• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2010 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #include <sys/mman.h>  /* for PROT_* */
18 
19 #include "Dalvik.h"
20 #include "alloc/HeapBitmap.h"
21 #include "alloc/HeapBitmapInlines.h"
22 #include "alloc/HeapSource.h"
23 #include "alloc/Visit.h"
24 
25 /*
26  * Maintain a card table from the the write barrier. All writes of
27  * non-NULL values to heap addresses should go through an entry in
28  * WriteBarrier, and from there to here.
29  *
30  * The heap is divided into "cards" of GC_CARD_SIZE bytes, as
31  * determined by GC_CARD_SHIFT. The card table contains one byte of
32  * data per card, to be used by the GC. The value of the byte will be
33  * one of GC_CARD_CLEAN or GC_CARD_DIRTY.
34  *
35  * After any store of a non-NULL object pointer into a heap object,
36  * code is obliged to mark the card dirty. The setters in
37  * ObjectInlines.h [such as dvmSetFieldObject] do this for you. The
38  * JIT and fast interpreters also contain code to mark cards as dirty.
39  *
40  * The card table's base [the "biased card table"] gets set to a
41  * rather strange value.  In order to keep the JIT from having to
42  * fabricate or load GC_DIRTY_CARD to store into the card table,
43  * biased base is within the mmap allocation at a point where it's low
44  * byte is equal to GC_DIRTY_CARD. See dvmCardTableStartup for details.
45  */
46 
47 /*
48  * Initializes the card table; must be called before any other
49  * dvmCardTable*() functions.
50  */
dvmCardTableStartup(size_t heapMaximumSize,size_t growthLimit)51 bool dvmCardTableStartup(size_t heapMaximumSize, size_t growthLimit)
52 {
53     size_t length;
54     void *allocBase;
55     u1 *biasedBase;
56     GcHeap *gcHeap = gDvm.gcHeap;
57     void *heapBase = dvmHeapSourceGetBase();
58     assert(gcHeap != NULL);
59     assert(heapBase != NULL);
60 
61     /* Set up the card table */
62     length = heapMaximumSize / GC_CARD_SIZE;
63     /* Allocate an extra 256 bytes to allow fixed low-byte of base */
64     allocBase = dvmAllocRegion(length + 0x100, PROT_READ | PROT_WRITE,
65                             "dalvik-card-table");
66     if (allocBase == NULL) {
67         return false;
68     }
69     gcHeap->cardTableBase = (u1*)allocBase;
70     gcHeap->cardTableLength = growthLimit / GC_CARD_SIZE;
71     gcHeap->cardTableMaxLength = length;
72     gcHeap->cardTableOffset = 0;
73     /* All zeros is the correct initial value; all clean. */
74     assert(GC_CARD_CLEAN == 0);
75 
76     biasedBase = (u1 *)((uintptr_t)allocBase -
77                         ((uintptr_t)heapBase >> GC_CARD_SHIFT));
78     if (((uintptr_t)biasedBase & 0xff) != GC_CARD_DIRTY) {
79         int offset = GC_CARD_DIRTY - ((uintptr_t)biasedBase & 0xff);
80         gcHeap->cardTableOffset = offset + (offset < 0 ? 0x100 : 0);
81         biasedBase += gcHeap->cardTableOffset;
82     }
83     assert(((uintptr_t)biasedBase & 0xff) == GC_CARD_DIRTY);
84     gDvm.biasedCardTableBase = biasedBase;
85 
86     return true;
87 }
88 
89 /*
90  * Tears down the entire CardTable.
91  */
dvmCardTableShutdown()92 void dvmCardTableShutdown()
93 {
94     gDvm.biasedCardTableBase = NULL;
95     munmap(gDvm.gcHeap->cardTableBase, gDvm.gcHeap->cardTableLength);
96 }
97 
dvmClearCardTable()98 void dvmClearCardTable()
99 {
100     /*
101      * The goal is to zero out some mmap-allocated pages.  We can accomplish
102      * this with memset() or madvise(MADV_DONTNEED).  The latter has some
103      * useful properties, notably that the pages are returned to the system,
104      * so cards for parts of the heap we haven't expanded into won't be
105      * allocated physical pages.  On the other hand, if we un-map the card
106      * area, we'll have to fault it back in as we resume dirtying objects,
107      * which reduces performance.
