on first-class
19 // types. Verify that shifts & logicals only happen on integrals f.e.
20 // * All of the constants in a switch statement are of the correct type
21 // * The code is in valid SSA form
22 // * It should be illegal to put a label into any other type (like a structure)
23 // or to return one. [except constant arrays!]
24 // * Only phi nodes can be self referential: 'add i32 %0, %0 ; <int>:0' is bad
25 // * PHI nodes must have an entry for each predecessor, with no extras.
26 // * PHI nodes must be the first thing in a basic block, all grouped together
27 // * PHI nodes must have at least one entry
28 // * All basic blocks should only end with terminator insts, not contain them
29 // * The entry node to a function must not have predecessors
30 // * All Instructions must be embedded into a basic block
31 // * Functions cannot take a void-typed parameter
32 // * Verify that a function's argument list agrees with it's declared type.
33 // * It is illegal to specify a name for a void value.
34 // * It is illegal to have a internal global value with no initializer
35 // * It is illegal to have a ret instruction that returns a value that does not
36 // agree with the function return value type.
37 // * Function call argument types match the function prototype
38 // * A landing pad is defined by a landingpad instruction, and can be jumped to
39 // only by the unwind edge of an invoke instruction.
40 // * A landingpad instruction must be the first non-PHI instruction in the
41 // block.
42 // * All landingpad instructions must use the same personality function with
43 // the same function.
44 // * All other things that are tested by asserts spread about the code...
45 //
46 //===----------------------------------------------------------------------===//
47
48 #include "llvm/Analysis/Verifier.h"
49 #include "llvm/CallingConv.h"
50 #include "llvm/Constants.h"
51 #include "llvm/DerivedTypes.h"
52 #include "llvm/InlineAsm.h"
53 #include "llvm/IntrinsicInst.h"
54 #include "llvm/LLVMContext.h"
55 #include "llvm/Metadata.h"
56 #include "llvm/Module.h"
57 #include "llvm/Pass.h"
58 #include "llvm/PassManager.h"
59 #include "llvm/Analysis/Dominators.h"
60 #include "llvm/Assembly/Writer.h"
61 #include "llvm/CodeGen/ValueTypes.h"
62 #include "llvm/Support/CallSite.h"
63 #include "llvm/Support/CFG.h"
64 #include "llvm/Support/Debug.h"
65 #include "llvm/Support/InstVisitor.h"
66 #include "llvm/ADT/SetVector.h"
67 #include "llvm/ADT/SmallPtrSet.h"
68 #include "llvm/ADT/SmallVector.h"
69 #include "llvm/ADT/StringExtras.h"
70 #include "llvm/ADT/STLExtras.h"
71 #include "llvm/Support/ConstantRange.h"
72 #include "llvm/Support/ErrorHandling.h"
73 #include "llvm/Support/raw_ostream.h"
74 #include <algorithm>
75 #include <cstdarg>
76 using namespace llvm;
77
78 namespace { // Anonymous namespace for class
79 struct PreVerifier : public FunctionPass {
80 static char ID; // Pass ID, replacement for typeid
81
PreVerifier__anon7a19ec0f0111::PreVerifier82 PreVerifier() : FunctionPass(ID) {
83 initializePreVerifierPass(*PassRegistry::getPassRegistry());
84 }
85
getAnalysisUsage__anon7a19ec0f0111::PreVerifier86 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
87 AU.setPreservesAll();
88 }
89
90 // Check that the prerequisites for successful DominatorTree construction
91 // are satisfied.
runOnFunction__anon7a19ec0f0111::PreVerifier92 bool runOnFunction(Function &F) {
93 bool Broken = false;
94
95 for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I) {
96 if (I->empty() || !I->back().isTerminator()) {
97 dbgs() << "Basic Block in function '" << F.getName()
98 << "' does not have terminator!\n";
99 WriteAsOperand(dbgs(), I, true);
100 dbgs() << "\n";
101 Broken = true;
102 }
103 }
104
105 if (Broken)
106 report_fatal_error("Broken module, no Basic Block terminator!");
107
108 return false;
109 }
110 };
111 }
112
113 char PreVerifier::ID = 0;
114 INITIALIZE_PASS(PreVerifier, "preverify", "Preliminary module verification",
115 false, false)
116 static char &PreVerifyID = PreVerifier::ID;
117
118 namespace {
119 struct Verifier : public FunctionPass, public InstVisitor<Verifier> {
120 static char ID; // Pass ID, replacement for typeid
121 bool Broken; // Is this module found to be broken?
122 VerifierFailureAction action;
123 // What to do if verification fails.
124 Module *Mod; // Module we are verifying right now
125 LLVMContext *Context; // Context within which we are verifying
126 DominatorTree *DT; // Dominator Tree, caution can be null!
127
128 std::string Messages;
129 raw_string_ostream MessagesStr;
130
131 /// InstInThisBlock - when verifying a basic block, keep track of all of the
132 /// instructions we have seen so far. This allows us to do efficient
133 /// dominance checks for the case when an instruction has an operand that is
134 /// an instruction in the same block.
135 SmallPtrSet<Instruction*, 16> InstsInThisBlock;
136
137 /// MDNodes - keep track of the metadata nodes that have been checked
138 /// already.
139 SmallPtrSet<MDNode *, 32> MDNodes;
140
141 /// PersonalityFn - The personality function referenced by the
142 /// LandingPadInsts. All LandingPadInsts within the same function must use
143 /// the same personality function.
144 const Value *PersonalityFn;
145
Verifier__anon7a19ec0f0211::Verifier146 Verifier()
147 : FunctionPass(ID), Broken(false),
148 action(AbortProcessAction), Mod(0), Context(0), DT(0),
149 MessagesStr(Messages), PersonalityFn(0) {
150 initializeVerifierPass(*PassRegistry::getPassRegistry());
151 }
Verifier__anon7a19ec0f0211::Verifier152 explicit Verifier(VerifierFailureAction ctn)
153 : FunctionPass(ID), Broken(false), action(ctn), Mod(0),
154 Context(0), DT(0), MessagesStr(Messages), PersonalityFn(0) {
155 initializeVerifierPass(*PassRegistry::getPassRegistry());
156 }
157
doInitialization__anon7a19ec0f0211::Verifier158 bool doInitialization(Module &M) {
159 Mod = &M;
160 Context = &M.getContext();
161
162 // We must abort before returning back to the pass manager, or else the
163 // pass manager may try to run other passes on the broken module.
164 return abortIfBroken();
165 }
166
runOnFunction__anon7a19ec0f0211::Verifier167 bool runOnFunction(Function &F) {
168 // Get dominator information if we are being run by PassManager
169 DT = &getAnalysis<DominatorTree>();
170
171 Mod = F.getParent();
172 if (!Context) Context = &F.getContext();
173
174 visit(F);
175 InstsInThisBlock.clear();
176 PersonalityFn = 0;
177
178 // We must abort before returning back to the pass manager, or else the
179 // pass manager may try to run other passes on the broken module.
180 return abortIfBroken();
181 }
182
doFinalization__anon7a19ec0f0211::Verifier183 bool doFinalization(Module &M) {
184 // Scan through, checking all of the external function's linkage now...
185 for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I) {
186 visitGlobalValue(*I);
187
188 // Check to make sure function prototypes are okay.
189 if (I->isDeclaration()) visitFunction(*I);
190 }
191
192 for (Module::global_iterator I = M.global_begin(), E = M.global_end();
193 I != E; ++I)
194 visitGlobalVariable(*I);
195
196 for (Module::alias_iterator I = M.alias_begin(), E = M.alias_end();
197 I != E; ++I)
198 visitGlobalAlias(*I);
199
200 for (Module::named_metadata_iterator I = M.named_metadata_begin(),
201 E = M.named_metadata_end(); I != E; ++I)
202 visitNamedMDNode(*I);
203
204 // If the module is broken, abort at this time.
205 return abortIfBroken();
206 }
207
getAnalysisUsage__anon7a19ec0f0211::Verifier208 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
209 AU.setPreservesAll();
210 AU.addRequiredID(PreVerifyID);
211 AU.addRequired<DominatorTree>();
212 }
213
214 /// abortIfBroken - If the module is broken and we are supposed to abort on
215 /// this condition, do so.
216 ///
abortIfBroken__anon7a19ec0f0211::Verifier217 bool abortIfBroken() {
218 if (!Broken) return false;
219 MessagesStr << "Broken module found, ";
220 switch (action) {
221 case AbortProcessAction:
222 MessagesStr << "compilation aborted!\n";
223 dbgs() << MessagesStr.str();
224 // Client should choose different reaction if abort is not desired
225 abort();
226 case PrintMessageAction:
227 MessagesStr << "verification continues.\n";
228 dbgs() << MessagesStr.str();
229 return false;
230 case ReturnStatusAction:
231 MessagesStr << "compilation terminated.\n";
232 return true;
233 }
234 llvm_unreachable("Invalid action");
235 }
236
237
238 // Verification methods...
239 void visitGlobalValue(GlobalValue &GV);
240 void visitGlobalVariable(GlobalVariable &GV);
241 void visitGlobalAlias(GlobalAlias &GA);
242 void visitNamedMDNode(NamedMDNode &NMD);
243 void visitMDNode(MDNode &MD, Function *F);
244 void visitFunction(Function &F);
245 void visitBasicBlock(BasicBlock &BB);
246 using InstVisitor<Verifier>::visit;
247
248 void visit(Instruction &I);
249
250 void visitTruncInst(TruncInst &I);
251 void visitZExtInst(ZExtInst &I);
252 void visitSExtInst(SExtInst &I);
253 void visitFPTruncInst(FPTruncInst &I);
254 void visitFPExtInst(FPExtInst &I);
255 void visitFPToUIInst(FPToUIInst &I);
256 void visitFPToSIInst(FPToSIInst &I);
257 void visitUIToFPInst(UIToFPInst &I);
258 void visitSIToFPInst(SIToFPInst &I);
259 void visitIntToPtrInst(IntToPtrInst &I);
260 void visitPtrToIntInst(PtrToIntInst &I);
261 void visitBitCastInst(BitCastInst &I);
262 void visitPHINode(PHINode &PN);
263 void visitBinaryOperator(BinaryOperator &B);
264 void visitICmpInst(ICmpInst &IC);
265 void visitFCmpInst(FCmpInst &FC);
266 void visitExtractElementInst(ExtractElementInst &EI);
267 void visitInsertElementInst(InsertElementInst &EI);
268 void visitShuffleVectorInst(ShuffleVectorInst &EI);
visitVAArgInst__anon7a19ec0f0211::Verifier269 void visitVAArgInst(VAArgInst &VAA) { visitInstruction(VAA); }
270 void visitCallInst(CallInst &CI);
271 void visitInvokeInst(InvokeInst &II);
272 void visitGetElementPtrInst(GetElementPtrInst &GEP);
273 void visitLoadInst(LoadInst &LI);
274 void visitStoreInst(StoreInst &SI);
275 void verifyDominatesUse(Instruction &I, unsigned i);
276 void visitInstruction(Instruction &I);
277 void visitTerminatorInst(TerminatorInst &I);
278 void visitBranchInst(BranchInst &BI);
279 void visitReturnInst(ReturnInst &RI);
280 void visitSwitchInst(SwitchInst &SI);
281 void visitIndirectBrInst(IndirectBrInst &BI);
282 void visitSelectInst(SelectInst &SI);
283 void visitUserOp1(Instruction &I);
visitUserOp2__anon7a19ec0f0211::Verifier284 void visitUserOp2(Instruction &I) { visitUserOp1(I); }
285 void visitIntrinsicFunctionCall(Intrinsic::ID ID, CallInst &CI);
286 void visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI);
287 void visitAtomicRMWInst(AtomicRMWInst &RMWI);
288 void visitFenceInst(FenceInst &FI);
289 void visitAllocaInst(AllocaInst &AI);
290 void visitExtractValueInst(ExtractValueInst &EVI);
291 void visitInsertValueInst(InsertValueInst &IVI);
292 void visitLandingPadInst(LandingPadInst &LPI);
293
294 void VerifyCallSite(CallSite CS);
295 bool PerformTypeCheck(Intrinsic::ID ID, Function *F, Type *Ty,
296 int VT, unsigned ArgNo, std::string &Suffix);
297 bool VerifyIntrinsicType(Type *Ty,
298 ArrayRef<Intrinsic::IITDescriptor> &Infos,
299 SmallVectorImpl<Type*> &ArgTys);
300 void VerifyParameterAttrs(Attributes Attrs, Type *Ty,
301 bool isReturnValue, const Value *V);
302 void VerifyFunctionAttrs(FunctionType *FT, const AttrListPtr &Attrs,
303 const Value *V);
304
WriteValue__anon7a19ec0f0211::Verifier305 void WriteValue(const Value *V) {
306 if (!V) return;
307 if (isa<Instruction>(V)) {
308 MessagesStr << *V << '\n';
309 } else {
310 WriteAsOperand(MessagesStr, V, true, Mod);
311 MessagesStr << '\n';
312 }
313 }
314
WriteType__anon7a19ec0f0211::Verifier315 void WriteType(Type *T) {
316 if (!T) return;
317 MessagesStr << ' ' << *T;
318 }
319
320
321 // CheckFailed - A check failed, so print out the condition and the message
322 // that failed. This provides a nice place to put a breakpoint if you want
323 // to see why something is not correct.
CheckFailed__anon7a19ec0f0211::Verifier324 void CheckFailed(const Twine &Message,
325 const Value *V1 = 0, const Value *V2 = 0,
326 const Value *V3 = 0, const Value *V4 = 0) {
327 MessagesStr << Message.str() << "\n";
328 WriteValue(V1);
329 WriteValue(V2);
330 WriteValue(V3);
331 WriteValue(V4);
332 Broken = true;
333 }
334
CheckFailed__anon7a19ec0f0211::Verifier335 void CheckFailed(const Twine &Message, const Value *V1,
336 Type *T2, const Value *V3 = 0) {
337 MessagesStr << Message.str() << "\n";
338 WriteValue(V1);
339 WriteType(T2);
340 WriteValue(V3);
341 Broken = true;
342 }
343
CheckFailed__anon7a19ec0f0211::Verifier344 void CheckFailed(const Twine &Message, Type *T1,
345 Type *T2 = 0, Type *T3 = 0) {
346 MessagesStr << Message.str() << "\n";
347 WriteType(T1);
348 WriteType(T2);
349 WriteType(T3);
350 Broken = true;
351 }
352 };
353 } // End anonymous namespace
354
355 char Verifier::ID = 0;
356 INITIALIZE_PASS_BEGIN(Verifier, "verify", "Module Verifier", false, false)
INITIALIZE_PASS_DEPENDENCY(PreVerifier)357 INITIALIZE_PASS_DEPENDENCY(PreVerifier)
358 INITIALIZE_PASS_DEPENDENCY(DominatorTree)
359 INITIALIZE_PASS_END(Verifier, "verify", "Module Verifier", false, false)
360
361 // Assert - We know that cond should be true, if not print an error message.
362 #define Assert(C, M) \
363 do { if (!(C)) { CheckFailed(M); return; } } while (0)
364 #define Assert1(C, M, V1) \
365 do { if (!(C)) { CheckFailed(M, V1); return; } } while (0)
366 #define Assert2(C, M, V1, V2) \
367 do { if (!(C)) { CheckFailed(M, V1, V2); return; } } while (0)
368 #define Assert3(C, M, V1, V2, V3) \
369 do { if (!(C)) { CheckFailed(M, V1, V2, V3); return; } } while (0)
370 #define Assert4(C, M, V1, V2, V3, V4) \
371 do { if (!(C)) { CheckFailed(M, V1, V2, V3, V4); return; } } while (0)
372
373 void Verifier::visit(Instruction &I) {
374 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
375 Assert1(I.getOperand(i) != 0, "Operand is null", &I);
376 InstVisitor<Verifier>::visit(I);
377 }
378
379
visitGlobalValue(GlobalValue & GV)380 void Verifier::visitGlobalValue(GlobalValue &GV) {
381 Assert1(!GV.isDeclaration() ||
382 GV.isMaterializable() ||
383 GV.hasExternalLinkage() ||
384 GV.hasDLLImportLinkage() ||
385 GV.hasExternalWeakLinkage() ||
386 (isa<GlobalAlias>(GV) &&
387 (GV.hasLocalLinkage() || GV.hasWeakLinkage())),
388 "Global is external, but doesn't have external or dllimport or weak linkage!",
389 &GV);
390
391 Assert1(!GV.hasDLLImportLinkage() || GV.isDeclaration(),
392 "Global is marked as dllimport, but not external", &GV);
393
394 Assert1(!GV.hasAppendingLinkage() || isa<GlobalVariable>(GV),
395 "Only global variables can have appending linkage!", &GV);
396
397 if (GV.hasAppendingLinkage()) {
398 GlobalVariable *GVar = dyn_cast<GlobalVariable>(&GV);
399 Assert1(GVar && GVar->getType()->getElementType()->isArrayTy(),
400 "Only global arrays can have appending linkage!", GVar);
401 }
402
403 Assert1(!GV.hasLinkOnceODRAutoHideLinkage() || GV.hasDefaultVisibility(),
404 "linkonce_odr_auto_hide can only have default visibility!",
405 &GV);
406 }
407
visitGlobalVariable(GlobalVariable & GV)408 void Verifier::visitGlobalVariable(GlobalVariable &GV) {
409 if (GV.hasInitializer()) {
410 Assert1(GV.getInitializer()->getType() == GV.getType()->getElementType(),
411 "Global variable initializer type does not match global "
412 "variable type!", &GV);
413
414 // If the global has common linkage, it must have a zero initializer and
415 // cannot be constant.
416 if (GV.hasCommonLinkage()) {
417 Assert1(GV.getInitializer()->isNullValue(),
418 "'common' global must have a zero initializer!", &GV);
419 Assert1(!GV.isConstant(), "'common' global may not be marked constant!",
420 &GV);
421 }
422 } else {
423 Assert1(GV.hasExternalLinkage() || GV.hasDLLImportLinkage() ||
424 GV.hasExternalWeakLinkage(),
425 "invalid linkage type for global declaration", &GV);
426 }
427
428 if (GV.hasName() && (GV.getName() == "llvm.global_ctors" ||
429 GV.getName() == "llvm.global_dtors")) {
430 Assert1(!GV.hasInitializer() || GV.hasAppendingLinkage(),
431 "invalid linkage for intrinsic global variable", &GV);
432 // Don't worry about emitting an error for it not being an array,
433 // visitGlobalValue will complain on appending non-array.
434 if (ArrayType *ATy = dyn_cast<ArrayType>(GV.getType())) {
435 StructType *STy = dyn_cast<StructType>(ATy->getElementType());
436 PointerType *FuncPtrTy =
437 FunctionType::get(Type::getVoidTy(*Context), false)->getPointerTo();
438 Assert1(STy && STy->getNumElements() == 2 &&
439 STy->getTypeAtIndex(0u)->isIntegerTy(32) &&
440 STy->getTypeAtIndex(1) == FuncPtrTy,
441 "wrong type for intrinsic global variable", &GV);
442 }
443 }
444
445 visitGlobalValue(GV);
446 }
447
visitGlobalAlias(GlobalAlias & GA)448 void Verifier::visitGlobalAlias(GlobalAlias &GA) {
449 Assert1(!GA.getName().empty(),
450 "Alias name cannot be empty!", &GA);
451 Assert1(GA.hasExternalLinkage() || GA.hasLocalLinkage() ||
452 GA.hasWeakLinkage(),
453 "Alias should have external or external weak linkage!", &GA);
454 Assert1(GA.getAliasee(),
455 "Aliasee cannot be NULL!", &GA);
456 Assert1(GA.getType() == GA.getAliasee()->getType(),
457 "Alias and aliasee types should match!", &GA);
458 Assert1(!GA.hasUnnamedAddr(), "Alias cannot have unnamed_addr!", &GA);
459
460 if (!isa<GlobalValue>(GA.getAliasee())) {
461 const ConstantExpr *CE = dyn_cast<ConstantExpr>(GA.getAliasee());
462 Assert1(CE &&
463 (CE->getOpcode() == Instruction::BitCast ||
464 CE->getOpcode() == Instruction::GetElementPtr) &&
465 isa<GlobalValue>(CE->getOperand(0)),
466 "Aliasee should be either GlobalValue or bitcast of GlobalValue",
467 &GA);
468 }
469
470 const GlobalValue* Aliasee = GA.resolveAliasedGlobal(/*stopOnWeak*/ false);
471 Assert1(Aliasee,
472 "Aliasing chain should end with function or global variable", &GA);
473
474 visitGlobalValue(GA);
475 }
476
visitNamedMDNode(NamedMDNode & NMD)477 void Verifier::visitNamedMDNode(NamedMDNode &NMD) {
478 for (unsigned i = 0, e = NMD.getNumOperands(); i != e; ++i) {
479 MDNode *MD = NMD.getOperand(i);
480 if (!MD)
481 continue;
482
483 Assert1(!MD->isFunctionLocal(),
484 "Named metadata operand cannot be function local!", MD);
485 visitMDNode(*MD, 0);
486 }
487 }
488
visitMDNode(MDNode & MD,Function * F)489 void Verifier::visitMDNode(MDNode &MD, Function *F) {
490 // Only visit each node once. Metadata can be mutually recursive, so this
491 // avoids infinite recursion here, as well as being an optimization.
492 if (!MDNodes.insert(&MD))
493 return;
494
495 for (unsigned i = 0, e = MD.getNumOperands(); i != e; ++i) {
496 Value *Op = MD.getOperand(i);
497 if (!Op)
498 continue;
499 if (isa<Constant>(Op) || isa<MDString>(Op))
500 continue;
501 if (MDNode *N = dyn_cast<MDNode>(Op)) {
502 Assert2(MD.isFunctionLocal() || !N->isFunctionLocal(),
503 "Global metadata operand cannot be function local!", &MD, N);
504 visitMDNode(*N, F);
505 continue;
506 }
507 Assert2(MD.isFunctionLocal(), "Invalid operand for global metadata!", &MD, Op);
508
509 // If this was an instruction, bb, or argument, verify that it is in the
510 // function that we expect.
511 Function *ActualF = 0;
512 if (Instruction *I = dyn_cast<Instruction>(Op))
513 ActualF = I->getParent()->getParent();
514 else if (BasicBlock *BB = dyn_cast<BasicBlock>(Op))
515 ActualF = BB->getParent();
516 else if (Argument *A = dyn_cast<Argument>(Op))
517 ActualF = A->getParent();
518 assert(ActualF && "Unimplemented function local metadata case!");
519
520 Assert2(ActualF == F, "function-local metadata used in wrong function",
521 &MD, Op);
522 }
523 }
524
525 // VerifyParameterAttrs - Check the given attributes for an argument or return
526 // value of the specified type. The value V is printed in error messages.