108      *
109      * We don't cause any correctness issues by failing to clear cards; we
110      * just take a performance hit during the second pause of the concurrent
111      * collection.  The "advisory" nature of madvise() isn't a big problem.
112      *
113      * What we really want to do is:
114      * (1) zero out all cards that were touched
115      * (2) use madvise() to release any pages that won't be used in the near
116      *     future
117      *
118      * For #1, we don't really know which cards were touched, but we can
119      * approximate it with the "live bits max" value, which tells us the
120      * highest start address at which an object was allocated.  This may
121      * leave vestigial nonzero entries at the end if temporary objects are
122      * created during a concurrent GC, but that should be harmless.  (We
123      * can round up to the end of the card table page to reduce this.)
124      *
125      * For #2, we don't know which pages will be used in the future.  Some
126      * simple experiments suggested that a "typical" app will touch about
127      * 60KB of pages while initializing, but drops down to 20-24KB while
128      * idle.  We can save a few hundred KB system-wide with aggressive
129      * use of madvise().  The cost of mapping those pages back in is paid
130      * outside of the GC pause, which reduces the impact.  (We might be
131      * able to get the benefits by only doing this occasionally, e.g. if
132      * the heap shrinks a lot or we somehow notice that we've been idle.)
133      *
134      * Note that cardTableLength is initially set to the growth limit, and
135      * on request will be expanded to the heap maximum.
136      */
137     assert(gDvm.gcHeap->cardTableBase != NULL);
138 
139 #if 1
140     // zero out cards with memset(), using liveBits as an estimate
141     const HeapBitmap* liveBits = dvmHeapSourceGetLiveBits();
142     size_t maxLiveCard = (liveBits->max - liveBits->base) / GC_CARD_SIZE;
143     maxLiveCard = ALIGN_UP_TO_PAGE_SIZE(maxLiveCard);
144     if (maxLiveCard > gDvm.gcHeap->cardTableLength) {
145         maxLiveCard = gDvm.gcHeap->cardTableLength;
146     }
147 
148     memset(gDvm.gcHeap->cardTableBase, GC_CARD_CLEAN, maxLiveCard);
149 #else
150     // zero out cards with madvise(), discarding all pages in the card table
151     madvise(gDvm.gcHeap->cardTableBase, gDvm.gcHeap->cardTableLength,
152         MADV_DONTNEED);
153 #endif
154 }
155 
156 /*
157  * Returns true iff the address is within the bounds of the card table.
158  */
dvmIsValidCard(const u1 * cardAddr)159 bool dvmIsValidCard(const u1 *cardAddr)
160 {
161     GcHeap *h = gDvm.gcHeap;
162     u1* begin = h->cardTableBase + h->cardTableOffset;
163     u1* end = &begin[h->cardTableLength];
164     return cardAddr >= begin && cardAddr < end;
165 }
166 
167 /*
168  * Returns the address of the relevent byte in the card table, given
169  * an address on the heap.
170  */
dvmCardFromAddr(const void * addr)171 u1 *dvmCardFromAddr(const void *addr)
172 {
173     u1 *biasedBase = gDvm.biasedCardTableBase;
174     u1 *cardAddr = biasedBase + ((uintptr_t)addr >> GC_CARD_SHIFT);
175     assert(dvmIsValidCard(cardAddr));
176     return cardAddr;
177 }
178 
179 /*
180  * Returns the first address in the heap which maps to this card.