VerifyParameterAttrs(Attributes Attrs,Type * Ty,bool isReturnValue,const Value * V)527 void Verifier::VerifyParameterAttrs(Attributes Attrs, Type *Ty,
528 bool isReturnValue, const Value *V) {
529 if (Attrs == Attribute::None)
530 return;
531
532 Attributes FnCheckAttr = Attrs & Attribute::FunctionOnly;
533 Assert1(!FnCheckAttr, "Attribute " + Attribute::getAsString(FnCheckAttr) +
534 " only applies to the function!", V);
535
536 if (isReturnValue) {
537 Attributes RetI = Attrs & Attribute::ParameterOnly;
538 Assert1(!RetI, "Attribute " + Attribute::getAsString(RetI) +
539 " does not apply to return values!", V);
540 }
541
542 for (unsigned i = 0;
543 i < array_lengthof(Attribute::MutuallyIncompatible); ++i) {
544 Attributes MutI = Attrs & Attribute::MutuallyIncompatible[i];
545 Assert1(MutI.isEmptyOrSingleton(), "Attributes " +
546 Attribute::getAsString(MutI) + " are incompatible!", V);
547 }
548
549 Attributes TypeI = Attrs & Attribute::typeIncompatible(Ty);
550 Assert1(!TypeI, "Wrong type for attribute " +
551 Attribute::getAsString(TypeI), V);
552
553 Attributes ByValI = Attrs & Attribute::ByVal;
554 if (PointerType *PTy = dyn_cast<PointerType>(Ty)) {
555 Assert1(!ByValI || PTy->getElementType()->isSized(),
556 "Attribute " + Attribute::getAsString(ByValI) +
557 " does not support unsized types!", V);
558 } else {
559 Assert1(!ByValI,
560 "Attribute " + Attribute::getAsString(ByValI) +
561 " only applies to parameters with pointer type!", V);
562 }
563 }
564
565 // VerifyFunctionAttrs - Check parameter attributes against a function type.
566 // The value V is printed in error messages.
VerifyFunctionAttrs(FunctionType * FT,const AttrListPtr & Attrs,const Value * V)567 void Verifier::VerifyFunctionAttrs(FunctionType *FT,
568 const AttrListPtr &Attrs,
569 const Value *V) {
570 if (Attrs.isEmpty())
571 return;
572
573 bool SawNest = false;
574
575 for (unsigned i = 0, e = Attrs.getNumSlots(); i != e; ++i) {
576 const AttributeWithIndex &Attr = Attrs.getSlot(i);
577
578 Type *Ty;
579 if (Attr.Index == 0)
580 Ty = FT->getReturnType();
581 else if (Attr.Index-1 < FT->getNumParams())
582 Ty = FT->getParamType(Attr.Index-1);
583 else
584 break; // VarArgs attributes, verified elsewhere.
585
586 VerifyParameterAttrs(Attr.Attrs, Ty, Attr.Index == 0, V);
587
588 if (Attr.Attrs & Attribute::Nest) {
589 Assert1(!SawNest, "More than one parameter has attribute nest!", V);
590 SawNest = true;
591 }
592
593 if (Attr.Attrs & Attribute::StructRet)
594 Assert1(Attr.Index == 1, "Attribute sret not on first parameter!", V);
595 }
596
597 Attributes FAttrs = Attrs.getFnAttributes();
598 Attributes NotFn = FAttrs & (~Attribute::FunctionOnly);
599 Assert1(!NotFn, "Attribute " + Attribute::getAsString(NotFn) +
600 " does not apply to the function!", V);
601
602 for (unsigned i = 0;
603 i < array_lengthof(Attribute::MutuallyIncompatible); ++i) {
604 Attributes MutI = FAttrs & Attribute::MutuallyIncompatible[i];
605 Assert1(MutI.isEmptyOrSingleton(), "Attributes " +
606 Attribute::getAsString(MutI) + " are incompatible!", V);
607 }
608 }
609
VerifyAttributeCount(const AttrListPtr & Attrs,unsigned Params)610 static bool VerifyAttributeCount(const AttrListPtr &Attrs, unsigned Params) {
611 if (Attrs.isEmpty())
612 return true;
613
614 unsigned LastSlot = Attrs.getNumSlots() - 1;
615 unsigned LastIndex = Attrs.getSlot(LastSlot).Index;
616 if (LastIndex <= Params
617 || (LastIndex == (unsigned)~0
618 && (LastSlot == 0 || Attrs.getSlot(LastSlot - 1).Index <= Params)))
619 return true;
620
621 return false;
622 }
623
624 // visitFunction - Verify that a function is ok.
625 //
visitFunction(Function & F)626 void Verifier::visitFunction(Function &F) {
627 // Check function arguments.
628 FunctionType *FT = F.getFunctionType();
629 unsigned NumArgs = F.arg_size();
630
631 Assert1(Context == &F.getContext(),
632 "Function context does not match Module context!", &F);
633
634 Assert1(!F.hasCommonLinkage(), "Functions may not have common linkage", &F);
635 Assert2(FT->getNumParams() == NumArgs,
636 "# formal arguments must match # of arguments for function type!",
637 &F, FT);
638 Assert1(F.getReturnType()->isFirstClassType() ||
639 F.getReturnType()->isVoidTy() ||
640 F.getReturnType()->isStructTy(),
641 "Functions cannot return aggregate values!", &F);
642
643 Assert1(!F.hasStructRetAttr() || F.getReturnType()->isVoidTy(),
644 "Invalid struct return type!", &F);
645
646 const AttrListPtr &Attrs = F.getAttributes();
647
648 Assert1(VerifyAttributeCount(Attrs, FT->getNumParams()),
649 "Attributes after last parameter!", &F);
650
651 // Check function attributes.
652 VerifyFunctionAttrs(FT, Attrs, &F);
653
654 // Check that this function meets the restrictions on this calling convention.
655 switch (F.getCallingConv()) {
656 default:
657 break;
658 case CallingConv::C:
659 break;
660 case CallingConv::Fast:
661 case CallingConv::Cold:
662 case CallingConv::X86_FastCall:
663 case CallingConv::X86_ThisCall:
664 case CallingConv::PTX_Kernel:
665 case CallingConv::PTX_Device:
666 Assert1(!F.isVarArg(),
667 "Varargs functions must have C calling conventions!", &F);
668 break;
669 }
670
671 bool isLLVMdotName = F.getName().size() >= 5 &&
672 F.getName().substr(0, 5) == "llvm.";
673
674 // Check that the argument values match the function type for this function...
675 unsigned i = 0;
676 for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end();
677 I != E; ++I, ++i) {
678 Assert2(I->getType() == FT->getParamType(i),
679 "Argument value does not match function argument type!",
680 I, FT->getParamType(i));
681 Assert1(I->getType()->isFirstClassType(),
682 "Function arguments must have first-class types!", I);
683 if (!isLLVMdotName)
684 Assert2(!I->getType()->isMetadataTy(),
685 "Function takes metadata but isn't an intrinsic", I, &F);
686 }
687
688 if (F.isMaterializable()) {
689 // Function has a body somewhere we can't see.
690 } else if (F.isDeclaration()) {
691 Assert1(F.hasExternalLinkage() || F.hasDLLImportLinkage() ||
692 F.hasExternalWeakLinkage(),
693 "invalid linkage type for function declaration", &F);
694 } else {
695 // Verify that this function (which has a body) is not named "llvm.*". It
696 // is not legal to define intrinsics.
697 Assert1(!isLLVMdotName, "llvm intrinsics cannot be defined!", &F);
698
699 // Check the entry node
700 BasicBlock *Entry = &F.getEntryBlock();
701 Assert1(pred_begin(Entry) == pred_end(Entry),
702 "Entry block to function must not have predecessors!", Entry);
703
704 // The address of the entry block cannot be taken, unless it is dead.
705 if (Entry->hasAddressTaken()) {
706 Assert1(!BlockAddress::get(Entry)->isConstantUsed(),
707 "blockaddress may not be used with the entry block!", Entry);
708 }
709 }
710
711 // If this function is actually an intrinsic, verify that it is only used in
712 // direct call/invokes, never having its "address taken".
713 if (F.getIntrinsicID()) {
714 const User *U;
715 if (F.hasAddressTaken(&U))
716 Assert1(0, "Invalid user of intrinsic instruction!", U);
717 }
718 }
719
720 // verifyBasicBlock - Verify that a basic block is well formed...
721 //
visitBasicBlock(BasicBlock & BB)722 void Verifier::visitBasicBlock(BasicBlock &BB) {
723 InstsInThisBlock.clear();
724
725 // Ensure that basic blocks have terminators!
726 Assert1(BB.getTerminator(), "Basic Block does not have terminator!", &BB);
727
728 // Check constraints that this basic block imposes on all of the PHI nodes in
729 // it.
730 if (isa<PHINode>(BB.front())) {
731 SmallVector<BasicBlock*, 8> Preds(pred_begin(&BB), pred_end(&BB));
732 SmallVector<std::pair<BasicBlock*, Value*>, 8> Values;
733 std::sort(Preds.begin(), Preds.end());
734 PHINode *PN;
735 for (BasicBlock::iterator I = BB.begin(); (PN = dyn_cast<PHINode>(I));++I) {
736 // Ensure that PHI nodes have at least one entry!
737 Assert1(PN->getNumIncomingValues() != 0,
738 "PHI nodes must have at least one entry. If the block is dead, "
739 "the PHI should be removed!", PN);
740 Assert1(PN->getNumIncomingValues() == Preds.size(),
741 "PHINode should have one entry for each predecessor of its "
742 "parent basic block!", PN);
743
744 // Get and sort all incoming values in the PHI node...
745 Values.clear();
746 Values.reserve(PN->getNumIncomingValues());
747 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
748 Values.push_back(std::make_pair(PN->getIncomingBlock(i),
749 PN->getIncomingValue(i)));
750 std::sort(Values.begin(), Values.end());
751
752 for (unsigned i = 0, e = Values.size(); i != e; ++i) {
753 // Check to make sure that if there is more than one entry for a
754 // particular basic block in this PHI node, that the incoming values are
755 // all identical.
756 //
757 Assert4(i == 0 || Values[i].first != Values[i-1].first ||
758 Values[i].second == Values[i-1].second,
759 "PHI node has multiple entries for the same basic block with "
760 "different incoming values!", PN, Values[i].first,
761 Values[i].second, Values[i-1].second);
762
763 // Check to make sure that the predecessors and PHI node entries are
764 // matched up.
765 Assert3(Values[i].first == Preds[i],
766 "PHI node entries do not match predecessors!", PN,
767 Values[i].first, Preds[i]);
768 }
769 }
770 }
771 }
772
visitTerminatorInst(TerminatorInst & I)773 void Verifier::visitTerminatorInst(TerminatorInst &I) {
774 // Ensure that terminators only exist at the end of the basic block.
775 Assert1(&I == I.getParent()->getTerminator(),
776 "Terminator found in the middle of a basic block!", I.getParent());
777 visitInstruction(I);
778 }
779
visitBranchInst(BranchInst & BI)780 void Verifier::visitBranchInst(BranchInst &BI) {
781 if (BI.isConditional()) {
782 Assert2(BI.getCondition()->getType()->isIntegerTy(1),
783 "Branch condition is not 'i1' type!", &BI, BI.getCondition());
784 }
785 visitTerminatorInst(BI);
786 }
787
visitReturnInst(ReturnInst & RI)788 void Verifier::visitReturnInst(ReturnInst &RI) {
789 Function *F = RI.getParent()->getParent();
790 unsigned N = RI.getNumOperands();
791 if (F->getReturnType()->isVoidTy())
792 Assert2(N == 0,
793 "Found return instr that returns non-void in Function of void "
794 "return type!", &RI, F->getReturnType());
795 else
796 Assert2(N == 1 && F->getReturnType() == RI.getOperand(0)->getType(),
797 "Function return type does not match operand "
798 "type of return inst!", &RI, F->getReturnType());
799
800 // Check to make sure that the return value has necessary properties for
801 // terminators...
802 visitTerminatorInst(RI);
803 }
804
visitSwitchInst(SwitchInst & SI)805 void Verifier::visitSwitchInst(SwitchInst &SI) {
806 // Check to make sure that all of the constants in the switch instruction
807 // have the same type as the switched-on value.
808 Type *SwitchTy = SI.getCondition()->getType();
809 IntegerType *IntTy = cast<IntegerType>(SwitchTy);
810 IntegersSubsetToBB Mapping;
811 std::map<IntegersSubset::Range, unsigned> RangeSetMap;
812 for (SwitchInst::CaseIt i = SI.case_begin(), e = SI.case_end(); i != e; ++i) {
813 IntegersSubset CaseRanges = i.getCaseValueEx();
814 for (unsigned ri = 0, rie = CaseRanges.getNumItems(); ri < rie; ++ri) {
815 IntegersSubset::Range r = CaseRanges.getItem(ri);
816 Assert1(((const APInt&)r.getLow()).getBitWidth() == IntTy->getBitWidth(),
817 "Switch constants must all be same type as switch value!", &SI);
818 Assert1(((const APInt&)r.getHigh()).getBitWidth() == IntTy->getBitWidth(),
819 "Switch constants must all be same type as switch value!", &SI);
820 Mapping.add(r);
821 RangeSetMap[r] = i.getCaseIndex();
822 }
823 }
824
825 IntegersSubsetToBB::RangeIterator errItem;
826 if (!Mapping.verify(errItem)) {
827 unsigned CaseIndex = RangeSetMap[errItem->first];
828 SwitchInst::CaseIt i(&SI, CaseIndex);
829 Assert2(false, "Duplicate integer as switch case", &SI, i.getCaseValueEx());
830 }
831
832 visitTerminatorInst(SI);
833 }
834
visitIndirectBrInst(IndirectBrInst & BI)835 void Verifier::visitIndirectBrInst(IndirectBrInst &BI) {
836 Assert1(BI.getAddress()->getType()->isPointerTy(),
837 "Indirectbr operand must have pointer type!", &BI);
838 for (unsigned i = 0, e = BI.getNumDestinations(); i != e; ++i)
839 Assert1(BI.getDestination(i)->getType()->isLabelTy(),
840 "Indirectbr destinations must all have pointer type!", &BI);
841
842 visitTerminatorInst(BI);
843 }
844
visitSelectInst(SelectInst & SI)845 void Verifier::visitSelectInst(SelectInst &SI) {
846 Assert1(!SelectInst::areInvalidOperands(SI.getOperand(0), SI.getOperand(1),
847 SI.getOperand(2)),
848 "Invalid operands for select instruction!", &SI);
849
850 Assert1(SI.getTrueValue()->getType() == SI.getType(),
851 "Select values must have same type as select instruction!", &SI);
852 visitInstruction(SI);
853 }
854
855 /// visitUserOp1 - User defined operators shouldn't live beyond the lifetime of
856 /// a pass, if any exist, it's an error.
857 ///
visitUserOp1(Instruction & I)858 void Verifier::visitUserOp1(Instruction &I) {
859 Assert1(0, "User-defined operators should not live outside of a pass!", &I);
860 }
861
visitTruncInst(TruncInst & I)862 void Verifier::visitTruncInst(TruncInst &I) {
863 // Get the source and destination types
864 Type *SrcTy = I.getOperand(0)->getType();
865 Type *DestTy = I.getType();
866
867 // Get the size of the types in bits, we'll need this later
868 unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
869 unsigned DestBitSize = DestTy->getScalarSizeInBits();
870
871 Assert1(SrcTy->isIntOrIntVectorTy(), "Trunc only operates on integer", &I);
872 Assert1(DestTy->isIntOrIntVectorTy(), "Trunc only produces integer", &I);
873 Assert1(SrcTy->isVectorTy() == DestTy->isVectorTy(),
874 "trunc source and destination must both be a vector or neither", &I);
875 Assert1(SrcBitSize > DestBitSize,"DestTy too big for Trunc", &I);
876
877 visitInstruction(I);
878 }
879
visitZExtInst(ZExtInst & I)880 void Verifier::visitZExtInst(ZExtInst &I) {
881 // Get the source and destination types
882 Type *SrcTy = I.getOperand(0)->getType();
883 Type *DestTy = I.getType();
884
885 // Get the size of the types in bits, we'll need this later
886 Assert1(SrcTy->isIntOrIntVectorTy(), "ZExt only operates on integer", &I);
887 Assert1(DestTy->isIntOrIntVectorTy(), "ZExt only produces an integer", &I);
888 Assert1(SrcTy->isVectorTy() == DestTy->isVectorTy(),
889 "zext source and destination must both be a vector or neither", &I);
890 unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
891 unsigned DestBitSize = DestTy->getScalarSizeInBits();
892
893 Assert1(SrcBitSize < DestBitSize,"Type too small for ZExt", &I);
894
895 visitInstruction(I);
896 }
897
visitSExtInst(SExtInst & I)898 void Verifier::visitSExtInst(SExtInst &I) {
899 // Get the source and destination types
900 Type *SrcTy = I.getOperand(0)->getType();
901 Type *DestTy = I.getType();
902
903 // Get the size of the types in bits, we'll need this later
904 unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
905 unsigned DestBitSize = DestTy->getScalarSizeInBits();
906
907 Assert1(SrcTy->isIntOrIntVectorTy(), "SExt only operates on integer", &I);
908 Assert1(DestTy->isIntOrIntVectorTy(), "SExt only produces an integer", &I);
909 Assert1(SrcTy->isVectorTy() == DestTy->isVectorTy(),
910 "sext source and destination must both be a vector or neither", &I);
911 Assert1(SrcBitSize < DestBitSize,"Type too small for SExt", &I);
912
913 visitInstruction(I);
914 }
915
visitFPTruncInst(FPTruncInst & I)916 void Verifier::visitFPTruncInst(FPTruncInst &I) {
917 // Get the source and destination types
918 Type *SrcTy = I.getOperand(0)->getType();
919 Type *DestTy = I.getType();
920 // Get the size of the types in bits, we'll need this later
921 unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
922 unsigned DestBitSize = DestTy->getScalarSizeInBits();
923
924 Assert1(SrcTy->isFPOrFPVectorTy(),"FPTrunc only operates on FP", &I);
925 Assert1(DestTy->isFPOrFPVectorTy(),"FPTrunc only produces an FP", &I);
926 Assert1(SrcTy->isVectorTy() == DestTy->isVectorTy(),
927 "fptrunc source and destination must both be a vector or neither",&I);
928 Assert1(SrcBitSize > DestBitSize,"DestTy too big for FPTrunc", &I);
929
930 visitInstruction(I);
931 }
932
visitFPExtInst(FPExtInst & I)933 void Verifier::visitFPExtInst(FPExtInst &I) {
934 // Get the source and destination types
935 Type *SrcTy = I.getOperand(0)->getType();
936 Type *DestTy = I.getType();
937
938 // Get the size of the types in bits, we'll need this later
939 unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
940 unsigned DestBitSize = DestTy->getScalarSizeInBits();
941
942 Assert1(SrcTy->isFPOrFPVectorTy(),"FPExt only operates on FP", &I);
943 Assert1(DestTy->isFPOrFPVectorTy(),"FPExt only produces an FP", &I);
944 Assert1(SrcTy->isVectorTy() == DestTy->isVectorTy(),
945 "fpext source and destination must both be a vector or neither", &I);
946 Assert1(SrcBitSize < DestBitSize,"DestTy too small for FPExt", &I);
947
948 visitInstruction(I);
949 }
950
visitUIToFPInst(UIToFPInst & I)951 void Verifier::visitUIToFPInst(UIToFPInst &I) {
952 // Get the source and destination types
953 Type *SrcTy = I.getOperand(0)->getType();
954 Type *DestTy = I.getType();
955
956 bool SrcVec = SrcTy->isVectorTy();
957 bool DstVec = DestTy->isVectorTy();
958
959 Assert1(SrcVec == DstVec,
960 "UIToFP source and dest must both be vector or scalar", &I);
961 Assert1(SrcTy->isIntOrIntVectorTy(),
962 "UIToFP source must be integer or integer vector", &I);
963 Assert1(DestTy->isFPOrFPVectorTy(),
964 "UIToFP result must be FP or FP vector", &I);
965
966 if (SrcVec && DstVec)
967 Assert1(cast<VectorType>(SrcTy)->getNumElements() ==
968 cast<VectorType>(DestTy)->getNumElements(),
969 "UIToFP source and dest vector length mismatch", &I);
970
971 visitInstruction(I);
972 }
973
visitSIToFPInst(SIToFPInst & I)974 void Verifier::visitSIToFPInst(SIToFPInst &I) {
975 // Get the source and destination types
976 Type *SrcTy = I.getOperand(0)->getType();
977 Type *DestTy = I.getType();
978
979 bool SrcVec = SrcTy->isVectorTy();
980 bool DstVec = DestTy->isVectorTy();
981
982 Assert1(SrcVec == DstVec,
983 "SIToFP source and dest must both be vector or scalar", &I);
984 Assert1(SrcTy->isIntOrIntVectorTy(),
985 "SIToFP source must be integer or integer vector", &I);
986 Assert1(DestTy->isFPOrFPVectorTy(),
987 "SIToFP result must be FP or FP vector", &I);
988
989 if (SrcVec && DstVec)
990 Assert1(cast<VectorType>(SrcTy)->getNumElements() ==
991 cast<VectorType>(DestTy)->getNumElements(),
992 "SIToFP source and dest vector length mismatch", &I);
993
994 visitInstruction(I);
995 }
996
visitFPToUIInst(FPToUIInst & I)997 void Verifier::visitFPToUIInst(FPToUIInst &I) {
998 // Get the source and destination types
999 Type *SrcTy = I.getOperand(0)->getType();
1000 Type *DestTy = I.getType();
1001
1002 bool SrcVec = SrcTy->isVectorTy();
1003 bool DstVec = DestTy->isVectorTy();
1004
1005 Assert1(SrcVec == DstVec,
1006 "FPToUI source and dest must both be vector or scalar", &I);
1007 Assert1(SrcTy->isFPOrFPVectorTy(), "FPToUI source must be FP or FP vector",
1008 &I);
1009 Assert1(DestTy->isIntOrIntVectorTy(),
1010 "FPToUI result must be integer or integer vector", &I);
1011
1012 if (SrcVec && DstVec)
1013 Assert1(cast<VectorType>(SrcTy)->getNumElements() ==
1014 cast<VectorType>(DestTy)->getNumElements(),
1015 "FPToUI source and dest vector length mismatch", &I);
1016
1017 visitInstruction(I);
1018 }
1019
visitFPToSIInst(FPToSIInst & I)1020 void Verifier::visitFPToSIInst(FPToSIInst &I) {
1021 // Get the source and destination types
1022 Type *SrcTy = I.getOperand(0)->getType();
1023 Type *DestTy = I.getType();
1024
1025 bool SrcVec = SrcTy->isVectorTy();
1026 bool DstVec = DestTy->isVectorTy();
1027
1028 Assert1(SrcVec == DstVec,
1029 "FPToSI source and dest must both be vector or scalar", &I);
1030 Assert1(SrcTy->isFPOrFPVectorTy(),
1031 "FPToSI source must be FP or FP vector", &I);
1032 Assert1(DestTy->isIntOrIntVectorTy(),
1033 "FPToSI result must be integer or integer vector", &I);
1034
1035 if (SrcVec && DstVec)
1036 Assert1(cast<VectorType>(SrcTy)->getNumElements() ==
1037 cast<VectorType>(DestTy)->getNumElements(),
1038 "FPToSI source and dest vector length mismatch", &I);
1039
1040 visitInstruction(I);
1041 }
1042
visitPtrToIntInst(PtrToIntInst & I)1043 void Verifier::visitPtrToIntInst(PtrToIntInst &I) {
1044 // Get the source and destination types
1045 Type *SrcTy = I.getOperand(0)->getType();
1046 Type *DestTy = I.getType();
1047
1048 Assert1(SrcTy->getScalarType()->isPointerTy(),
1049 "PtrToInt source must be pointer", &I);
1050 Assert1(DestTy->getScalarType()->isIntegerTy(),
1051 "PtrToInt result must be integral", &I);
1052 Assert1(SrcTy->isVectorTy() == DestTy->isVectorTy(),
1053 "PtrToInt type mismatch", &I);
1054
1055 if (SrcTy->isVectorTy()) {
1056 VectorType *VSrc = dyn_cast<VectorType>(SrcTy);
1057 VectorType *VDest = dyn_cast<VectorType>(DestTy);
1058 Assert1(VSrc->getNumElements() == VDest->getNumElements(),
1059 "PtrToInt Vector width mismatch", &I);
1060 }
1061
1062 visitInstruction(I);
1063 }
1064
visitIntToPtrInst(IntToPtrInst & I)1065 void Verifier::visitIntToPtrInst(IntToPtrInst &I) {
1066 // Get the source and destination types
1067 Type *SrcTy = I.getOperand(0)->getType();
1068 Type *DestTy = I.getType();
1069
1070 Assert1(SrcTy->getScalarType()->isIntegerTy(),
1071 "IntToPtr source must be an integral", &I);
1072 Assert1(DestTy->getScalarType()->isPointerTy(),
1073 "IntToPtr result must be a pointer",&I);
1074 Assert1(SrcTy->isVectorTy() == DestTy->isVectorTy(),
1075 "IntToPtr type mismatch", &I);
1076 if (SrcTy->isVectorTy()) {
1077 VectorType *VSrc = dyn_cast<VectorType>(SrcTy);
1078 VectorType *VDest = dyn_cast<VectorType>(DestTy);
1079 Assert1(VSrc->getNumElements() == VDest->getNumElements(),
1080 "IntToPtr Vector width mismatch", &I);
1081 }
1082 visitInstruction(I);
1083 }
1084
visitBitCastInst(BitCastInst & I)1085 void Verifier::visitBitCastInst(BitCastInst &I) {
1086 // Get the source and destination types
1087 Type *SrcTy = I.getOperand(0)->getType();
1088 Type *DestTy = I.getType();
1089
1090 // Get the size of the types in bits, we'll need this later
1091 unsigned SrcBitSize = SrcTy->getPrimitiveSizeInBits();
1092 unsigned DestBitSize = DestTy->getPrimitiveSizeInBits();
1093
1094 // BitCast implies a no-op cast of type only. No bits change.