181  */
dvmAddrFromCard(const u1 * cardAddr)182 void *dvmAddrFromCard(const u1 *cardAddr)
183 {
184     assert(dvmIsValidCard(cardAddr));
185     uintptr_t offset = cardAddr - gDvm.biasedCardTableBase;
186     return (void *)(offset << GC_CARD_SHIFT);
187 }
188 
189 /*
190  * Dirties the card for the given address.
191  */
dvmMarkCard(const void * addr)192 void dvmMarkCard(const void *addr)
193 {
194     u1 *cardAddr = dvmCardFromAddr(addr);
195     *cardAddr = GC_CARD_DIRTY;
196 }
197 
198 /*
199  * Returns true if the object is on a dirty card.
200  */
isObjectDirty(const Object * obj)201 static bool isObjectDirty(const Object *obj)
202 {
203     assert(obj != NULL);
204     assert(dvmIsValidObject(obj));
205     u1 *card = dvmCardFromAddr(obj);
206     return *card == GC_CARD_DIRTY;
207 }
208 
209 /*
210  * Context structure for verifying the card table.
211  */
212 struct WhiteReferenceCounter {
213     HeapBitmap *markBits;
214     size_t whiteRefs;
215 };
216 
217 /*
218  * Visitor that counts white referents.
219  */
countWhiteReferenceVisitor(void * addr,void * arg)220 static void countWhiteReferenceVisitor(void *addr, void *arg)
221 {
222     WhiteReferenceCounter *ctx;
223     Object *obj;
224 
225     assert(addr != NULL);
226     assert(arg != NULL);
227     obj = *(Object **)addr;
228     if (obj == NULL) {
229         return;
230     }
231     assert(dvmIsValidObject(obj));
232     ctx = (WhiteReferenceCounter *)arg;
233     if (dvmHeapBitmapIsObjectBitSet(ctx->markBits, obj)) {
234         return;
235     }
236     ctx->whiteRefs += 1;
237 }
238 
239 /*
240  * Visitor that logs white references.
241  */
dumpWhiteReferenceVisitor(void * addr,void * arg)242 static void dumpWhiteReferenceVisitor(void *addr, void *arg)
243 {
244     WhiteReferenceCounter *ctx;
245     Object *obj;
246 
247     assert(addr != NULL);
248     assert(arg != NULL);
249     obj = *(Object **)addr;
250     if (obj == NULL) {
251         return;
252     }
253     assert(dvmIsValidObject(obj));
254     ctx = (WhiteReferenceCounter*)arg;
255     if (dvmHeapBitmapIsObjectBitSet(ctx->markBits, obj)) {
256         return;
257     }
258     ALOGE("object %p is white", obj);
259 }
260 
261 /*
262  * Visitor that signals the caller when a matching reference is found.
263  */
dumpReferencesVisitor(void * pObj,void * arg)264 static void dumpReferencesVisitor(void *pObj, void *arg)
265 {
266     Object *obj = *(Object **)pObj;
267     Object *lookingFor = *(Object **)arg;
268     if (lookingFor != NULL && lookingFor == obj) {
269         *(Object **)arg = NULL;
270     }
271 }
272 
dumpReferencesCallback(Object * obj,void * arg)273 static void dumpReferencesCallback(Object *obj, void *arg)
274 {
275     if (obj == (Object *)arg) {
276         return;
277     }
278     dvmVisitObject(dumpReferencesVisitor, obj, &arg);
279     if (arg == NULL) {
280         ALOGD("Found %p in the heap @ %p", arg, obj);
281         dvmDumpObject(obj);
282     }
283 }
284 
285 /*
286  * Root visitor that looks for matching references.
287  */
dumpReferencesRootVisitor(void * ptr,u4 threadId,RootType type,void * arg)288 static void dumpReferencesRootVisitor(void *ptr, u4 threadId,
289                                       RootType type, void *arg)
290 {
291     Object *obj = *(Object **)ptr;
292     Object *lookingFor = *(Object **)arg;
293     if (obj == lookingFor) {
294         ALOGD("Found %p in a root @ %p", arg, ptr);
295     }
296 }
297 
298 /*
299  * Invokes visitors to search for references to an object.