1095 // However, you can't cast pointers to anything but pointers.
1096 Assert1(SrcTy->isPointerTy() == DestTy->isPointerTy(),
1097 "Bitcast requires both operands to be pointer or neither", &I);
1098 Assert1(SrcBitSize == DestBitSize, "Bitcast requires types of same width",&I);
1099
1100 // Disallow aggregates.
1101 Assert1(!SrcTy->isAggregateType(),
1102 "Bitcast operand must not be aggregate", &I);
1103 Assert1(!DestTy->isAggregateType(),
1104 "Bitcast type must not be aggregate", &I);
1105
1106 visitInstruction(I);
1107 }
1108
1109 /// visitPHINode - Ensure that a PHI node is well formed.
1110 ///
visitPHINode(PHINode & PN)1111 void Verifier::visitPHINode(PHINode &PN) {
1112 // Ensure that the PHI nodes are all grouped together at the top of the block.
1113 // This can be tested by checking whether the instruction before this is
1114 // either nonexistent (because this is begin()) or is a PHI node. If not,
1115 // then there is some other instruction before a PHI.
1116 Assert2(&PN == &PN.getParent()->front() ||
1117 isa<PHINode>(--BasicBlock::iterator(&PN)),
1118 "PHI nodes not grouped at top of basic block!",
1119 &PN, PN.getParent());
1120
1121 // Check that all of the values of the PHI node have the same type as the
1122 // result, and that the incoming blocks are really basic blocks.
1123 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
1124 Assert1(PN.getType() == PN.getIncomingValue(i)->getType(),
1125 "PHI node operands are not the same type as the result!", &PN);
1126 }
1127
1128 // All other PHI node constraints are checked in the visitBasicBlock method.
1129
1130 visitInstruction(PN);
1131 }
1132
VerifyCallSite(CallSite CS)1133 void Verifier::VerifyCallSite(CallSite CS) {
1134 Instruction *I = CS.getInstruction();
1135
1136 Assert1(CS.getCalledValue()->getType()->isPointerTy(),
1137 "Called function must be a pointer!", I);
1138 PointerType *FPTy = cast<PointerType>(CS.getCalledValue()->getType());
1139
1140 Assert1(FPTy->getElementType()->isFunctionTy(),
1141 "Called function is not pointer to function type!", I);
1142 FunctionType *FTy = cast<FunctionType>(FPTy->getElementType());
1143
1144 // Verify that the correct number of arguments are being passed
1145 if (FTy->isVarArg())
1146 Assert1(CS.arg_size() >= FTy->getNumParams(),
1147 "Called function requires more parameters than were provided!",I);
1148 else
1149 Assert1(CS.arg_size() == FTy->getNumParams(),
1150 "Incorrect number of arguments passed to called function!", I);
1151
1152 // Verify that all arguments to the call match the function type.
1153 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
1154 Assert3(CS.getArgument(i)->getType() == FTy->getParamType(i),
1155 "Call parameter type does not match function signature!",
1156 CS.getArgument(i), FTy->getParamType(i), I);
1157
1158 const AttrListPtr &Attrs = CS.getAttributes();
1159
1160 Assert1(VerifyAttributeCount(Attrs, CS.arg_size()),
1161 "Attributes after last parameter!", I);
1162
1163 // Verify call attributes.
1164 VerifyFunctionAttrs(FTy, Attrs, I);
1165
1166 if (FTy->isVarArg())
1167 // Check attributes on the varargs part.
1168 for (unsigned Idx = 1 + FTy->getNumParams(); Idx <= CS.arg_size(); ++Idx) {
1169 Attributes Attr = Attrs.getParamAttributes(Idx);
1170
1171 VerifyParameterAttrs(Attr, CS.getArgument(Idx-1)->getType(), false, I);
1172
1173 Attributes VArgI = Attr & Attribute::VarArgsIncompatible;
1174 Assert1(!VArgI, "Attribute " + Attribute::getAsString(VArgI) +
1175 " cannot be used for vararg call arguments!", I);
1176 }
1177
1178 // Verify that there's no metadata unless it's a direct call to an intrinsic.
1179 if (CS.getCalledFunction() == 0 ||
1180 !CS.getCalledFunction()->getName().startswith("llvm.")) {
1181 for (FunctionType::param_iterator PI = FTy->param_begin(),
1182 PE = FTy->param_end(); PI != PE; ++PI)
1183 Assert1(!(*PI)->isMetadataTy(),
1184 "Function has metadata parameter but isn't an intrinsic", I);
1185 }
1186
1187 visitInstruction(*I);
1188 }
1189
visitCallInst(CallInst & CI)1190 void Verifier::visitCallInst(CallInst &CI) {
1191 VerifyCallSite(&CI);
1192
1193 if (Function *F = CI.getCalledFunction())
1194 if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID())
1195 visitIntrinsicFunctionCall(ID, CI);
1196 }
1197
visitInvokeInst(InvokeInst & II)1198 void Verifier::visitInvokeInst(InvokeInst &II) {
1199 VerifyCallSite(&II);
1200
1201 // Verify that there is a landingpad instruction as the first non-PHI
1202 // instruction of the 'unwind' destination.
1203 Assert1(II.getUnwindDest()->isLandingPad(),
1204 "The unwind destination does not have a landingpad instruction!",&II);
1205
1206 visitTerminatorInst(II);
1207 }
1208
1209 /// visitBinaryOperator - Check that both arguments to the binary operator are
1210 /// of the same type!
1211 ///
visitBinaryOperator(BinaryOperator & B)1212 void Verifier::visitBinaryOperator(BinaryOperator &B) {
1213 Assert1(B.getOperand(0)->getType() == B.getOperand(1)->getType(),
1214 "Both operands to a binary operator are not of the same type!", &B);
1215
1216 switch (B.getOpcode()) {
1217 // Check that integer arithmetic operators are only used with
1218 // integral operands.
1219 case Instruction::Add:
1220 case Instruction::Sub:
1221 case Instruction::Mul:
1222 case Instruction::SDiv:
1223 case Instruction::UDiv:
1224 case Instruction::SRem:
1225 case Instruction::URem:
1226 Assert1(B.getType()->isIntOrIntVectorTy(),
1227 "Integer arithmetic operators only work with integral types!", &B);
1228 Assert1(B.getType() == B.getOperand(0)->getType(),
1229 "Integer arithmetic operators must have same type "
1230 "for operands and result!", &B);
1231 break;
1232 // Check that floating-point arithmetic operators are only used with
1233 // floating-point operands.
1234 case Instruction::FAdd:
1235 case Instruction::FSub:
1236 case Instruction::FMul:
1237 case Instruction::FDiv:
1238 case Instruction::FRem:
1239 Assert1(B.getType()->isFPOrFPVectorTy(),
1240 "Floating-point arithmetic operators only work with "
1241 "floating-point types!", &B);
1242 Assert1(B.getType() == B.getOperand(0)->getType(),
1243 "Floating-point arithmetic operators must have same type "
1244 "for operands and result!", &B);
1245 break;
1246 // Check that logical operators are only used with integral operands.
1247 case Instruction::And:
1248 case Instruction::Or:
1249 case Instruction::Xor:
1250 Assert1(B.getType()->isIntOrIntVectorTy(),
1251 "Logical operators only work with integral types!", &B);
1252 Assert1(B.getType() == B.getOperand(0)->getType(),
1253 "Logical operators must have same type for operands and result!",
1254 &B);
1255 break;
1256 case Instruction::Shl:
1257 case Instruction::LShr:
1258 case Instruction::AShr:
1259 Assert1(B.getType()->isIntOrIntVectorTy(),
1260 "Shifts only work with integral types!", &B);
1261 Assert1(B.getType() == B.getOperand(0)->getType(),
1262 "Shift return type must be same as operands!", &B);
1263 break;
1264 default:
1265 llvm_unreachable("Unknown BinaryOperator opcode!");
1266 }
1267
1268 visitInstruction(B);
1269 }
1270
visitICmpInst(ICmpInst & IC)1271 void Verifier::visitICmpInst(ICmpInst &IC) {
1272 // Check that the operands are the same type
1273 Type *Op0Ty = IC.getOperand(0)->getType();
1274 Type *Op1Ty = IC.getOperand(1)->getType();
1275 Assert1(Op0Ty == Op1Ty,
1276 "Both operands to ICmp instruction are not of the same type!", &IC);
1277 // Check that the operands are the right type
1278 Assert1(Op0Ty->isIntOrIntVectorTy() || Op0Ty->getScalarType()->isPointerTy(),
1279 "Invalid operand types for ICmp instruction", &IC);
1280 // Check that the predicate is valid.
1281 Assert1(IC.getPredicate() >= CmpInst::FIRST_ICMP_PREDICATE &&
1282 IC.getPredicate() <= CmpInst::LAST_ICMP_PREDICATE,
1283 "Invalid predicate in ICmp instruction!", &IC);
1284
1285 visitInstruction(IC);
1286 }
1287
visitFCmpInst(FCmpInst & FC)1288 void Verifier::visitFCmpInst(FCmpInst &FC) {
1289 // Check that the operands are the same type
1290 Type *Op0Ty = FC.getOperand(0)->getType();
1291 Type *Op1Ty = FC.getOperand(1)->getType();
1292 Assert1(Op0Ty == Op1Ty,
1293 "Both operands to FCmp instruction are not of the same type!", &FC);
1294 // Check that the operands are the right type
1295 Assert1(Op0Ty->isFPOrFPVectorTy(),
1296 "Invalid operand types for FCmp instruction", &FC);
1297 // Check that the predicate is valid.
1298 Assert1(FC.getPredicate() >= CmpInst::FIRST_FCMP_PREDICATE &&
1299 FC.getPredicate() <= CmpInst::LAST_FCMP_PREDICATE,
1300 "Invalid predicate in FCmp instruction!", &FC);
1301
1302 visitInstruction(FC);
1303 }
1304
visitExtractElementInst(ExtractElementInst & EI)1305 void Verifier::visitExtractElementInst(ExtractElementInst &EI) {
1306 Assert1(ExtractElementInst::isValidOperands(EI.getOperand(0),
1307 EI.getOperand(1)),
1308 "Invalid extractelement operands!", &EI);
1309 visitInstruction(EI);
1310 }
1311
visitInsertElementInst(InsertElementInst & IE)1312 void Verifier::visitInsertElementInst(InsertElementInst &IE) {
1313 Assert1(InsertElementInst::isValidOperands(IE.getOperand(0),
1314 IE.getOperand(1),
1315 IE.getOperand(2)),
1316 "Invalid insertelement operands!", &IE);
1317 visitInstruction(IE);
1318 }
1319
visitShuffleVectorInst(ShuffleVectorInst & SV)1320 void Verifier::visitShuffleVectorInst(ShuffleVectorInst &SV) {
1321 Assert1(ShuffleVectorInst::isValidOperands(SV.getOperand(0), SV.getOperand(1),
1322 SV.getOperand(2)),
1323 "Invalid shufflevector operands!", &SV);
1324 visitInstruction(SV);
1325 }
1326
visitGetElementPtrInst(GetElementPtrInst & GEP)1327 void Verifier::visitGetElementPtrInst(GetElementPtrInst &GEP) {
1328 Type *TargetTy = GEP.getPointerOperandType()->getScalarType();
1329
1330 Assert1(isa<PointerType>(TargetTy),
1331 "GEP base pointer is not a vector or a vector of pointers", &GEP);
1332 Assert1(cast<PointerType>(TargetTy)->getElementType()->isSized(),
1333 "GEP into unsized type!", &GEP);
1334
1335 SmallVector<Value*, 16> Idxs(GEP.idx_begin(), GEP.idx_end());
1336 Type *ElTy =
1337 GetElementPtrInst::getIndexedType(GEP.getPointerOperandType(), Idxs);
1338 Assert1(ElTy, "Invalid indices for GEP pointer type!", &GEP);
1339
1340 if (GEP.getPointerOperandType()->isPointerTy()) {
1341 // Validate GEPs with scalar indices.
1342 Assert2(GEP.getType()->isPointerTy() &&
1343 cast<PointerType>(GEP.getType())->getElementType() == ElTy,
1344 "GEP is not of right type for indices!", &GEP, ElTy);
1345 } else {
1346 // Validate GEPs with a vector index.
1347 Assert1(Idxs.size() == 1, "Invalid number of indices!", &GEP);
1348 Value *Index = Idxs[0];
1349 Type *IndexTy = Index->getType();
1350 Assert1(IndexTy->isVectorTy(),
1351 "Vector GEP must have vector indices!", &GEP);
1352 Assert1(GEP.getType()->isVectorTy(),
1353 "Vector GEP must return a vector value", &GEP);
1354 Type *ElemPtr = cast<VectorType>(GEP.getType())->getElementType();
1355 Assert1(ElemPtr->isPointerTy(),
1356 "Vector GEP pointer operand is not a pointer!", &GEP);
1357 unsigned IndexWidth = cast<VectorType>(IndexTy)->getNumElements();
1358 unsigned GepWidth = cast<VectorType>(GEP.getType())->getNumElements();
1359 Assert1(IndexWidth == GepWidth, "Invalid GEP index vector width", &GEP);
1360 Assert1(ElTy == cast<PointerType>(ElemPtr)->getElementType(),
1361 "Vector GEP type does not match pointer type!", &GEP);
1362 }
1363 visitInstruction(GEP);
1364 }
1365
isContiguous(const ConstantRange & A,const ConstantRange & B)1366 static bool isContiguous(const ConstantRange &A, const ConstantRange &B) {
1367 return A.getUpper() == B.getLower() || A.getLower() == B.getUpper();
1368 }
1369
visitLoadInst(LoadInst & LI)1370 void Verifier::visitLoadInst(LoadInst &LI) {
1371 PointerType *PTy = dyn_cast<PointerType>(LI.getOperand(0)->getType());
1372 Assert1(PTy, "Load operand must be a pointer.", &LI);
1373 Type *ElTy = PTy->getElementType();
1374 Assert2(ElTy == LI.getType(),
1375 "Load result type does not match pointer operand type!", &LI, ElTy);
1376 if (LI.isAtomic()) {
1377 Assert1(LI.getOrdering() != Release && LI.getOrdering() != AcquireRelease,
1378 "Load cannot have Release ordering", &LI);
1379 Assert1(LI.getAlignment() != 0,
1380 "Atomic load must specify explicit alignment", &LI);
1381 if (!ElTy->isPointerTy()) {
1382 Assert2(ElTy->isIntegerTy(),
1383 "atomic store operand must have integer type!",
1384 &LI, ElTy);
1385 unsigned Size = ElTy->getPrimitiveSizeInBits();
1386 Assert2(Size >= 8 && !(Size & (Size - 1)),
1387 "atomic store operand must be power-of-two byte-sized integer",
1388 &LI, ElTy);
1389 }
1390 } else {
1391 Assert1(LI.getSynchScope() == CrossThread,
1392 "Non-atomic load cannot have SynchronizationScope specified", &LI);
1393 }
1394
1395 if (MDNode *Range = LI.getMetadata(LLVMContext::MD_range)) {
1396 unsigned NumOperands = Range->getNumOperands();
1397 Assert1(NumOperands % 2 == 0, "Unfinished range!", Range);
1398 unsigned NumRanges = NumOperands / 2;
1399 Assert1(NumRanges >= 1, "It should have at least one range!", Range);
1400
1401 ConstantRange LastRange(1); // Dummy initial value
1402 for (unsigned i = 0; i < NumRanges; ++i) {
1403 ConstantInt *Low = dyn_cast<ConstantInt>(Range->getOperand(2*i));
1404 Assert1(Low, "The lower limit must be an integer!", Low);
1405 ConstantInt *High = dyn_cast<ConstantInt>(Range->getOperand(2*i + 1));
1406 Assert1(High, "The upper limit must be an integer!", High);
1407 Assert1(High->getType() == Low->getType() &&
1408 High->getType() == ElTy, "Range types must match load type!",
1409 &LI);
1410
1411 APInt HighV = High->getValue();
1412 APInt LowV = Low->getValue();
1413 ConstantRange CurRange(LowV, HighV);
1414 Assert1(!CurRange.isEmptySet() && !CurRange.isFullSet(),
1415 "Range must not be empty!", Range);
1416 if (i != 0) {
1417 Assert1(CurRange.intersectWith(LastRange).isEmptySet(),
1418 "Intervals are overlapping", Range);
1419 Assert1(LowV.sgt(LastRange.getLower()), "Intervals are not in order",
1420 Range);
1421 Assert1(!isContiguous(CurRange, LastRange), "Intervals are contiguous",
1422 Range);
1423 }
1424 LastRange = ConstantRange(LowV, HighV);
1425 }
1426 if (NumRanges > 2) {
1427 APInt FirstLow =
1428 dyn_cast<ConstantInt>(Range->getOperand(0))->getValue();
1429 APInt FirstHigh =
1430 dyn_cast<ConstantInt>(Range->getOperand(1))->getValue();
1431 ConstantRange FirstRange(FirstLow, FirstHigh);
1432 Assert1(FirstRange.intersectWith(LastRange).isEmptySet(),
1433 "Intervals are overlapping", Range);
1434 Assert1(!isContiguous(FirstRange, LastRange), "Intervals are contiguous",
1435 Range);
1436 }
1437
1438
1439 }
1440
1441 visitInstruction(LI);
1442 }
1443
visitStoreInst(StoreInst & SI)1444 void Verifier::visitStoreInst(StoreInst &SI) {
1445 PointerType *PTy = dyn_cast<PointerType>(SI.getOperand(1)->getType());
1446 Assert1(PTy, "Store operand must be a pointer.", &SI);
1447 Type *ElTy = PTy->getElementType();
1448 Assert2(ElTy == SI.getOperand(0)->getType(),
1449 "Stored value type does not match pointer operand type!",
1450 &SI, ElTy);
1451 if (SI.isAtomic()) {
1452 Assert1(SI.getOrdering() != Acquire && SI.getOrdering() != AcquireRelease,
1453 "Store cannot have Acquire ordering", &SI);
1454 Assert1(SI.getAlignment() != 0,
1455 "Atomic store must specify explicit alignment", &SI);
1456 if (!ElTy->isPointerTy()) {
1457 Assert2(ElTy->isIntegerTy(),
1458 "atomic store operand must have integer type!",
1459 &SI, ElTy);
1460 unsigned Size = ElTy->getPrimitiveSizeInBits();
1461 Assert2(Size >= 8 && !(Size & (Size - 1)),
1462 "atomic store operand must be power-of-two byte-sized integer",
1463 &SI, ElTy);
1464 }
1465 } else {
1466 Assert1(SI.getSynchScope() == CrossThread,
1467 "Non-atomic store cannot have SynchronizationScope specified", &SI);
1468 }
1469 visitInstruction(SI);
1470 }
1471
visitAllocaInst(AllocaInst & AI)1472 void Verifier::visitAllocaInst(AllocaInst &AI) {
1473 PointerType *PTy = AI.getType();
1474 Assert1(PTy->getAddressSpace() == 0,
1475 "Allocation instruction pointer not in the generic address space!",
1476 &AI);
1477 Assert1(PTy->getElementType()->isSized(), "Cannot allocate unsized type",
1478 &AI);
1479 Assert1(AI.getArraySize()->getType()->isIntegerTy(),
1480 "Alloca array size must have integer type", &AI);
1481 visitInstruction(AI);
1482 }
1483
visitAtomicCmpXchgInst(AtomicCmpXchgInst & CXI)1484 void Verifier::visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI) {
1485 Assert1(CXI.getOrdering() != NotAtomic,
1486 "cmpxchg instructions must be atomic.", &CXI);
1487 Assert1(CXI.getOrdering() != Unordered,
1488 "cmpxchg instructions cannot be unordered.", &CXI);
1489 PointerType *PTy = dyn_cast<PointerType>(CXI.getOperand(0)->getType());
1490 Assert1(PTy, "First cmpxchg operand must be a pointer.", &CXI);
1491 Type *ElTy = PTy->getElementType();
1492 Assert2(ElTy->isIntegerTy(),
1493 "cmpxchg operand must have integer type!",
1494 &CXI, ElTy);
1495 unsigned Size = ElTy->getPrimitiveSizeInBits();
1496 Assert2(Size >= 8 && !(Size & (Size - 1)),
1497 "cmpxchg operand must be power-of-two byte-sized integer",
1498 &CXI, ElTy);
1499 Assert2(ElTy == CXI.getOperand(1)->getType(),
1500 "Expected value type does not match pointer operand type!",
1501 &CXI, ElTy);
1502 Assert2(ElTy == CXI.getOperand(2)->getType(),
1503 "Stored value type does not match pointer operand type!",
1504 &CXI, ElTy);
1505 visitInstruction(CXI);
1506 }
1507
visitAtomicRMWInst(AtomicRMWInst & RMWI)1508 void Verifier::visitAtomicRMWInst(AtomicRMWInst &RMWI) {
1509 Assert1(RMWI.getOrdering() != NotAtomic,
1510 "atomicrmw instructions must be atomic.", &RMWI);
1511 Assert1(RMWI.getOrdering() != Unordered,
1512 "atomicrmw instructions cannot be unordered.", &RMWI);
1513 PointerType *PTy = dyn_cast<PointerType>(RMWI.getOperand(0)->getType());
1514 Assert1(PTy, "First atomicrmw operand must be a pointer.", &RMWI);
1515 Type *ElTy = PTy->getElementType();
1516 Assert2(ElTy->isIntegerTy(),
1517 "atomicrmw operand must have integer type!",
1518 &RMWI, ElTy);
1519 unsigned Size = ElTy->getPrimitiveSizeInBits();
1520 Assert2(Size >= 8 && !(Size & (Size - 1)),
1521 "atomicrmw operand must be power-of-two byte-sized integer",
1522 &RMWI, ElTy);
1523 Assert2(ElTy == RMWI.getOperand(1)->getType(),
1524 "Argument value type does not match pointer operand type!",
1525 &RMWI, ElTy);
1526 Assert1(AtomicRMWInst::FIRST_BINOP <= RMWI.getOperation() &&
1527 RMWI.getOperation() <= AtomicRMWInst::LAST_BINOP,
1528 "Invalid binary operation!", &RMWI);
1529 visitInstruction(RMWI);
1530 }
1531
visitFenceInst(FenceInst & FI)1532 void Verifier::visitFenceInst(FenceInst &FI) {
1533 const AtomicOrdering Ordering = FI.getOrdering();
1534 Assert1(Ordering == Acquire || Ordering == Release ||
1535 Ordering == AcquireRelease || Ordering == SequentiallyConsistent,
1536 "fence instructions may only have "
1537 "acquire, release, acq_rel, or seq_cst ordering.", &FI);
1538 visitInstruction(FI);
1539 }
1540
visitExtractValueInst(ExtractValueInst & EVI)1541 void Verifier::visitExtractValueInst(ExtractValueInst &EVI) {
1542 Assert1(ExtractValueInst::getIndexedType(EVI.getAggregateOperand()->getType(),
1543 EVI.getIndices()) ==
1544 EVI.getType(),
1545 "Invalid ExtractValueInst operands!", &EVI);
1546
1547 visitInstruction(EVI);
1548 }
1549
visitInsertValueInst(InsertValueInst & IVI)1550 void Verifier::visitInsertValueInst(InsertValueInst &IVI) {
1551 Assert1(ExtractValueInst::getIndexedType(IVI.getAggregateOperand()->getType(),
1552 IVI.getIndices()) ==
1553 IVI.getOperand(1)->getType(),
1554 "Invalid InsertValueInst operands!", &IVI);
1555
1556 visitInstruction(IVI);
1557 }
1558
visitLandingPadInst(LandingPadInst & LPI)1559 void Verifier::visitLandingPadInst(LandingPadInst &LPI) {
1560 BasicBlock *BB = LPI.getParent();
1561
1562 // The landingpad instruction is ill-formed if it doesn't have any clauses and
1563 // isn't a cleanup.