300  */
dumpReferences(const Object * obj)301 static void dumpReferences(const Object *obj)
302 {
303     HeapBitmap *bitmap = dvmHeapSourceGetLiveBits();
304     void *arg = (void *)obj;
305     dvmVisitRoots(dumpReferencesRootVisitor, arg);
306     dvmHeapBitmapWalk(bitmap, dumpReferencesCallback, arg);
307 }
308 
309 /*
310  * Returns true if the given object is a reference object and the
311  * just the referent is unmarked.
312  */
isReferentUnmarked(const Object * obj,const WhiteReferenceCounter * ctx)313 static bool isReferentUnmarked(const Object *obj,
314                                const WhiteReferenceCounter* ctx)
315 {
316     assert(obj != NULL);
317     assert(obj->clazz != NULL);
318     assert(ctx != NULL);
319     if (ctx->whiteRefs != 1) {
320         return false;
321     } else if (IS_CLASS_FLAG_SET(obj->clazz, CLASS_ISREFERENCE)) {
322         size_t offset = gDvm.offJavaLangRefReference_referent;
323         const Object *referent = dvmGetFieldObject(obj, offset);
324         return !dvmHeapBitmapIsObjectBitSet(ctx->markBits, referent);
325     } else {
326         return false;
327     }
328 }
329 
330 /*
331  * Returns true if the given object is a string and has been interned
332  * by the user.
333  */
isWeakInternedString(const Object * obj)334 static bool isWeakInternedString(const Object *obj)
335 {
336     assert(obj != NULL);
337     if (obj->clazz == gDvm.classJavaLangString) {
338         return dvmIsWeakInternedString((StringObject *)obj);
339     } else {
340         return false;
341     }
342 }
343 
344 /*
345  * Returns true if the given object has been pushed on the mark stack
346  * by root marking.
347  */
isPushedOnMarkStack(const Object * obj)348 static bool isPushedOnMarkStack(const Object *obj)
349 {
350     GcMarkStack *stack = &gDvm.gcHeap->markContext.stack;
351     for (const Object **ptr = stack->base; ptr < stack->top; ++ptr) {
352         if (*ptr == obj) {
353             return true;
354         }
355     }
356     return false;
357 }
358 
359 /*
360  * Callback applied to marked objects.  If the object is gray and on
361  * an unmarked card an error is logged and the VM is aborted.  Card
362  * table verification occurs between root marking and weak reference
363  * processing.  We treat objects marked from the roots and weak
364  * references specially as it is permissible for these objects to be
365  * gray and on an unmarked card.
366  */
verifyCardTableCallback(Object * obj,void * arg)367 static void verifyCardTableCallback(Object *obj, void *arg)
368 {
369     WhiteReferenceCounter ctx = { (HeapBitmap *)arg, 0 };
370 
371     dvmVisitObject(countWhiteReferenceVisitor, obj, &ctx);
372     if (ctx.whiteRefs == 0) {
373         return;
374     } else if (isObjectDirty(obj)) {
375         return;
376     } else if (isReferentUnmarked(obj, &ctx)) {
377         return;
378     } else if (isWeakInternedString(obj)) {
379         return;
380     } else if (isPushedOnMarkStack(obj)) {
381         return;
382     } else {
383         ALOGE("Verify failed, object %p is gray and on an unmarked card", obj);
384         dvmDumpObject(obj);
385         dvmVisitObject(dumpWhiteReferenceVisitor, obj, &ctx);
386         dumpReferences(obj);
387         dvmAbort();
388     }
389 }
390 
391 /*
392  * Verifies that gray objects are on a dirty card.
393  */
dvmVerifyCardTable()394 void dvmVerifyCardTable()
395 {
396     HeapBitmap *markBits = gDvm.gcHeap->markContext.bitmap;
397     dvmHeapBitmapWalk(markBits, verifyCardTableCallback, markBits);
398 }
399