1564 Assert1(LPI.getNumClauses() > 0 || LPI.isCleanup(),
1565 "LandingPadInst needs at least one clause or to be a cleanup.", &LPI);
1566
1567 // The landingpad instruction defines its parent as a landing pad block. The
1568 // landing pad block may be branched to only by the unwind edge of an invoke.
1569 for (pred_iterator I = pred_begin(BB), E = pred_end(BB); I != E; ++I) {
1570 const InvokeInst *II = dyn_cast<InvokeInst>((*I)->getTerminator());
1571 Assert1(II && II->getUnwindDest() == BB && II->getNormalDest() != BB,
1572 "Block containing LandingPadInst must be jumped to "
1573 "only by the unwind edge of an invoke.", &LPI);
1574 }
1575
1576 // The landingpad instruction must be the first non-PHI instruction in the
1577 // block.
1578 Assert1(LPI.getParent()->getLandingPadInst() == &LPI,
1579 "LandingPadInst not the first non-PHI instruction in the block.",
1580 &LPI);
1581
1582 // The personality functions for all landingpad instructions within the same
1583 // function should match.
1584 if (PersonalityFn)
1585 Assert1(LPI.getPersonalityFn() == PersonalityFn,
1586 "Personality function doesn't match others in function", &LPI);
1587 PersonalityFn = LPI.getPersonalityFn();
1588
1589 // All operands must be constants.
1590 Assert1(isa<Constant>(PersonalityFn), "Personality function is not constant!",
1591 &LPI);
1592 for (unsigned i = 0, e = LPI.getNumClauses(); i < e; ++i) {
1593 Value *Clause = LPI.getClause(i);
1594 Assert1(isa<Constant>(Clause), "Clause is not constant!", &LPI);
1595 if (LPI.isCatch(i)) {
1596 Assert1(isa<PointerType>(Clause->getType()),
1597 "Catch operand does not have pointer type!", &LPI);
1598 } else {
1599 Assert1(LPI.isFilter(i), "Clause is neither catch nor filter!", &LPI);
1600 Assert1(isa<ConstantArray>(Clause) || isa<ConstantAggregateZero>(Clause),
1601 "Filter operand is not an array of constants!", &LPI);
1602 }
1603 }
1604
1605 visitInstruction(LPI);
1606 }
1607
verifyDominatesUse(Instruction & I,unsigned i)1608 void Verifier::verifyDominatesUse(Instruction &I, unsigned i) {
1609 Instruction *Op = cast<Instruction>(I.getOperand(i));
1610 // If the we have an invalid invoke, don't try to compute the dominance.
1611 // We already reject it in the invoke specific checks and the dominance
1612 // computation doesn't handle multiple edges.
1613 if (InvokeInst *II = dyn_cast<InvokeInst>(Op)) {
1614 if (II->getNormalDest() == II->getUnwindDest())
1615 return;
1616 }
1617
1618 const Use &U = I.getOperandUse(i);
1619 Assert2(InstsInThisBlock.count(Op) || DT->dominates(Op, U),
1620 "Instruction does not dominate all uses!", Op, &I);
1621 }
1622
1623 /// verifyInstruction - Verify that an instruction is well formed.
1624 ///
visitInstruction(Instruction & I)1625 void Verifier::visitInstruction(Instruction &I) {
1626 BasicBlock *BB = I.getParent();
1627 Assert1(BB, "Instruction not embedded in basic block!", &I);
1628
1629 if (!isa<PHINode>(I)) { // Check that non-phi nodes are not self referential
1630 for (Value::use_iterator UI = I.use_begin(), UE = I.use_end();
1631 UI != UE; ++UI)
1632 Assert1(*UI != (User*)&I || !DT->isReachableFromEntry(BB),
1633 "Only PHI nodes may reference their own value!", &I);
1634 }
1635
1636 // Check that void typed values don't have names
1637 Assert1(!I.getType()->isVoidTy() || !I.hasName(),
1638 "Instruction has a name, but provides a void value!", &I);
1639
1640 // Check that the return value of the instruction is either void or a legal
1641 // value type.
1642 Assert1(I.getType()->isVoidTy() ||
1643 I.getType()->isFirstClassType(),
1644 "Instruction returns a non-scalar type!", &I);
1645
1646 // Check that the instruction doesn't produce metadata. Calls are already
1647 // checked against the callee type.
1648 Assert1(!I.getType()->isMetadataTy() ||
1649 isa<CallInst>(I) || isa<InvokeInst>(I),
1650 "Invalid use of metadata!", &I);
1651
1652 // Check that all uses of the instruction, if they are instructions
1653 // themselves, actually have parent basic blocks. If the use is not an
1654 // instruction, it is an error!
1655 for (User::use_iterator UI = I.use_begin(), UE = I.use_end();
1656 UI != UE; ++UI) {
1657 if (Instruction *Used = dyn_cast<Instruction>(*UI))
1658 Assert2(Used->getParent() != 0, "Instruction referencing instruction not"
1659 " embedded in a basic block!", &I, Used);
1660 else {
1661 CheckFailed("Use of instruction is not an instruction!", *UI);
1662 return;
1663 }
1664 }
1665
1666 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
1667 Assert1(I.getOperand(i) != 0, "Instruction has null operand!", &I);
1668
1669 // Check to make sure that only first-class-values are operands to
1670 // instructions.
1671 if (!I.getOperand(i)->getType()->isFirstClassType()) {
1672 Assert1(0, "Instruction operands must be first-class values!", &I);
1673 }
1674
1675 if (Function *F = dyn_cast<Function>(I.getOperand(i))) {
1676 // Check to make sure that the "address of" an intrinsic function is never
1677 // taken.
1678 Assert1(!F->isIntrinsic() || i == (isa<CallInst>(I) ? e-1 : 0),
1679 "Cannot take the address of an intrinsic!", &I);
1680 Assert1(!F->isIntrinsic() || isa<CallInst>(I) ||
1681 F->getIntrinsicID() == Intrinsic::donothing,
1682 "Cannot invoke an intrinsinc other than donothing", &I);
1683 Assert1(F->getParent() == Mod, "Referencing function in another module!",
1684 &I);
1685 } else if (BasicBlock *OpBB = dyn_cast<BasicBlock>(I.getOperand(i))) {
1686 Assert1(OpBB->getParent() == BB->getParent(),
1687 "Referring to a basic block in another function!", &I);
1688 } else if (Argument *OpArg = dyn_cast<Argument>(I.getOperand(i))) {
1689 Assert1(OpArg->getParent() == BB->getParent(),
1690 "Referring to an argument in another function!", &I);
1691 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(I.getOperand(i))) {
1692 Assert1(GV->getParent() == Mod, "Referencing global in another module!",
1693 &I);
1694 } else if (isa<Instruction>(I.getOperand(i))) {
1695 verifyDominatesUse(I, i);
1696 } else if (isa<InlineAsm>(I.getOperand(i))) {
1697 Assert1((i + 1 == e && isa<CallInst>(I)) ||
1698 (i + 3 == e && isa<InvokeInst>(I)),
1699 "Cannot take the address of an inline asm!", &I);
1700 }
1701 }
1702
1703 if (MDNode *MD = I.getMetadata(LLVMContext::MD_fpmath)) {
1704 Assert1(I.getType()->isFPOrFPVectorTy(),
1705 "fpmath requires a floating point result!", &I);
1706 Assert1(MD->getNumOperands() == 1, "fpmath takes one operand!", &I);
1707 Value *Op0 = MD->getOperand(0);
1708 if (ConstantFP *CFP0 = dyn_cast_or_null<ConstantFP>(Op0)) {
1709 APFloat Accuracy = CFP0->getValueAPF();
1710 Assert1(Accuracy.isNormal() && !Accuracy.isNegative(),
1711 "fpmath accuracy not a positive number!", &I);
1712 } else {
1713 Assert1(false, "invalid fpmath accuracy!", &I);
1714 }
1715 }
1716
1717 MDNode *MD = I.getMetadata(LLVMContext::MD_range);
1718 Assert1(!MD || isa<LoadInst>(I), "Ranges are only for loads!", &I);
1719
1720 InstsInThisBlock.insert(&I);
1721 }
1722
1723 /// VerifyIntrinsicType - Verify that the specified type (which comes from an
1724 /// intrinsic argument or return value) matches the type constraints specified
1725 /// by the .td file (e.g. an "any integer" argument really is an integer).
1726 ///
1727 /// This return true on error but does not print a message.
VerifyIntrinsicType(Type * Ty,ArrayRef<Intrinsic::IITDescriptor> & Infos,SmallVectorImpl<Type * > & ArgTys)1728 bool Verifier::VerifyIntrinsicType(Type *Ty,
1729 ArrayRef<Intrinsic::IITDescriptor> &Infos,
1730 SmallVectorImpl<Type*> &ArgTys) {
1731 using namespace Intrinsic;
1732
1733 // If we ran out of descriptors, there are too many arguments.
1734 if (Infos.empty()) return true;
1735 IITDescriptor D = Infos.front();
1736 Infos = Infos.slice(1);
1737
1738 switch (D.Kind) {
1739 case IITDescriptor::Void: return !Ty->isVoidTy();
1740 case IITDescriptor::MMX: return !Ty->isX86_MMXTy();
1741 case IITDescriptor::Metadata: return !Ty->isMetadataTy();
1742 case IITDescriptor::Float: return !Ty->isFloatTy();
1743 case IITDescriptor::Double: return !Ty->isDoubleTy();
1744 case IITDescriptor::Integer: return !Ty->isIntegerTy(D.Integer_Width);
1745 case IITDescriptor::Vector: {
1746 VectorType *VT = dyn_cast<VectorType>(Ty);
1747 return VT == 0 || VT->getNumElements() != D.Vector_Width ||
1748 VerifyIntrinsicType(VT->getElementType(), Infos, ArgTys);
1749 }
1750 case IITDescriptor::Pointer: {
1751 PointerType *PT = dyn_cast<PointerType>(Ty);
1752 return PT == 0 || PT->getAddressSpace() != D.Pointer_AddressSpace ||
1753 VerifyIntrinsicType(PT->getElementType(), Infos, ArgTys);
1754 }
1755
1756 case IITDescriptor::Struct: {
1757 StructType *ST = dyn_cast<StructType>(Ty);
1758 if (ST == 0 || ST->getNumElements() != D.Struct_NumElements)
1759 return true;
1760
1761 for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i)
1762 if (VerifyIntrinsicType(ST->getElementType(i), Infos, ArgTys))
1763 return true;
1764 return false;
1765 }
1766
1767 case IITDescriptor::Argument:
1768 // Two cases here - If this is the second occurrence of an argument, verify
1769 // that the later instance matches the previous instance.
1770 if (D.getArgumentNumber() < ArgTys.size())
1771 return Ty != ArgTys[D.getArgumentNumber()];
1772
1773 // Otherwise, if this is the first instance of an argument, record it and
1774 // verify the "Any" kind.
1775 assert(D.getArgumentNumber() == ArgTys.size() && "Table consistency error");
1776 ArgTys.push_back(Ty);
1777
1778 switch (D.getArgumentKind()) {
1779 case IITDescriptor::AK_AnyInteger: return !Ty->isIntOrIntVectorTy();
1780 case IITDescriptor::AK_AnyFloat: return !Ty->isFPOrFPVectorTy();
1781 case IITDescriptor::AK_AnyVector: return !isa<VectorType>(Ty);
1782 case IITDescriptor::AK_AnyPointer: return !isa<PointerType>(Ty);
1783 }
1784 llvm_unreachable("all argument kinds not covered");
1785
1786 case IITDescriptor::ExtendVecArgument:
1787 // This may only be used when referring to a previous vector argument.
1788 return D.getArgumentNumber() >= ArgTys.size() ||
1789 !isa<VectorType>(ArgTys[D.getArgumentNumber()]) ||
1790 VectorType::getExtendedElementVectorType(
1791 cast<VectorType>(ArgTys[D.getArgumentNumber()])) != Ty;
1792
1793 case IITDescriptor::TruncVecArgument:
1794 // This may only be used when referring to a previous vector argument.
1795 return D.getArgumentNumber() >= ArgTys.size() ||
1796 !isa<VectorType>(ArgTys[D.getArgumentNumber()]) ||
1797 VectorType::getTruncatedElementVectorType(
1798 cast<VectorType>(ArgTys[D.getArgumentNumber()])) != Ty;
1799 }
1800 llvm_unreachable("unhandled");
1801 }
1802
1803 /// visitIntrinsicFunction - Allow intrinsics to be verified in different ways.
1804 ///
visitIntrinsicFunctionCall(Intrinsic::ID ID,CallInst & CI)1805 void Verifier::visitIntrinsicFunctionCall(Intrinsic::ID ID, CallInst &CI) {
1806 Function *IF = CI.getCalledFunction();
1807 Assert1(IF->isDeclaration(), "Intrinsic functions should never be defined!",
1808 IF);
1809
1810 // Verify that the intrinsic prototype lines up with what the .td files
1811 // describe.
1812 FunctionType *IFTy = IF->getFunctionType();
1813 Assert1(!IFTy->isVarArg(), "Intrinsic prototypes are not varargs", IF);
1814
1815 SmallVector<Intrinsic::IITDescriptor, 8> Table;
1816 getIntrinsicInfoTableEntries(ID, Table);
1817 ArrayRef<Intrinsic::IITDescriptor> TableRef = Table;
1818
1819 SmallVector<Type *, 4> ArgTys;
1820 Assert1(!VerifyIntrinsicType(IFTy->getReturnType(), TableRef, ArgTys),
1821 "Intrinsic has incorrect return type!", IF);
1822 for (unsigned i = 0, e = IFTy->getNumParams(); i != e; ++i)
1823 Assert1(!VerifyIntrinsicType(IFTy->getParamType(i), TableRef, ArgTys),
1824 "Intrinsic has incorrect argument type!", IF);
1825 Assert1(TableRef.empty(), "Intrinsic has too few arguments!", IF);
1826
1827 // Now that we have the intrinsic ID and the actual argument types (and we
1828 // know they are legal for the intrinsic!) get the intrinsic name through the
1829 // usual means. This allows us to verify the mangling of argument types into
1830 // the name.
1831 Assert1(Intrinsic::getName(ID, ArgTys) == IF->getName(),
1832 "Intrinsic name not mangled correctly for type arguments!", IF);
1833
1834 // If the intrinsic takes MDNode arguments, verify that they are either global
1835 // or are local to *this* function.
1836 for (unsigned i = 0, e = CI.getNumArgOperands(); i != e; ++i)
1837 if (MDNode *MD = dyn_cast<MDNode>(CI.getArgOperand(i)))
1838 visitMDNode(*MD, CI.getParent()->getParent());
1839
1840 switch (ID) {
1841 default:
1842 break;
1843 case Intrinsic::ctlz: // llvm.ctlz
1844 case Intrinsic::cttz: // llvm.cttz
1845 Assert1(isa<ConstantInt>(CI.getArgOperand(1)),
1846 "is_zero_undef argument of bit counting intrinsics must be a "
1847 "constant int", &CI);
1848 break;
1849 case Intrinsic::dbg_declare: { // llvm.dbg.declare
1850 Assert1(CI.getArgOperand(0) && isa<MDNode>(CI.getArgOperand(0)),
1851 "invalid llvm.dbg.declare intrinsic call 1", &CI);
1852 MDNode *MD = cast<MDNode>(CI.getArgOperand(0));
1853 Assert1(MD->getNumOperands() == 1,
1854 "invalid llvm.dbg.declare intrinsic call 2", &CI);
1855 } break;
1856 case Intrinsic::memcpy:
1857 case Intrinsic::memmove:
1858 case Intrinsic::memset:
1859 Assert1(isa<ConstantInt>(CI.getArgOperand(3)),
1860 "alignment argument of memory intrinsics must be a constant int",
1861 &CI);
1862 Assert1(isa<ConstantInt>(CI.getArgOperand(4)),
1863 "isvolatile argument of memory intrinsics must be a constant int",
1864 &CI);
1865 break;
1866 case Intrinsic::gcroot:
1867 case Intrinsic::gcwrite:
1868 case Intrinsic::gcread:
1869 if (ID == Intrinsic::gcroot) {
1870 AllocaInst *AI =
1871 dyn_cast<AllocaInst>(CI.getArgOperand(0)->stripPointerCasts());
1872 Assert1(AI, "llvm.gcroot parameter #1 must be an alloca.", &CI);
1873 Assert1(isa<Constant>(CI.getArgOperand(1)),
1874 "llvm.gcroot parameter #2 must be a constant.", &CI);
1875 if (!AI->getType()->getElementType()->isPointerTy()) {
1876 Assert1(!isa<ConstantPointerNull>(CI.getArgOperand(1)),
1877 "llvm.gcroot parameter #1 must either be a pointer alloca, "
1878 "or argument #2 must be a non-null constant.", &CI);
1879 }
1880 }
1881
1882 Assert1(CI.getParent()->getParent()->hasGC(),
1883 "Enclosing function does not use GC.", &CI);
1884 break;
1885 case Intrinsic::init_trampoline:
1886 Assert1(isa<Function>(CI.getArgOperand(1)->stripPointerCasts()),
1887 "llvm.init_trampoline parameter #2 must resolve to a function.",
1888 &CI);
1889 break;
1890 case Intrinsic::prefetch:
1891 Assert1(isa<ConstantInt>(CI.getArgOperand(1)) &&
1892 isa<ConstantInt>(CI.getArgOperand(2)) &&
1893 cast<ConstantInt>(CI.getArgOperand(1))->getZExtValue() < 2 &&
1894 cast<ConstantInt>(CI.getArgOperand(2))->getZExtValue() < 4,
1895 "invalid arguments to llvm.prefetch",
1896 &CI);
1897 break;
1898 case Intrinsic::stackprotector:
1899 Assert1(isa<AllocaInst>(CI.getArgOperand(1)->stripPointerCasts()),
1900 "llvm.stackprotector parameter #2 must resolve to an alloca.",
1901 &CI);
1902 break;
1903 case Intrinsic::lifetime_start:
1904 case Intrinsic::lifetime_end:
1905 case Intrinsic::invariant_start:
1906 Assert1(isa<ConstantInt>(CI.getArgOperand(0)),
1907 "size argument of memory use markers must be a constant integer",
1908 &CI);
1909 break;
1910 case Intrinsic::invariant_end:
1911 Assert1(isa<ConstantInt>(CI.getArgOperand(1)),
1912 "llvm.invariant.end parameter #2 must be a constant integer", &CI);
1913 break;
1914 }
1915 }
1916
1917 //===----------------------------------------------------------------------===//
1918 // Implement the public interfaces to this file...
1919 //===----------------------------------------------------------------------===//
1920
createVerifierPass(VerifierFailureAction action)1921 FunctionPass *llvm::createVerifierPass(VerifierFailureAction action) {
1922 return new Verifier(action);
1923 }
1924
1925
1926 /// verifyFunction - Check a function for errors, printing messages on stderr.
1927 /// Return true if the function is corrupt.
1928 ///
verifyFunction(const Function & f,VerifierFailureAction action)1929 bool llvm::verifyFunction(const Function &f, VerifierFailureAction action) {
1930 Function &F = const_cast<Function&>(f);
1931 assert(!F.isDeclaration() && "Cannot verify external functions");
1932
1933 FunctionPassManager FPM(F.getParent());
1934 Verifier *V = new Verifier(action);
1935 FPM.add(V);
1936 FPM.run(F);
1937 return V->Broken;
1938 }
1939
1940 /// verifyModule - Check a module for errors, printing messages on stderr.
1941 /// Return true if the module is corrupt.
1942 ///
verifyModule(const Module & M,VerifierFailureAction action,std::string * ErrorInfo)1943 bool llvm::verifyModule(const Module &M, VerifierFailureAction action,
1944 std::string *ErrorInfo) {
1945 PassManager PM;
1946 Verifier *V = new Verifier(action);
1947 PM.add(V);
1948 PM.run(const_cast<Module&>(M));
1949
1950 if (ErrorInfo && V->Broken)
1951 *ErrorInfo = V->MessagesStr.str();
1952 return V->Broken;
1953 }
1954